
Authors’ response to RC2 - manuscript ESSD-2022-113 

Responses to Reviewer comments: The text in blue represents the authors’ reply. Text in italic 

represents text that was changed in the manuscript, with line numbers referring to those in the revised 

manuscript. We numbered the comments for easier referral. 

General comments: 

Small typographic errors (missing punctuation or erroneous capitalization) that proofreaders should 

catch. 

Data accessible, clearly described, easy to work with. This reviewer prefers .csv to .tab but that seems 

a matter of individual preference. 

I understand why authors might prefer CC-BY-NC but, due to proper ESSD cautions, have editors 

granted permission for -NC? 

Overall: good well-organized description of QC levels and good summary of ‘final’ QC outcome, 0.15 

+ 0.56 down to 0.00 + 0.22 for temperature. In describing and summarizing these efforts and QC levels, 

the authors seem to have left out or passed over several issues. 

Reply: We thank the reviewer for the thorough review. We have considered all your comments and 

revised the manuscript accordingly. We have proofread the manuscript to correct for additional 

typographic errors. We also like to mention that the data depository automatically transforms .csv files 

to .tab files. There is, however, a possibility to download the files as .csv. Regarding the CC-BY-NC 

license, this was not raised as a problem during the initial submission phase. If the editors would not 

grant permission for –NC, we can change this. We tried to rephrase and further explain the QC 

methodology in order to solve the issues mentioned below. Please see our point-by-point responses on 

the specific comments below. 

 

Specific comments: 

1. Daytime vs nighttime much used but little described. Based on daily hours sunlight, calculated 

by day, month or season? Or calculated based on measured surface radiation values where night 

= low light = < some minimum value of W/m2?  

Reply: Thanks for the valid comment. We agree that the differentiation between night- and daytime 

was not clearly described. Currently it was only mentioned in the caption of figure 3. The distinction 

between day- and nighttime is based on the radiation measurements of each station; daytime is defined 

as LC_RAD > 0 W/m2, nighttime is defined as LC_RAD = 0 W/m2. This has been further clarified in 

the manuscript. We should further state that the differentiation between night and day is only for 

illustrative purposes. Only one RF model has been made for both day and night, the differentiation 

between day and night is however indirectly present in the model through the input variables “Hour”, 

“Radiation” and “Radiation60”.   

‘The overall temperature bias (i.e., all LC-R stations together) between the LC-R and the AWS data has 

a mean value of 0.10°C and a standard deviation of 0.55 °C (Figure 3). By splitting up the temperature 

bias for day (radiation > 0 W/m2) and night (radiation = 0 W/m2), a positive mean temperature bias 

during daytime (0.32 °C) and a negative mean temperature bias during night time (-0.10 °C) is 

obtained.’ (Lines 348-351) 



‘The random forest prediction of temperature bias showed the best results. By splitting up the results 

for day (radiation > 0 W/m2) and night (radiation = 0 W/m2) (Figure 6), a smaller standard deviation 

of the bias during night time (0.25) compared to daytime (0.31) is obtained. This differentiation between 

night and day is only for illustrative purposes, only one RF was built for both day and night. The 

statistical details of the random forest model are further summarized in Table 9.’ (Lines 425-428) 

 

2. Other parameters (RH, precip, wind) not corrected. Authors describe, correctly, the use of non-

T parameters in various QC functions but otherwise give no hints about suitability, difficulty 

or desirability of addressing RH, precip, etc. Do readers await a future paper? Do we assume 

QC of T proved easier than other parameters? Authors give us no hint what to assume!  

Reply: We understand the question of the reviewer. Before using the non-T parameters in various steps 

of the QC, we have made a qualitative assessment of the data quality by making scatterplots of the non-

T parameters for the LC-R stations, compared to the AWS data. Overall, the measured parameters are 

within the accuracy given by the manufacturer. These scatterplots have been added as an Appendix 

(Appendix C) to the manuscript.  

There are, however, deviations in the wind and radiation measurement that are attributable to the small 

location differences (in the order of meters) between the LC-R stations and the official sensors. For 

wind, we compared the LC-R data with professional 2 m wind measurements, but this height is in fact 

not the standard measurement height for wind since too many ground effects are still into play at this 

height. For radiation, we already mentioned the design flaw regarding the wind vane dropping a shadow, 

but also high nearby trees can influence the measurements for low solar elevations (in the case of LC-

R01 and LC-R02). 

The main focus of the authors research is related to urban temperatures and the UHI effect. Currently 

no QC for the other parameters are planned.  

‘A qualitative assessment of the data quality of these variables in included in Appendix C.’ (Line 204) 

 

‘Appendix C. Quality control other Leuven.cool variables 

A qualitative assessment of the data quality was performed by making scatterplots of these variables 

for the LC-R stations compared to the AWS stations (Figure C1).  

Overall, the measured parameters are within the accuracy given by the manufacturer. There are, 

however, deviations in the wind and radiation measurement that are attributable to the small location 

differences (in the order of meters) between the LC-R stations and the official sensors. For wind, we 

compared the LC-R data with professional 2m wind measurements, but this height is in fact not the 

standard measurement height for wind since too many ground effects are still into play at this height. 

For radiation, we already mentioned the design flaw regarding the wind vane dropping a shadow, but 

also high nearby trees can influence the measurements for low solar elevations (in the case of LC-R01 

and LC-R02). 



     

 

  



 

  

  

  



  

Figure C1: Scatterplots of LC-R versus AWS dew point temperature, humidity, radiation and wind 

speed for each reference station LC-R01 , LC-R02, LC-R04, LC-R05. The identity line is shown in black. 

The colour scale indicates the density of observations, yellow indicating the highest, purple the lowest. 

The scatterplots include all measurements between the installation data of each LC-R and December 

2021. For each variable the same ranges of x- and y-axis are used.’  

(Lines 798-820) 

 

3. Authors should, technically, express offsets and SD in K rather than C. Not often done, I accept.  

Reply: Thanks for the comment. We have followed related literature on air temperature quality control 

and correction methods, which choose to express temperature offsets and SD in °C. A small clarification 

is however added to the manuscript.  

‘The outdoor sensor array measures temperature (°C, add 273.15 for K), humidity (%), precipitation 

(mm), wind speed (m/s), wind direction (°), solar radiation (W/m2), and UV (-) every 16 seconds.’ 

(Lines 145-147) 

 

4. Authors have lumped 2 m data with 3-4 m data? Early mention but then no subsequent 

treatment. One suspects both sensor elevation and surrounding (mostly impervious) surfaces 

would have a large effect but never mentioned? Shadowing by anemometer mentioned 

occasionally but that occurs independently of short vs high poles and regardless of underlying 

surface?  

Reply: The installation height of the weather station is indeed not directly added as a parameter in the 

RF model (QC L3) in order to correct the T observations. This was not possible since all the LC-R 

stations were installed at a height of 2 m. We do however believe that the installation height is indirectly 

present in the RF model through the radiation and wind speed parameters. Furter, the altitude (above 

sea level) of the weather station will more clearly influence the measured temperature and is added as 

a parameter in the RF model.  

We do acknowledge that nocturnal temperature inversions can appear under clear calm nights (under 

low radiation and low windspeed conditions). During such a nocturnal inversion we normally see an 

increase in temperature with height due to radiational cooling of the earth’s surface (Ahrens, 2009). 

Such inversions however often occur at ground level, and thus below 2 m (Ahrens, 2009). 

To quantify the temperature difference between 2 m and 3 m, a small test was performed using multiple 

AWS stations having T observations at both 2 m and 10 m. By interpolating the temperature at 2 m and 



10 m, a temperature at 3 m is obtained. Next the average temperature difference and standard deviation 

between 3 m and 2 m was calculated for the whole of 2021 and for stable conditions (T10 m > T2 m) in 

which we expect the highest difference between 2 m and 3 m. For the whole of 2021 the mean difference 

equals 0 ± 0.09 °C, for the stable conditions we obtain a small difference of 0.08 ± 0.09 °C. We should 

thus state that stations installed at 3 m – 4 m can have an additional offset up to 0.08 ± 0.09 °C under 

stable conditions. This offset is much smaller than the night time temperature difference caused by the 

UHI effect (Chapman et al., 2017; Stewart, 2011; Venter et al., 2021).  

We further stress that stations have only been installed at a height of 3 m to 4 m where it was needed 

due safety reasons.  

 

Reply: The environment and surrounding surfaces of each sensor will indeed further influence the 

temperature measurements (Logan et al., 2020; J. Wang et al., 2022; Q. Wang et al., 2022; Ziter et al., 

2019). The weather stations were however installed following a strict protocol, at least 1 m from 

interfering objects, making sure no direct effects of the environment incorrectly influence the T 

observations. On the other hand, the goal of this weather station network is to measure the micro-climate 

in Leuven, namely the difference between impervious and greener locations within and outside the city 

center. In other words, our stations are installed at both impervious and green locations within and 

outside the city center in order to measure (and in the future also explain) these temperature differences.  

 

Reply: The shadowing of the anemometer is intrinsic to the station design and hence the same for every 

station, also the LC-R stations. As a consequence, the effect is included in our RF model. 

 

5. UHI: This reader missed an overall assessment of data as QC’d here to address UHI. Do we 

need 0.1K? 1.0K? Have the authors come close with these corrections. In view of distance of 

reference AWS from Leuven and, for two RMIB stations at least, distance from true urban 

settings, do authors feel they have a network now suitable for addressing UHI. Not clear, 

perhaps needs/deserves further clarification. Given sensor height differences already mentioned 

plus apparent absence (or, avoidance) of the most urban land use categories, can users really 

trust this data for further UHI work? UHI mentioned frequently in introduction but not at all in 

conclusion paragraph. I agree with summary sentences but, if they could not in the end address 

UHI - which, in many indices, includes high net radiation, low RH and low wind - should they 

have given so much attention in introduction 

 

Reply: We thank the reviewer for the valid comment. The resolution on which the UHI should be 

investigated is highly dependent on the application. For human thermal comfort studies, a resolution of 

1°C would however be sufficient (Epstein & Moran, 2006; Georgi & Zafiriadis, 2006). Before the QC 

method, a mean temperature bias up to 0.15 ± 0.56 °C is noted. After correction the mean bias has been 

diminished to 0.00 ± 0.28 °C. Numerous studies have however showed that the UHI effect causes 

nighttime temperature differences up 6 to 9 °C during clear nights. These thresholds are much higher 

than mean bias obtained after correction, the quality controlled Leuven.cool dataset is thus suitable to 

study the UHI (Chapman et al., 2017; Stewart, 2011; Venter et al., 2021). 

We further showed that the QC method can correct the temperature bias equally across different hours 

of the day and months of the year (Figure 16) as well as under different radiation and windspeed 

conditions (Figure 17). Most UHI indicators are based on either maximum daytime or minimum 

nighttime temperatures during extreme heat events (high radiation + low windspeed), while these time 



periods show the highest temperature bias (Figure 10 and Figure 11). Before correction these indicators 

would have either a positive (daytime) or negative (nighttime) bias, the ideal meteorological conditions 

would result in a positive bias. This QC method ensures that day -and nighttime effects as well as effects 

due to certain meteorological conditions have been corrected for. As a result, we can trust UHI 

indicators calculated for specific day- and night time events.  

‘Numerous studies have shown that the UHI effect causes night time temperature differences up 6 to 9 

°C during clear nights (Chapman et al., 2017; Venter et al., 2021; Stewart, 2011; Napoly et al., 2018; 

Feichtinger et al., 2020). These thresholds are much higher than mean bias obtained after correction; 

the dense quality controlled Leuven.cool dataset thus allows for microscale modelling of urban weather 

patterns, including the urban heat island (Chapman et al., 2017; de Vos et al., 2020; Napoly et al., 

2018; Feichtinger et al., 2020).’ (Lines 683-687) 

 

Reply: Regarding the distance between the AWS and the LC-X in Leuven, we don’t fully understand 

the question.  

We agree that there is quite a difference between the AWS and the LC-X in Leuven, and that due to 

this difference the AWS stations cannot serve as a direct reference for the LC-X in Leuven. We should 

however state that the RF model is based on the T difference between the official AWS and the LC-R 

(installed next to the AWS), the RF model does not take into account the standalone measurements of 

the AWS itself. We further installed reference stations (LC-R) at three different locations (Uccle, 

Diepenbeek, Humain) to make the model more robust against spatial differences.  

For addressing the UHI, the authors will not take AWS measurements into account but exclusively 

focus on the LC-X station in and outside Leuven.  

 

Reply: Regarding the apparent absence of most urban land use classes, we are a bit confused. Our 

weather station network mainly focusses on the urban LCZ classes, natural LCZ classes are not as well 

represented. 

The selection procedure for suitable locations started as a stratified sampling based on the concept of 

LCZs (by looking at building height, building density and vegetation cover). The goal was to divide the 

stations across the LCZ classes so that they would represent the spatial coverage of each LCZ. We 

should state that the network was implemented with the intention of gaining knowledge on the 

mitigating effect of green and blue infrastructures within urban settings. The initial study area thus 

mainly included the city centre of Leuven. As a result, the network has a clear bias towards urban 

classes. 

Figure 1 shows the distribution of the weather stations across the LCZ classes (left panel) and proportion 

of LCZ classes across study area (right panel). Due to the complex urban settings in which the network 

is deployed, practical limitations apply to the eligible locations for installation. We rely on volunteering 

citizens, private companies and government institutions giving permission to install a weather station 

on their property. Due to a technical limitation of the weather station, it cannot be installed in natural 

environments without a LAN connection within 50 to 100 meters of the weather station.  



 

Figure 1: Distribution of weather stations across LCZ classes (left panel) and proportion of LCZ classes across study area 

(right panel). 

 

Reply: We understand the reviewer’s comment on the lacking of the UHI in the conclusion. We have 

added a section with additional applications of this dataset, including the investigation of the UHI effect. 

These applications were summarized in the conclusion.  

‘6. Application potential of the quality controlled and corrected Leuven.cool dataset 

A validation of the proposed QC method showed that it can reduce the mean temperature difference 

and standard deviation from 0.15 ± 0.56 °C to 0.00 ± 0.28 °C. The QC method can correct the 

temperature difference equally across different hours of the day and months of the year (Figure 16) as 

well and under different radiation and windspeed conditions (Figure 17).  

The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced 

datasets for which less or even no metadata is available. As such, the Leuven.cool stations can serve as 

gatekeepers for other crowdsourced observations. In the past this role has been limited to standard 

weather station network which mostly only have a limited number of observations available (Chapman 

et al., 2017).  

Numerous studies have shown that the UHI effect causes night time temperature differences up 6 to 9 

°C during clear nights (Chapman et al., 2017; Feichtinger et al., 2020; Napoly et al., 2018; Stewart, 

2011; Venter et al., 2021). These thresholds are much higher than mean bias obtained after correction. 

The dense quality controlled Leuven.cool dataset thus allows for microscale modelling of urban 

weather patterns, including the urban heat island (Chapman et al., 2017; de Vos et al., 2020; 

Feichtinger et al., 2020; Napoly et al., 2018). Since such high-quality datasets contain measurements 

with both high spatial and temporal resolution, they can easily be used to obtain spatially continuous 

temperature patterns across a region (e.g. Feichtinger et al., 2020; Napoly et al., 2018). Interpolation 

methods based on single pair stations or mobile transect methods are much less trustworthy (Napoly et 

al., 2018). Dense weather station networks can be used to investigate the inter- and intra LCZ 

variability within a city (Fenner et al., 2017; Verdonck et al., 2018). The dataset can further help 

investigate the relation between temperature and human and ecosystem health (e.g. Aerts et al., 2022; 

Troeyer et al., 2020) and their effect on evolutionary processes (e.g. Brans et al., 2022). 

The dataset can also help refine existing weather forecast models which are currently mostly based on 

official rural observations (Sgoff et al., 2022). Nipen et al. (2020) showed that the inclusion of citizen 

observations improves the accuracy of short-term temperature forecasts in regions where official 

stations are sparse. Mandement & Caumont (2020) used crowdsourced weather stations to improve the 

observation and prediction of near convection. After quality control and correction, also the wind (Chen 



et al., 2021) and precipitation measurements (de Vos et al., 2019) can be useful to improve detection 

and forecasting. Further, the Leuven.cool dataset could be a useful input in air pollution prediction 

models (e.g. IFD-model (Lefebvre et al., 2011)).’ (Lines 673-701) 

‘The quality-controlled Leuven.cool dataset enables a detailed comparison with other crowdsourced 

datasets for which less or even no metadata is available. The dense dataset further allows for microscale 

modelling of urban weather patterns, such as the urban heat island, and can help identify the relation 

between temperature and human and ecosystem and their effect on evolutionary processes. Lastly the 

dataset could be used to refine existing forecast models which are currently mostly based on official 

rural observations.’ (Lines 723-727) 

 

Reply: We agree with the reviewer’s comment that UHI effect is mostly investigated under high 

radiation, low relative humidity and low wind- speed conditions. As a consequence, we must make sure 

that the QC method is also valid under these meteorological conditions. If this is not the case, the dataset 

cannot be used to study the UHI with high accuracy.  

We should however state that QC also works for high radiation and low windspeed conditions. The QC 

method can correct the temperature bias equally across different hours of the day and months of the 

year (Figure 16) as well as under different radiation and windspeed conditions (Figure 17). Most UHI 

indicators are based on either maximum daytime or minimum nighttime temperatures during extreme 

heat events (high radiation + low windspeed), while these time periods show the highest temperature 

bias (Figure 10 and Figure 11). Before correction these indicators could have either a positive (daytime) 

or negative (nighttime) bias, the ideal meteorological conditions would result in a positive bias. This 

QC method ensures that day -and nighttime effects as well as effects due to certain meteorological 

conditions have been corrected for.  
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