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Abstract. Sugarcane is the most important source of sugar, and its cultivation area has undergone rapid expansion, replacing 

other crops, pastures, and forests. Brazil is the world’s largest sugarcane producer and contributed to approximately 38.6% of 

the world’s total production in 2019. Sugarcane in Brazil can be harvested from April to December in south-central area and 

from September to April in northeast area. The flexible phenology and harvest conditions of sugarcane in Brazil make it 15 

difficult to identify the harvest area at state to country scales. In this study, we developed a phenology-based method to identify 

the harvest area of sugarcane in Brazil by incorporating the multiple phenology conditions into a time-weighted dynamic time 

warping method (TWDTW). Then, we produced annual 30-m spatial resolution sugarcane harvest maps (2016-2019) for 14 

states in Brazil (over 98% of the harvest area) based on the proposed method by using Landsat-7/8 and Sentinel-2 optical data. 

The proposed method performed well in identifying sugarcane harvest area with limited training sample data. Validations for 20 

the 2018 harvest year displayed high accuracy, with user’s, producer’s, and overall accuracies of 94.35%, 87.04%, and 91.47% 

in Brazil, respectively. In addition, the identified harvest area of sugarcane exhibited good correlations with the agricultural 

statistical data provided by the Brazilian Institute of Geography and Statistics (IBGE) at the municipality, microregion, and 

mesoregion levels. The 30-m Brazil sugarcane harvest maps can be obtained at https://doi.org/10.6084/m9.figshare.14213909 

(Zheng et al., 2021). 25 
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1 Introduction 

Sugarcane (Saccharum officinarum) is a semi-perennial crop that can be cut multiple times throughout several years in tropical 

and subtropical areas (Abdel-Rahman and Ahmed, 2008; Sindhu et al., 2016; Mulyono et al., 2017). Sugarcane is an important 

sugar and energy crop. Over 70% of world sugar comes from sugarcane (Brar et al., 2015; Iqbal et al., 2015). Sugarcane 

ethanol is an alternative energy source that can reduce CO2 emission resulting from fossil fuel use (Bordonal et al., 2015; 30 

Jaiswal et al., 2017). In addition, sugarcane leaves can be used as fodder and be manufactured into paper and bioenergy (Leal 

et al., 2013). Sugarcane accounts for approximately 20% of global crop production over the period from 2000–2018, and this 

value is almost twice the share of maize, the second most produced crop worldwide (FAO, 2020). Sugarcane has now become 

a crop with high socio-economic importance for Brazil and other producers, such as India, China, Thailand, Pakistan, the 

United States, and Australia (Monteiro et al., 2018). Recently, sugarcane has undergone rapid expansion by occupying the 35 

land of other crops, pastures, and forests (Adami et al., 2012; Ferreira et al., 2015; Wachholz de Souza et al., 2017; Defante et 

al., 2018). The expansion of sugarcane production areas can influence regional land cover use, water use, greenhouse gas 

emission, soil carbon balance, and climate change (Loarie et al., 2011; Mello et al., 2014; Zhang et al., 2015; Jaiswal et al., 

2017). On the one hand, the replacement of other crops with sugarcane may directly affect on agriculture and food security 

(Mello et al., 2014; Jaiswal et al., 2017). On the other hand, sugarcane expansion may influence the local climate by altering 40 

surface albedo and evapotranspiration (Loarie et al., 2011). Additionally, sugarcane has a large amount of water requirement 

and is often planted in the areas where water is limiting, therefore, sugarcane expansion may cause concerns about water 

security (Zhang et al., 2015). Timely and accurate estimates of the distribution, harvest area and growing conditions of 

sugarcane are crucial for sustainable sugarcane production and national food security. 

Recently, single-date or time series moderate to high resolution remote sensing optical data (e.g., Landsat, Sentinel-2, SPOT, 45 

and CBERS) and synthetic aperture radar (SAR) data (e.g., PALSAR and Sentinel-1) have been used for crop mapping based 

on unsupervised and supervised classification methods (Lin et al., 2009; Johnson et al., 2014; Li et al., 2015; Belgiu et al., 

2018). The most current and popular classification method is machine learning, such as random forest (Zhou et al., 2015; 

Luciano et al., 2018, 2019; Wang et al., 2019), support vector machine (Johnson et al., 2014; Zheng et al., 2015), and neural 

networks (Cai et al., 2018). For sugarcane identification, Junior et al. (2017) mapped the area of sugarcane in Paraná state in 50 

Brazil based on supervised maximum likelihood classification using Landsat/TM/OLI and IRS/LISS-3 images. Depending on 

the sugarcane map from 2009-2014 generated by the Canasat Project (Rudorff et al., 2010) as ground truth sample data, a 

random forest classification model was calibrated at 10 sites located across São Paulo state and employed to the entire state in 

2015, showing the ability to create spatial and time generalization models (Luciano et al., 2019). Jiang et al. (2019) identified 

sugarcane in Zhanjiang city in China using machine learning methods and Sentinel-1A/2 time series satellite data. However, 55 

these methods strongly depend on extensive training samples, which are time-consuming and labor-intensive to obtain at the 

state and country scales (Dong et al., 2020a; Wang et al., 2020). For example, the U.S. Department of Agriculture (USDA) 

National Agricultural Statistics Service (NASS) produced the 30-m resolution Cropland Data Layer (CDL) product using a 
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decision tree classification method, and this approach mainly relied on the large volume of USDA Common Land Unit (CLU) 

data to establish training samples that are updated annually (Boryan et al., 2011). Only in Nebraska did the CLD product need 60 

more than 250,000 CLU records for training the classification method. 

Phenology-based algorithms are also commonly used in regional classification (Wardlow et al., 2007; Zhong et al., 2014; 

Massey et al., 2017; Dong et al., 2020b). These methods have been proposed and developed based on the crop calendar, e.g., 

the germination, tillering, grand growth, and ripening phases. Li et al. (2015) identified sugarcane on the Leizhou Peninsula in 

China by comparing the polarization features (such as scattering angle and polarization entropy) of sugarcane with those of 65 

other land use types in the early, middle, and late tillering periods using TerraSAR-X images. The result indicated that the 

tillering period is a suitable growing phase that can be used for sugarcane cultivation area mapping. Mulyono et al. (2017) 

identified sugarcane plantations in the Magetan district of East Java Province in Indonesia using support vector machine and 

the crop phenology profile of enhanced vegetation index (EVI) time series derived from Landsat 8 images. Phenology-based 

methods would be a potential alternative approach for identifyingto identify crop cultivation areas at the country scale with a 70 

low volume of training samples (Dong et al., 2020a). However, these studies were developed based on several phenological 

thresholds (e.g., green-up date, senescence date, and length of growing season) of crops in different growing stages, which 

need to be calibrated when extended to other regions or years. Therefore, traditional phenology-based methods are still 

insufficient to perform ideal mapping and may be limited by multiple thresholds when applied to large scales, such as the 

country to continental scales. 75 

Dynamic time warping (DTW) is an effective phenology-based method in crop classification at large scales that compares the 

differences in seasonal variations in the vegetation index of a target crop with those of other crop types and natural vegetation. 

The original DTW method was developed for speech recognition and then employed for phenology-based classification using 

time series satellite images (Sakoe and Chiba, 1978; Petitjean et al., 2012; Petitjean and Weber, 2014). However, the DTW 

neglects the temporal ranges when searching the best alignment between two time series. Maus et al. (2016) proposed a time-80 

weighted version of the DTW method (TWDTW) by adding a temporal weight that accounts for the seasonality of crops into 

the DTW method to balance shape matching and phenological changes. The TWDTW method performed well in identifying 

winter wheat, crop, and forest with limited training data (Maus et al., 2016; Belgiu et al., 2018; Manabe et al., 2018; Dong et 

al., 2020a). 

Brazil is the world’s largest sugarcane production country and contributed to 37.6% of the world’s total harvest area in 2019, 85 

followed by India (18.9%), Thailand (6.9%), China (5.3%), Pakistan (3.9%), and Mexico (3.9%) (FAO, 2020). Sugarcane in 

Brazil is mainly located in south-central and northeast areas. Sugarcane is a semi-perennial crop. Its life cycle begins with the 

planting of a stem cutting and grows for approximately 12 months or 12-18 months depending on the season, variety, and 

region of planting (Rudorff et al., 2010). Generally, in the south-central area, sugarcane can be harvested from April to 

December with a harvesting season spanning 9 months. In the northeast areas, sugarcane can be harvested from September to 90 

April in the next year with a harvesting season spanning 8 months. The flexible phenology and harvest conditions of sugarcane 

in Brazil make it difficult to identify the harvest area at large scales, particularly at the state to country scales. In this study, 
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based on Landsat and Sentinel-2 satellite data, we proposed a phenology-based method by incorporating multiple phenological 

conditions of sugarcane into the TWDTW method to automatically identify the harvest area of sugarcane in Brazil at a spatial 

resolution of 30-m from 2016 to 2019. 95 

2 Data and methods 

2.1 Study area 

In Brazil, sugarcane is mainly located in the south-central and northeast regions, particularly in the state of São Paulo. In our 

study, we mapped the harvest area of sugarcane in 14 states in Brazil, including São Paulo (SP, accounting for 55.1% of the 

harvest area in Brazil), Goiás (GO, 9.5%), Minas Gerais (MG, 9.2%), Mato Grosso do Sul (MS, 6.8%), Paraná (PR, 6.1%), 100 

Mato Grosso (MT, 2.8%), Bahia (BA, 0.7%), Rio de Janeiro (RJ, 0.5%), and Espírito Santo (ES, 0.4%) in south-central Brazil; 

and Alagoas (AL, 2.8%), Pernambuco (PE, 2.4%), Paraíba (PB, 1.0%), Rio Grande do Norte (RN, 0.6%), and Sergipe (SE, 

0.4%) in northeast Brazil (Fig. 1). The mapped areas constitute over 98% of the Brazilian sugarcane harvest area. 

<<Figure 1>> 

2.2 Datasets 105 

2.2.1 Satellite data 

In this study, all the available Landsat-7/8 and Sentinel-2 reflectance data from July 2015 to February 2020 were used to 

generate 16-day composite normalized difference vegetation index (NDVI) series at the Google Earth Engine (GEE) platform. 

Landsat-7 and Landsat-8 data had a 30-m spatial resolution and a 16-day temporal resolution. The quality band BQA was used 

to remove pixels contaminated by clouds. The Sentinel-2 data had a 10-m spatial resolution and a 5-day temporal resolution. 110 

The quality band QA60 was used to remove pixels contaminated by clouds. NDVI was computed using the reflectance data 

from the near infrared band (ρNIR) and red band (ρRED): 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷
           (1) 

The cloud-free frequencies of the 16-day composite NDVI in a year for each pixel are shown in Fig. 2. For 2018 and 2019, 

most of the pixels had more than 20 times of good observations. For 2016 and 2017, the pixels with more than 20 times of 115 

good observations were less, while most of the pixels had more than 18 times of good observations (Fig. 2). To reconstruct the 

near real-time temporal profile of the 16-day NDVI, we filled the gaps in NDVI time series using a linear interpolation method 

and then filtered the NDVI curves. 

<<Figure 2>> 
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2.2.2 Sample data 120 

The sample data used for calibration and validation in this study were mainly obtained based on the high-resolution images 

from Google Earth. We selected the samples for sugarcane and non-sugarcane according to the following rules. First, we 

selected the samples for sugarcane or non-sugarcane using visual interpretations according to color and textures of the images 

from Google Earth. As shown in Fig. 3a, sugarcane exhibits unique color and textures on the high high-resolution images from 

Google Earth. Sugarcane has coarser surface than most of the crops and smoother surface than forest or trees in growing season, 125 

which can be used to separate sugarcane from these types. Second, we cross checked and confirmed each of these samples 

using its NDVI timeseries. Sugarcane has a long life cycle ranging from 12 to 18 months (Rudorff et al., 2010), which is longer 

than most of the crops (Fig. 3b). And the sharply decreased NDVI in sugarcane harvest period can separate sugarcane from 

forest and pasture (Fig. 3b). We only use the samples which can satisfy the above two criteria. Finally, we collected totally 

2909 samples with 1393 for sugarcane and 1516 for non-sugarcane in the year 2018 (Fig. 1). 130 

<<Figure 3>> 

2.2.3 Agricultural statistical data 

The agricultural statistical data for the sugarcane harvest area were derived from the Municipal Agricultural Production (PAM) 

provided by the Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística – IBGE; 

www.ibge.gov.br). The PAM was carried out yearly across the entire country with the statistical data at the Brazil, major 135 

region, federation unit, mesoregion, microregion and municipality levels. It provides information related to the plant area and 

harvest area, production and average yield, and average price in the reference year for 64 agricultural products. In our study, 

we used the harvest area from 14 major sugarcane planted states at the federation unit, municipality, microregion, and 

mesoregion levels from 2016 to 2018 (the boundary lines of these regions are shown in Fig. 4). 

<<Figure 4>> 140 

2.3 Methods 

In this study, we employed a phenology-based method, namely the TWDTW method, to identify the harvest area of sugarcane 

in Brazil. The workflow was as follows: (1) pre-processing of the satellite dataset (i.e., Landsat 7/8 and Sentinel-2) to obtain 

the 16-day composite NDVI series, including low quality data removing (e.g., the elimination of clouds, cloud shadows, and 

Landsat 7 ETM+ Scan Line Corrector (SLC-off) gaps), NDVI compositing, NDVI gap filling and data filtering; (2) extraction 145 

of the standard NDVI curves of sugarcane in Brazil; (3) model development and sugarcane harvest area identification in Brazil 

based on the TWDTW method; and (4) assessment of the mapping accuracy of the Brazil sugarcane harvest area. 
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2.3.1 Time-weighted dynamic time warping (TWDTW) method 

TWDTW is a time-weighted version of the DTW method for land use and land cover classification (Belgiu et al., 2018; Dong 

et al., 2020a). The DTW works by comparing the similarity between two sequences, such as the unknown sequence (Y) and 150 

target sequence (X), through warping the unknown sequence (Y) to search for their optimal path and obtain their minimum 

distance, namely the similarity (dissimilarity) (Petitjean et al., 2012; Petitjean and Weber, 2014). The TWDTW method adds 

a temporal cost accounting for the phase difference between the two time series to the minimum distance (Maus et al., 2016). ;. 

The TWDTW algorithm includes three steps in land use classification and identification: (1) generate the standard curve of a 

selected index (e.g., NDVI) for several crops or a single crop (e.g., sugarcane) based on time series images and field sample 155 

training data; (2) find the best alignment, and generate the dissimilarities (TWDTW distances) between unknown curves of 

NDVI time series (i.e., the NDVI curves of the unknown pixels) with the standard NDVI curve of sugarcane; (3) identify the 

unknown pixels based on the TWDTW distance; in this process pixels with low distance indicate high similarity and a high 

probability of being associated with the specified class (i.e., sugarcane). 

2.3.2 Employing the TWDTW method for sugarcane mapping 160 

<<Figure 5>> 

The workflow by employing the TWDTW method for sugarcane harvest area mapping are shown in Fig.5. The growing period 

of sugarcane can be separated into four phases: the germination, tillering, grand growth, and ripening, and the NDVI values 

vary in different growing phases (Fig. 6). (1) Germination phase. Sugarcane begins to germinate approximately 15-30 days 

after planting. The NDVI starts to increase in this period. (2) Tillering phase. Tillering phase starts after approximately 2 165 

months of germination, and tillers emerge from the base of the mother shoot to form 5-10 stalks. The NDVI increases quickly 

in this period. (3) Grand growth phase. This phase spans a period of approximately 4-10 months after planting. The NDVI 

peaks during this period. (4) Ripening and harvesting phase. In this phase, the NDVI starts to decrease, and the moisture 

content in sugarcane drastically drops. 

From planting until the first cut, the crop is called planted sugarcane, and the growth cycle lasts between 12 and 18 months 170 

depending on the season, variety, and region of planting. After the first harvest, ratoon sugarcane is harvested yearly with a 

normal cycle of 12 months for a period of approximately 5 to 7 years or more (Rudorff et al., 2010). Although planted sugarcane 

and ratoon sugarcane have different length in growing cycles, they shared similar NDVI curves from the grand growth to 

harvest phases (red symbols in Fig. 6) which can be used as the standard seasonal curve for harvest area mapping. In Fig. 6, 

the standard NDVI curves for sugarcane were generated by randomly selecting 50 sugarcane samples across Brazil from the 175 

field data in 2018 (Section 2.2.2) and calculating their averaged NDVI values in the same growing period. The standard NDVI 

curves were produced as following: (1) randomly selecting 50 sugarcane samples across Brazil from the samples; (2) extracting 

their NDVI curves from the 16-day composited NDVI time series in 2018/2019 crop year; (3) adjusting the timeline of each 



7 

 

NDVI curves by moving forward or back to ensure all the 50 NDVI curves generally in the same growing period; (4) 

calculating their averaged NDVI values to obtain the standard NDVI curves (Fig. 6). 180 

<<Figure 6>> 

Sugarcane in Brazil covers an extensive harvesting period (Rudorff et al. 2010). In the south-central area (including São Paulo, 

Goiás, Minas Gerais, Mato Grosso do Sul, Paraná, Mato Grosso, Bahia, Rio de Janeiro, and Espírito Santo), sugarcane is often 

harvested from April to December, with a harvesting season spanning 9 months. In the northeast area (including Alagoas, 

Pernambuco, Paraíba, Rio Grande do Norte, and Sergipe), sugarcane is harvested from September to April in the next year, 185 

with a harvesting season spanning 8 months. According to the phenology of sugarcane in the south-central and northeast areas, 

Fig.7 shows the possible standard NDVI curves (these NDVI curves were repeated from the NDVI standard curve for 

sugarcane, as denoted by the red symbols and line in Fig. 6) for sugarcane in south-central and northeast Brazil. In this study, 

we incorporate the flexible phenological and harvest conditions of sugarcane in Brazil into the TWDTW method as follows. 

<<Figure 7>> 190 

(1) Calculate the dissimilarities (TWDTW distances). For each year from 2016-2019, we calculated all the “distance” values 

for each unknown pixel by comparing its NDVI timeseries with the standard NDVI curves of sugarcane (Fig. 7) based on the 

TWDTW method. In this process, we can obtain 13 “distance” values corresponding to the 13 standard NDVI curves in Fig. 

7 for each pixel, and we selected the minimum value of the “distance” as the final distance value for each pixel. (2) Remove 

the influence of other vegetation with similar NDVI changes to sugarcane harvesting period, such as the Brazilian Cerrado 195 

biomes and pasture. In the Brazilian Cerrado, some vegetations (such as grassland, shrubland, woodland, and deciduous forest) 

exhibited low NDVI values from the end of the drought season to the beginning of the rainy season (August to October), which 

is similar to the sugarcane harvesting practice. However, the “difference” in NDVI between the growing season and non-

growing season for these vegetations were lower than those for sugarcane (Ferreira et al. 2004; Mueller et al. 2015). Therefore, 

we used the NDVI “difference” as another supplement criterion to further separate sugarcane from the aforementioned 200 

vegetation types across the states related to the Brazilian Cerrado (i.e., São Paulo, Goiás, Minas Gerais, Mato Grosso do Sul, 

Mato Grosso, and Bahia). The “difference” between the maximum NDVI value in sugarcane growing season (NDVImax: mean 

value of the two maximum NDVI in the growing season) and the minimum NDVI value in sugarcane non-growing season 

(NDVImin: mean value of the two minimum NDVI in the non-growing season) was calculated for each pixel in these states 

(Fig. 7). From the statistics of 50 randomly selected sugarcane samples, we found the “difference” for sugarcane is mostly 205 

greater than 0.31. Therefore, we set the pixels with “difference” less than 0.31 as non-sugarcane. Additionally, pasture, which 

has similar temporal-spectral behaviour to sugarcane (Xavier et al., 2006), was further removed using the pasture maps (overall 

accuracy of 87%) produced by Parente et al. (2017). Across all the 14 studied states, pixels consecutively labelled as pasture 

on the pasture maps from 2016 to 2019 was set as non-sugarcane. (3) Identify to produce the sugarcane maps. We used the 

agricultural statistical harvest area for sugarcane at the state level to determine the “distance” threshold. A pixel with “distance” 210 

value lower than the “distance” threshold was considered a “sugarcane” pixel, and the total area of all sugarcane pixels should 

be equal to the statistical harvest area of sugarcane in the investigated state. In our study, municipalities with small areas of 
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planted sugarcane (less than 1000 ha or less than 1% of the total sugarcane area in the investigated state) were identified 

separately to improve the identification accuracy of the entire investigated state. 

2.3.3 Accuracy assessment 215 

In this study, we first assessed the identification accuracy using the selected sugarcane and non-sugarcane samples based on 

the high-resolution images from Google Earth (Section 2.2.2). The producer’s accuracy (PA), user’s accuracy (UA), and 

overall accuracy (OA) were used for validation. The producer’s accuracy (PA) is the percentage of surveyed reference samples 

correctly identified as the target class; the user’s accuracy (UA) is the percentage of surveyed reference samples identified as 

the target class on the classification map actually confirmed by field surveys; and overall accuracy (OA) is the ratio of correctly 220 

classified samples to all the samples. Additionally, we calculated the sugarcane harvest area on the map in different 

administrative regions and compared them with agricultural statistical data at the municipality, microregion, and mesoregion 

levels. The coefficient of determination (R2) and RMAE (relative mean absolute error) between the statistical harvest area and 

the estimated harvest area were adopted to assess the map accuracy. The MAE (mean absolute error) can be expressed as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑆𝑖 − �̂�𝑖|
𝑛
𝑖=1            (2) 225 

where 𝑆𝑖 and �̂�𝑖 are the statistical area and identified area for the 𝑖 th administrative region, respectively. 𝑛 is the number of 

the administrative regions with valid statistical data. RMAE is the value of MAE relative to the mean value of the statistical 

area for all the 𝑛 administrative regions: 

𝑅𝑀𝐴𝐸 =
𝑀𝐴𝐸

∑ 𝑆𝑖/𝑛
𝑛
𝑖=1

            (3) 

3 Results 230 

Annual cultivation maps of sugarcane in the 14 states of Brazil from 2016 to 2019 were produced using the TWDTW method 

(taking 2018 as an example in Fig. 8). The validation demonstrated good performance of the proposed method in identifying 

sugarcane harvest area in 2018. To show the detailed information of the sugarcane maps produced in our study. We selected 

four typical areas in different states to zoom-in and compared the sugarcane maps with high-resolution images from Google 

Earth (Fig. 9). In general, the sugarcane maps well captured the delineation of fields even though with some noises. What’s 235 

more, the sugarcane maps can exhibit detailed information, such as small parcels, roads, and ridges between the fields. Based 

on the 2859 samples derived from Google Earth in 2018, the user’s, producer’s, and overall accuracies were 94.35%, 87.07%, 

and 91.47% in Brazil, respectively. The performance of the method varied by state and region. For all the 14 studied states, 

the overall accuracy (OA) varied from 83.51% to 94.46%, with the user’s accuracy (UA) ranging from 86.96% to 98.25% and 

producer’s accuracy (PA) ranging from 78.18% to 91.52% for sugarcane; and the user’s accuracy (UA) ranging from 76.00% 240 

to 94.42% and producer’s accuracy (PA) ranging from 86.05% to 98.15% for non-sugarcane (Table 1). São Paulo, the state 

with the largest planted area of sugarcane (accounting for over 50% of the sugarcane in Brazil), displayed high user’s, 
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producer’s, and overall accuracies of 94.53%, 91.52%, and 94.46%, respectively. Goiás, the state with the second-largest 

planted area of sugarcane (accounting for approximately 10% of the sugarcane in Brazil), had high user’s, producer’s, and 

overall accuracies of 93.96%, 90.48%, and 93.38%, respectively. All the investigated states exhibited overall accuracy (OA) 245 

over 83% (Table 1). 

<<Figure 8>> 

<<Figure 9>> 

<<Table 1>> 

Additionally, the proposed method can accurately estimate the sugarcane harvest area compared with the agricultural statistical 250 

data at different administrative levels. The estimated harvest area of sugarcane in 2018 exhibited good correlations with the 

agricultural statistical area data derived from PAM at the municipality, microregion, and mesoregion levels. The coefficients 

of determination (R2) were 0.88 (N=3637), 0.96 (N=369), and 0.99 (N=87) at the municipality, microregion, and mesoregion 

levels, respectively, and the respective RMAEs were 34.0% (MAE=0.09×104 ha), 20.5% (MAE=0.55×104 ha), and 13.7% 

(MAE=1.55×104 ha) (Fig. 10). The performance was better when the validated regions were aggregated to larger areas, namely 255 

the accuracy from low to high were at the municipality, microregion, and mesoregion levels. 

<<Figure 10>> 

The correlations between the agricultural statistical and the estimated harvest areas varied by state and region. At the 

municipality level, the coefficient of determination (R2) between the agricultural statistical and the estimated harvest areas 

ranged from 0.62 to 0.98 in south-central Brazil and from 0.85 to 0.89 in northeast Brazil (Figs. 11-12); the RMAE ranged 260 

from 18.8% to 64.5% in south-central Brazil and from 38.8% to 53.2% in northeast Brazil (Fig. 11; Fig. 13). At the microregion 

level, the R2 between the agricultural statistical and the estimated harvest areas ranged from 0.67 to 1 in south-central Brazil 

and from 0.70 to 1 in northeast Brazil (Fig. 12); the RMAE ranged from 14.2% to 60.5% in south-central Brazil and from 7.7% 

to 46.6% in northeast Brazil (Fig. 13). At the mesoregion level, the R2 between the agricultural statistical and the estimated 

harvest areas ranged from 0.43 to 1 in south-central Brazil and from 0.99 to 1 in northeast Brazil (Fig. 12); the RMAE ranged 265 

from 1.7% to 58.1% in south-central Brazil and from 3.1% to 22.6% in northeast Brazil (Fig. 13). Validation at all three levels 

showed high performance, with high R2 and slope close to 1. In general, Mato Grosso and Bahia in the northern part of south-

central Brazil and Sergipe in the southern part of northeastern Brazil displayed lower R2 and higher RMAE values (Figs. 11-

13). The performance for São Paulo and Goiás were higher than those for most other states, except Rio de Janeiro (Figs. 11-

13). Finally, we assessed the capability of the method and standard seasonal changes in NDVI (i.e., standard NDVI curves) 270 

acquired from a single year (2018) to apply them to other years (2016 and 2017). Results indicated the R2 and RMAE values 

for the period of 2016–2018 changed little in most states (Figs. 12-13). 

<<Figures 11-13>> 
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4 Discussion 

As the largest global producer of sugarcane, Brazil contributed to approximately 38.6% of the world’s sugarcane production 275 

in 2019 and played an important role in retaining the global demand for sugarcane (FAO, 2020). While the cultivation area of 

sugarcane in Brazil has increased by approximately 11% over the past 10 years according to census data (FAO, 2020), which 

indicated substantial land cover changes and important feedback to regional climate systems (Loarie et al., 2011; Mello et al., 

2014; Jaiswal et al., 2017). The first harvest area map of sugarcane in Brazil at a 30-m spatial resolution was generated only 

for São Paulo state for the 2003/2004 crop year based on an automatic image classification method (Rudorff et al., 2005). 280 

Subsequently, the cultivation map of sugarcane was updated using visual/manual image interpretation through 2013, and the 

coverage of the map extended from São Paulo state to a total of 8 states in the south-central region of Brazil, accounting for 

88% of the sugarcane cultivation area in Brazil, as reported by the Canasat Project (Rudorff et al., 2010). Souza et al. (2020) 

reconstructed annual land use and land cover information at a 30-m spatial resolution from 1985-2017 for Brazil based on 

random forest method and Landsat data trained by plenty of samples selected from existing land cover maps, which provides 285 

the cultivation map of sugarcane belonging to a subclass of agriculture (the producer’s and user’s accuracies for agriculture 

were 83.3% and of 81.3%, respectively). However, these prevailing methods strongly require large volume of training samples, 

which makes it difficult to update annually at large scales. 

In this study, we proposed a phenology-based sugarcane classification method by incorporating multiple phenological 

conditions of sugarcane into the TWDTW method. Then, we identified the harvest area of sugarcane with a spatial resolution 290 

of 30-m in Brazil from 2016 to 2019 using 16-day composite NDVI series derived from Landsat-7/8 and Sentinel-2 data. Our 

proposed method can automatically identify the sugarcane areas with limited training data and needs only one standard NDVI 

curve (Fig. 6) for all the 14 sugarcane planted states in Brazil. Validations against field sample data and agricultural statistical 

area data showed that the generated sugarcane harvest maps were in high accuracy. For example, validations for 2018 displayed 

the user’s, producer’s, and overall accuracies of 94.35%, 87.07%, and 91.47% in Brazil, respectively. 295 

Although our method can effectively and accurately identify the sugarcane harvest area from the regional to national or 

continental scales, there are still several potential uncertainties in the identification process. First, because of the quality of the 

processed NDVI series, the speckle “salt-and-pepper” effects/noises exist in some areas of the harvest map. According to the 

map statistics in 2018, sugarcane patches with only one pixel account for 0.7% (São Paulo) to 9.1% (Espírito Santo) of the 

sugarcane area (Fig. 14). In the future, the object-based identification by segmenting images into homogeneous objects, instead 300 

of the pixel-based method used in our study, may alleviate the “salt-and-pepper” effects and improve the identification 

performance (Belgiu et al., 2018). 

<<Figure 14>> 

Second, the identification accuracy for Bahia state was lower than that for other states. Because of the different harvest seasons 

in south-central and northeast Brazil, we identified sugarcane in the south-central and northeast areas using different 305 

phenological characteristics and standard curve combinations (Fig. 7). Bahia is a transition state between south-central and 



11 

 

northeast Brazil. Namely, sugarcane in southern Bahia has a harvest season similar to that in south-central Brazil, and 

sugarcane in northern Bahia has a harvest season similar to that in northeast Brazil. In our study, we treated Bahia as a state in 

south-central Brazil with a harvest season from April to December (Fig. 7), which may introduce errors to the identification in 

the northern part of Bahia. 310 

Third, Mato Grosso state exhibited a lower R2 and higher RMAE than other states when comparing the identified sugarcane 

harvest area with the agricultural statistical sugarcane harvest area. Two major biomes are located in Mato Grosso, including 

the humid tropical forests of the Amazon in the north and the heterogeneous Cerrado area (a tropical savanna) in the south-

central part of the state (Kastens et al. 2017). In Mato Grosso, sugarcane may be misclassified with some kinds of grassland, 

grazing areas, or seasonal forest, which exhibit phenological changes similar to those of sugarcane (Mueller et al. 2015; Bendini 315 

et al. 2019). The NDVI values of these vegetation types decrease between August and October (from the end of the drought 

season to the beginning of the rainy season) and increased thereafter (Ferreira et al. 2004), which is quite similar to that in the 

harvesting stage of sugarcane, resulting in misclassification with the sugarcane harvested from August to October. In our study, 

we used the “difference” between the maximum NDVI value in the growing season and the minimum NDVI value in the non-

growing season (see method in Section 2.3.2) to alleviate the misclassification at some extent because the “difference” for the 320 

abovementioned vegetation types is generally lower than that for sugarcane (Ferreira et al. 2004). In the future, incorporating 

more complex spectral-temporal variability metrics, such as the combination of more spectral information instead of NDVI 

and a longer time window for several harvest seasons instead of one harvest season may help improve model performance 

(Mueller et al. 2015). 

5 Data availability 325 

The 30-m Brazil sugarcane harvest area dataset from 2016-2019 is available at https://doi.org/10.6084/m9.figshare.14213909 

(Zheng et al., 2021). The dataset is provided in .tif format with pixel values of 1 for sugarcane and 0 for non-sugarcane. 

6 Conclusion 

Brazil is the world’s largest sugarcane producer and contributes to approximately 38.6% of total global sugarcane production. 

Based on the available Landsat-7/8 and Sentinel-2 optical images, we produced sugarcane harvest maps with a 30-m spatial 330 

resolution (2016-2019) by incorporating multiple phenological conditions of sugarcane in Brazil into the TWDTW method. 

The proposed method can automatically identify sugarcane harvest area with limited training sample data. Based on 2859 

samples derived from Google Earth, the validation experiment reflected high accuracy across the 14 sugarcane planted states 

in Brazil in 2018, with the user’s, producer’s, and overall accuracies of 94.35%, 87.07%, and 91.47% in Brazil, respectively. 

Additionally, the identified harvest area of sugarcane exhibited a good correlation with the agricultural statistical area data 335 
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derived from PAM at the municipality, microregion, and mesoregion levels. The maps can be used to monitor the harvest area 

and yield of sugarcane, and evaluate the feedback to regional climate. 
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Tables 

 

Table 1: Confusion matrix of the sugarcane harvest map for the 14 states in Brazil in 2018. 

 

 State Reference 
Map 

Producer's 

accuracy 

User's 

accuracy 

Overall 

accuracy Sugarcane Non-sugarcane 

South-

central 

São Paulo (SP) 
Sugarcane 259 24 91.52% 94.53% 

94.46% 
Non-sugarcane 15 406 96.44% 94.42% 

Goiás (GO) 
Sugarcane 171 18 90.48% 93.96% 

93.38% 
Non-sugarcane 11 238 95.58% 92.97% 

Minas Gerais 

(MG) 

Sugarcane 92 17 84.40% 92.00% 
87.37% 

Non-sugarcane 8 81 91.01% 82.65% 

Mato Grosso 

do Sul (MS) 

Sugarcane 81 9 90.00% 97.59% 
94.44% 

Non-sugarcane 2 106 98.15% 92.17% 

Paraná (PR) 
Sugarcane 77 16 82.80% 90.59% 

91.84% 
Non-sugarcane 8 193 96.02% 92.34% 

Mato Grosso 

(MT) 

Sugarcane 79 19 80.61% 94.05% 
87.88% 

Non-sugarcane 5 95 95.00% 83.33% 

Bahia (BA) 
Sugarcane 56 11 83.58% 98.25% 

89.29% 
Non-sugarcane 1 44 97.78% 80.00% 

Rio de Janeiro 

(RJ) 

Sugarcane 76 8 90.48% 97.44% 
92.65% 

Non-sugarcane 2 50 96.15% 86.21% 

Espírito Santo 

(ES) 

Sugarcane 61 11 84.72% 96.83% 
88.50% 

Non-sugarcane 2 39 95.12% 78.00% 

Northeast 

Alagoas (AL) 
Sugarcane 53 8 86.89% 96.36% 

90.29% 
Non-sugarcane 2 40 95.24% 83.33% 

Pernambuco 

(PE) 

Sugarcane 52 9 85.25% 94.55% 
89.09% 

Non-sugarcane 3 46 93.88% 83.64% 

Paraíba (PB) 
Sugarcane 43 12 78.18% 91.49% 

83.51% 
Non-sugarcane 4 38 90.48% 76.00% 

Rio Grande do 

Norte (RN) 

Sugarcane 40 5 88.89% 86.96% 
87.50% 

Non-sugarcane 6 37 86.05% 88.10% 

Sergipe (SE) 
Sugarcane 29 7 80.56% 96.67% 

88.57% 
Non-sugarcane 1 33 97.06% 82.50% 

 485 
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Figures 

 

 490 

Figure 1. Study areas in Brazil for sugarcane harvest area identification, including 9 states in south-central Brazil (i.e., São Paulo, 

Goiás, Minas Gerais, Mato Grosso do Sul, Paraná, Mato Grosso, Bahia, Rio de Janeiro, and Espírito Santo) and 5 states in northeast 

Brazil (i.e., Alagoas, Pernambuco, Paraíba, Rio Grande do Norte, and Sergipe), which account for over 98% of the sugarcane harvest 

area in Brazil. The dots represent the samples used for validation. The administrative boundary data were derived from the Brazilian 

Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística – IBGE; www.ibge.gov.br). 495 

  

http://www.ibge.gov.br/
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Figure 2. Times of good observations for the 16-day composite satellite data over a year. (left) Times of good observations in 2018; 

(right) Area percentages of the times of good observations for each state from 2016-2019. The administrative boundary data were 

obtained from the IBGE. 500 
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Figure 3. Examples of the (a) color and textures on the high- resolution images from Google Earth © Google Earth, and (b) timeseries 

of NDVI for different vegetations. 

505 
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Figure 4. The administrative boundaries for (a) municipalities, (b) microregions, and (c) mesoregions. The boundary lines at the 

municipality and state levels were downloaded directly from the IBGE, and we aggregated the municipalities into microregions and 

mesoregions according to the regions in PAM denoted by the IBGE. 

 510 

 

Figure 5. The workflow by employing the TWDTW method for sugarcane harvest area mapping. 
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Figure 6. Growing stages of sugarcane and the respective NDVI changes. The gray and red symbols represent the NDVI curve for 

the planted sugarcane with a 12–18 month cycle, and the green and red symbols represent the NDVI curve for the ratoon sugarcane 515 
with a 12 month cycle. The growing stages of the 12 month cycle sugarcane (germination, tillering, grand growth, and ripening) are 

labeled in the figure. 

 

 

 520 

 

Figure 7. Seasonal changes in the NDVI series for sugarcane in the south-central and northeast Brazil. The gray areas are the periods 

used to calculate the “difference” between the maximum NDVI value in growing season (NDVImax) and the minimum NDVI value 

in non-growing season (NDVImin). 
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 525 

Figure 8. Sugarcane harvest map for the 14 studied states in Brazil in 2018. The administrative boundary data were obtained from 

the IBGE.  
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Figure 9. Zoomed-in of (a1)-(d1) high-resolution images from Google Earth © Google Earth, (a2)-(d2) presence (red) and absence 530 
(white) of sugarcane on the harvest maps in 2018 for the typical area A-D in Fig. 8.  
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Figure 10. Comparisons between the agricultural statistical harvest area and the estimated harvest area of sugarcane at the 

municipality level in Brazil in 2018. “N” and “mean” represents the number and mean value of all the valid statistical data in each 

figure, respectively. 535 
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Figure 11. Comparisons between the agricultural statistical harvest area and the estimated harvest area of sugarcane at the 

municipality level in the 14 states in 2018. “N” and “mean” represents the number and mean value of all the valid statistical data in 540 
each figure, respectively.  
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Figure 12. Comparisons between the agricultural statistical harvest area and the estimated harvest area of sugarcane (R2 and slope) 

at the (a-b) municipality, (c-d) microregion, and (e-f) mesoregion levels from 2016-2018. 545 
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Figure 13. Comparisons between the agricultural statistical harvest area and the estimated harvest area of sugarcane (MAE and 

RMAE) at the (a-b) municipality, (c-d) microregion, and (e-f) mesoregion levels from 2016-2018. 550 

  



29 

 

 

 
Figure 14. Statistics for patches with different pixel numbers in the sugarcane harvest map for the 14 states in Brazil in 2018. 


