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Abstract  16 

Fine particulate matter (PM2.5) has altered radiation balance on earth and raised environmental and 17 
health risks for decades but has only been monitored widely since 2013 in China. Historical long-18 
term PM2.5 records with high temporal resolution are essential but lacking for both research and 19 
environmental management. Here, we reconstruct a site-based PM2.5 dataset at 6-hour intervals from 20 
1960 to 2020 that combines long-term visibility, conventional meteorological observations, 21 
emissions, and elevation. The PM2.5 concentration at each site is estimated based on an advanced 22 
machine learning model, LightGBM, that takes advantage of spatial features from 20 surrounding 23 
meteorological stations. Our model’s performance is comparable to or even better than those of 24 
previous studies in by-year cross validation (CV) (R2=0.7) and spatial CV (R2=0.76) and is more 25 
advantageous in long-term records and high temporal resolution. This model also reconstructs a 26 
0.25°×0.25°, 6-hourly, gridded PM2.5 dataset by incorporating spatial features. The results show 27 
PM2.5 pollution worsens gradually or maintains before 2010 from an interdecadal scale but mitigates 28 
in the following decade. Although the turning points vary in different regions, PM2.5 mass 29 
concentrations in key regions decreased significantly after 2013 due to clean air actions. In particular, 30 
the annual average value of PM2.5 in 2020 is nearly the lowest since 1960. These two PM2.5 datasets 31 
(publicly available at https://doi.org/10.5281/zenodo.6372847) provide spatiotemporal variations at 32 
high resolution, which lay the foundation for research studies associated with air pollution, climate 33 
change, and atmospheric chemical reanalysis. 34 

  35 
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1 Introduction 36 

In the past decades, anthropogenic emissions of reactive gases and aerosols have been emitted 37 
increasingly in the atmosphere and thus led to a substantial increase in fine particulate matter (PM2.5). 38 
Increased PM2.5 has strongly interacted with solar radiation through absorption and scattering, 39 
thereby reducing visibility and influencing the earth’s radiance balance. Inhalable PM2.5 has 40 
increased human morbidity and mortality through penetrating the respiratory system (Pope et al., 41 
2002; Beelen et al., 2007; Chen et al., 2016b). To evaluate the impacts of PM2.5 pollution on 42 
environment, climate, and health, the primary concern is to understand the spatiotemporal variations 43 
of PM2.5 concentrations. Namely, extended PM2.5 records with high temporal resolution lay the 44 
foundation for research studies associated with air pollution, climate change, and environmental 45 
health. Nevertheless, it was not until 2013 that the Ministry of Ecology and Environment (MEE) 46 
established a nationwide PM2.5 monitoring network. Long-term, accurate historical PM2.5 datasets 47 
are lacking for both research and environmental management.  48 

Chemical transport models (CTMs) are expected to simulate the spatial and temporal variations 49 
of PM2.5 with reasonable emission inventories inputted. However, significant uncertainties still exist 50 
in historical emission inventories and physicochemical mechanisms, which resulted in inevitable 51 
biases in the simulated absolute values of PM2.5. Satellite-based aerosol optical depth (AOD), which 52 
measures the aerosol extinction of the solar beam, is an indicator of ground-level aerosols. AOD 53 
data products from Moderate Resolution Imaging Spectroradiometer (MODIS) have broad spatial 54 
coverage and relatively long observation periods (~ 20 years). Therefore, assimilating satellite-55 
retrieved AOD to construct atmospheric chemical reanalysis is a practical approach to reducing 56 
PM2.5 biases. In recent years, several international aerosol reanalysis datasets have been developed 57 
preliminarily, including the reanalysis data produced by the Copernicus Atmosphere Monitoring 58 
Service (CAMS) from the European Centre for Medium-Range Weather Forecasts (ECMWF) 59 
(Inness et al., 2019), the Modern-Era Retrospective analysis for Research and Applications, Version 60 
2 (MERRA-2) from the National Aeronautics and Space Administration (NASA) (Gelaro et al., 61 
2017; Randles et al., 2017), aerosol reanalysis from the Navy Aerosol Analysis and Prediction 62 
System (NAAPS) (Lynch et al., 2016) and the Japanese Reanalysis for Aerosol (JRAero) from the 63 
Japanese Meteorological Agency (Yumimoto et al., 2017). In particular, CAMS produced gridded 64 
PM1, PM2.5, and PM10 data at 80 km resolution since 2003 by assimilating satellite retrievals of total 65 
AOD, total tropospheric NO2 column, total O3 column, CO column, and vertical profiles (Inness et 66 
al., 2019). MERRA-2 reanalysis includes PM2.5 and PM10 at 50 km resolution since 1980 by 67 
assimilating ground-based and satellite-retrieval (Gelaro et al., 2017; Randles et al., 2017). NAAPS 68 
generates gridded AOD data at ~100 km resolution from 2003 to 2013 by assimilating satellite-69 
based AOD products (Lynch et al., 2016). JRAero provides PM2.5 and PM10 at ~100 km resolution 70 
from 2011 to 2015 by assimilating satellite AOD data (Yumimoto et al., 2017). These reanalysis 71 
data have contributed significantly to research in aerosol-related fields. However, there are still some 72 
weaknesses in accuracy, spatial resolution, time span, and types of assimilated data. In China, the 73 
highest horizontal resolution of the four reanalysis is only 50 km, and this coarse grid setting may 74 
not be sufficient to capture the spatial differences in atmospheric pollutants at regional scales. In 75 
terms of the type of aerosol data assimilation, these reanalysis data mainly assimilate satellite-based 76 
and ground-based AOD, and do not take into account ground PM2.5 observations.  77 

To overcome the reanalysis’s weaknesses in low spatial resolution and high biases, numerical 78 
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researchers focus on constructing relatively long-term PM2.5 datasets based on machine learning 79 
techniques that fuse multisource data, including satellite-retrieved AOD, CTM simulations, and 80 
even atmospheric chemical reanalysis. For example, Ma et al. (2016) estimated daily PM2.5 records 81 
at 0.1° resolution between 2004-2013 with MODIS AOD. Liang et al. (2020) rebuilt monthly PM2.5 82 
concentrations at 1 km resolution during 2000-2016 based on the multiangle implementation of 83 
atmospheric correction (MAIAC) from MODIS and reanalysis AOD and PM2.5 data from MERRA-84 
2. Geng et al. (2021) reconstructed daily, 10 km PM2.5 data between 2000-2020 with MODIS AOD 85 
and CTM simulations. Wei et al. (2021a) regenerated monthly, 1 km PM2.5 records between 2000-86 
2018 based on MAIAC AOD. Huang et al. (2021) estimated 1 km × 1 km PM2.5 concentrations daily 87 
between 2013-2019 based on MAIAC AOD and CTM outputs. However, some inherent limitations 88 
in satellited-based AOD are challenging to overcome. Due to the low sampling frequency of 89 
satellite-retrieved AOD, AOD-based PM2.5 datasets are limited to a maximum temporal resolution 90 
of one day. With AOD over land unavailable before 2000, these PM2.5 datasets can only be back-91 
calculated to 2000 at the earliest. Although recent studies focus on estimating hourly PM2.5 during 92 
the daytime based on AOD from geostationary satellites like Himawari 8 (Chen et al., 2019; Yan et 93 
al., 2020; Wang et al., 2021; Wei et al., 2021b), obtained PM2.5 datasets can only extend for several 94 
years, and the data is missing at night or with cloud cover. 95 

Compared with satellite data, ground-based meteorological observations have the advantages 96 
of long sequence time, high temporal resolution, and good data integrity. In China, the national 97 
meteorological observation network of the China Meteorological Administration (CMA) was 98 
established in the 1950s and is capable of continuously observing 6-hourly meteorological data on 99 
visibility and conventional meteorological variables, including temperature, pressure, wind, and 100 
relative humidity (RH). The number of national stations exceeded 2,000 in 1960 and stabilized at 101 
around 2,450 afterward. Studies have shown that visibility and conventional meteorological 102 
variables are closely related to PM2.5 (Zhang et al., 2013a; Zhang et al., 2013b; Zhang et al., 2015; 103 
Wang et al., 2018; Zhu et al., 2018; Zhong et al., 2018). For example, low wind speed is highly 104 
unfavorable to the horizontal diffusion of pollutants (Zhang et al., 2013b). The increase in RH favors 105 
the hygroscopic growth of PM2.5 and also promotes the accelerated conversion of gaseous precursors 106 
to particulate matter, leading to a rapid increase in PM2.5 concentrations (Pilinis et al., 1989; Ervens 107 
et al., 2011; Kuang et al., 2016). Atmospheric visibility is directly related to PM2.5 mass 108 
concentrations under dry conditions and non-linearly related to PM2.5 and RH under humid 109 
conditions (Wang et al., 2019). Therefore, better results may be achieved if these ground-based 110 
meteorological data can be used to estimate historical PM2.5 data in China. Liu et al. (2017) first 111 
estimated monthly visibility-based PM2.5 concentrations between 1957-1964 and 1973-2014 based 112 
on 674 publicly available meteorological stations. Gui et al. (2020) constructed a virtual daily PM2.5 113 
network at 1180 meteorological sites between 2017-2018. Our previous research also shows that the 114 
visibility-based machine learning model that takes advantage of spatial features has great potential 115 
in reconstructing historical PM2.5 datasets with long-term records and high temporal resolution 116 
(Zhong et al., 2021). In this study, we reconstruct a site-based PM2.5 dataset at 6-hour intervals from 117 
1960 to 2020 based on long-term visibility and conventional meteorological observations from 118 
~2450 national stations, together with emissions and elevation. The PM2.5 concentration at each site 119 
is estimated based on a Light Gradient Boosting Machine (LightGBM) model that takes advantage 120 
of spatial features from 20 surrounding meteorological stations. By incorporating spatial features, 121 
this model also reconstructs a 0.25°×0.25°, 6-hourly, gridded PM2.5 dataset. These two PM2.5 122 
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datasets provide spatiotemporal variations at high resolution, which constitute the basis for research 123 
studies associated with air pollution, climate change, and atmospheric chemical reanalysis. 124 

  125 
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2 Data and Methods 126 

2.1 Multisource input data 127 

Observational PM2.5 data. The MEE began laying out a PM2.5 monitoring network in January 128 
2013, expanding the scope from key regions including the North China Plain (NCP), the Yangtze 129 
River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin (SB) as well as 130 
municipalities directly under the Central Government and provincial capitals, to 113 key and model 131 
cities for environmental protection, and eventually to all cities above prefecture level, with the 132 
number of observation sites expanded from the initial 520 to over 1,600. Since then, PM2.5 mass 133 
concentrations have been recorded continuously using the β-absorption methods or a micro-134 
oscillating balance following a standard protocol (Huang et al., 2021). Hourly PM2.5 data of all sites 135 
between 2013-2020 are collected from the China National Environmental Monitoring Center 136 
(CNEMC, http://www.cnemc.cn). To produce high-quality PM2.5 data, a series of quality controls 137 
were conducted, including integrity checking, duplicate rejection, and outlier handling. All sites 138 
with a proportion of valid PM2.5 records exceeding 60% were considered. For each site, identical 139 
data for 3 consecutive hours were excluded first, and PM2.5 values over three standard deviations 140 
from 24-hour and 3-day moving average were regarded as outliers and discarded then. Eventually, 141 
PM2.5 data from 1485 sites remained for model development and application. In addition, pre-2013 142 
PM2.5 measurements in US embassies in Beijing and Shanghai are used for independent validation 143 
evaluations (http://www.stateair.net/web/historical). 144 

Visibility and conventional meteorological data. The CMA established a national 145 
meteorological observation network in the 1950s, with the station number exceeding 2000 at the 146 
beginning and stabilizing at ~2,450 afterward. The observation network can continuously record 147 
meteorological data on visibility and conventional meteorological variables, including temperature, 148 
pressure, wind, and RH. In recent years, meteorological observations, including 6-hourly records 149 
between 1960-2020 and gradually increasing hourly records after 2013, have been collected from 150 
the National Meteorological Information Center (NMIC). Due to the inconsistency of visibility data 151 
in terms of observation methods, we conducted a series of data conversions to ensure continuous 152 
and consistent data. Visibility data recorded on a scale ranging from 0 to 9 between 1960-1979 were 153 
converted to numerical data based on probability density distributions. Specifically, the probability 154 
density distribution of visibility for each of the ten years before and after 1980 was calculated at 155 
first. The numerical visibility from 1980 to 1989 was graded into classes, with the median value of 156 
each class being the corresponding value for each station, and finally, the class observations were 157 
converted into numerical observations. From September 2013 to 2016, visibility measurements 158 
gradually shifted from 6-hourly manual observations to 1-hourly automatic observations site-by-159 
site. In keeping with manual measurements, the automatic records, which are slighter lower than 160 
manual measurements, were calibrated by dividing 0.75 following the guideline from the CMA 161 
(Cma, 2014). 162 

Emission inventories and elevation. Historical anthropogenic emissions from 1960-2012 are 163 
taken from Peking global emission inventories, developed using a bottom-up approach with spatial 164 
resolution at 0.1°×0.1° and temporal resolution at 1-month intervals (http://inventory.pku.edu.cn) 165 
(Chen et al., 2016a; Huang et al., 2014; Huang et al., 2015; Wang et al., 2014). Current 166 

http://www.cnemc.cn/
http://www.stateair.net/web/historical
http://inventory.pku.edu.cn/
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anthropogenic emissions during 2013-2020 are from the multiresolution Emission Inventory in 167 
China (MEIC, http://meicmodel.org) (Zhang et al., 2009; Zheng et al., 2018; Zheng et al., 2021). 168 
Six emission variables from these two inventories are used as inputs for model development, 169 
including PM2.5, NOx, SO2, NH3, BC, OC, and CO. Thirty-meter elevation data are collected from 170 
the Global Digital Elevation Model (GDEM) version 2 (https://earthexplorer.usgs.gov). Both 171 
emission and elevation data are interpolated from grids to sites to match existing PM2.5 sites.  172 

Auxiliary data. Monthly Normalized Difference Vegetation Index (NDVI) products are 173 
downloaded from Level-1 and Atmosphere Archive & Distribution System Distributed Active 174 
Archive Center (LADDS DAAC, https://ladsweb.modaps.eosdis.nasa.gov). Land cover 175 
classification data are taken from National Geographic Information Resources Catalogue Service 176 
System (https://www.webmap.cn/mapDataAction.do?method=globalLandCover). Population data 177 
are taken from the Gridded Population of the World version 4 (GPWv4, 178 
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4) and are calibrated based on the total 179 
population in China City Yearbooks. NDVI, Land cover, and population data are also interpolated 180 
according to PM2.5 sites and trained as inputs for model development. However, during the model 181 
training process, we found that these data had little or no improvement in the hindcast capability of 182 
the model, and the time span of these data is insufficient for long-term historical retrieval. Hence, 183 
these auxiliary data are not used in model building. 184 

2.2 Spatiotemporal feature extraction 185 

For each PM2.5 site, we extract five variables as temporal inputs, including year, month, day, 186 
hour, and day of year. The longitude and latitude variables are taken out as location inputs (Fig. 1b). 187 
Visibility, RH, and temperature from the nearest meteorological station of each PM2.5 are used as 188 
basic meteorological inputs. The distance between these two sites was also added as a feature. In 189 
addition to the influence of the nearest meteorological station, PM2.5 concentrations at a site are also 190 
affected by surrounding conditions. For example, transport of pollution due to air movement is the 191 
main cause of heavy pollution episodes in the early stage (Zhong et al., 2017; Zhong et al., 2018). 192 
Hence, we need to consider spatial effects from surrounding meteorological stations. Our previous 193 
study developed a novel feature engineering approach, which incorporated surrounding impact by 194 
extracting spatial features (Zhong et al., 2021). Specifically, the remaining 19 nearest stations were 195 
matched for each PM2.5 site, except the nearest meteorological station. Five variables, including 196 
longitude, latitude, temperature, visibility, and RH, were selected from the 19 stations. Then, we 197 
calculated the maximum, the minimum, the average value, the skewness value, and the standard 198 
deviation for each of the five variables. These produced features, which take advantage of 199 
surrounding conditions, are also considered as inputs. After spatiotemporal feature extraction, a total 200 
of 71 features were used as inputs for model training. To reduce computation and training time with 201 
guaranteed accuracy, the top 40 features in order of importance during small-sample-testing 202 
processes are used for the following model training and hindcasting. These features included 203 
visibility, temporal features, spatial features, emission features, and elevation.   204 

2.3 Gridded input construction 205 

In the previous construction of input features for PM2.5 sites, we used location information, 206 

http://meicmodel.org/
https://ladsweb.modaps.eosdis.nasa.gov/
https://www.webmap.cn/mapDataAction.do?method=globalLandCover
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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time information, meteorological information from 20 surrounding meteorological stations, 207 
emission information, and elevation. If we assume that each cell in grid cells is a virtual PM2.5 site, 208 
then it is possible to generate input features for each grid point. After the model is trained based on 209 
input features and PM2.5 concentrations at real PM2.5 sites, we can feed the gridded input data into 210 
the model in turn and consequently construct a gridded PM2.5 network. Therefore, we define a grid 211 
area at 0.25°×0.25° with longitude from 70°E to 150°E and latitude from 10°N to 60°N and 212 
select the grid points covering mainland China. For each grid point, we performed spatiotemporal 213 
feature extraction and generated the same 71 input features as those of real PM2.5 sites.            214 

2.4 Model description 215 

LightGBM is one of the state-of-the-art gradient boosting frameworks with better accuracy,    216 
lower memory usage, faster training speed, and capability of handling large-scale data (Ke et al., 217 
2017). Our previous research used this machine learning model to predict PM2.5 mass concentrations, 218 
which shows an unprecedented predictive capacity on hourly, daily, monthly, and annual 219 
timescales(Zhong et al., 2021). This study will continue to use this algorithm and previously tuned 220 
hyperparameters for model development (Zhong et al., 2021). For hindcasting historical PM2.5 221 
datasets prior to 2013, a LightGBM model is trained and validated based on PM2.5 observations and 222 
feature inputs from 2013 to 2020. The hindcast capability is validated using cross-validation 223 
methods, which are standard methods for parameter tuning and model validation in machine 224 
learning. The training dataset is divided into several parts, one of them is used as test data, and the 225 
remaining parts are used as training data in turn. Each result yields a corresponding evaluation value, 226 
which is then averaged to provide an estimate of the model’s accuracy. This estimation is quantified 227 
by two metrics: the coefficient of determination (R2) and root-mean-square error (RMSE). The 228 
hindcast capability is also validated using PM2.5 observations from the US embassies in Beijing and 229 
Shanghai, which have been observing PM2.5 data since as early as 2008. After model training and 230 
validation, historical 6-hourly input data are inputted into this model to reconstruct a site-based 231 
PM2.5 dataset at 6-hour intervals from 1960 to 2020; and gridded input data are inputted into the 232 
model to reconstruct a 0.25°×0.25°, 6-hourly, gridded PM2.5 dataset. The daily, monthly, yearly, and 233 
decadal average PM2.5 concentrations for each site and each grid are also calculated based on the 234 
two datasets. Monthly-average values were obtained with daily values no less than 20 days; 235 
otherwise, they will be missing. Year-average values were calculated with 12 valid month values, 236 
and decadal-average values were calculated with 10 valid year-average values. The flowchart for 237 
reconstructing PM2.5 datasets is shown in Fig. 1. 238 
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Fig. 1 A conceptual scheme for constructing long-term historical site-based and gridded PM2.5 240 
records based on long-term visibility, conventional meteorological observations, emissions, and 241 

elevation. 242 
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3 Results and Discussion 244 

3.1 Evaluation of model hindcast performance 245 

The hindcast performance of our model is evaluated using two CV methods, including 10-fold 246 
CV and by-year CV. The 10-fold CV partitions the original training datasets into 10 subsamples, 247 
one of which is retained as the validation data in turn for testing the model, and the remaining 9 248 
subsamples are used as training data. This method is the most common CV that can be compared 249 
with results in other studies. However, 10-fold CV often overestimates the model’s ability to 250 
hindcast continuous historical data. Therefore, we also use by-year CV, during which one year of 251 
data is selected sequentially for testing, and the remaining data are used for model training. This 252 
method is specifically designed to evaluate the hindcast capability of the model. 253 

Tab. 1 Model performance in primary predictors, temporal resolution, and hindcast capability 254 
compared with other national PM2.5 datasets in China. 255 

Table 1 compares our dataset and the available datasets in primary predictors, temporal 257 
resolution, and CV results(Ma et al., 2016; Fang et al., 2016; Liu et al., 2017; Xiao et al., 2018; Xue 258 
et al., 2019; Liang et al., 2020; Huang et al., 2021; Wei et al., 2021a; Van Donkelaar et al., 2021; 259 
Geng et al., 2021; Bai et al., 2022). AOD-based datasets are only available from around 2000 at the 260 
earliest, with temporal resolutions ranging from daily scale to monthly scale. In contrast, our 261 
visibility-based dataset spans 61 years from 1960 to 2020 at 6-hourly intervals, showing a clear 262 
advantage in terms of time span and resolution. The R2 and RMSE values of our 10-fold CV results 263 
are 0.78 and 21.14 μg m-3 for 6-hourly estimations, respectively, which indicates our model is quite 264 
robust in estimating PM2.5. Due to a reduction in data amount, the R2 and RMSE values further 265 
improved to 0.85 and 16.11 μg m-3 for daily estimations and 0.92 and 7.90 μg m-3 for monthly 266 
estimations. This result is comparable to or even better than those of other available datasets whose 267 
10-fold CV R2 ranges from 0.61 to 0.80 on a daily scale and from 0.71 to 0.93 on a monthly scale. 268 
Our by-year CV’s R2 and RMSE values are 0.71 and 25.63 μg m-3 for 6-hourly estimations, which 269 
indicates our model is still robust in hindcast performance. The by-year CV R2 values for daily and 270 
monthly estimations (0.78 and 0.83) are higher than those in other available datasets (0.41-0.62 and 271 

Related studies Primary predictors Temporal resolution CV type CV resolution CV R2 CV RMSE

Ma et al., 2016 AOD daily (2004-2013) 10-fold CV daily 0.79 27.40
by-year CV 0.41

Fang et al., 2016 AOD daily (2013-2014) 10-fold CV daily 0.80 22.80
Liu et al., 2017 Visibility monthly (1957-1964, 1973-2014) 10-fold CV monthly 0.71 25.62
Xiao et al., 2018 AOD daily (2013-2017) 10-fold CV daily 0.79 21.00
Xue et al., 2019 AOD、CTM outputs daily (2000-2016) by-year CV daily 0.61 27.80
Liang et al., 2020 AOD monthly (2000-2016) 10-fold CV monthly 0.93 6.20
Huang et al., 2021 AOD、CTM outputs daily (2013-2019) 10-fold CV daily 0.87-0.88 11.90-21.90

by-year CV 0.62 27.70
Wei et al, 2021 AOD monthly (2000-2020) 10-fold CV monthly 0.86–0.90 10.00-18.40

by-year CV 0.80 11.26
van Donkelaar et al. 2021 AOD、CTM outputs monthly (1998-2020) Non-CV yearly 0.69 11.90
Geng et al., 2021 AOD、CTM outputs daily (2000-2020) out-of-bag CV daily 0.80-0.88 13.90-22.10

by-year CV 0.58 27.50
Bai et al., 2022 AOD daily (2000-2020) 10-fold CV daily 0.79 20.04
Our study Visibility 6-hourly (1960-2020) 10-fold CV hourly/6-hourly 0.79 20.07

6-hourly 0.78 21.14
daily 0.85 16.11
monthly 0.92 7.90

by-year CV hourly/6-hourly 0.70 26.36
6-hourly 0.71 25.63
daily 0.78 20.90
monthly 0.83 13.37
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0.80), which might be partly attributed to spatial feature extraction and the large volume of our 272 
training dataset. Zhong et al. (2021) has shown that extracting spatial features can result in a better 273 
hindcast performance by fully representing dimensional heterogeneity. Compared to hundreds of 274 
thousands to millions of training samples in AOD-based models, the training samples for the 275 
visibility-based model are over 100 million. An increase in the order of magnitude for training 276 
datasets will yield better results in machine learning.  277 

Fig. 2 Density scatterplots of observed PM2.5 and estimated PM2.5 across China for by-year CV 279 
from 2013 to 2020. The time resolution for CV results is hourly and 6-hourly between 2013-2017 280 

and hourly between 2017-2020. (Colors are probability distribution densities). 281 
 282 

 The refined by-year CV results for each year between 2013-2020 are shown in Fig. 2. The 283 
by-year CV R2 lies between 0.58 and 0.79, with better hindcast performance after 2014. The 284 
potential reasons why the R2 value in 2013 is slightly lower than those in other years are as follows. 285 
First, the PM2.5 observation network was just established in 2013, during which dehumidification 286 
systems, processing procedures, and data quality control methods are incomplete, and therefore the 287 
overall data quality cannot be guaranteed. With the improvement of the observation network after 288 
2014, both the quality and quantity of observations increase significantly. This situation where data 289 
quality is relatively low initially but increases over time is also found in O3 observations. Second, 290 
the CMA began to convert some of the manual visibility observations to automatic observations in 291 
2013, during which there were also some irregular procedures in instrument equipment, observation 292 
steps, and data quality control. Lastly, although we have corrected the biases between manual and 293 
automated observations, some biases may still exist. However, the biases are further reduced as we 294 
integrate all manual visibility observations in 2013 into our training dataset. 295 

The model’s hindcast capability is further evaluated independently using pre-2013 PM2.5 296 
observations. For the PM2.5 data currently available, only the US embassies in Beijing and Shanghai 297 
have at least one year’s PM2.5 observations. Therefore, PM2.5 data from these two sites are applied 298 
as an independent evaluation dataset. Figure 3 shows our estimated PM2.5 are in close agreement 299 
with in-situ measurements in Beijing and Shanghai, where the overall R2 between observations and 300 
estimations is 0.74 and 0.79, respectively. For each year between 2008-2012 in Beijing, the R2 301 
values fluctuated between 0.70 and 0.81, reflecting a stable and accurate by-year hindcast capability. 302 
As shown in Fig. 3 (c-h), the low values, high values, and temporal variations in PM2.5 303 
measurements are all well estimated. In particular, PM2.5 measurements are lacking at the US 304 
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Embassy in Beijing in early 2008 and around 2009, but our model can provide reasonable and 305 
continuous estimations to fill in the gaps. This ability can also be used to fill in missing PM2.5 306 
observations of MEE from 2013 onwards, building a complete PM2.5 dataset. Overall, the 307 
independent validation results show that historical PM2.5 data can be well reconstructed by our 308 
model. 309 

Fig. 3 (a) Density scatterplots of observed PM2.5 and estimated PM2.5 between 2008-2012 at the 311 
US Embassy in Beijing; (b) Density scatterplots of observed PM2.5 and estimated PM2.5 in 2012 at 312 

the US Embassy in Shanghai; (c-g) Timeseries of observed PM2.5 and estimated PM2.5 for each 313 
year between 2008-2012 at the US Embassy in Beijing; and (h) Timeseries of observed PM2.5 and 314 

estimated PM2.5 for each year in 2012 at the US Embassy in Shanghai. 315 
 316 

The model’s ability to make PM2.5 predictions at locations outside the scope of the training 317 
stations is evaluated by spatial CV. For spatial CV, all the monitoring stations are randomly divided 318 
into five subsets, and the model is trained using data from four subsets and tested on the data from 319 
the remaining subset each time. As shown in Fig. 4, the R2 for spatial cross-validation in different 320 
groups is between 0.75 and 0.79, reflecting robust predictive power for PM2.5 concentrations at sites 321 
outside the training sites. Our previous study also examined this predictive ability using PM2.5 data 322 
from 23 untouched regional PM2.5 stations (Zhong et al., 2021). 323 
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Fig. 4 Density scatterplots of observed PM2.5 and estimated PM2.5 for each group of spatial CV 325 
results 326 

3.2 Spatiotemporal variations in the site-based PM2.5 dataset during 1960-2020 327 

Figure 5 shows the spatiotemporal variations in annual average site-based PM2.5 between 1960-328 
2020. The trend of PM2.5 in China experiences three major stages, corresponding to a slow increase 329 
under low concentrations between 1960-1978, a continuous accumulation with high concentrations 330 
reached between 1979-2013, and a rapid decrease between 2014-2020. During the first stage, though 331 
PM2.5 pollution occurred in parts of the NCP and the Guanzhong Plain (GZP), PM2.5 concentrations 332 
remain low in the vast majority of areas. This is mainly because anthropogenic emissions of PM2.5 333 
precursors and primary PM2.5 grow slowly at a low base, resulting in relatively low total emissions 334 
in different regions. However, PM2.5 pollution still occurring in the NCP and GZP, even with 335 
relatively low emissions, indicates the low environmental capacity of these two regions. During the 336 
second stage, PM2.5 reached an unprecedentedly high concentration after a continuous increase in 337 
nearly all regions in China. The heaviest PM2.5 pollution occurred in the NCP and the GZP. The SB 338 
and the Northeast China Plain (NeCP) are the polluted regions with the next highest PM2.5 pollution. 339 
Even the YRD and the PRD also experienced PM2.5 pollution during this stage. This worsening of 340 
PM2.5 pollution is closely associated with massive anthropogenic emissions from rapidly increasing 341 
living and industrial activities after reform and opening-up policies. From 1979 to 2013, primary 342 
PM2.5, NOx, SO2, NH3, BC, OC, and CO from the Peking emission inventory increased by 98%, 343 
457%, 159%, 117%, 45%, -22%, and 243%, respectively. Despite a slow reduction in SO2 after 344 
2006, the total anthropogenic emissions each year still increased and thereby caused high-level 345 
PM2.5 pollution after 2006. The results indicate that air pollutants cannot be emitted without restraint, 346 
even in regions with high atmospheric capacity. Otherwise, PM2.5 pollution will inevitably occur. In 347 
addition to anthropogenic emissions, sand and dust storms, resulting in high PM2.5 concentrations 348 
in western Xinjiang, worsened PM2.5 pollution by trans-regional transport from the desert regions. 349 
During the last stage, PM2.5 decreased nationwide with the mass concentrations in nearly all stations 350 
approximately or below 35 ug m-3 in 2020, even in the NCP and the GZP with limited environmental 351 
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capacity. The substantial declines in PM2.5 illustrate the effectiveness of implementing the toughest-352 
ever clean air policy in China. The spatiotemporal variations of PM2.5 between 1960-2020 clearly 353 
show the long-term impact of economic development and energy consumption on our air quality 354 
and the effectiveness of recent years’ unprecedented emission control policies. 355 

Fig. 5 Spatial distribution of annual average PM2.5 mass concentration at 1485 stations from 1960 357 
to 2020 358 

 359 
The specific turning points in annual PM2.5 concentrations for different regions were 360 

investigated additionally. Figure 6 shows the temporal variations in national-average monthly and 361 
yearly PM2.5 mass concentrations and regional average 6-hourly, monthly, and yearly PM2.5 mass 362 
concentrations in “2+26” cities of the NCP, the YRD, the PRD, and the SB. The national-average 363 
yearly PM2.5 reached a peak of 67 ug m-3 in 2007, declined in 2008, and then remained steady until 364 
2013. A sharp fall followed after 2014, with PM2.5 concentrations decreasing from 63 ug m-3 in 2013 365 
to 34 ug m-3 in 2020. The annual PM2.5 concentrations in the “2+26” cities also experienced similar 366 
changes with a peak in 2007 and a reduction in 2008, which might be related to emission reduction 367 
for the Beijing Olympics in 2008. For the YRD, the maximum value of PM2.5 mass concentration 368 
occurred in 2013 without a striking peak in 2007. For the PRD, the annual PM2.5 concentrations 369 
increased steadily between 1960-1978, then rose more and more steeply in the following years with 370 
a steep increase in 2003 and 2004 and peaked in 2004. A steady decrease with slight fluctuation 371 
occurred from 2005 to 2013, and then a sharp fall followed after 2014. This trend is different from 372 
that in the “2+26” cities and the YRD. For the SB, the turning point occurred in 2013, before which 373 
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the annual PM2.5 concentrations increased steadily and remained steady.       374 

Fig. 6 (a) Spatial distribution of average PM2.5 mass concentrations between 1960-2020; (b-f) 376 
Timeseries of average PM2.5 mass concentrations for all sites in China (b), “2+26” cities (c), 377 

Yangtze River Delta (d), Pearl River Delta (e) and Sichuan Basin (f), respectively.  378 

3.3 Detailed spatial distributions from gridded PM2.5 datasets 379 

Figure 7 shows the annual spatial variations in 0.25°×0.25° gridded PM2.5 between 1960-2020. 380 
Compared to site-based distributions, gridded PM2.5 can portray the spatiotemporal variations in a 381 
clearer and more detailed way. For example, the most widespread and heaviest PM2.5 pollution in 382 
western Xinjiang occurred in 1979. This abnormal pollution corresponds to the historical 383 
construction of northern severe dust storms, which recorded the event with the largest affected areas 384 
in April 1979 (Zhou and Zhang, 2003). As exposed to nearly the most frequent air stagnation in 385 
winter due to terrain and meteorological conditions (Wang et al., 2018), the NCP is the region with 386 
PM2.5 pollution first to appear and last to disappear except areas affected by dust storms (Fig. 7). 387 
For year-to-year comparisons, it can be clearly seen that PM2.5 concentrations in the NCP decreased 388 
slightly from 2007 to 2008 and from 2012 to 2013, respectively, and decreased significantly in 2014 389 
relative to 2013. The PM2.5 reduction is insignificant from 2015 to 2016 but striking from 2016 to 390 
2017. In 2020, the nationwide PM2.5 concentrations are comparable to those in 1960s and close to 391 
the lowest level ever recorded in almost 61 years.  392 

“2 + 26” cities

YRD

SB

PRD

PRD

SB

YRD

“2 + 26” cities
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Fig. 7 Gridded distribution of annual average PM2.5 mass concentration from 1960 to 2020 394 
 395 

Figure 8 shows inter-decadal spatial variations in gridded PM2.5 between 1961-2020. PM2.5 396 
concentrations maintained at low levels in most areas over the first decade and increased to a certain 397 
extent in the NCP and western Xinjiang over the second decade. In the following decades, PM2.5 398 
pollution has worsened significantly in several key regions, including the NCP, the GZP, and the SB. 399 
This worsening was maintained until the last decade, during which PM2.5 pollution mitigates 400 
significantly in nearly all populous and polluted regions in eastern China.  401 

Fig. 8 Gridded distribution of decadal average PM2.5 mass concentration from 1960 to 2020 403 
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The multi-year trend of our gridded PM2.5 dataset is also compared with those of publicly 404 
available datasets, including the TAP data (Geng et al., 2021), the GEFPM data (Van Donkelaar et 405 
al., 2021), the LGHAP data (Bai et al., 2022), and the CHAP data (Wei et al., 2021a), which have 406 
been interpolated to the same grid resolution. Figure 9 shows the spatial distributions of PM2.5 from 407 
those datasets at 5-year intervals between 2000-2020. One consistent trend across all datasets was 408 
that nationwide PM2.5 mass concentrations experienced an increase following a decrease from 2000 409 
to 2020. However, the turning points are different for different datasets. From 2010 to 2015, PM2.5 410 
pollution alleviated for TAP, CHAP, and our data but worsened for GEFPM and LGHAP. For the 411 
time (2015 and 2020) with ground observations available, all PM2.5 data show similar spatial 412 
distributions with the most severe pollution in the NCP in 2015 and significant improvement in 413 
nationwide air pollution in 2020. For the years (2000, 2005, and 2010) when ground observations 414 
were unavailable, significant disparities in pollution levels and regional distribution emerged from 415 
different datasets. Specifically, the LGHAP data are significantly lower than other data, while the 416 
TAP data are higher than others in nearly all regions except western Xinjiang. In western Xinjiang, 417 
PM2.5 concentrations from the GEFPM data are the highest among all the datasets. Due to a lack of 418 
ground PM2.5 observations before 2000, it is challenging to determine which dataset has the least 419 
bias and more reasonable distributions. In the future, applying ensemble average to multi-datasets 420 
might be an effective way to eliminate systematic bias. 421 

Fig. 9 Distribution of reconstructed PM2.5 by different PM2.5 datasets in 2000, 2005, 2010, 2015, 423 
and 2020. From top to down are TAP, GEFPM, LGHAP, CHAP, and our dataset.  424 

  425 
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4 Data availability 426 

The 6-hourly PM2.5 datasets from 1960 to 2020, including site-based and gridded data, are publicly 427 
accessible. Daily, monthly, and yearly sited-based and gridded PM2.5 datasets are also provided. The 428 
sited-based PM2.5 dataset is in the CSV format, and the gridded dataset PM2.5 is in the NETCDF 429 
format. All of them are available at https://doi.org/10.5281/zenodo.6372847 (Zhong et al., 2022). 430 

5 Conclusion 431 

This study is among the first to generate long-term site-based and gridded PM2.5 datasets 432 
between 1960-2020 with 6-hourly resolution, based on long-term visibility, conventional 433 
meteorological observations, emissions, and elevation. A new feature engineering method that takes 434 
advantage of spatial features from 20 surrounding meteorological stations is employed in our 435 
LightGBM model to incorporate spatial effects of meteorological conditions. For by-year CV, the 436 
R2 values of our model are 0.71, 0.78, and 0.83 for 6-hourly, daily, and monthly estimations, 437 
respectively, which are higher than those in other available datasets (0.41-0.62). This hindcast 438 
capability is further evaluated independently using pre-2013 PM2.5 data of 6 years from US 439 
embassies in Beijing and Shanghai. The low values, high values, and temporal variations in US-440 
embassy PM2.5 measurements are all well estimated with the overall R2 being 0.74 and 0.79 in 441 
Beijing and Shanghai, respectively. Both by-year CV and independent validation show that our 442 
model has a stable by-year hindcast capability and can reconstruct historical PM2.5 data in a 443 
relatively accurate way. Our datasets show that PM2.5 variations in China experience a slow increase 444 
under low concentrations between 1960-1978, a continuous accumulation with high concentrations 445 
reached between 1979-2013, and a rapid decrease between 2014-2020. The worsening of PM2.5 446 
pollution is closely associated with massive anthropogenic emissions after reform and opening-up 447 
policies, while the substantial declines in PM2.5 are mainly due to the implementation of the 448 
toughest-ever clean air policy in China. In 2020, the nationwide PM2.5 concentrations were close to 449 
the lowest recorded level in almost 61 years. These two reconstructed PM2.5 datasets provide 450 
spatiotemporal variations at high resolution, which lay the foundation for research studies associated 451 
with air pollution, climate change, and atmospheric chemical reanalysis. It is worth noting that our 452 
datasets still have some weaknesses, with the main weakness being a lack of detailed bias 453 
estimations for each value in our datasets due to limited historical observations. In the future, we 454 
will collect as many PM2.5 observations as possible to validate the accuracy of our datasets and 455 
provide evaluations of uncertainty for our datasets.  456 
  457 
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