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Abstract 12 

A modern pollen dataset with an even distribution of sites is essential for pollen-based 13 

past vegetation and climate estimations. As there were geographical gaps in previous 14 

datasets covering the central and eastern Tibetan Plateau, lake surface-sediment 15 

samples (n=117) were collected from the alpine meadow region on the Tibetan Plateau 16 

between elevations of 3720 and 5170 m a.s.l. Pollen identification and counting were 17 

based on standard approaches, and modern climate data were interpolated from a robust 18 

modern meteorological dataset. A series of numerical analyses revealed that 19 

precipitation is the main climatic determinant of pollen spatial distribution: Cyperaceae, 20 

Ranunculaceae, Rosaceae, and Salix indicate wet climatic conditions, while Poaceae, 21 

Artemisia, and Chenopodiaceae represent drought. Model performance of both 22 

weighted-averaging partial least squares (WA-PLS) and the random forest (RF) 23 

algorithm suggest that this modern pollen dataset has good predictive power in 24 

estimating the past precipitation from pollen spectra from the eastern Tibetan Plateau. 25 
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In addition, a comprehensive modern pollen dataset can be established by combining 26 

our modern pollen dataset with previous datasets, which will be essential for the 27 

reconstruction of vegetation and climatic signals for fossil pollen spectra on the Tibetan 28 

Plateau. Pollen datasets including both pollen counts and percentages for each sample 29 

together with their site location and climatic data are available at the National Tibetan 30 

Plateau Data Center (TPDC; DOI: 10.11888/Paleoenv.tpdc.271191). 31 

 32 

1 Introduction 33 

The relationship between modern pollen and climate, and its representation of 34 

vegetation, is the basis for explaining and reconstructing past climate and vegetation 35 

qualitatively or quantitatively (Juggins and Birks, 2012), so improving the quality of 36 

the modern pollen dataset is a primary step for an objective investigation of the modern 37 

relationship and to ensure reliable climate and vegetation reconstructions (Cao et al., 38 

2018). To make the pollen-source area and taphonomy as compatible as possible, 39 

modern pollen assemblages should be retrieved from the same type of sedimentary 40 

environment as the fossil pollen spectra (Birks et al., 2010). Hence, to reconstruct past 41 

climate and vegetation from fossil pollen extracted from a lacustrine sediment, a 42 

corresponding modern pollen dataset of samples collected from lake surface-sediments 43 

is necessary. Although there are some modern pollen datasets for the Tibetan Plateau, 44 

established to investigate the relationships between pollen and climate or vegetation 45 

(Shen et al., 2006; Herzschuh et al., 2010; Ma et al., 2017), there are geographical gaps 46 

(e.g. the central and eastern Tibetan Plateau) in the sampled lakes which may bias 47 

interpretations. 48 

The available modern pollen datasets reveal that pollen assemblages on the Tibetan 49 

Plateau are generally simple with Cyperaceae, Artemisia, Poaceae, and 50 

Chenopodiaceae as the dominant taxa (e.g. Herzschuh et al., 2010; Cao et al., 2014), 51 

with arboreal pollen taxa becoming more influential in the marginal areas (e.g. Ma et 52 

al., 2017; Li et al., 2020). It is essential to identify the climatic indicators of the modern 53 
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pollen taxa (particular for the four dominant taxa) on the Tibetan Plateau, because the 54 

climatic indicators derived from modern pollen datasets from the surrounding lowland 55 

cannot be directly employed on the Tibetan Plateau. With our current modern pollen 56 

dataset extracted from lake surface-sediments we aim to 1) fill a geographical gap and 57 

thus establish a comprehensive modern pollen dataset covering the entire Tibetan 58 

Plateau; 2) determine the climatic indicators for common pollen taxa from the alpine 59 

meadow ecosystem; and 3) evaluate the predictive power of the modern dataset to 60 

reconstruct past climate and assess the reliability of the random forest algorithm in 61 

calibrating the pollen-climate relationship. 62 

 63 

2 Study area 64 

The elevation range of the lakes sampled for our pollen dataset is between 3720 and 65 

5170 m a.s.l. with a median of 4420 m a.s.l. (the 25% quantile is 4230 m a.s.l and the 66 

75% quantile is 4550 m a.s.l.; Figure 1). Climate of this region is controlled by the 67 

Asian Summer Monsoon in summer with warm and wet climatic conditions, and by 68 

westerlies in winter with cold and dry conditions (Wang, 2006). The eastern and central 69 

Tibetan Plateau containing these sampled lakes (with >4000 m a.s.l elevation) is 70 

covered by alpine meadow with sporadic patches of subalpine shrub. The plant 71 

communities of the alpine meadow are dominated by Kobresia species (Cyperaceae) 72 

generally, with Ranunculaceae, Asteraceae, Polygonum (Polygonaceae), Potentilla 73 

(Rosaceae), Fabaceae, and Caryophyllaceae as the common taxa. The subalpine shrub 74 

is generally distributed on the northern slopes of mountains with Salix oritrepha and 75 

Potentilla fruticosa as the main shrub components, while the herbaceous taxa 76 

mentioned above are also common (Wu, 1995; Herzschuh et al., 2010; unpublished 77 

vegetation survey). 78 
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 79 

Figure 1 Spatial distribution of modern pollen samples (yellow dots: the 117 sampled 80 

lakes; bluish green dots: previous samples (surface-soils and lake surface-sediments) 81 

included in the dataset of Cao et al., 2014). A: Digital Elevation Model; B: isohyet map 82 

(mm); C: vegetation map. “a” and “b” indicate the locations of Koucha Lake and 83 

Xingxinghai Lake. 84 
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 3 Materials and methods 85 

3.1 Sample collecting and pollen processing 86 

To ensure the even distribution of the representative lakes, we travelled not only along 87 

the hardened roads but also the dirt roads to collect samples from the alpine meadow 88 

on the eastern and central Tibetan Plateau, in July and August 2018. To reduce the 89 

influence of long-distance pollen grains transported by wind and rivers, small and 90 

shallow lakes (or pools) with less than 100-m radius and without long inflow rivers 91 

(n=117) (locally sourced pollen grains are the dominant components for small lakes; 92 

Sugita, 1993) were selected to collect pollen samples (Figure 1). To reduce the 93 

influence of the lake-shore vegetation component, the lake surface-sediment samples 94 

were collected from the central part of each lake, with the top 2 cm of lake sediment 95 

forming the sample (Tian et al., 2008). Although the selected lakes generally have an 96 

even distribution, there is still a gap in the south-west part of study area because of a 97 

lack of lake and road access (Figure 1). 98 

For pollen extraction, approximately 10 g (wet untreated sediment) per sample were 99 

sub-sampled. Pollen samples were processed using standard acid-alkali-acid 100 

procedures (including 10% HCl, 10% KOH, 40% HF and 9:1 mixture of acetic 101 

anhydride and sulphuric acid successively; Fægri and Iversen, 1975) followed by 7-102 

μm-mesh sieving. A tablet with Lycopodium spores (27560 grains/tablet) was added to 103 

each sample prior to pollen extraction as tracers (Maher, 1981). Pollen grains were 104 

identified with the aid of modern pollen reference slides collected from the eastern and 105 

central Tibetan Plateau (including 401 common species of alpine meadow; Cao et al., 106 

2020) and published atlases for pollen and spores (Wang et al., 1995; Tang et al., 2017). 107 

More than 500 terrestrial pollen grains were counted for each sample, and more than 108 

200 Lycopodium spores were counted for most of the samples (mean=270 grains; 109 

median=480 grains), both of which ensure a reliable representation of the entire pollen 110 

assemblage by the counted pollen data. 111 
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3.2 Data processing 112 

To obtain modern climatic data for the sampled lakes, the Chinese Meteorological 113 

Forcing Dataset (CMFD; gridded near-surface meteorological dataset) with a temporal 114 

resolution of three hours and a spatial resolution of 0.1° was employed (He et al., 2020). 115 

The CMFD is made through the fusion of remote-sensing products, reanalysis datasets, 116 

and in situ station data between January 1979 and December 2018, and its high 117 

reliability has already been confirmed for western China including the Tibetan Plateau 118 

(He et al., 2020). Geographical distances of each sampled lake to each pixel in the 119 

CMFD were calculated based on their longitude/latitude coordinates using the 120 

rdist.earth function in the fields package version 9.6.1 (Nychka, et al., 2019) for R 121 

(version 3.6.0; R Core Team, 2019), and the meteorological data (three-hour resolution 122 

between January 1979 and December 2018) of the nearest pixel to a sampled lake were 123 

assigned to represent the climatic conditions of that lake. Finally, the mean annual 124 

precipitation (Pann; mm), mean annual temperature (Tann; °C), and mean temperature of 125 

the coldest month (Mtco; °C) and warmest month (Mtwa; °C) were calculated for each 126 

sampled lake based on the long-term continuous meteorological data. 127 

To visualize the relationships between modern pollen assemblages and climatic 128 

variables, ordination techniques were employed based on the square-root transformed 129 

pollen data of 19 taxa (those present in at least 3 samples and with a ≥ 3% maximum) 130 

to stabilize variances and optimize the signal-to-noise ratio (Prentice, 1980). Detrended 131 

correspondence analysis (DCA; Hill and Gauch, 1980) revealed that the length of the 132 

first axis of the pollen data was 1.44 SD (standard deviation units), indicating a linear 133 

response model is suitable for our pollen dataset (ter Braak and Verdonschot, 1995). 134 

We performed redundancy analysis (RDA) to visualize the distribution of pollen 135 

species and sampling sites along the climatic gradients, selecting the minimal adequate 136 

model using forward selection and checking the variance inflation factors (VIF) at each 137 

step. If VIF values were higher than 20, which indicates that some variables in the 138 

model are co-linear, we stopped adding variables (ter Braak and Prentice, 1988). These 139 
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ordinations were performed using the decorana and rda functions in the vegan package 140 

version 2.5-4 (Oksanen et al., 2019) for R. 141 

Boosted regression tree (BRT) analysis was applied to determine how strongly the 142 

climatic variables influence the distribution of each individual pollen taxon, using 143 

square-root transformed pollen percentages. A BRT model was generated using the 144 

gbm.step function in the dismo package 1.0-12 version (Hijmans et al., 2015) for R with 145 

a Gaussian error distribution. 146 

The basic assumption of pollen-based past climate reconstruction assumes that pollen 147 

taxa recorded in the modern calibration-set have similar ecological requirements as 148 

those in the fossil spectra (Juggins and Birks, 2012); in other words, the modern 149 

vegetation-climate relationship is assumed to be stable temporally through the target 150 

period for reconstruction. To evaluate the potential of the pollen dataset for past climate 151 

reconstruction, both the traditional method of weighted-averaging partial least squares 152 

(WA-PLS) and a new approach using the random forest (RF) algorithm were run. WA-153 

PLS was performed using the WAPLS function in the rioja package version 0.7-3 154 

(Juggins, 2012) for R using leave-one-out cross-validation, pollen percentages of the 155 

19 selected pollen taxa were square-root transformed, and the number of WA-PLS 156 

components used was selected using a randomization t-test (Juggins and Birks, 2012). 157 

We performed the RF algorithm with the randomForest package (version 4.6-14; Liaw, 158 

2018) in R. RF is an algorithm that integrates multiple decision trees, and the 159 

importance of each explanatory variable is measured as the percentage increase in the 160 

residual sum of squares after randomly shuffling the order of the variables to determine 161 

which explanatory variable can be added to the model. In our study, the importance of 162 

all pollen taxa on the spatial distribution of Pann was estimated and the model 163 

systematically optimized by a stepwise reduction in variables by deleting the least 164 

important one. Our final RF model includes 19 pollen taxa (Appendix B), which all 165 

make a positive contribution to the precipitation distribution. To assess the predictive 166 

power of our pollen dataset, pollen spectra from Koucha Lake (covering the last 16 cal 167 

ka BP (calibrated thousand years before 1950 CE); 34.0°N; 97.2°E, 4540 m a.s.l.; 168 
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Herzschuh et al., 2009) and Xingxinghai Lake (covering the last 7.5 cal ka BP; 34.8°N, 169 

98.1°E, 4228 m a.s.l.; Zhang et al., unpublished) were selected as the target fossil pollen 170 

datasets for quantitative reconstruction. A statistical significance test for all 171 

reconstructions was performed following the methods described in Telford and Birks 172 

(2011) using the randomTF function in the palaeoSig package version 1.1.2 for both 173 

WA-PLS and RF reconstruction methods separately (Telford, 2013). 174 

4 Data description 175 

Pollen assemblages of the dataset from alpine meadows are dominated by Cyperaceae 176 

(mean 68.4%, maximum 95.9%), with other herbaceous pollen taxa common including 177 

Poaceae (mean 10.3%, maximum 87.7%), Ranunculaceae (mean 4.8%, maximum 178 

33.6%), Artemisia (mean 3.7%, maximum 24.5%), and Asteraceae (mean 2.1%, 179 

maximum 33.6%). Salix (mean 0.4%, maximum 5.3%) is the major shrub taxon in these 180 

pollen assemblages, while arboreal taxa occur with low percentages generally (mean 181 

total arboreal percentage 0.9%, maximum 5.8%), mainly comprising Pinus (mean 0.3%, 182 

maximum 1.8%), Betula (mean 0.1%, maximum 0.9%), and Alnus (mean 0.1%, 183 

maximum 0.7%). Published vegetation data (e.g. Wu, 1995; Herzschuh et al., 2010) 184 

and our vegetation survey reveal that trees are absent from the alpine meadow 185 

communities within the study area, thus we believe the arboreal pollen with low 186 

abundances in the dataset will have been transported by wind from adjacent regions to 187 

the south and east. Generally, these pollen assemblages represent well the plant 188 

components in the alpine meadow communities, although they are influenced slightly 189 

by long-distance pollen transported by wind (Figure 2). 190 

Table 1 Summary statistics for parameters in the pollen dataset. Min.: minimum; Med.: 191 

median; Max.: maximum. Units for longitude and latitude are degrees, elevation is in 192 

m above sea level, Mtco, Mtwa and Tann are °C, Pann is mm, and pollen data are %. 193 

Parameter Min. Med. Max. Mean  Pollen taxa Min. Med. Max. Mean 

Longitude 91.80 97.20 99.79 96.42  Ilex 0.00 0.00 0.18 0.00 

Latitude 31.59 34.02 35.52 33.74  Nitraria 0.00 0.00 0.51 0.01 

Elevation 3717 4422 5168 4399  Rosaceae 0.00 0.76 12.74 1.15 

Mtco -19.21 -15.61 -7.41 -15.09  Tamaricaceae 0.00 0.00 0.75 0.03 
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Mtwa 3.71 6.90 11.41 7.15  Apiaceae 0.00 0.16 3.98 0.32 

Tann -7.27 -3.72 2.27 -3.39  Artemisia 0.19 2.43 24.51 3.68 

Pann 226 491 689 471  Asteraceae 0.00 1.46 33.56 2.09 

Pollen taxa Min. Med. Max. Mean  Brassicaceae 0.00 0.36 28.17 1.22 

Abies 0.00 0.00 0.38 0.01  Caryophyllaceae 0.00 0.16 2.26 0.23 

Cedrus 0.00 0.00 0.19 0.00  Cyperaceae 4.84 76.24 95.91 68.67 

Picea 0.00 0.00 2.52 0.10  Balsaminaceae 0.00 0.00 0.14 0.00 

Pinus 0.00 0.18 1.76 0.32  Urticaceae 0.00 0.00 3.87 0.08 

Alnus 0.00 0.00 0.67 0.11  Gentianaceae 0.00 0.16 4.85 0.40 

Betula 0.00 0.00 0.94 0.11  Lamiaceae 0.00 0.00 1.05 0.12 

Carpinus 0.00 0.00 0.63 0.06  Liliaceae 0.00 0.00 0.50 0.04 

Castanea 0.00 0.00 2.44 0.06  Plantaginaceae 0.00 0.00 0.88 0.03 

Corylus 0.00 0.00 1.88 0.07  Onagraceae 0.00 0.00 0.34 0.00 

Juglans 0.00 0.00 0.82 0.01  Papaveraceae 0.00 0.00 0.82 0.03 

Oleaceae 0.00 0.00 0.16 0.00  Poaceae 0.39 4.90 87.74 10.28 

Quercus 0.00 0.00 2.00 0.06  Polemoniaceae 0.00 0.00 15.21 0.34 

Salix 0.00 0.18 5.35 0.45  Polygonum 0.00 0.49 20.50 1.47 

Ulmus 0.00 0.00 0.16 0.00  Rumex 0.00 0.00 1.64 0.03 

Chenopodiaceae 0.00 0.48 15.44 0.86  Koenigia 0.00 0.00 2.96 0.39 

Ephedra 0.00 0.00 1.66 0.12  Primulaceae 0.00 0.00 0.56 0.03 

Ericaceae 0.00 0.00 0.19 0.01  Ranunculaceae 0.00 3.47 33.62 4.88 

Euphorbiaceae 0.00 0.00 0.19 0.00  Saxifragaceae 0.00 0.00 4.69 0.10 

Fabaceae 0.00 0.16 3.07 0.28  Scrophulariaceae 0.00 0.00 0.71 0.01 

Hippophaë 0.00 0.00 5.62 0.27  Solanaceae 0.00 0.00 0.69 0.01 

Rhamnaceae 0.00 0.00 0.17 0.00  Thalictrum 0.00 0.98 12.05 1.45 

 194 

The region covered by these modern pollen samples has a Pann gradient from 226 to 689 195 

mm, and cold thermal conditions with low Tann (−7.3 to 2.3 °C) and Mtco (−19.2 to 196 

−7.4 °C). A series of RDAs reveals that, relative to Mtco and Mtwa, Pann explains more 197 

pollen assemblage variation (10.8% as a sole predictor in RDA) in the dataset (Table 198 

2). A biplot of the RDA shows that the direction of the Pann vector has a smaller angle 199 

with the positive direction of axis 1 (captures 43.2% of total inertia in the dataset) than 200 

with the positive direction of axis 2 (10.3%), indicating that the major component of 201 

axis 1 should be moisture. RDA axis 1, which is highly correlated with Pann, divides the 202 

pollen taxa into two groups generally: Cyperaceae, Ranunculaceae, Rosaceae, and Salix 203 

indicating wet climatic conditions (located along the positive direction of Pann), while 204 

Poaceae, Artemisia, and Chenopodiaceae represent drought (located along the negative 205 
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direction of Pann; Figure 3). Axis 2 is highly correlated with the two temperature 206 

variables; however these dominant pollen taxa have insignificant distributions along 207 

the axis, hence temperature is the secondary climatic variable for the pollen dataset 208 

relative to precipitation (Figure 3). Because of low occurrences and abundances for 209 

some rare pollen taxa, BRT models are only performed for 14 dominant or common 210 

pollen taxa. BRT modelling results suggest that Pann is the main climatic determinant 211 

for 9 out of 10 of the major pollen taxa with >0.6 prevalence, with Asteraceae an 212 

exception having Mtco as its main climatic determinant (68%; Table 3). BRT results 213 

reveal that pollen abundances of Cyperaceae, Ranunculaceae, and Salix are positively 214 

related to Pann, while those of Poaceae, Artemisia, and Chenopodiaceae have a negative 215 

relationship with Pann, consistent with the RDA results (Figure 3 and 4; Appendix 1). 216 

 217 

5 Potential use of the modern pollen dataset 218 

Numerical analyses reveal that Pann is the most important climatic determinant of pollen 219 

distribution in the eastern Tibetan Plateau, hence, Pann is selected as the target variable 220 

in the calibration-set to assess the predictive power of this pollen dataset. Both 221 

approaches (WA-PLS, RF) perform well with low RMSEP values (the root mean square 222 

error of prediction) and high r2 values (coefficient of determination between observed 223 

and predicted climatic variables; Figure 5). However, the plots of observed vs. predicted 224 

Pann show a overestimate of Pann for arid sites and an underestimate for wet sites (Figure 225 

5). Hence, the inevitable “edge effects” should be treated with caution. Nevertheless, 226 

reconstructions covering ca. 400–500 mm Pann should be reliable because of the low 227 

bias in the central part of the Pann gradient (Figure 5). 228 

Although the model performance of RF is not any better than that of WA-PLS, the 229 

reconstruction produced by RF might be more reliable as suggested by the statistical 230 

significance testing and comparison with modern observed Pann for the two lakes 231 

(Koucha Lake and Xingxinghai Lake). Statistical significance testing shows that the 232 

proportion of variance in the fossil data explained by the WA-PLS reconstruction is 233 
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less than the 95% quantile of the variance explained by a reconstruction based on 234 

random environmental variables (999 trials) for the two lakes, while reconstructions 235 

produced by RF explain a higher proportion (Figure 6). In other words, reconstructions 236 

produced by RF might be controlled by the major pollen components, because the 237 

explained proportion of variance in the fossil pollen spectra is closer to that explained 238 

by the first PCA axis, while reconstructions by WA-PLS could be influenced more by 239 

the pollen taxa with low abundances (Figure 6). The hypothesis that WA-PLS is 240 

influenced more by low-abundance pollen taxa is supported by the high variation in 241 

reconstructed Pann among the fossil pollen samples (Figure 7). Relative to 242 

reconstructions of WA-PLS, results of RF have lower temporal variation and fewer 243 

outliers, and the predicted Pann by RF is closer to the observed Pann for the two lakes 244 

(Koucha Lake, 500 mm; Xingxinghai Lake, 350 mm) than that by WA-PLS. 245 

 246 

Table 2 Summary statistics of redundancy analysis (RDA) of 19 pollen species and 247 

four climatic variables. VIF: variance inflation factor; Pann: mean annual precipitation 248 

(mm); Mtco: mean temperature of the coldest month (℃); Mtwa: mean temperature of 249 

the warmest month (℃); Tann: annual mean temperature (℃). 250 

Climatic 

variables 

VIF 

(without 

Tann) 

VIF  

(with 

Tann) 

Climatic variables as 

sole predictor 

Marginal contribution based on 

climatic variables 

Explained variance 

(%) 

Explained variance 

(%) 
p-value 

Pann 1.6 2.9 10.8 14.7 0.001 

Mtco 4.8 161.4 2.6 4.8 0.001 

Mtwa 3.8 83.9 1.6 1.3 0.100 

Tann - 447.8 - - - 

 251 

 252 

 253 
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 255 

Figure 3 Plot of the first two redundancy analysis (RDA) axes showing the 256 

relationships between 18 pollen taxa (circles) and 3 climatic variables (arrows). Pann: 257 

mean annual precipitation (mm); Mtco: mean temperature of the coldest month (°C); 258 

Mtwa: mean temperature of the warmest month (°C). 259 

Table 3 Relative influence of climatic variables to the spatial distributions of 14 pollen 260 

taxa based on boosted regression tree (BRT) models. For each variable, the relative 261 

influence is expressed as a percentage among the three variables. Pollen taxa are 262 

ordered by decreasing prevalence (the proportion of sites in which each taxon is 263 

present). 264 

Taxa Prevalence Pann Mtco Mtwa 

Cyperaceae 1.00 89.3%  7.5% 3.2% 

Poaceae 1.00 95.1% 3.3% 1.5% 

Artemisia 1.00 69.3% 12.9% 17.8% 

Ranunculaceae 0.99 56.9% 33.7% 9.4% 

Asteraceae 0.97 7.2% 68.0% 24.8% 

Rosaceae 0.90 32.2% 52.7% 15.1% 

Chenopodiaceae 0.85 89.1% 5.8% 5.1% 

Brassicaceae 0.81 49.6% 37.4% 13.0% 

Polygonum 0.75 42.8% 31.9% 25.3% 

Salix 0.63 71.2% 21.7% 7.1% 

Fabaceae 0.54 79.3% 11.0% 9.6% 

Gentianaceae 0.54 10.5% 63.1% 26.4% 

Apiaceae 0.53 33.6% 30.5% 35.9% 

Hippophaë 0.37 9.6% 77.6% 12.9% 

Number of > 50% relative influence: 7 3 0 
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 265 

Figure 4 Boosted regression tree (BRT) modelled climate influences on pollen (seven 266 

dominant or major taxa) percentages. The pollen responses to three climatic variables 267 

(red curves) are fitted with local polynomial regression (LOESS). 268 
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 269 

Figure 5 Scatter plots of observed annual precipitation (Pann) vs. predicted Pann by 270 

weighted averaging partial least squares regression (WA-PLS) and random forest 271 

algorithm (RF). 272 

 273 

Figure 6 Statistical significance test of Pann reconstructions from two lakes using 274 

weighted-averaging partial least squares regression (WA-PLS) and the random forest 275 

(RF) algorithm. Grey histograms indicate the proportion of variance in the fossil pollen 276 

spectra explained by random variables (999 times) and the red dotted line is the 95% 277 

quantile, the black dotted line is the variance in the pollen explained by the first PCA 278 

axis, and the black solid line is the explanation by the reconstructed Pann. 279 
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 280 

Figure 7 Annual precipitation (Pann; mm) reconstructions for two Tibetan lakes using 281 

the weighted-averaging partial least squares regression (blue) and random forest 282 

algorithm (red). The curves are fitted by local polynomial regression (LOESS). 283 

6 Data availability 284 

Pollen datasets including both pollen counts and percentages for each sample together 285 

with their locations and climatic data are available at the National Tibetan Plateau Data 286 

Center (TPDC; DOI: 10.11888/Paleoenv.tpdc.271191). 287 

7 Summary 288 

We present a regional modern pollen dataset extracted from lake surface-sediments 289 

from the alpine meadow vegetation type on the Tibetan Plateau (eastern Tibetan Plateau, 290 

91.8°−99.8°E and 31.6°−35.5°N), including pollen counts and pollen percentages 291 

together with their positions and climatic data. Numerical analyses reveal that Pann is 292 

the most important climatic determinant for pollen distribution in the dataset, and our 293 
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dataset behaves reliably and has good predictive power for past moisture reconstruction, 294 

and the random forest algorithm is a potentially reliable approach in pollen-based past 295 

environment reconstruction. 296 

In addition, our open-access dataset can fill the geographical gap left by the two 297 

previous modern pollen datasets (lake surface-sediments; Shen et al., 2006; Herzschuh 298 

et al., 2010) on the eastern Tibetan Plateau. By combining our dataset here with the 299 

previous ones (e.g. Herzschuh et al., 2019), a comprehensive modern pollen dataset is 300 

created covering vegetation types from the alpine forest to alpine steppe on the Tibetan 301 

Plateau, and will greatly improve the reliability of past vegetation reconstructions and 302 

climate estimations. 303 
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Appendix A 395 

Boosted regression tree (BRT) modelled climate influences on pollen (seven common 396 

or minor taxa) percentages. The pollen responses to three climatic variables (red curves) 397 

are fitted with a local polynomial regression (LOESS). 398 

 399 

400 
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Appendix B  401 

Importance (imp) of pollen taxa on the spatial distribution of Pann was repeatedly 402 

assessed by the random forest algorithm (RF). Shown in bold are the pollen taxa 403 

selected for the Pann reconstruction based on RF. 404 

Taxa imp-run1 imp-run2 imp-run3 imp-run4 imp-run5 

Abies -1.5723     

Cedrus 0.0000     

Picea 0.3104 3.4397 3.5811 2.1705 1.1599 

Pinus -1.6225     

Alnus -0.3501     

Betula 5.8217 7.4399 7.4490 5.7763 5.9524 

Carpinus -1.2049     

Castanea -1.4692     

Corylus 0.2806 -0.3715    

Juglans 0.0000     

Oleaceae 0.0000     

Quercus -0.4776     

Salix 9.2463 9.6372 10.0018 9.4944 10.2897 

Ulmus -0.6041     

Chenopodiaceae 17.7282 18.0369 16.8653 16.3110 18.5089 

Ephedra 2.8306 2.9972 4.4539 3.5096 4.0226 

Ericaceae 0.0755 1.7893 -0.2415   

Euphorbiaceae -0.9748     

Fabaceae 2.4847 2.5302 3.5031 3.2985 1.8323 

Hippophaë 5.5569 3.5027 4.0142 3.1174 4.5627 

Rhamnaceae 0.0000     

Ilex 0.0000     

Nitraria -1.0010     

Rosaceae 3.0053 4.8099 2.9771 3.6032 4.3940 

Tamaricaceae -2.3780     

Apiaceae -0.6466     

Artemisia 1.7355 -0.0902    

Asteraceae 2.3902 1.7955 1.1307 -1.0880  

Brassicaceae 1.7269 2.2776 1.4596 1.5560 1.5308 

Caryophyllaceae -0.0033     

Cyperaceae 9.9824 9.8975 11.1838 10.4553 10.3560 

Balsaminaceae 0.0000     

Urticaceae 0.8534 -1.4774    

Gentianaceae 1.1305 -0.8603    

Lamiaceae 3.3097 2.6853 3.4047 2.2080 2.6588 

Liliaceae -0.5353     

Plantaginaceae 2.3294 1.3210 1.4498 0.8906 0.8763 
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Onagraceae 1.0010 -0.8613    

Papaveraceae 0.1148 1.0344 -1.7028   

Poaceae 13.8815 14.5295 14.7793 15.7914 16.2655 

Polemoniaceae -0.5507     

Polygonum 0.0523 2.4552 2.9776 1.9432 2.3618 

Rumex 1.0010 0.0000    

Koenigia 5.4498 4.3961 3.3305 4.1574 4.9186 

Primulaceae -1.2283     

Ranunculaceae 6.4799 8.9763 7.6140 7.5498 5.5157 

Saxifragaceae 0.9422 1.3283 1.8760 4.1134 2.3728 

Scrophulariaceae -1.0010     

Solanaceae 1.0010 -1.0008    

Thalictrum 2.9345 2.3850 2.6363 2.4267 3.3457 

 405 


