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Abstract. The global distribution of cropping intensity (CI) is essential to our understanding of agricultural land use 18 

management on Earth. Optical remote sensing has revolutionized our ability to map CI over large areas in a repeated 19 

and cost-efficient manner. Previous studies have mainly focused on investigating the spatiotemporal patterns of CI 20 

ranging from regions to the entire globe with the use of coarse-resolution data, which are inadequate for characterizing 21 

farming practices within heterogeneous landscapes. To fill this knowledge gap, in this study, we utilized multiple 22 

satellite data to develop a global, spatially continuous CI map dataset at 30-m resolution (GCI30). Accuracy 23 

assessments indicated that GCI30 exhibited high agreement with visually interpreted validation samples and in situ 24 

observations from the PhenoCam network. We carried out both statistical and spatial comparisons of GCI30 with six 25 

existing global CI estimates. Based on GCI30, we estimated that the global average annual CI during 2016–2018 was 26 

1.05, which is close to the mean (1.0409) and median (1.1307) CI values of the existing six global CI estimates, 27 

although the spatial resolution and temporal coverage vary significantly among products. A spatial comparison with 28 

two other satellite based land surface phenology products further suggested that GCI30 was not only capable of 29 

capturing the overall pattern of global CI but also provided many spatial details. GCI30 indicated that single cropping 30 

was the primary agricultural system on Earth, accounting for 81.57% (12.28 million km2) of the world’s cropland 31 

extent. Multiple-cropping systems, on the other hand, were commonly observed in South America and Asia. We found 32 

large variations across countries and agroecological zones, reflecting the joint control of natural and anthropogenic 33 

drivers on regulating cropping practices. As the first global coverage, fine-resolution CI product, GCI30 can facilitate 34 

ongoing effortsis expected to achievefill the data gap for promoting sustainable development goals (SDGs)agriculture 35 

by improving food production while minimizing environmental impacts.depicting worldwide diversity of agricultural 36 

land use intensity. The data areGCI30 dataset is available on Harvard Dataverse: 37 

https://doi.org/10.7910/DVN/86M4PO (Zhang et al, 2020).(Zhang et al., 2020). 38 

https://doi.org/10.7910/DVN/86M4PO
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1 Introduction 1 

The interrelated targets of zero hunger, no poverty, and promoting sustainable agriculture have been collectively 2 

recognized as the core sustainable development goals (SDGs) by the United Nations (UN, 2015; Wu et al., 2017; 3 

Whitcraft et al., 2019; Hinz et al., 2020). However, 750 million people are currently exposed to severe food insecurity, 4 

and the COVID-19 pandemic may have added approximately 100 million people to the total undernourished 5 

population in 2020 (FAO et al., 2020). Projections have further demonstrated that from 2010 to 2050, the world’s 6 

agricultural production must increase by 70–110% to meet the demands caused by increasing populations and 7 

changing diets (Tilman et al., 2011). However, intensified agricultural activities have many ripple effects on terrestrial 8 

ecosystems, including forest degradation (Morton et al., 2006; Zeng et al., 2018), soil pollution (Lal, 2002; Jankowski 9 

et al., 2018), and changes in carbon/water flux seasonality (Gray et al., 2014; Hao et al., 2015), which in turn damage 10 

the welfare of human society (Qi et al. 2020). To meet the critical human needs for food security and environmental 11 

sustainability, it is of major scientific significance to better understand how existing agricultural land resources are 12 

utilized, both locally and globally. 13 

Cropping intensity (CI), defined as the number of crop planting and harvesting cycle(s) within a full year (Gray et al., 14 

2014; C. Liu et al., 2020), offers a measure of cropland utilization that has profound implications for closing food 15 

production gaps and agricultural intensification (Challinor et al., 2015; Ding et al., 2016; Wu et al., 2018; Waha et al., 16 

2020). CI also plays an essential role in crop modelling that assesses grain yield (Becker and Johnson, 2001), soil 17 

quality (Sherrod et al., 2003), and the impacts of climate change (Pielke Sr et al., 2007; Challinor et al., 2015). Given 18 

its importance, it is necessary to accurately estimate CI to improve the management of agricultural activities as well 19 

as their interactions with other physical components of the Earth system. Before the advent of remote sensing, 20 

information about CI could be estimated only based on limited agricultural census data, but these data are often 21 

outdated and variable in accuracy (L. Liu et al., 2020). Remote sensing has revolutionized our ability to estimate CI, 22 

especially at continental to global scales (L. Liu et al., 2020). The presence of crop growth and senescence phenology 23 

constitutes the most characteristic temporal feature of agricultural practices, and numerous attempts have been made 24 

to link high temporal frequency vegetation index time series to CI identification. A growing season peak detection-25 

based algorithm was developed and used it to monitor the CI spatiotemporal change in China (Yan et al., 2014; 2019). 26 

A similar approach was adopted by Kotsuki and Tanaka (2015) to derive a global crop calendar dataset containing CI 27 

metrics. Despite their prominent contributions to cropland intensification assessments, most existing CI products have 28 

coarse spatial resolutions, giving rise to the common presence of mixed pixels that can lead to a decreased CI mapping 29 

accuracy. To alleviate this issue, in recent years, fine-resolution optical satellite sensors, such as Landsat and Sentinel-30 

2, have been employed to extract CI information. For example, Jain et al. (2013) found that fine-resolution satellite 31 

imagery can more accurately depict the CI pattern in smallholder agriculture regions than can coarse-resolution 32 

satellite data. Hao et al. (2019) also reported an improved performance of CI identification using harmonized Landsat 33 

Sentinel-2 (HLS) data. 34 

It is becoming increasingly clear that a global, fine-resolution CI product is essential for monitoring the ongoing 35 

cropland intensification process on Earth. However, to the best of our knowledge, such a dataset has not yet been 36 
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created, reflecting the necessity of a generalizable CI mapping framework that is representative of diverse climate 1 

zones and cropping systems. To overcome this challenge, we proposed a phenophase-based CI mapping framework 2 

in our pilot study (C. Liu et al., 2020) with the use of multiple satellite data and the Google Earth Engine (GEE) 3 

platform (Gorelick et al., 2017), offering both methodological and practical bases for operationalizing a global fine-4 

resolution CI product. Taking advantage of the proposed framework, the primary goal of this research is to advance 5 

and develop a global, spatially continuous CI map at a 30-m resolution (GCI30) using the full archive of Landsat, 6 

Sentinel-2 and MODIS data from 2016 to 2018.). To achieve this goal, we regenerated the global cropland extent layer 7 

and modified the CI estimation algorithm on flooded rice paddies by considering the flooding/transplanting signals. 8 

We integrated the full archive of Landsat, Sentinel-2 and MODIS data from 2016 to 2018 for constructing seamless 9 

spectral time series in order to capture the full cropping cycles, which is the key for CI identification by segmenting 10 

growing and non-growing periods. The performance of GCI30 was examined with in situ data as well as with twosix 11 

existing global land surface phenology products containing CI metrics. With a much finer spatial resolution and global 12 

coverage, GCI30 is expected to contribute to our fundamental understanding of the dynamics of the Earth’s terrestrial 13 

surface as well as the human role in land modification through agricultural activities. 14 

2 Materials and Methods 15 

2.1 GCI30 input data 16 

2.1.1 Cropland extent 17 

This study integrated an ensemble of multiple land cover/cropland layer products (Figure 1)The cropland definition 18 

adopted in this study is based on the concept presented by the Joint Experiment of Crop Assessment and Monitoring 19 

(JECAM) network, which uses a shared definition of the cropland that matches the Food and Agriculture 20 

Organization’s (FAO) Land Cover Meta Language. The annual cropland (including area affected by crop failure) is 21 

defined as a piece of arable land that is sowed or planted at least once within a 12-month period (Waldner et al., 2016). 22 

One exception to the above-mentioned cropland definition is the fields used for sugarcane and cassava cultivation, 23 

which are included in the cropland class although they have a longer vegetation cycle and are not annually planted 24 

and harvested. We integrated ten existing land cover maps or cropland datasets to delimit the global cropland extent 25 

while masking out irrelevant non-cropland pixels for the period of 2016–2018. (Figure 1). Readers can refer to Table 26 

S1 for detailed information on these land cover/cropland layer products as well as their classes used in the integration. 27 

Although variations of classification systems among different products exist, a subset classes of those land 28 

cover/cropland layer products were selected to best fit into the cropland definition. Spatially, FROM-GLC was 29 

selected for Europe, Africa, New Zealand, the majority of Asia, and part of Latin America. GFSAD30 was selected 30 

for tropical Asian islands, including Indonesia, Malaysia and the Philippines. In addition to these two global-coverage 31 

cropland extent products, several national or regional datasets, including ChinaCover, CDL, AAFC ACI, NLCD, 32 

MapBiomass, CLUM, SERVIR and INTA, were used because they have been extensively validated by local experts 33 

and hence exhibited high accuracies of cropland mapping. Their spatial extents cover China, the contiguous U.S., 34 
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Canada, Alaska, Brazil, Australia, the Lower Mekong River basin (Myanmar, Thailand, Lao, Cambodia and Vietnam), 1 

and part of Argentina, respectively. 2 

 3 

Figure 1: Spatial distribution of the land cover/cropland layer products used for the global 30-m cropland extent generation. 4 

2.1.2 Satellite images and vegetation indices 5 

All available images of top-of-atmosphere (TOA) reflectance from Landsat-7 ETM+, Landsat-8 OLI and Sentinel-2 6 

MSI during 2016–2018 were used for global CI mapping via the GEE platform. Invalid observations, including clouds, 7 

cloud shadows, snow and saturated values, were identified and masked by the function of the mask (Fmask) algorithm 8 

(Zhu and Woodcock, 2012; Qiu et al., 2019). To overcome the multi-sensor mismatch issue, we adopted an inter-9 

calibration approach, which converted Sentinel-2 MSI and Landsat-8 OLI TOA reflectance data to the Landsat-7 10 

ETM+ standard (Chastain et al., 2019). Then the calibrated images were used to composite the 16-day TOA reflectance 11 

time series (labelled as origin).  12 

Based on the harmonized TOA reflectance composite, the following vegetation indices were calculated: 13 

NDVI =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷

 14 

EVI = 2.5 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 6 × 𝜌𝑅𝐸𝐷 − 7.5 × 𝜌𝐵𝐿𝑈𝐸 + 1
 15 

LSWI =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅

 16 
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where 𝜌𝐵𝐿𝑈𝐸 , 𝜌𝑅𝐸𝐷 , 𝜌𝑁𝐼𝑅, and 𝜌𝑆𝑊𝐼𝑅 are the TOA reflectance values of the blue, red, near-infrared, and shortwave-1 

infrared bands, respectively. We also used the MOD13Q1 NDVI/EVI product and MOD09A1-derived LSWI in our 2 

study to fill data gaps caused by the vacancy of cloud-free Landsat/Sentinel-2 observations. After gap-filling, a 3 

weighted Whittaker smoother (Kong et al. 2019) was adopted to generate a dataset of smoothed, seamless image time 4 

series of vegetation indices at a resolution of 30 mWe also used the MOD13Q1 NDVI/EVI and MOD09A1-derived 5 

LSWI products (Collection 6) to fill data gaps caused by the vacancy of Landsat/Sentinel-2 observations that were 6 

masked out by the Fmask algorithm. In particular, the coarse MODIS datasets were resized to 30-m using the bicubic 7 

interpolation method. Then an empirical linear function was built for each pixel to bridge the data records of MODIS 8 

and Landsat/Sentinel-2, and missing data gaps were filled with the resampled, transformed MODIS data (labelled as 9 

MODIS modelled). If there is no valid data from either Landsat/Sentinel-2 or MODIS, temporally adjacent (within 10 

48-day) cloud free LANDSAT/Sentinel-2 observations were used to determine the filling value (labelled as 11 

interpolated). After gap-filling, a weighted Whittaker smoother (Kong et al., 2019) was further adopted to smooth the 12 

gap filled time series data. We assigned different weights (1, 0.5, 0.2) to Landsat/Sentinel-2 original observations, 13 

MODIS modelled values and interpolation values, respectively. Finally, a dataset of smoothed, seamless image time 14 

series of vegetation indices was generated at a spatial resolution of 30-m with a temporal interval of 16-day. 15 

2.2 Reference samples 16 

The validation of the global CI product requires carefully constructed reference samples (Kontgis et al., 2015; Li et 17 

al., 2014; C. Liu et al., 2020). In this study, we constructed two independent reference datasets (termed RDsat and 18 

RDsite hereafter) (Figure S1) to evaluate the GCI30 performance because currently no other product is capable of 19 

offering comprehensive CI mapping assessment at the global scale. The first dataset, RDsat, was generated based on 20 

a visual interpretation of satellite time series via the Geo-Wiki platform (http://www.geo-wiki.org/). Based on the 21 

global segmentation of agroecological zones (termed AEZs here after) (Gommes et al., 2016; 2017) (Table S2), we 22 

applied a stratified sampling approach to ensure that RDsat was geographically representative across the globe. We 23 

divided all 65 AEZs into four categories based on their cropland proportions: VL (cropland proportion < 4%), L (4% 24 

≤ cropland proportion < 15%), M (15% ≤ cropland proportion < 40%) and H (cropland proportion ≥ 40%). For each 25 

category, 1000 points plots (each equivalent to a 30-m Landsat pixel size) were randomly collected only within the 26 

cropland extent, and their phenological cycles during the period of 2016–2018 were visually counted. We have seven 27 

remote sensing experts (listed as co-authors) checked all collected plots, and only well-interpreted plots with high-28 

level confidence were kept, leading to 3744 sample records. We kept only well-interpreted points with high-level 29 

confidence, which led to 3744 sample records. The second dataset, RDsite, was derived from PhenoCam dataset 30 

(Richardson et al., 2018a; 2018b; Seyednasrollah et al., 2019), which has been widely used as a robust in situ reference 31 

for remotely sensed phenology metric validation. Globally, there are 115 PhenoCam sites on cropland, and a total of 32 

40 sites were collected after removing those with data records of less than one year (Table S3). For each selected site, 33 

we used the green chromatic coordinate (GCC) index (Richardson et al., 2018b) and in situ phenology camera image 34 

time series for cropping cycle number identification. It should be noted that not all the selected PhenoCam sites 35 

precisely covered a period matching 2016-2018. For instance, the site with ID of ‘usof6’ in Table S3 provided 36 
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measurements from May 2018 to September 2020, which was out of the study period used for our GCI30 product. 1 

However, to make full use of these measurements, we implemented our approach of CI identification by aligning the 2 

study period with the period containing the measurements at each of these sites. Thus, some CI identification covered 3 

longer periods than the three-year length (2016-2018). 4 

2.3 Global cropping intensity mapping method 5 

2.3.1 CI mapping on non-flooded croplands 6 

We adopted the phenophase-based approach (Liu et al. 2020) to map CI in the non-flooded cropland (relative to the 7 

flooded rice paddy). The methodology can be divided into three main steps, including 1) the construction of NDVI 8 

time-series for cropland pixels, 2) the identification of phenological phases of crops, and 3) the calculation of the 9 

cropping cycles. A descriptive summary of each step is provided as follows. First, NDVI time series based on satellite 10 

data from Landsat, Sentinel-2 and MODIS were fused with the observations aligned with TOA reflectance of Landsat-11 

7 ETM+ in a 16-day interval. Gap filling and linear models were performed to take into account the lack of sufficient 12 

observations as well as the mismatch of spatial resolutions among different sensors (Liu et al. 2020). Then, given the 13 

smoothed, seamless NDVI time series, transitioning points defined as the 50% of the NDVI amplitude (i.e., difference 14 

between minimum and maximum values) were detected and used to separate the entire NDVI time series trajectory 15 

into staggered segments of growing or non-growing periods. The transitioning points were labelled as the mid-greenup 16 

and mid-greendown points, which together can define the growing and non-growing periods of the crop phenophase. 17 

Finally, we enumerated the total numbers of the mid-greenup (𝑁𝑢𝑝) and mid-greendown transitioning points (𝑁𝑑𝑜𝑤𝑛), 18 

respectively for each pixel, and took the lower value as the number of the potential cropping cycles (𝑁𝑝𝑐) of that pixel. 19 

We applied the framework designed by C. Liu et al. (2020) for mapping global CI at the 30-m spatial resolution, using 20 

the phenophase-based approach for the non-flooded cropland and improving the algorithm to consider flooded rice 21 

paddy (section 2.3.2). Targeting non-flooded cropland pixels, the methodology can be divided into two main steps, 22 

including i) the identification of subperiod for a complete phenological phase of cropland within each cropland pixel, 23 

and ii) the derivation of cropping cycles for CI mapping.  24 

With the smoothed, seamless NDVI time series, we identified a complete phenological cycle of crop via detecting the 25 

transitioning points that characterize the phenophase. Within the entire study period, 2016-2018, the transitioning 26 

points were located as the 50% of the NDVI amplitude (i.e., different between the minimum and maximum values of 27 

observations) and labelled either greening-up points or greening-down points (Bolton et al., 2020). A point at the 28 

position where the slope of the time-series function is positive is a greening-up point, while a point at the negatively 29 

changing time series is a greening-down point. A pair of points of these two types can separate NDVI time series into 30 

one staggered segment consisting of a growing sub-period and a non-growing sub-period. 31 

Based on the segmented time series, we determined the potential number of complete phenophase cycles (𝑁𝑝𝑐) by 32 

taking the minimum value of the total numbers of transitioning points between the two types (greening-up and 33 

greening-down, labelled 𝑁𝑢𝑝 and , 𝑁𝑑𝑜𝑤𝑛 , respectively) within the study period, formulated as: 34 
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𝑁𝑝𝑐 = min{𝑁𝑢𝑝, 𝑁𝑑𝑜𝑤𝑛} 1 

We set a lower limit of the growing period to 48 days to remove the false cropping cycle(s) (𝑁𝑓𝑐) caused by NDVI 2 

time series outliers (Yan et al. 2019). Since the whole study period covers three years from 2016 to 2018, the actual 3 

CI can be derived as: 4 

False cycles may exist due to the outliers of NDVI observations, with falsely detected cycles characterized by 5 

unrealistically short sub-periods pertaining to crop phenology (Yan et al., 2019). In other words, it is practically 6 

impossible for crop to be grown and harvested within a rather short time. In this case, we set a lower limit of the 7 

growing-harvesting cycle length to 48 days for removing the false cycles, noted as 𝑁𝑓𝑐. By adjusting this falsely 8 

detected cycles and considering the three-year study period (2016-2018), we calculated the annual cropping intensity 9 

(CI) for a non-flooded cropland pixel as: 10 

CI =
𝑁𝑝𝑐 − 𝑁𝑓𝑐

3
 11 

It should be noted that using the binary phenophase profile itself is not effective enough for identifying the continuous 12 

cropping type because such a, which is defined as cropping type exhibitssystems having short growing period (CI > 3 13 

for this study) or exhibiting a lower degree of seasonality. (e.g., tea plantation). Therefore, for each cropland pixel, we 14 

calculated the coefficient of variation (the ratio of the standard deviation to the mean, termed CV hereafter) of the 15 

NDVI time series and adopted a threshold method to determine whether the pixel belonged to the continuous cropping 16 

type (low CV value). Specifically, within each AEZ, half of the RDsat samples labelled continuous cropping (if they 17 

existed) were adopted to obtain the CV threshold. This method generated an independent continuous cropping type 18 

layer, which was integrated with the initially derived CI result. A more detailed description of the CI mapping 19 

framework can be found in Liu et al. (2020). 20 

2.3.2 CI mapping on flooded rice paddies 21 

Flooded rice paddy, which accounts for more than 12% of the global cropland area and feed approximately half of the 22 

population (FAOSTAT, 2010; Ding et al., 2020), bear special mention in our study because it supports the only staple 23 

grains that need to be transplanted (Dong and Xiao, 2016), resulting in a relatively short non-growing period that may 24 

be mistakenly missed when using the abovementioned approach. This issue becomes more prominent in areas with 25 

high cloud cover (e.g., Monsoon Asia). Therefore, we modified our approach in flooded rice paddy areas by 26 

considering the influence of the “flooding/transplanting signal” on the created phenophase profile (Figure 2). Similar 27 

to the approach for non-flooded croplands, the NDVI time series trajectory was used to generate an initial phenophase 28 

profile (Figure 2a). Then, within each identified growing season, the flooding/transplanting signals were detected and 29 

recognized based on the following criteria: LSWI > EVI or LSWI > NDVI (Figure 2b), indicating that the water signal 30 

dominates the pixel spectral performance (Xiao et al., 2005; Dong et al., 2015; 2016). We regard the 31 

“flooding/transplanting” period as a non-growing phenophase. Thus, the initial phenophase profile can be divided into 32 

two segments accordingly (Figure 2c), reflecting the reality of double-season rice planting cycles. Finally, the CI 33 
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information was determined by enumerating the transition points between different cropping cycles. Due to data 1 

limitations, this specific CI identification approach was applied only in southern China (AEZs C33, C37, C40, C41, 2 

and C42) and the Lower Mekong River basin, where the paddy rice type was included in the land cover type scheme 3 

(derived from ChinaCover and SERVIR, respectively). 4 

 5 

 6 

Figure 2: Illustration of the specific CI identification for a flooded rice paddy pixel. 7 

2.4 Accuracy assessment 8 

Based on the RDsat and RDsite datasets, the accuracy assessment of GCI30 was conducted in two ways. In the first 9 

validation method, we directly evaluated the difference between the reference and estimated results. Here, the total 10 

number of cropping cycles (termed TNCC hereafter) rather than the actual CI value was used to avoid decimals. Four 11 
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complementary indicators, systematic error (SE), mean absolute error (MAE), root mean square error (RMSE) and 1 

coefficient of determination (R2), were calculated as follows: 2 

𝑆𝐸 =
1

𝑁
∑(𝑓𝑖 − 𝑓𝑖)

𝑁

𝑖=1

 3 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑓𝑖 − 𝑓𝑖|

𝑁

𝑖=1

 4 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑓𝑖 − 𝑓𝑖)

2
𝑁

𝑖=1

 5 

𝑅2 = 1 −
∑ (𝑓𝑖 − 𝑓𝑖)

2𝑁
𝑖=1

∑ (𝑓𝑖 − 𝑓̅)
2𝑁

𝑖=1

 6 

where 𝑓𝑖 and 𝑓𝑖 are the estimated and reference cropping cycle number(s) for sample pixel 𝑖, respectively. 𝑁 represents 7 

the number of samples, and 𝑓̅ is the mean cropping cycle number value of all samples. In addition to directly 8 

quantifying the mapping errors, we further reclassified the GCI30 result into four categories: single cropping (0 < CI 9 

≤ 1), double cropping (1 < CI ≤2), triple cropping (2 < CI ≤3) and continuous cropping. We obtained the confusion 10 

matrix and calculated quantitative metrics, including overall accuracy (OA), kappa coefficient, producer accuracy (PA) 11 

and user accuracy (UA). Due to the limited sample sizes of RDsite, the classification-based accuracy assessment was 12 

conducted only for RDsat. 13 

A systematic uncertainty analysis was further applied by interpolating the estimation biases from RDsat samples to a 14 

spatial distribution map (H. Liu et al., 2020). First, the linear normalization was conducted to transform the estimation 15 

bias range of RDsat samples to [0, 1] . Then the uncertainty map of GCI30 was created based on the Kriging 16 

interpolation method (Oliver and Webster, 1990). We used the ArcMap software of version 10.1 to implement the 17 

Kriging interpolation in this study, with the spatial search radius parameter set as 12 nearest sample units. As a result, 18 

the values of generated uncertainty map ranges from 0 to 1. A smaller value indicates higher estimation reliability, 19 

while a higher value suggests a greater level of overestimation or underestimation on cropping cycle(s). 20 

2.5 Comparison with other global products 21 

Comparison of GCI30 with other global products or studies was conducted statistically and spatially (if available) at 22 

multiple levels. At the global scale. We firstlevel, we compared and evaluated the statistical differences of global CI 23 

calculated based onbetween GCI30 with, and six existing statistical-based or satellite-based researches or products 24 

(Didan and Barreto 2016; Gray et al. 2019; Wu et al. 2018; Siebert et al. 2010; Ray and Foley, 2013). Then, we 25 

compared GCI30 with two existing global land surface phenology products containing CI metrics, namely,Table 1), 26 
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including NASA’s Vegetation Index and Phenology V004 with a 0.05° pixel size from 1981 to 2014 (Didan and 1 

Barreto 2016, termed VIP4 hereafter) and Moderate Resolution Imaging Spectroradiometer(VIP4) dataset (Didan and 2 

Barreto, 2016), MODIS Land Cover Dynamics (MCD12Q2) Version 6 with a 500 m(Gray et al., 2019),  SAtellite-3 

derived CRop calendar for Agricultural simulations (SACRA) (Kotsuki and Tanaka, 2015), harvest frequency by Ray 4 

and Foley (2013) (R&F), actual cropping intensity (ACI) (Wu et al., 2018) and cropland use intensity (CUI) (Siebert 5 

et al., 2010). Among these products, four of them (MCD12Q2, VIP4, SACRA and R&F) were further employed for 6 

national level comparison. It should be noted that comparisons were only conducted for countries where both GCI30 7 

and reference products are available. Finally, MCD12Q2 and VIP4 were used for pixel by pixel size from 2001 to 8 

2018 (Gray et al. 2019, termed MDC12Q2 hereafter) to assess the spatial discrepancies between GCI30, VIP4 and 9 

MCD12Q2.comparison against GCI30 due to their relatively fine spatial resolutions. To minimize uncertainty caused 10 

by temporal disagreement, we selected only the 2014 VIP4 and the 2016–2018 averaged MCD12Q2 data, within 11 

which the “Number of Seasons” layer of VIP4 and the “NumCycles” layer of MCD12Q2 were extracted for 12 

intercomparison. We upscaled GCI30 to 0.05° and 500 m using the majority algorithm to match the spatial resolution 13 

of VIP4 and MCD12Q2, respectively. The same reclassification procedure described in Section 2.4 transformed the 14 

actual CI value of GCI30 and MCD12Q2 to match the VIP4 dataset's integer value range (0, 1, 2, 3), except for the 15 

continuous cropping and non-cropland pixels that were excluded from our comparison. We generated the difference 16 

maps among GCI30, VIP4 and MCD12Q2 to understand the overall overestimation or underestimation of our mapped 17 

CI results across continents. 18 

Table 1: Existing cropping intensity products or studies used for inter-comparison. 19 

Existing products 

and studies 

algorithm Input data Temporal 

range used 

Spatial 

resolution 

Way of 

comparison 

MCD12Q2 Phenometrics-based 

method 

Time series MODIS 

EVI2 

2016 to 

2018 

500-m (1) global level; 

(2) national level; 

(3) pixel level 

VIP4 Half-maximum VI 

approach 

Time series NDVI 

and EVI2 derived 

from both AVHRR 

and MODIS 

2014 0.05° (1) global level; 

(2) national level; 

(3) pixel level 

SACRA Peak-counting 

considering crop 

calendar 

Time series of 

SPOT-

VEGETATION 

NDVI 

2004-2006 5′ (1) global level; 

(2) national level 

R&F The ratio of 

harvested cropland 

to total cropland 

FAO statistics 2000-2011 National 

level 

(1) global level; 

(2) national level 

ACI Peak-counting Time series 

GIMMS NDVI3g 

2009-2011 8-km (1) global level 

CUI The ratio of 

harvested crop 

areas to total 

cropland area by 

excluding fallow 

land 

MIRCA crop areas 2000 5′ (1) global level 

 20 
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3 Results and Discussion 1 

3.1 Reliability of GCI30 2 

We examined GCI30 performance by generating a scatter plot of estimated and reference TNCC derived from RDsat 3 

and RDsite, respectively (Figure 3). In general, GCI30 could provide reliable estimation results across different agro-4 

environmental and management conditions, with relatively small MAE and RMSE values (equal to or less than 0.4 and 5 

0.92, respectively) using the two reference datasets. Referring to R2, GCI30 captured over 91% of the variation in 6 

RDsite-derived TNCC and over 56% of the variation in RDsat-derived TNCC. The discrepancies between RDsat-7 

derived metrics and RDsite-derived metrics were mainly attributed to the differences in sample size and crop planting 8 

diversity. Specifically, the network of PhenoCam spots is spatially sparse, and most cropland sites are distributed in 9 

the United States featuring single cropping systems (Figure S1). There were slight systematic underestimations 10 

(negative SE) for GCI30, with the larger bias level occurring for RDsite. This result is consistent with C. Liu et al. 11 

(2020), indicating an overall conservative CI estimation by GCI30. In addition, we found that larger estimation errors 12 

were commonly observed in samples with more cropping cycles. This tendency was not surprising because of the 13 

accumulated errors from every aspect of information extracted from remote sensing (Defourny et al., 2019), including 14 

data acquisition, time series modelling of vegetation indices, and phenological cycle identification. Therefore, we may 15 

expect that GCI30 faces larger challenges in terms of analysing multiple cropping systems. 16 

 17 

Figure 3: GCI30 accuracy assessment based on RDsat (a) and RDsite (b). The red line represents the linear fitting line with 18 
the intercept forced to 0. The frequency of a specific reference-prediction value pair is proportional to its point size. Samples 19 
identified as continuous cropping types were excluded. 20 

Figure 4 further displays the spatial pattern of RDsat-based TNCC estimation bias across the globe. From 2016 to 21 

2018, 79.8% of the points exhibited unbiased predictions. Among the pixels with disagreement (i.e., non-zero bias), 22 

the majority were associated with one or two cropping cycle difference(s). Overall, there were more underestimation 23 

points (12.2%) than overestimation points (8.0%). Spatially, negative biases were mainly distributed in high CI regions, 24 

including the Pampas (AEZ C26), Central Eastern Brazil (AEZ C23), the Gulf of Guinea (AEZ C03), East African 25 
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Highlands (AEZ C02), South of Himalaya (AEZ C44), and Huanghuaihai Plain (AEZ C34), altogether forming a 1 

northward “underestimation belt” along the longitudinal gradient. The negative errors could possibly be due to the 2 

complexity of some special cropping systems that cannot be fully accounted by our CI mapping method. For example, 3 

inter/mixed cropping may lead to shallow troughs in NDVI time series, which makes the 50% NDVI amplitude rule 4 

less reliable (C. Liu et al., 2020). Given the conservative CI estimation algorithm, it was somewhat unexpected to 5 

observe overestimation errors primarily concentrated in Western Europe (AEZ C60) and Ukraine to the Ural 6 

Mountains (AEZ C55), where the single cropping practice dominates due to limited hydrothermal conditions (Wu et 7 

al., 2018). The negative errors could possibly be due to the large variations in the NDVI time series during the growing 8 

season (Zhang 2015; Qiu et al. 2020), highlighting the complex suite of biotic and abiotic processes that can obscure 9 

the effectiveness of the phenophase-based CI mapping framework. These positive biases could be attributed to the 10 

fallow strategy adopted in some Europe countries (Estel et al., 2016). During a fallow cycle, there may exist weeds 11 

which are falsely identified as one solid cropping cycle. In summary, the global bias distribution highlights the 12 

complex suite of biotic and abiotic processes that can obscure the effectiveness of the phenophase-based CI mapping 13 

framework. 14 

 15 

Figure 4: Spatial distribution of RDsat-based TNCC bias. The actual TNCC is proportional to its point size., and the 16 
prediction biases are identified by different point colours. Sample points identified as the continuous cropping type were 17 
excluded. The blue rectangle indicates overestimations, and the red ellipses region represents the northward 18 
“underestimation belt” along the longitudinal gradient. 19 

Following the reclassification procedure illustrated in Section 2.4, we derived the corresponding confusion matrix of 20 

GCI30 using RDsat samples, with the quantitative accuracy metrics shown in Table 12. We found that GCI30 had 21 

reasonable classification performances, with OA and kappa coefficients greater than 92% and 0.72, respectively. 22 

Regarding the classes of CI, single-cropping systems were associated with more robust classification results than were 23 

multiple-cropping systems. Comparatively, the single-cropping class was more subject to commission errors than 24 

omission errors (PA > UA), while the opposite tendency (PA < UA) was observed for the double- and triple-cropping 25 

classes. Continuous cropping is a fundamentally different agricultural land use management type from others. Here, 26 
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we found that the continuous cropping class of GCI30 had a higher PA (93.1%) than UA (77.0%). A possible 1 

explanation for this result is likely attributed to the threshold-based method for continuous cropping identification. 2 

Some noncontinuous cropping systems may also exhibit low CV values, leading to a relatively high commission error 3 

level. Notably, although a stratified sampling strategy was conducted for creating RDsat, its sample size was still 4 

unbalanced among the different CI classes. The single-cropping class alone occupied 88.9% of the total number of 5 

samples. Therefore, future efforts of GCI30 validation need to emphasize the inclusion of more samples with multiple-6 

cropping systems. 7 

Table 12: Confusion matrices of GCI30. 8 

Reference 

CI class type Single Double Triple Continuous UA (%) 

Single 3059 186   94.3 

Double 52 346 2 3 85.9 

Triple 1  6 2 66.7 

Continuous 9 9 2 67 77.0 

PA (%) 98.0 64.0 60.0 93.1  

OA (%) 92.9  

 Kappa 0.728  

 9 

A spatial distribution map of the GCI30 uncertainty was generated based on the RDsat. As shown in Figure 5, most 10 

cropland areas display blue tones, indicating their low uncertainties and high estimation reliabilities of the GCI30. 11 

Spatially, relatively lower uncertainty levels were observed in Canada, North Plains in the United States, Russia, 12 

northern China, and southern Africa, where single cropping dominates. Meanwhile, there are still some areas of 13 

cropland with higher uncertainty as illustrated in orange and red tunes, mostly distributed at Pampas, Southern Nigeria, 14 

Central and Northern India.  15 

 16 

Figure 5: Global uncertainty map of GCI30 during 2016-2018, where regions in red represent higher uncertainty and those 17 
in blue represent lower uncertainty. 18 
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3.2 Spatial pattern of GCI30 1 

GCI30 provides the first spatially continuous map of global CI at a 30-m resolution (Figure 56). Based on this map, a 2 

heterogeneous pattern in CI compositions across continents was found, which are subject to varying anthropogenic 3 

and climate conditions. Overall, as expected, single cropping was the primary agricultural system on Earth, accounting 4 

for 81.57% (12.28 million km2) of the world’s cropland extent. Double cropping, on the other hand, was typically 5 

implemented in Asia, South America and the Nile River basin of Africa, together occupying 17.42% (2.62 million 6 

km2) of global croplands. Comparatively, the proportions of triple and continuous cropping were quite small, with 7 

their distributions mainly limited to Southeast Asia. According to the area statistics at five-degree intervals, we found 8 

that the area of single cropping reached 54% or higher in all latitude and longitude zones. The double cropping 9 

distribution along latitude peaked in intervals ranging from 20°N to 40° N, which encompassed China and India, the 10 

two most populous countries in the world. Along longitude, double cropping was mainly concentrated in three zones: 11 

55°W to 60°W, 75°E to 90°E and 100°E to 125°E. These regions are commonly characterized by warm and humid 12 

climates, except for the Nile River basin, in which highly developed irrigation infrastructures have been traditionally 13 

used to support intensive farming practices (Wu et al., 2021).irrigation has been commonly used to support intensive 14 

farming practices (Zohaib and Choi, 2020). Over 75% of triple and continuous cropping areas are located within 15 

tropical zones (5°S to 5°N). The tropical rainforest climate of these regions ensures sufficient water and heat supplies 16 

for crop growth throughout the year (Köppen et al. 2011)(Köppen et al., 2011). 17 

 18 
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 1 

Figure 56: Geographical distribution of global CI types during 2016 to 2018 identified by GCI30. The area statistics along 2 
latitude and longitude are derived with an interval of five degrees. The area unit is million km2. 3 

Figure 67 displays the GCI30-based TNCC statistics at the continent level. We combined Australia and Oceania (New 4 

Zealand, Melanesia, Micronesia and Polynesia) due to the rarity of cropland on these two continents. Globally, South 5 

America exhibited the most intensified cropping level, followed by Asia and Europe. Specifically, the average TNCC 6 

values were 3.67, 3.38 and 3.07 for South America, Asia and Europe, respectively. South America and Asia also 7 

possessed the largest standard deviations of TNCC, indicating the inherent diversity of agricultural activities within 8 

these two continents, as weather conditions directly affect cropping practices (Iizumi et al., 2015).(Iizumi and 9 

Ramankutty, 2015). For example, in Asia, triple and continuous cropping systems were distributed in Southeast Asia, 10 

including Indonesia, Malaysia, southern Thailand and the Mekong River Delta in Vietnam. Double cropping was 11 

concentrated in the North China Plain, Ganga River basin and southern China, while the rest of Asia was dominated 12 

by a single cropping pattern, covering Central Asia, Northeast Asia, and southern India. Following these continents, 13 

moderate TNCC was found in North America (2.93±0.54) and Africa (2.78±0.71). Among all continents, the lowest 14 

TNCC occurred in Australia and Oceania (2.31±0.77), where arid and semiarid climate types are dominant (Köppen 15 

et al. 2011; Beck et al., 2018).(Köppen et al., 2011; Beck et al., 2018). 16 
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Figure 67: Statistics of GCI30-based TNCC during 2016 to 2018 at the continent level. The red line indicates the standard 2 
deviation. 3 

At the global scale, the average CI pattern was heterogeneous across countries and AEZs (Figure 78, left panel). 4 

Countries with the highest average CI levels were commonly detected in Asia (Bangladesh, Vietnam, Philippines, Sri 5 

Lanka) and Latin America (Guyana, Paraguay, Suriname, Haiti, and Dominica). Together with Egypt, these top 10 6 

countries exhibited TNCC values greater than 4.1 during 2016–2018. In contrast, low to moderate CI levels were 7 

typically found in high-latitude countries, such as Canada, Russia, and Mongolia. In addition to the latitude gradient, 8 

we found that the diversity of cropland management played a critical role in shaping the CI pattern. For example, 9 

some high-latitude European countries (Germany, Poland, Belarus, etc.) showed relatively high CI levels due 10 

primarily to their advanced cropland management practices (Guo, 2019).(Guo, 2021). Rainfed agricultural practices 11 

lead to fewer cropping cycles in the Middle East and North African countries, except for Egypt, where most croplands 12 

are irrigated (Wu et al. 2018).(Wu et al., 2018). Taking climate conditions into account, the heterogeneity of global 13 

CI becomes even more prominent among different AEZs. Arid regions, which cover vast areas in Africa, Australia, 14 

and Central Asia, are associated with fewer cropping cycles due to a lack of water for irrigation (Chiew et al., 2011; 15 

Guo et al., 2018) and less developed agricultural infrastructures (Mason-D'Croz et al., 2019).(Chiew et al., 2011; Guo 16 

et al., 2018) and less developed agricultural infrastructures (Mason-D'croz et al., 2019). In contrast, intensive farming 17 

is widely distributed in humid and low-latitude areas such as South China and the Mekong Delta. Among all 65 AEZs, 18 

the Huanghuaihai Plain in China had the highest CI, followed by the Amazon rainforest region of South America and 19 

Taiwan Province. The lowest CI occurred in the Australian Desert, with an average TNCC less than 2. 20 

Overall, countries and AEZs with intensive farming are more subject to internal variability, as reflected by higher 21 

standard deviations (Figure 78, right panel). Globally, there are 14 countries and 7 AEZs exhibiting standard deviations 22 

greater than 1.2, and most of them are located in South America and Asia. Regions with low CI averages but high CI 23 

standard deviations were observed only on the western coast of South America and Queensland to Victoria in Australia, 24 

where partial irrigation in the former (Xie et al., 2019) and unstable rainfall in the latter resulted in diversified cropping 25 

intensities among years (King et al., 2020). The high standard deviations in Australia and Oceania mainly resulted 26 
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from the high within-country/zonal heterogeneity, which may encompass aspects including the exceptionally variable 1 

climate with the prevalence of floods and droughts (King et al., 2020) and the annual shifting of crop types, as well as 2 

cultivated and fallow lands (Song et al., 2017). In addition to these regular drivers, the political situation may cause 3 

CI spatiotemporal diversity. Notably, for instance, we found an unusually high standard deviation in Afghanistan, 4 

which was caused by both crop failure during the emergence to early development stages due to adverse weather 5 

conditions (Rousta et al., 2020) and abandoned cropland resulting from armed conflicts and refugee migrations (Iqbal 6 

et al., 2018; Galdo et al., 2020). 7 

 8 

Figure 78: Average and standard deviation (std) of TNCC during 2016 to 2018 at the national and AEZ levels. 9 

3.3 Cross comparison with other studies 10 

Table 2 illustrates Due to the information on the differences in methods, input data, spatial resolution,  of the existing 11 

products containing CI metrics as listed in table 2 and GCI30, the statistical average CI from GCI30, and estimates 12 

from other six researches orat global scales varied among the products. Based on GCI30, the global average CI during 13 

2016–2018 was 1.05 (the continuous cropping pixel excluded). Statistically, our CI is in a remarkably high agreement 14 

level with estimates based on the existing six estimates (mean CI: 1.0409, median CI: 1.1307), despite their 15 

significantly varying spatial resolution and temporal coverage. The minimum CI among the seven studies was 16 

estimated to be 0.7784 per year based on the total cropland extent and the total harvested crop area reported by the 17 

agricultural statistics database of the United Nations Food and Agriculture Organization (FAO) FAOSTAT 18 

(http://www.fao.org/faostat/en/) (Siebert et al., 2010). CI estimated by GCI30 is slightly higher than that derived from 19 

the FAO statistical database. The CI of other existing products listed in table 2 ranges from 0.84, as estimated by Ray 20 

and Foley (2013), to 1.26, as evaluated by Wu et al. (2018). The statistics-based CI values estimated by FAO statistics, 21 

Siebert et al. (2010) and Ray and Foley (2013) are lower than those estimated based on remote sensing data including 22 

the GCI30 and those estimated by VIP4 and Wu et al. (2018) using AVHRR satellite observation data. The main 23 

http://www.fao.org/faostat/en/
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reason is that statistics-based CI could not exclude the fallow land area as the statistical information is usually lack of 1 

statistical information on fallow land while fallow land could be easily and precisely identified using remote sensing 2 

(Zhang et al., 2014a, b) and excluded when generating satellite-based CI products. Our CI is also less than those CI 3 

products derived from AVHRR (VIP4 and Wu et al. (2018)). On the one hand, the actual harvest frequency estimated 4 

by Wu et al. (2018) might overestimate the annual harvest areas and accordingly overestimate the cropping intensity. 5 

On the other hand, GCI30 systematically underestimates the cropping intensity when the harvest window is narrow 6 

between to growing seasons as a valid phenology season should include both green-up and green-down segments 7 

based on the GCI30 algorithm (Liu et al., 2020). Interestingly, our CI is exactly the same as the global average from 8 

MCD12Q2 for the years 2016 to 2018.   9 

CI estimated by GCI30 is slightly higher than that derived from the FAO statistical database. The CI of other existing 10 

products listed in table 2 ranges from 1.05, as estimated from “NumCycles” layer of MCD12Q2 data (Gray et al., 11 

2019), to 1.26, as evaluated by Wu et al. (2018). The statistics-based CI values estimated by Ray and Foley (2013) are 12 

lower than those estimated based on remote sensing data including the GCI30 and those estimated by VIP4 and Wu 13 

et al. (2018) using AVHRR satellite observation data. The main reason is that statistics-based CI could not exclude 14 

the fallow land area as the agriculture statistics is usually lack of statistical information on fallow land while fallow 15 

land could be identified using remote sensing (Zhang et al., 2014a; 2014b) and excluded when generating satellite-16 

based CI products. Our CI is also less than those CI products derived from AVHRR (VIP4 and Wu et al. (2018)). On 17 

the one hand, the actual harvest frequency estimated by Wu et al. (2018) might overestimate the annual harvest areas 18 

and accordingly overestimate the cropping intensity because they may ignore the presence of fallowed cropland. Each 19 

pixel of cropland was assigned to either a single cropping or double cropping category and fallow pixels was not 20 

considered which will result in a higher CI (Wu et al., 2018). On the other hand, GCI30 systematically underestimates 21 

the cropping intensity when the harvest window is narrow between two growing seasons as a valid phenology season 22 

should include both green-up and green-down segments based on the GCI30 algorithm (C. Liu et al., 2020). 23 

Interestingly, our CI is exactly the same as the global average from MCD12Q2 for the years 2016 to 2018. 24 

Table 2: Comparison of the cropping intensity resulting from three different studies and two global products. 25 

Existing products 

and studies 

Methods Input data Temporal 

range 

Spatial 

resolution 

Global annual 

average CI 

MCD12Q2 Phenometrics-based 

method 

Time series MODIS 

EVI 

2001 to 2018 500 m 1.05 for 2016 

to 2018 

VIP4 Half-maximum VI 

approach 

Time series NDVI and 

EVI2 derived from both 

AVHRR and MODIS 

1981 to 2014 0.05° 1.19 for the 

year 2014 

Wu et al. Peak-counting Time series GIMMS 

NDVI3g 

2009-2011 8 km 1.26 

Siebert et al. The ratio of 

harvested crop 

areas to total 

cropland area by 

excluding fallow 

land 

MIRCA crop areas 2000 5 arcmin 1.13  
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Ray and Foley The ratio of 

harvested cropland 

to total cropland 

FAO statistics 2000-2011 National 

based 

0.84 

FAO The ratio of 

harvested cropland 

to total cropland 

FAO statistics 2010 Global 

based 

0.77 

This study Phenophase-based 

approach 

Time series NDVI 

derived from integrated 

dataset from Landsat 

7&8, Sentinel-2 and 

MODIS 

2016-2018 30 m 1.05 

Figure 9 illustrated the differences of statistical annual CI at country scale between GCI30 and four reference datasets. 1 

Statistical values of CI at national scale are available in Table S4. National statistical CI values derived from GCI30 2 

are in general close to that of MCD12Q2 and VIP4. The differences over a large proportion of countries were within 3 

±0.3 ranges between GCI30 and those two products, mostly in Asia and Southern Africa. GCI30 and SACRA also 4 

presents similar patterns of CI at national scale, especially in Asia. GCI30 presents higher CI values in Central Europe, 5 

Southeast Asia Islands, as well as Canada, Brazil and Mexico. In contrast, positive difference values of cropping 6 

intensity were commonly observed all over the world as presented by the GCI30 – R&F map. Lower CI values are 7 

only observed in few countries in Africa, Asia and Southern America. 8 

 9 

Figure 9: Statistics of annual CI differences at national level between GCI30 and four existing products. GCI30 – MCD12Q2 10 
represents the differences between GCI30 and “NumCycles” layer of MCD12Q2; GCI30 – VIP4 represents the differences 11 
between GCI30 and “Number of Seasons” layer of VIP4; GCI30 – R&F represents the differences between GCI30 and 12 
harvest frequency by Ray and Foley (2013); GCI30 – SACRA represents the differences between GCI30 and CI by 13 
Kotsuki and Tanaka (2015) 14 

This study further compared the spatial pattern of the global CI difference between GCI30 and the two global land 15 

surface phenology products (MCD12Q2 and VIP4),) at pixel level, as displayed in Figure 8. Overall, all three products 16 

revealed consistent CI estimations across continents, with zero-difference pixels reaching 79% or higher and the 17 

majority of CI differences ranging from -1 to 1. Spatially, positive CI difference values were commonly found in 18 
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Southeast Asia, the Indian subcontinent and some parts of Europe. Negative CI difference values, on the other hand, 1 

were mainly detected in North and South America. There were also discrepancies when these two phenology products 2 

were used as the baselines. Referring to MDC12Q2MCD12Q2, there were many pixels showing positive values, 3 

especially in Africa and mainland China. However, the opposite tendency was observed using VIP4, which exhibited 4 

vast negative pixel distributions in Europe and North China. 5 

To further explore how the CI difference varied over space, we selected four 15° × 12° subregions (North America, 6 

South America, South Asia and East Asia, which are labelled A, B, C and D, respectively, in Figure 8) that were 7 

representative of the global diversity of crop species, climate types and management conditions. In general, substantial 8 

variations were detected through these spatially explicit maps. The strongest agreement between GCI30 and 9 

MCD12Q2 was found in East Asia (83% of zero values), followed by North America and South Asia, with over 75% 10 

agreement. The lowest agreement level occurred in South America, where 2032% of the GCI30 estimations showed 11 

positive or negative CI differences compared to the MCD12 output. Comparatively, the significant differences and 12 

corresponding spatial distributions between the GCI30 and VIP4 outputs had a low level of agreement, although the 13 

percentages of pixels with zero difference reached 50% or higher for all subregions. Specifically, three out of the four 14 

subregions had at least one-fifth of the pixels featuring negative CI differences. The largest negative disagreement 15 

was detected in East Asia, where 41% of the total cropland area had negative values, while North America and South 16 

America also had considerable negative proportions. Finally, in South Asia, the positive and negative pixel 17 

percentages were almost equal, i.e., half and half.  Neither MCD12Q2 nor VIP4 should be considered as ground truth. 18 

In fact, the reliability of these two land surface phenology products, especially VIP4, is affected by several factors, 19 

including a coarse spatial resolution, temporal mismatch and algorithm structure differences when compared to GCI30. 20 

Taking East Asia as an example, the “cross-year season cycle” phenomenon (Liu et al. 2020)Taking East Asia as an 21 

example, the “cross-year season cycle” phenomenon (C. Liu et al., 2020) caused by winter wheat planting could lead 22 

to one more “partial growing season” being detected by VIP4 (Didan and Barreto 2016)(Didan and Barreto, 2016), 23 

which largely explains why the CI difference between GCI30 and VIP4 shows an outstanding underestimation pattern. 24 
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 1 

Figure 810: Spatial patterns and statistics of the CI differences among GCI30, MCD12Q2, and VIP4. 2 

3.4 Advantages and limitations of GCI30 3 

As the firsta global 30-m CI product, GCI30 depicts the worldwide diversity of agricultural land use management 4 

intensity in a spatially explicit manner that has not been fully revealed by existing studies or datasets. Given the CI 5 

distribution with a fine spatial resolution, GCI30 is associated with reduced uncertainties caused by the mixed pixel 6 

effect and provides a more accurate global CI estimation. In addition to the improvement of mapping accuracy, GCI30 7 

has the potential to monitor landscape-scale cropping practices on fragmented land parcels by smallholders, which 8 

comprise over half of the rural populations in developing nations that are most vulnerable to food security and 9 

environmental challenges (Morton et al., 2006; Jain et al., 2013; Lowder et al., 2016; C. Liu et al., 2020). Compared 10 

with the generalizable crop phenophase pattern, the GCI30 algorithm is not only efficient in mapping the CI 11 

distribution across various AEZs but is also flexible enough to be improved with updated data inputs. For example, 12 

the Harmonized Landsat and Sentinel-2 surface reflectance dataset (Claverie et al., 2018), with a 5-day revisit interval 13 

and a 30-m pixel size, is expected to enhance the global CI mapping performance once its worldwide coverage is 14 

ready. The successful production of GCI30 on the GEE platform illustrates a paradigm of mapping farming practices 15 

that is globally consistent and locally relevant using state-of-the-art cloud computing resources (Lewis et al., 2017; 16 

Amani et al., 2020; Tamiminia et al., 2020). It inspires future global fine-scale agricultural research that was previously 17 

not applicable. 18 

A large number of natural factors and anthropogenic drivers are related to CI at the planetary scale. Accuracy 19 

assessments show that GCI30 explained over 91% and 56% of the sample variations examined by RDsat and RDsite, 20 

respectively (Figure 3). The errors of GCI30 could be related to the uncertainties of input data and limitations of the 21 
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algorithm. The reliability of the cropland extent is a major factor constraining CI mapping performance. To minimize 1 

this effect, we integrated an ensemble of 11 10 land cover or specific cropland layer products for acquiring global 2 

cropland extent at a 30-m resolution for 2016–2018. Despite the high overall accuracy of the generated cropland extent, 3 

classification errors still exist, especially in some regions of Africa and Asia where small cropland patches are mixed 4 

with other land covers (Gong et al. 2013; Xiong et al. 2017). (Gong et al., 2013; Xiong et al., 2017). We follow the 5 

definition of cropland to select a subset of classes of a layer that best fit in the definition for each of the land-6 

cover/cropland products. Even through, the inconsistency among the 10 land cover or specific cropland layer products 7 

still exists. The first issue is greenhouse farming which is included in the cropland class in the FROM-GLC. However, 8 

the GCI30 product excluded the greenhouse pixels as CI of greenhouse crops are detected as zero cropping monitored 9 

by remote sensing. The second concern is the perennial woody crops such as orchards and vineyards from NLCD. As 10 

the NLCD data was only used for Alaska region, it will have very limited impact on the integrated global cropland 11 

layer and accordingly minor effect on GCI30. On the other hand, as no single product has yet been shown to be 12 

consistently accurate in representing cropland distribution, our approach by integrating different dataset is still better 13 

than relying on a single source of land cover or cropland layer (Fritz et al., 2015).  14 

The GCI30 algorithm depends heavily on crop phenological information derived from the time series of vegetation 15 

indices. We found that the spatial pattern of the invalid observation count of the 16-day harmonized TOA reflectance 16 

composite (Figure S2) matched well with those of RDsat sample bias in some cloudy regions, such as the Gulf of 17 

Guinea and East African Highlands (Figure 4), indicating that the performance of GCI30 may be limited in areas 18 

suffering from unfavourable weather conditions or extreme seasonal imbalances of clear observations. We further 19 

evaluated the uncertainty of the GCI30 at global scales from the perspective of data quality. We found higher 20 

uncertaintyIn particular, the presence of clouds in early and middle of agricultural growing season is preventing optical 21 

remote sensing satellites from accurate agricultural applications including cropping cycles detection (Whitcraft et al., 22 

2015; Nabil et al., 2020). Thus, it is reasonable to use the proportion of the invalid number of 16-day composite during 23 

2016-2018 as a quality indicator of GCI30 product. Lower data qualities were observed in Amazon, western Africa, 24 

South & Southeast Asia as well as south and southwest China than other regions due to the high cloudy frequency. In 25 

high latitude regions in North Hemisphere, the uncertainty is also high mainly due to the snow cover in winter but 26 

with limited impacts on GCI30 as there are limited cropland at high latitude regions. (Figure S2). Although the cloud 27 

frequency is relatively low in Western Russia and Central Europe compared with the above cloud-prone regions 28 

(Whitcraft et al., 2015), the data quality is also low mainly due to the snow cover in winter and spring. We further 29 

evaluated the uncertainty of the GCI30 at global scale. In general, the places with high uncertainty coincided with the 30 

cloud-prone regions which might be a resultant of high invalid satellite observations (Figure S2, S3). The fragmented 31 

agricultural fields and complex farming practices in the regions including Western Africa, South and Southeast Asia, 32 

and East African Highlands (Fritz et al., 2015) further broaden the uncertainty. In Argentina, the cropland field size is 33 

large, and the cloud presence is less frequency. However, large bias of cropping cycles and high uncertainties were 34 

commonly observed (Figure 4, 5) which might be attributed to the omission of the poor crops stressed by the severe 35 

drought in 2017-2018 agricultural year (Rivera et al., 2021). Rice paddies are fundamentally different from non-36 

flooded croplands, which affects CI mapping performance. We designed a specific rice paddy CI identification 37 
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approach by considering the influence of the “flooding/transplanting phase”. While promising, its application was 1 

limited due to the lack of a specific rice paddy layer. Therefore, more improvements can be included, such as 2 

integrating SAR data time series for more accurate flood signal detection (Singha et al., 2019). 3 

Additionally, it is noteworthy that the GCI30 product provides insight only into the current actual cropping intensity; 4 

however, it is not linked to the potential cropping cycles. To assess the CI gaps between potential and actual situations, 5 

climate models could be introduced to simulate the potential cropping cycles under long-term average weather 6 

conditions. The proposed method can be readily applied to other years to retrieve long-term CI maps, which will fill 7 

in the knowledge gaps of decades of long cropping practices and interannual variations (Iizumi and Ramankutty, 2015). 8 

Such information is key to improving our understanding of the CI response to climate in a more granular manner. 9 

4 Data availability 10 

The GCI30 product is available on Harvard Dataverse: https://doi.org/10.7910/DVN/86M4PO (Zhang et al., 2020). It 11 

is the first 30-m resolution CI dataset covering a global extent. The GCI30 product was tiled into 504 files in GeoTIFF 12 

format with geographic projection. To be precise, the spatial resolution of the product is 0.00026949459 degrees. Each 13 

GCI30 tile encompasses an area of 10 degree × 10 degree and is named in the following format: 14 

‘Cropping_Intensity_30m_2016_2018_$regions$.tif’. The “regions” in the file name are determined as follows: N/S 15 

(Northern Hemisphere or Southern Hemisphere) followed by a two-digit latitude label of the tile’s top-left corner, and 16 

E/W (Eastern Hemisphere or Western Hemisphere) followed by a three-digit longitude label of the tile’s top-left corner. 17 

Each GeoTIFF file includes two layers. The first layer is the average CI during the three years from 2016 to 2018, 18 

with the noData value or masked areas assigned as -1. The valid values for the first layer are 1, 2, and 3, representing 19 

single cropping, double cropping or triple cropping, respectively. The second layer is the TNCC from 2016 to 2018 20 

with a noData value or masked areas assigned to -1. The continuous cropping type or the number of cropping cycles 21 

larger than 3 per year is assigned as 127 in the abovementioned two layers. We also included a shapefile of the tiles 22 

named ‘CroppingIntensity_tiles_shapefile.rar’ in the repository so that users could easily find their target tiles. The 23 

GCI30 product was generated on the GEE platform using JavaScript language developed by the authors. The GEE 24 

script as well as the auxiliary data of GCI30 algorithm as an illustration for one tile is open to all potential users and 25 

available at 26 

https://code.earthengine.google.com/f23108c6c47025c4acbd90b57c0753f73572b843c607c25ba9be876e6f73948e. 27 

5 Conclusions 28 

In this study, we utilized multisource remote sensing data, including Landsat, Sentinel-2 and MODIS data, to produce 29 

the first 30-m CI map at a global scale. Based on the phenophase-based mapping framework, GCI30 identified CI by 30 

enumerating the transition points between growing and non-growing periods. To improve the CI mapping performance 31 

on flooded rice paddies, we specifically considered the influence of the “flooding/transplanting signal” on the created 32 

phenophase profile. Accuracy assessments and inter-comparisons with existing land surface phenology products 33 

https://doi.org/10.7910/DVN/86M4PO
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suggested that GCI30 was reliable across different climate zones and cropping systems. According to GCI30, we 1 

estimated that the global average CI was 1.05 during 2016–2018. We found that single-cropping systems occupied 2 

more than 80% of the world’s cropland extent, while multiple-cropping practices were more commonly observed in 3 

South America and Asia than on other continents. National and AEZ-level statistics demonstrated the joint influence 4 

of natural and anthropogenic drivers in controlling CI spatial patterns in most areas of the world. We concluded that 5 

the new GCI30 dataset provided improved estimates of global CI in a spatially explicit manner that has not been fully 6 

captured by previous studies or products and thus can serve to fill data gaps for promoting sustainable agriculture and 7 

achieving SDGs. 8 
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