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Abstract. Soil moisture (SM) datasets are critical to understanding the global water, energy, and biogeochemical cycles and 

benefit extensive societal applications. However, individual sources of SM data (e.g., in situ and satellite observations, 

reanalysis, offline land surface model simulations, Earth system model simulations) have source-specific limitations and biases 15 

related to the spatiotemporal continuity, resolutions, and modeling/retrieval assumptions. Here, we developed seven global, 

gap-free, long-term (1970–2016), multi-layer (0–10, 10–30, 30–50, and 50–100 cm) SM products at monthly 0.5° resolution 

(available at https://doi.org/10.6084/m9.figshare.13661312.v1) by synthesizing a wide range of SM datasets using three 

statistical methods (unweighted averaging, optimal linear combination, and emergent constraint). The merged products 

outperformed their source datasets when evaluated with in situ observations and the latest gridded datasets that did not enter 20 

merging because of insufficient spatial, temporal, or soil layer coverage. Assessed against in situ observations, the global mean 

bias of the synthesized SM data ranged from −0.044 to 0.033 m3/m3, root mean squared error from 0.076 to 0.104 m3/m3, and 

Pearson correlation from 0.35 to 0.67. The merged SM datasets also showed the ability to capture historical large-scale drought 

events and physically plausible global sensitivities to observed meteorological factors. Three of the new SM products, 

produced by applying any of the three merging methods onto the source datasets excluding the Earth system models, were 25 

finally recommended for future applications because of their better performances than the Earth system model–dependent 

merged estimates. Despite uncertainties in the raw SM datasets and fusion methods, these hybrid products create added value 

over existing SM datasets because of the performance improvement and harmonized spatial, temporal, and vertical coverages, 

and they provide a new foundation for scientific investigation and resource management.  
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1 Introduction 30 

High-quality global soil moisture (SM) datasets benefit many applications, such as understanding drought changes and 

ecosystem dynamics (Green et al., 2019; Kumar et al., 2019), studying land-atmosphere feedbacks (Li et al., 2020a), 

benchmarking model capabilities (Loew et al., 2013), and initializing weather and climate forecast systems (Sospedra-Alfonso 

and Merryfield, 2018). The majority of SM products fall into five categories: in situ measurements, satellite observations, 

offline land surface model (LSM) simulations, reanalysis, and Earth system model (ESM) simulations. In situ measurements 35 

provide the most direct SM observations at the point scale but are too sparse to be interpolated to the global level (spatial 

autocorrelation dies ~300 km (Gruber et al., 2016)). Satellite-derived SM records only penetrate the top few centimeters of 

soil and contain errors and spatial gaps typically caused by factors such as a change in path, dense vegetation, frozen soil, 

water bodies, and radio frequency interference (Llamas et al., 2020; Wang et al., 2012). Although a long-term (1979–present) 

concatenated SM dataset was developed by merging data from multiple satellites, its spatial gaps remain unresolved (Dorigo 40 

et al., 2012). The SM in LSM simulations  have complete spatial and temporal coverage, which is convenient for regional and 

global analysis (Gu et al., 2019); however, LSM simulations may contain considerable uncertainties because of inadequacies 

in the model physics, parameterization, and drivers (Andresen et al., 2020). Reanalysis datasets assimilate observations into 

LSMs or coupled forecast systems that have LSMs as a component, and are gap-free. Direct assimilation of remote-sensing 

SM, which has been the practice for some recent reanalysis—such as ECMWF Reanalysis 5 (ERA5) (de Rosnay et al., 2013) 45 

and Global Land Evaporation Amsterdam Model (GLEAM) (Martens et al., 2017)—is likely to improve the performance 

relative to free-running LSMs. Still, many reanalyses do not directly assimilate the observational SM, such as the Japanese 55-

Year Reanalysis (JRA55) (Kobayashi et al., 2015) and Modern-Era Retrospective Analysis for Research and Applications 

Version 2 (MERRA2) (McCarty et al., 2016). Also, the meteorological variables, especially precipitation, simulated by the 

atmosphere model of the coupled reanalysis system may be biased, leading to inaccurate SM estimates by the intrinsic LSM 50 

component (Balsamo et al., 2015). Fully coupled ESMs, such as those for the Coupled Model Intercomparison Project phases 

5 and 6 (CMIP5 and CMIP6) (Eyring et al., 2016; Taylor et al., 2012), provide SM simulations for both historical and future 

periods. ESMs, however, share the same uncertainty sources for the SM estimates as the LSMs; moreover, the SM in ESM 

simulations  have internal variability-related uncertainties induced by unrealistic initialization from the preindustrial conditions 

rather than the real world (Eyring et al., 2016; Taylor et al., 2012).  55 

There is active development toward generating more accurate, gap-free SM datasets. Methods for filling the spatial gaps in 

satellite observations have been under investigation, but the resulting estimates either cover short time periods or target only 

parts of the globe (Llamas et al., 2020; Wang et al., 2012). One global multi-layer SM product was generated by upscaling in 

situ observations using machine learning and selected SM predictors; however, it only focused on 2000–2019 (O and Orth, 

2020). Unlike current global reanalyses that directly assimilate satellite SM (Martens et al., 2017; de Rosnay et al., 2013), 60 

some studies merged in situ observations, or both in situ and satellite observations, with offline LSMs to improve accuracy 
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while retaining complete spatiotemporal coverage. Nevertheless, these efforts were mainly conducted on the regional scale 

using limited sets of LSMs (Wu et al., 2018; Zeng et al., 2016; Gruber et al., 2016).  

Therefore, the need exists to develop global merged SM products that comprehensively combine the information from the 

latest in situ and satellite observations, offline LSMs, reanalysis, and ESMs using advanced fusion methods. Constrained by 65 

various types of observations, the merged products would likely perform better than the SM in the original LSMs or ESMs 

while being gap-free in space and having long temporal and multi–soil-layer coverage. The fusion of multiple LSMs, 

reanalysis, and ESMs also involves ensemble averaging, which may reduce the SM uncertainties from individual models by 

cancelling the model-specific errors (Giorgi and Mearns, 2002). This study presents a group of SM products derived using 

three merging methods: unweighted averaging, optimal linear combination (OLC), and emergent constraint (EC). Unweighted 70 

averaging assigns equal weight to all the source datasets and does not use in situ information. The OLC is an ensemble 

weighting and rescaling algorithm that is optimal in the sense that the weighted average minimizes the mean squared difference 

with respect to the site-level observations (Bishop and Abramowitz, 2013). The OLC method was previously found to lead to 

improved performance in the merged product relative to the source datasets in terms of the global evapotranspiration and 

runoff (Hobeichi et al., 2018, 2019). The EC method is common for reducing uncertainty in future ESM simulations 75 

(Mystakidis et al., 2016; Padrón et al., 2019). This method first establishes physically meaningful and statistically significant 

relationship between the constraint variables that have observations and a target variable that has no observations across 

multiple ESMs, and then uses the relationship and actual observations to constrain the target variable (Mystakidis et al., 2016; 

Padrón et al., 2019). Given the clear physical relationships between the SM and meteorological variables, we hypothesized in 

this study that the EC method can be applied to reduce forcing-related biases in offline LSMs and reanalysis, and to align the 80 

natural internal variability in ESMs with the real world. Seven new monthly multi-layer SM datasets at 0.5°×0.5° resolution 

for 1971–2016 were produced by implementing these merging algorithms onto different combinations of the mentioned raw 

SM estimates. The merged products with different setups were then systematically evaluated against in situ measurements that 

were reserved for validation, semi-independent gridded SM datasets, drought indices, and meteorological variables.  

2 Methods and source datasets 85 

2.1 Overview 

Figure 1 shows the schematic of the merging procedure to create the seven SM products. The unweighted averaging and OLC 

(Hobeichi et al., 2018, 2019) methods were applied over the observational or observation-forced datasets (i.e., offline LSMs, 

reanalysis, satellite [ORS]). The EC method (Mystakidis et al., 2016) was applied over both the ORS datasets and the 

CMIP5/CMIP6 simulations (Eyring et al., 2016; Taylor et al., 2012). This differential treatment between the ORS and ESM 90 

datasets was because the OLC algorithm, which only uses sparse in situ SM observations, provides weaker constraint than the 

EC method, which uses gridded global meteorological observations. The weaker constraint was found to be inadequate for the 

ESM simulations in a preliminary analysis (results not shown). Because the ORS datasets do not have uniform temporal 
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coverage, the unweighted averaging only used the ORS datasets that cover 1970–2016. For the OLC method, the ORS datasets 

were grouped into three time ranges (1970–2010, 1981–2010, and 1981–2016), separately processed following a previous 95 

method for concatenating the remote-sensing SM (Dorigo et al., 2017; Liu et al., 2011, 2012). The CMIP5 and CMIP6 datasets 

always cover 1970–2016; when they were used jointly with the ORS datasets to produce the EC ALL (i.e., including all the 

source datasets) product, they were subset to the same time ranges as the ORS datasets, separately processed and concatenated 

(bottom of Figure 1). All the synthesized monthly SM datasets are at 0.5° resolution, cover 1970–2016, and contain four depths 

(0–10, 10–30, 30–50, and 50–100 cm). The following sections provide more details of the datasets, merging methods, and 100 

processing procedures.  

 

Figure 1: Procedure of creating the merged SM products using different methods and source products. 

2.2 In situ SM observations  

In situ SM observations were obtained from the International Soil Moisture Network (ISMN) (Dorigo et al., 2011, 2013). Only 105 

the observations associated with the ISMN quality flags “G” (good) or “M” (parameter value missing) were retained. The 

resulting dataset contains ~1,400 stations worldwide and spans from 1964 to the present. Because only a few stations were 

available at the beginning of the time period, only the observations in 1970 or later were used. To facilitate processing by the 

OLC method, the ISMN observations were aggregated to monthly 0.5° resolution and regular depths (0–10, 10–30, 30–50, 

and 50–100 cm). The aggregation to monthly resolution was simply averaging over all the available observations in each 110 

month at each station. Although it is desirable to apply a stricter criterion in the monthly averaging, such as treating a month 
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as missing if observations exist fewer than 15 days in the month, applying such a criterion would exclude most of the stations 

in northern and eastern Asia, which only have 1–3 observations per month. Multiple methods were tested for the aggregation 

to 0.5° resolution: (1) simply averaging all the stations in each grid; (2) weighted-averaging the stations based on the percentage 

of grid area that the land cover of each station represents, using the Moderate Resolution Imaging Spectroradiometer (MODIS) 115 

MCD12C1 product (Friedl and Sulla-Menashe, 2015); and (3) the same as (2) except that if the total area of all the land covers 

that the stations represent does not account for a sufficient percentage of the grid area (40%), the grid was set to missing. 

Because all three methods resulted in similar performance in the merged products (results not shown), only the second method 

was adopted for the final products. The aggregation to regular depths was simply to average over all the available observations 

in each depth interval. When an observation was taken on the interface of two depth intervals (e.g., exactly at 10 cm), the 120 

observation was assigned to the shallower depth interval (e.g., 0–10 cm). Figure S1 shows the aggregated ISMN observations 

at the 0.5° grid scale, and the number of observations that falls into each land cover type is displayed in Figure S2. The 

observations are overrepresented in the developed part of the world; the most overrepresented land cover types include the 

deciduous broadleaf forests, grasslands, and croplands, whereas the most underrepresented land cover types are evergreen 

broadleaf forests, mixed forests, closed shrublands, and permanent wetlands. The number of available monthly observations 125 

did not decrease with deeper soil layers (global totals are 19,317 station-months for the 0–10 cm layer, 25,307 for the 10–

30 cm layer, 25,011 for the 30–50 cm layer, and 20,660 for the 50–100 cm layer), although no observations were available for 

the closed shrublands and permanent wetlands across the deeper soil layers (10–30, 30–50, and 50–100 cm). After the ISMN 

observations were aggregated to monthly 0.5° resolutions, 60% of the month-grids were used to train the OLC method, and 

the remainder were reserved for validating all the merged products. The training month-grids were uniformly randomly 130 

selected without distinguishing between space and time.  

2.3 ORS, CMIP5, and CMIP6 SM products 

Tables S1–S4 list the monthly gridded ORS, CMIP5, and CMIP6 results that were used as the SM source datasets for the 

merged products, as well as the depths (0–10, 10–30, 30–50, or 50–100 cm) and time ranges (1970–2016, 1970–2010, 1981–

2010, or 1981–2016) for which the datasets were used. The name of the used SM variable was “mrlsl” in the CMIP5 collection 135 

and “mrsol” in the CMIP6 collection. Prior to merging, all the ORS, CMIP5, and CMIP6 datasets were bilinearly interpolated 

to 0.5° resolution, linearly interpolated to the target soil depths (0–10, 10–30, 30–50, or 50–100 cm), and masked with a 

common land mask using the National Center for Atmospheric Research (NCAR) Command Language 6.6.2 

(UCAR/NCAR/CISL/TDD, 2019). Linear interpolation to all four soil depths could not be achieved for all the source datasets 

because the soil layers in some models are too shallow or too coarse. For example, the bottom depths of the Joint UK Land 140 

Environment Simulator (JULES) LSM are 10 cm, 35 cm, 1 m, and 3 m (Sebastian Lienert, 2019, Personal communication). 

Therefore, the 10–30 and 50–100 cm depths are contained within single layers in the JULES model and could not be directly 

interpolated. The four target soil depths here were selected to maximize the number of source datasets that could be interpolated 

to each depth. Although the Community Land Model version 4 (CLM4) simulates SM as deep as 421 cm, the model was only 
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used for 0–10 and 10–30 cm (Table S3). This was because the SM values at deeper than 38 cm were very low (<0.0005 m3/m3 145 

on global average), and even lower than the SM values at shallower than 38 cm in the same model (>0.0025 m3/m3 on global 

average). The common land mask was created by intersecting the grid points that satisfy two criteria: (1) all the datasets except 

the European Space Agency Climate Change Initiative (ESA CCI) v4.5, after being interpolated to 0.5°, have valid values; 

and (2) at least 50% of the land cover is not water bodies or permanent snow and ice in the MODIS MCD12C1 product (Friedl 

and Sulla-Menashe, 2015). Because of many spatial gaps, the ESA CCI v4.5 dataset was not used to create the common land 150 

mask and received special handling. In addition to being masked with the common land mask, the ESA CCI v4.5 dataset was 

masked using its accompanying quality flags, meaning at the time steps and grids that have snow coverage or temperature 

below zero (flag = 1), dense vegetation (flag = 2), no valid SM estimates (flag = 4), SM values above physical boundary (flag 

= 8), or only unreliable SM values (flag = 16). The ESA CCI v4.5 dataset was excluded from merging at the time steps and 

grids in which the missing values exist.  155 

2.4 Observed, CMIP5, and CMIP6 temperature and precipitation 

The EC method, as implemented in this study (Sect. 2.8), requires the air temperature and precipitation forcings that correspond 

to each SM dataset, and observed air temperature and precipitation as inputs. The temperature and precipitation forcings that 

correspond to the ORS SM datasets are listed in Table S5. Because the ESA CCI v4.5 dataset is observational and the GLEAM 

v3.3a directly assimilates the ESA CCI dataset (Dorigo et al., 2017), these two datasets were assumed to correspond to the 160 

observed temperature and precipitation in the Climate Research Unit (CRU) TS v4.03 dataset (Harris et al., 2014). The 

temperature and precipitation forcings for the various reanalysis datasets were obtained from the same reanalysis. The 

temperature and precipitation forcings for the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) 

collection of LSMs were from the CRU NCEP v4 dataset, which, at monthly level, is equal to the CRU TS v3.20 dataset 

(Huntzinger et al., 2018). The temperature and precipitation forcings for the Trends and Drivers of the Regional Scale Sources 165 

and Sinks of Carbon Dioxide version 7 (TRENDY v7) collection of LSMs were from the CRU TS v3.26 dataset (Sitch and 

Friedlingstein, 2019, Personal Communication). The temperature and precipitation datasets that correspond to the CMIP5 and 

CMIP6 SM were from the same ESMs and ensemble members (Table S4). For observed air temperature and precipitation, the 

CRU TS v4.03 dataset (Harris et al., 2014) was used. All the temperature datasets were bilinearly interpolated, and the 

precipitation datasets conservatively interpolated, to 0.5° resolution using the NCAR Command Language 6.6.2 170 

(UCAR/NCAR/CISL/TDD, 2019). All the temperature and precipitation datasets were limited to the same common land mask 

as the SM products.  

2.5 In situ and gridded SM datasets for evaluation of the merged products 

In addition to the validation on the reserved 40% in situ observations (Sect. 2.2), the merged SM products were evaluated 

against a few global and regional gridded SM datasets that were not used in the merging process because of incompatible 175 

vertical resolution or short temporal coverage (Table 1). These evaluations complement the evaluation against in situ 
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observations by providing sanity checks on the behavior of the merged products at a large scale. All the evaluation datasets 

were bilinearly interpolated to 0.5°×0.5° and aggregated to a monthly level using the NCAR Command Language 6.6.2 

(UCAR/NCAR/CISL/TDD, 2019). For the Soil Moisture and Ocean Salinity (SMOS) L3 dataset, which was available as 

monthly aggregates (https://www.catds.fr/sipad/), only the data points with retrieval error (i.e., the “DQX” field) < 0.07 m3 m-180 

3 were used, and the ascending (MIR_CLM4RA) and descending (MIR_CLM4RD) orbits were averaged. For the SMOS L4 

dataset, which was only available at daily resolution, the days with a quality index of 1 (highest quality) were used, and the 

monthly averaging was restricted to the months with less than 13 missing days to be consistent with the downloaded monthly 

SMOS L3 dataset. The other evaluation datasets do not have gaps, so the aggregation to monthly level was straightforward. 

The SoMo.ml SM is mainly upscaled from the ISMN dataset (O and Orth, 2020) and therefore not totally independent from 185 

the OLC ORS merged product, but independent from the EC-based merged products. The GLEAM v3.3a 0–100 cm dataset is 

not independent from the ORS- or ALL-based merged products, which use the 0–10 cm part of the GLEAM v3.3a dataset 

(Table S2), but is independent from the CMIP5- or CMIP6-based merged products. 

Table 1: Global and regional datasets that were compared against the merged SM products. 

Dataset Type Period Depth (cm) Resolution Coverage Reference 

SMOS L3 RE04 

MIR_CLF3MA, 

MIR_CLF3MD 

Satellite 2010–2020 Surface (0–5) ~25 km 
Global with 

missing values 

(Al Bitar et 

al., 2017) 

SMOS L4 SCIE 

MIR_CLM4RD 
Reanalysis 2010–2020 0–100 ~25 km 

Global with 

missing values 

(Al Bitar et 

al., 2013) 

GLEAM v3.3a Reanalysis 1980–2018 0–100 0.25° Global 
(Martens et 

al., 2017) 

SMERGE v2 Reanalysis 1979–2019 0–40 0.125° 
Contiguous 

United States 

(Tobin et al., 

2017) 

SoMo.ml 
Machine learning upscaled 

from in situ observations 
2000–2019 

0–10, 10–30, 

30–50 
0.25° Global 

(O and Orth, 

2020) 

2.6 Drought and meteorological datasets for evaluation of the merged products 190 

In situ observations are sparse and represent much smaller spatial scales than the 0.5° grid of the merged products. Other global 

and regional SM datasets have short temporal coverage and spatial gaps in the evaluation datasets, and non-independence 

between the merged products and evaluation datasets. Given these limitations, and to further ascertain the quality of the merged 

products, the new SM products were evaluated using process-based observational metrics, including the responses to 

prominent historical drought events and historical climate change (e.g., precipitation, temperature, downwelling shortwave 195 

radiation). The selected historical drought events were the US drought of 1985–1992 and the Australian millennium drought 

of 2002–2009 (Spinoni et al., 2019). A Self-Calibrated Palmer Drought Severity Index (scPDSI) dataset (Dai et al., 2004) was 

used as the benchmark for the evolution of these two drought events. The precipitation, temperature, and downwelling 

shortwave radiation datasets are from the Global Soil Wetness Project (GWSP) version 3 reanalysis (Dirmeyer et al., 2006), 

which provide some independence from the CRU TS v4.03 temperature and precipitation used in the EC method (Sect. 2.4). 200 
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The SM climatic sensitivities were derived using the partial correlations with each meteorological variable calculated 

conditional on the other two variables.  

2.7 OLC method 

Let 𝑥𝑘
𝑡𝑗

 stand for the SM value of the source dataset k (k = 1, 2, …, K) at time step t (t = 1, 2, …, T) and grid j (j = 1, 2, …, S), 

and 𝑜𝑡𝑗  be the observed SM values at time step t and grid j where (𝑡, 𝑗) ∈ 𝑉 and 𝑉 is the subset of grids and time steps that 205 

have observed SM. OLC calculates the final estimated SM (𝜇𝑒
𝑡𝑗

) as a weighted average, with 𝑤𝑘 denoting the weight of source 

dataset k, using Eq. (1): 

𝜇𝑒
𝑡𝑗 = ∑ 𝑤𝑘𝑥𝑘

𝑡𝑗

𝐾

𝑘=1

 (1) 

The optimal vector of weights for the source datasets, 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝐾]𝑇, which minimizes the mean squared error subject 

to ∑ 𝑤𝑘 = 1𝐾
𝑘=1 , is a function of the error covariance matrix of the source datasets (A) following Eq. (2):  

𝒘 =
𝑨−𝟏𝟏

𝟏𝑻𝑨−𝟏𝟏
 (2) 

The OLC procedure without a constant term requires the source datasets to be unbiased (Bishop and Abramowitz, 2013), but 210 

the ORS datasets are biased relative to the in situ observations. Therefore, to prevent the biases from influencing the weights, 

the error covariance matrix A was the covariance matrix of locally centered errors (𝑒𝑘
𝑡𝑗

), which were calculated following Eq. 

(3):  

𝑒𝑘
𝑡𝑗 = (𝑥𝑘

𝑡𝑗 − 𝑥𝑘
.𝑗

) − (𝑜𝑡𝑗 − 𝑜.𝑗)        ,      (𝑡, 𝑗) ∈ 𝑉 (3) 

where 𝑥𝑘
.𝑗

 is the time-averaged SM value of the source dataset k at grid j, and 𝑜.𝑗 is the time-averaged observed SM value at 

grid j. The time averaging was over the time steps in which observed SM values exist in each grid j. The grids and time steps 215 

for which the centered errors exist were pooled together to create a single vector of errors for each source dataset. This vector 

of errors 𝑒𝑘
𝑡𝑗

 was then used to calculate the error covariance matrix A. Therefore, the derived weights were optimal with regard 

to the locally centered errors, not the un-centered errors (𝑥𝑘
𝑡𝑗

− 𝑜𝑡𝑗). However, this limitation had to be accepted because the 

ISMN observations were too sparse to enable estimating the biases at every grid in space, and a constant bias could not be 

assumed over the large spatial domain of the study, which spans very dry to very wet climate zones.  220 

The OLC procedure was implemented in Python 3.6.3 under a CentOS Linux environment. Different functions for calculating 

the error covariance matrix in Python were compared to eliminate potential numerical instability in matrix inversion. The 

results were found to be similar, but the ShrunkCovariance function in Scikit-learn v0.21.3 (Pedregosa et al., 2011) generated 

slightly better validation performance for the estimated SM than the other tested functions. Therefore, ShrunkCovariance was 

selected for calculating A. 225 

https://doi.org/10.5194/essd-2021-84

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 16 March 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

In addition to estimating SM, the OLC procedure also calculates the associated uncertainty in the form of standard deviation 

(𝜎𝑒
𝑡𝑗

) based on adjusted weights (�̃�𝑘), adjusted source SM datasets (�̃�𝑘
𝑡𝑗

), and the estimated SM (𝜇𝑒
𝑡𝑗

), following Eq. (4): 

𝜎𝑒
𝑡𝑗

= √∑ �̃�𝑘(�̃�𝑘
𝑡𝑗

− 𝜇𝑒
𝑡𝑗

)
2

𝐾

𝑘=1

 (4) 

The adjusted weights are a function of the original weights (𝑤𝑘) and a parameter α to have �̃�𝑘 ≥ 0 and maintain ∑ �̃�𝑘
𝐾
𝑘=1 = 1, 

following Eqs. (5) and (6): 

�̃�𝑘 =
𝑤𝑘 + (𝛼 − 1)

1
𝐾

𝛼
 

(5) 

𝛼 = {
1 if all 𝑤𝑘  are nonnegative

1 − 𝐾 min(𝑤𝑘) if the minimum 𝑤𝑘  is negative
 (6) 

The adjusted source SM datasets (�̃�𝑘
𝑡𝑗

) are linear functions of the source SM datasets (𝑥𝑘
𝑡𝑗

) and the estimated SM (𝜇𝑒
𝑡𝑗

) through 230 

parameters α and β, where the parameter β is a function of the discrepancy between the observations and the estimated SM 

(𝑠𝑒
2), following Eqs. (7)–(9): 

�̃�𝑘
𝑡𝑗

= 𝜇𝑒
𝑡𝑗

+ 𝛽(𝑥𝑘
.𝑗

+ 𝛼(𝑥𝑘
𝑡𝑗

− 𝑥𝑘
.𝑗

) − 𝜇𝑒
𝑡𝑗

) (7) 

𝛽 = √
𝑠𝑒

2

1
𝑁

∑ ∑ �̃�𝑘(𝑥𝑘
.𝑗 + 𝛼(𝑥𝑘

𝑡𝑗 − 𝑥𝑘
.𝑗

) − 𝜇𝑒
𝑡𝑗

)
2

𝐾
𝑘=1𝑗,𝑡∈𝑉

 (8) 

𝑠𝑒
2 =

∑ (𝜇𝑒
𝑡𝑗 − 𝑜𝑡𝑗 )

2

𝑗,𝑡∈𝑉

𝑁 − 1
 (9) 

where V is the subset of grid and time step combinations that have observed SM, and N is the total number of grid-time steps 

that have observed SM (i.e., 𝑁 = |𝑉|). 

2.8 EC method 235 

For establishing the EC relationship, temperature and precipitation were selected to be the constraint variables because of their 

significant roles in controlling evapotranspiration from and recharge to the soil water. SM was the target variable. For each 

target year, month, grid, and soil depth, a linear regression relationship was fitted using SM anomalies as the predictand, and 

temperature and precipitation anomalies as the predictors. The SM, temperature, and precipitation anomalies of each source 

dataset (i.e., the datasets in the ORS, CMIP5, CMIP6, CMIP5+6, or ALL group; Figure 1) were calculated by removing the 240 

monthly climatology of 1981–2010. The vectors of SM, temperature, and precipitation anomalies in each regression 

relationship consisted of the anomalies for the target year, month, and soil depth over the 9 nearest grids to the target grid and 

over all the source datasets. If the fitted regression slopes of both temperature and precipitation anomalies were significant at 
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the p = 0.05 level, the fitted regression was used as the EC relationship. If either slope was insignificant, the regression was 

refitted using only precipitation or temperature anomalies as the predictor. If the refitted slope of precipitation (temperature) 245 

anomalies was significant at the p = 0.05 level and had lower p-value than the refitted slope of temperature (precipitation) 

anomalies, the refitted regression with precipitation (temperature) anomalies was used as the EC relationship. If neither of the 

refitted slopes was significant at the p = 0.05 level, the EC relationship was deemed insignificant for this year, month, grid, 

and soil depth. After the significant EC relationships were obtained, the observed temperature and precipitation were converted 

to anomalies relative to the monthly climatology of 1981–2010, and fed into the EC relationships to generate constrained SM 250 

anomalies. Finally, the constrained SM anomalies were added to the mean monthly climatology over all the source datasets to 

generate constrained SM values. For the combinations of year, month, grid, and soil depth that did not have significant EC 

relationships, the mean monthly climatology over all the source datasets was used as the constrained SM values. Uncertainties 

in the EC-constrained SM values were estimated using standard deviation of the prediction of the linear regressions, calculated 

by the “wls_prediction_std” function of the Python package statsmodels (Seabold and Perktold, 2010). Uncertainties in which 255 

there were no significant EC relationships were estimated using the standard deviation of the source datasets.  

The fitted EC relationships are summarized in Figures S3 and S4 using the average values of the significant regression 

coefficients, and the percentage of significant regression coefficients for temperature and precipitation, respectively. The 

regression coefficients for temperature were mostly negative, and for precipitation mostly positive, which can be explained by 

the fact that higher temperature causes higher evaporative loss of water from soil, and higher precipitation causes more recharge 260 

of water into soil. In the Sahara region, the average regression coefficients were mostly positive for temperature (Figure S3), 

which might be related to interannual correlation between precipitation and temperature caused by the West African monsoon 

(Zhang and Cook, 2014). For the ORS datasets at 30–50 and 50–100 cm, the regression coefficients were also mostly positive 

for temperature (Figure S3). The ORS datasets at these depths only represent three sets of meteorological forcings (GLDAS 

NOAH025_M2.0, CRU TS v3.20 for MsTMIP, and CRU TS v3.26 for TRENDY v7; Tables S1–S3 and S5). Therefore, the 265 

EC relationships for the ORS datasets at these depths likely have high uncertainty. Because only small percentages of EC 

relationships were significant at these depths (Figures S3 and S4), the counterintuitive regression coefficients were unlikely to 

have a large impact on the merged product. In general, the percentages of significant EC relationships were higher for the 

CMIP5, CMIP6, CMIP5+6, and ALL datasets than for the ORS datasets, suggesting that more diverse source datasets lead to 

stronger EC relationships (Figures S3 and S4). In the preliminary analysis, additional setups for the regression were tested, 270 

including whether the regression should use the actual values of SM, temperature, and precipitation or the anomalies, and 

whether the regression should use only the target grid or the 9 nearest grids. The setup with anomalies and the 9 nearest grids 

was found to result in more significant regression coefficients and better performance (results not shown).  
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2.9 Temporal concatenation 

Because some ORS datasets were not available for the entire 1970–2016 period, separate datasets were produced for three 275 

different periods (1970–2010, 1981–2016, and 1981–2010) and were concatenated into a continuous 1970–2016 product using 

a previous intercalibration approach (Figure 1) (Dorigo et al., 2017; Liu et al., 2011, 2012). To perform the concatenation on 

the estimated SM values, the merged product for each of the three periods was decomposed into monthly climatology and 

monthly anomalies, with the monthly climatology being calculated on the overlapping period (1981–2010). Then, the 

anomalies of the 1970–2010 and 1981–2010 product were rescaled to have the same cumulative distribution function (CDF) 280 

as the anomalies of the 1981–2016 product during their overlapping period (1981–2010) using the piecewise linear CDF 

matching technique (Liu et al., 2011). In the first step of the CDF matching technique, the 0th, 5th, 10th, 20th, 30th, 40th, 50th, 

60th, 70th, 80th, 90th, 95th, and 100th percentiles of the anomalies of each product during the overlapping period were 

identified on their CDF curves. In the second step, the percentiles of the 1970–2010 and 1981–2010 products were plotted 

against the percentiles of the 1981–2016 product. A linear line was drawn between each two adjacent percentiles (e.g., the 5th 285 

and 10th percentiles), resulting in 12 linear segments. In the last step, the anomalies of the 1970–2010 and 1981–2010 datasets 

that fell into each interval of percentiles (e.g., 5th–10th) were rescaled using the equations of the linear segments. Values 

outside the range of the monthly anomalies during the overlapping period were rescaled using the equation of the closest linear 

segment. A graphic illustration of the CDF matching technique can be found in Fig. 3 of Liu et al. (2011). The CDF matching 

was conducted for all the months as a whole, rather than for each month separately, because the latter setup would result in too 290 

few data points (36 data points during 1981–2016) to robustly determine the percentiles. The rescaled anomalies were added 

back to the monthly climatology of each product. Finally, the three added-back products were concatenated by using the 1970–

2010 product for 1970–1980, the 1981–2010 product for 1981–2010, and the 1981–2016 product for 2010–2016. To 

concatenate the estimated SM uncertainty of the OLC method (𝜎𝑒
𝑡𝑗

; see Sect. 2.7) and the EC method (see Sect. 2.8), the 

uncertainty values of 1970–2010 and 1981–2010 were directly rescaled to the 1981–2016 values using the CDF matching 295 

without prior conversion to monthly anomalies, and the rescaled uncertainty values concatenated like the mean values. 

3 Results 

3.1 Evaluation against the validation set of ISMN SM observations 

The merged products were evaluated against the validation set of ISMN observations using common metrics: mean bias (Bias), 

root mean squared error (RMSE), and Pearson correlation coefficient (Corr). The metrics were calculated both for the whole 300 

validation set and for each land cover type separately in view of the uneven distribution of ISMN observations across land 

cover types (Figure S1). When evaluated on the whole validation set, the Bias of the merged products ranged from −0.044 to 

0.033, the RMSE ranged from 0.076 m3/m3 to 0.104 m3/m3, and the Corr ranged from 0.35 to 0.67, across the four soil depths 

(Figure 2). The merged products generally showed smaller magnitude of Bias, smaller RMSE, and higher Corr than the source 
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datasets from which the products were merged (Figure 2). The Bias of both the source and merged datasets shifted from mostly 305 

positive to mostly negative from the shallowest to the deepest soil layer, indicating a tendency toward the overestimation of 

vertical SM gradient; the shallower soil layers also tended to have lower RMSE and higher Corr than the deeper layers (Figure 

2). The Bias values of individual merged products were similar; the RMSE and Corr values of the ORS-based merged products 

(Mean ORS, OLC ORS, EC ORS) were better than the EC ALL product; and the RMSE and Corr values of the EC ALL 

product were better than the CMIP5- or CMIP6-based merged products (EC CMIP5, EC CMIP6, EC CMIP5+6) (Figure 2).  310 

 

Figure 2: Performance of the original ORS, CMIP5, and CMIP6 datasets (boxplots) and the merged products (scatter plots) on the 

validation set of observations. The boxplots show (from top to bottom) maximum, 75th percentile, median, 25th percentile, and 

minimum. The ORS boxplot includes all the ORS datasets evaluated on their available years. 

The merged products showed lower magnitude of Bias, lower RMSE, and higher Corr than the source datasets across most of 315 

the land cover types (Figure S5). The exceptions were the shallower (0–10 and 10–30 cm) soil layers over the water bodies, 

evergreen needleleaf forests, and evergreen broadleaf forests, where the merged products produced similar RMSE to the bulk 

of the source datasets (Figure S5e–h), and the deeper (30–50 and/or 50–100 cm) soil layers over the open shrublands, urban 

and built-up lands, cropland/natural vegetation mosaics, and barren lands, where the merged products showed similar or even 
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lower Corr, and similar RMSE to the bulk of the source datasets (Figure S5e–i). Although the merged datasets considerably 320 

overestimated the SM in the water bodies and evergreen needleleaf forests (Bias = 0.016 to 0.146 m3/m3; Figure S5a–d), the 

high Corr for these two land cover types (0.30 to 0.72 for the ORS-based merged products, −0.27 to 0.55 for the other merged 

products; Figure S5i–l) indicated good ability to track the spatio-temporal variability. The hybrid products underestimated the 

SM in the 0–10 cm layer of the evergreen broadleaf forests (Bias = −0.174 to −0.095 m3/m3), the deciduous needleleaf forests 

(Bias = −0.162 to −0.055 m3/m3), and the deeper soil layers of many other land cover types (Figure S5a–d). The Corr values 325 

of the merged products were also very low in the evergreen broadleaf forests (−0.81 to 0.05; Figure S5i–l). Similar to at the 

global level, the ORS-based merged SM tended to outperform the EC ALL and the CMIP5- and CMIP6-based merged products 

(Figure S5). The three merging methods performed similarly over most land cover types, but the OLC method (OLC ORS 

product) had lower RMSE and higher Corr than the other two methods (Mean ORS and EC ORS products) over the urban and 

built-up lands, crop/natural vegetation mosaic, and barren land cover types (Figure S5).  330 

3.2 Evaluation against global and regional gridded SM datasets 

The evaluating results for the merged SM products against multiple datasets were more dependent on the evaluation dataset 

than the merged product (Figure 3). Nevertheless, if each evaluation dataset was viewed separately, the merged products 

generally had lower RMSE and higher Corr than the average RMSE and Corr of corresponding source datasets. When 

evaluated against the SMOS L3 and L4 SM, the merged products had high Bias in climatology (0.097 to 0.17 m3/m3), generally 335 

high RMSE (climatology: 0.122 to 0.194 m3/m3, seasonality: 0.024 to 0.049 m3/m3, trend: 0.047 to 0.207 m3/m3 per 50 years, 

anomalies: 0.040 to 0.045 m3/m3), and low Corr (climatology: 0.07 to 0.35, seasonality: 0.28 to 0.56, trend: 0.006 to 0.13, 

anomalies: 0.03 to 0.28). When evaluated against the global machine learning–derived SoMo.ml and the GLEAM v3.3a root 

zone SM, the merged products had high RMSE (0.058 to 0.092 m3/m3) and high Corr (0.67–0.86) in climatology; the lowest 

Corr occurred in spatial trends (−0.016 to 0.46). When evaluated against the US-only Soil MERGE (SMERGE) v2 SM, the 340 

merged products had low RMSE (0.042 to 0.051 m3/m3) and intermediate Corr (0.50 to 0.62) in climatology; the lowest Corr 

occurred in the spatial trends (0.12 to 0.34). 
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Figure 3: The Bias, RMSE, and Corr, calculated over space, between the climatology, seasonal cycle, linear trends, and anomalies 

of the individual merged products (Mean ORS through EC ALL) and source datasets (ORS, CMIP5, CMIP6), and the global and 345 
regional datasets for evaluation (SMOS L3, SoMo, SMERGE v2, SMOS L4, GLEAMv3.3a). Hatching indicates that the magnitude 

of the Bias, RMSE, or Corr of the merged product is better than the product’s source datasets in the same column (for EC CMIP5+6, 

the metric was the average of CMIP5 and CMIP6; for ALL, the metric was the average of ORS, CMIP5, and CMIP6). The 

climatology, seasonal cycle, linear trends, and anomalies were calculated over the overlapping time periods and soil layer depths 

between the evaluated and evaluation datasets. The anomalies were calculated by removing the seasonal cycle and linear trends 350 
from the SM values. Vertical interpolation of the merged and source datasets to 0–40 and 0–100 cm were calculated linearly. When 

calculating the evaluation metrics of linear trends, the insignificant trends at p = 0.1 level were set to zero to prevent small random 

variability from influencing the results. The evaluation metrics of the source datasets were calculated for each individual source 

dataset and averaged over the three groups (ORS, CMIP5, and CMIP6). 

3.3 Evaluation against selected drought events 355 

Both the 0–10 cm (Figures 4 and A6) and the 0–100 cm (Figures S7 and S8) SM anomalies displayed the ability to capture the 

evolution of the US drought during 1985–1992 and the Australian millennium drought during 2002–2009. The spatial patterns 

were consistent with those indicated by the scPDSI, with Spearman correlations mainly falling in the range of 0.5 to 0.8. The 
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CMIP5- and CMIP6-based merged products did not capture the negative anomalies in 2007–2008 in Australia, which were 

reproduced by the other merged products (Figures S6 and S8). The better performances of the ORS-based than the CMIP5- 360 

and CMIP6-based merged products were consistent with the evaluation results against in situ observations (Figures 2 and S5). 

 

Figure 4: The annual mean scPDSI anomalies (no unit) and annual mean SM anomalies (m3/m3) during the US drought 1985–1992. 

The numbers on top of the plots are the Spearman correlation between the anomalies of the merged product and scPDSI, and the 

asterisk (*) indicates that the correlation is significant at p = 0.05. The anomalies were calculated relative to the climatology of 1970–365 
2016. The SM anomalies are for 0–10 cm.  

3.4 The spatial and temporal characteristics of the merged SM products 

Averaged over the globe and large geographical regions, the time series of SM anomalies for different merged products 

corresponded well with one another, except in the high-latitude regions (SREX ID = 1, 2) and the arid Sahara region (SREX 

ID = 14) (Figures 5 and S9). The interannual variability of the 50–100 cm global mean time series of the EC CMIP6 product 370 

appeared too small compared with the other products (Figure 5). The good correspondence indicates that the temporal 
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concatenation involved in creating the OLC ORS and EC ALL products (Sect. 2.9) did not create any temporal discontinuities 

distinguishing them from the other products, and that the temperature- and precipitation-based constraint in the EC method 

induced natural internal variability similar to the real world.  

 375 

Figure 5: The time series of annual mean SM anomalies (10-2 m3/m3) relative to the 1981–2010 climatology averaged for the globe 

and the IPCC SREX regions (Field et al., 2012). 
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The SM climatology showed reasonable spatial patterns in all the merged products, with the lowest values occurring in the arid 

regions of Sahara, western United States, central Asia, and interior Australia, and highest values occurring in the high latitudes 

and tropical rainforest regions (Figure S10). The OLC merging method caused an increase in absolute SM values, especially in 380 

the 0–10 and 10–30 cm soil layers, relative to unweighted averaging (Figure S10, 1st and 2nd rows). The EC method did not 

induce a similar increase (Figure S10, 1st and 3rd rows), which was expected because the procedure did not change the 1981–

2010 climatology of the source datasets (Sect. 2.8). The Mean ORS, EC ORS, EC CMIP5+6, and EC ALL products showed little 

difference in SM climatology across the soil layers, but the OLC ORS and EC CMIP6 products showed decreased SM from the 

shallower to deeper soil layers (Figure S10). The EC CMIP5 had the highest SM values at the 30–50 cm soil layer (Figure S10).  385 

The timings of annual maximum SM were mostly consistent across different merged products, with exceptions occurring in 

northeast Asia, eastern Canada, and Alaska (Figure S11). The maximum SM occurred around February in the southern 

subtropics, southern North America, and the Mediterranean; around September in the monsoonal regions of Africa and 

southern and eastern Asia; and around May in northern North America and most of Eurasia. At deeper soil layers (30–50 and 

50–100 cm), the CMIP5- and CMIP6-based merged SM showed earlier occurrence of annual maximum SM (around June) 390 

than the other merged datasets (around September) in eastern Asia.  

All the merged products showed increasing SM trends in the northern high-latitudes, central Eurasia, and northern Africa, and 

decreasing trends in eastern South America, southern Africa, and eastern Australia (Figure S12). The CMIP5- and CMIP6-

based merged datasets showed greater drying in eastern North America and Europe than the ORS-based estimates, and less 

drying near the North China Plain than the ORS-based products. A major difference existed between the CMIP6-based merged 395 

products (EC CMIP6, EC CMIP5+6, EC ALL) and the other products in northeast Asia in the 50–100 cm soil layer, where the 

former displayed strong drying trends and the latter did not. The estimated uncertainty intervals of the merged products were 

slightly larger for the OLC method than the unweighted standard deviation of the source datasets, and both were considerably 

larger than the EC method (Figure S13). For all the methods, the uncertainty intervals were greater in the temperate regions 

than in the arid regions, which was consistent with the higher SM absolute values in the temperature regions.  400 

3.5 Sensitivity to precipitation, air temperature, and surface downwelling shortwave radiation 

The probability distributions of the significant partial correlations showed that the merged SM products were primarily 

positively correlated with precipitation, and negatively correlated with air temperature and surface downwelling shortwave 

radiation for either annual, June–August, or December–February averages (Figure 6). The partial correlations between SM and 

precipitation were significant in a high fraction of grid cells, and the fraction decreased toward deeper soil layers (Figure S14). 405 

A moderate number of grid cells had significant partial correlations between the SM and air temperature, and few grid cells 

had significant partial correlations between the SM and surface downwelling shortwave radiation (Figures S15 and S16). 

Again, the CMIP5- and CMIP6-based merged products showed some inconsistencies with the ORS-based products, with the 

former showing more negative and significant partial correlations with air temperature in the southern United States, 
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Mediterranean, and southern hemisphere (Figure S15), less negative or significant partial correlations with shortwave radiation 410 

across the globe, and less positive or significant partial correlations with precipitation across the globe (Figures S16 and S14).  

 

Figure 6: Probability distributions of the partial correlation coefficients (no unit) among annual, boreal winter (DJF), and boreal 

summer (JJA) mean SM in the merged products and observed precipitation (pr), air temperature (tas), and shortwave radiation 

(rsds). Only the significant partial correlation coefficients at the p = 0.05 level were used in calculating the probability distributions. 415 

4 Discussion 

Overall, the merged SM products showed better performances than their source datasets; they also showed the ability to capture 

large-scale drought events, as well as reasonable spatiotemporal patterns and climatic response characteristics. The ranges of 
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performance metrics of the new datasets (Figures 2 and S5) were broadly within the estimates reported by previous SM 

evaluations, although making a strict comparison is difficult because of the widely different spatiotemporal coverages and 420 

resolutions (Beck et al., 2021; Karthikeyan et al., 2017; Li et al., 2020b; Wang et al., 2021a; Yuan and Quiring, 2017). These 

results (Figures 2 and S5) demonstrated that the merging procedures (unweighted averaging, OLC, EC) used were effective in 

creating relatively accurate long-term multi-layer SM data at the global scale.  

Regarding the three merging methods, the OLC method only showed better performance than unweighted averaging over the 

urban and built-up lands, crop/natural vegetation mosaic, and barren land cover types (Figure S5), which may be a benefit 425 

rendered by the overrepresentation of these land cover types in the in situ observations (Figure S1). The ISMN stations are 

very sparse (Figure S1), and a previous study suggested that denser observations may lead to better-performing merged product 

(Gruber et al., 2018). In the future, data sources such as FLUXNET and local SM networks that are not included in the ISMN 

may be exploited to improve the OLC-ORS product. Future extension of the OLC method may aim to account for the spatial 

representativeness of individual stations (Molero et al., 2018), and to test alternative error-estimation methods such as the 430 

extended collocation (Gruber et al., 2016). The EC method showed similar performance to the unweighted averaging when 

applied onto the ORS source datasets, which may be because the meteorological forcings for these datasets were already 

realistic (Table S5). However, the effectiveness of the EC method was clear when applied onto the online CMIP5 and CMIP6 

simulations. Despite such EC-based improvement, the ORS-based merged products tended to perform better than the EC 

CMIP5, CMIP6, CMIP5+6, and ALL products (Figures 2 and S5). The current EC procedure used simple linear regression 435 

form and only temperature and precipitation as constraint variables (Sect. 2.8). In addition to temperature and precipitation, 

the SM was influenced by other atmospheric and land conditions (e.g., wind, leaf area and stomata closure, snow cover and 

melt, groundwater). Therefore, future studies may achieve better EC outcomes by incorporating more influencing factors into 

the EC procedure, and by using nonlinear regression methods such as machine learning. Another drawback of the current EC 

method is the low uncertainty interval (Figure S13), which is likely an underestimation. Whereas the OLC method accounts 440 

for the difference between in situ and source datasets in estimating the uncertainty interval (Sect. 2.7), the EC method does 

not. Future studies should also aim to better incorporate this information into the estimation of EC-based uncertainty interval, 

and to better account for the structural uncertainty introduced by the regression form and limited range of predictors in the EC 

procedure.  

The high performance variability of merged products across space (Figure S5) is consistent with previous studies (Beck et al., 445 

2021; Karthikeyan et al., 2017; Li et al., 2020b; Wang et al., 2021a; Yuan and Quiring, 2017). The high RMSE of the merged 

products in the shallower soil layers across the water bodies and evergreen needleleaf forests (Figure S5e–h) were likely caused 

by the high positive Bias in these land cover types (Figure S5a–d) since the corresponding Corr values were relatively high 

(Figure S5i–l). The positive Bias over water bodies may be caused by inaccurate land-water classification at the resolution of 

the source datasets (Tables S1–S4). The positive and negative Bias over the forested land cover types in high-latitude and 450 

tropical regions (e.g., evergreen needleleaf forests, evergreen broadleaf forests, and deciduous needleleaf forests; Figure S2) 
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may be due to biases in evapotranspiration and leaf area index in the source LSMs, reanalysis, and ESMs (Tables S2–S4), and 

further related to processes such as rooting depth and hydraulic redistribution (Pan et al., 2020; Wang et al., 2021b). Low Corr 

occurred over some land cover types in high latitudes, semi-arid to arid regions, and urban areas (e.g., open shrublands, urban 

and built-up lands, cropland/natural vegetation mosaics, and barren lands; Figure S2). In the high latitudes, the low Corr may 455 

be associated with inadequate frozen soil processes in the source LSMs, reanalysis, and ESMs (Andresen et al., 2020). In the 

semi-arid to arid regions, the low Corr may be due to random errors in SM observations and simulated values, which would 

be comparatively large for low SM values. In urban areas, the low performance may be caused by the radio frequency 

interference of satellite observations (Wang et al., 2012) and inadequacies in the representation of urban areas at the resolution 

of the source model products (Table S2–Table S4). 460 

When evaluated against the global and regional gridded datasets that were not used in the merging, the merged products showed 

the highest RMSE in climatology and lowest Corr in spatial trends (Figure 3). Such results were likely because the climatology 

SM values had higher magnitudes than the seasonal and interannual anomalies or trends, and the historical SM trends were 

highly uncertain. The low similarity between the SMOS L3/L4 and the synthesized SM products may be caused by the short 

overlapping period (2010–2016, Table 1). A previous study also found systematic differences between the climatology of 465 

satellite-observed and simulated SM (Piles et al., 2019). The high similarity between the SoMo.ml and GLEAM v3.3a root 

zone SM datasets and the merged products may be because the former depend on the same ISMN stations, from which the 

OLC-ORS product was derived (Sect. 2.2), and the latter were from the same reanalysis as the GLEAM v3.3a surface dataset 

used in the merging (Table S2). In general, because these evaluation datasets are not ground truths like in situ observations, 

the identified differences in evaluation metrics should not be viewed as an absolute indicator of unreliability in the merged 470 

products. Similarly, the benchmarking against scPDSI (Sect. 3.3) only provided qualitative rather than quantitative indicators 

of performance for the merged products because scPDSI is essentially a different variable from SM.  

The vertical gradient in Bias (Figure 2, Figure S5), the high uncertainty in the vertical gradient in the climatology of merged 

SM (Figure S10), and the divergent trends in the 50–100 cm SM in northeast Asia across the merged products (Figure S12) 

point to the need to reduce uncertainties in vertical distribution and dynamics of SM in the merged products. The high SM 475 

values for the HadGEM2-CC and HadGEM-ES datasets may be the reason why the highest SM occurred in the 30–50 cm 

layer in the EC CMIP5 product (Figure S17). All the source datasets for the EC CMIP6 SM showed negative trends in northeast 

Asia in the 50–100 cm soil layer, but this feature does not exist in the original ORS or CMIP5 datasets (results not shown). All 

the source datasets do not have consistent SM vertical gradients, with the maximum value falling at either the surface, deepest, 

or intermediate soil layers (Figure S17). Such vertical inconsistencies may be related to inconsistencies in the vertical 480 

discretization of the soil column (Tables S2–S4), soil properties in each layer, modeling of lateral flow and drainage, or other 

factors (e.g., Balsamo et al., 2009; Best et al., 2011; Melton et al., 2019). Previous regional or global SM evaluations (e.g., 

Beck et al., 2021; Karthikeyan et al., 2017; Li et al., 2020b; Wang et al., 2021a; Yuan and Quiring, 2017) rarely focused on 
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the performance on vertical gradient, and such a limitation should be better addressed in future analyses and dataset 

development. 485 

The temporal continuity of the merged products was only examined visually in this study (Figure 5). Although the applied 

concatenation procedure (Sect. 2.9) was previously demonstrated to lead to good temporal continuity (Su et al., 2016), the 

merged products should be subject to more rigorous statistical testing in the future. The SM seasonality in the merged products 

(Figure S11) was broadly consistent with previously reported timing of annual maximum precipitation (Knoben et al., 2019). 

Differences at the deeper soil layers between the CMIP5- and CMIP6-based merged products and the ORS-based products 490 

may be partially caused by the lack of consideration of lagged SM response to meteorological drivers, especially at the deeper 

layers, in the EC method (Sect. 2.8). Uncertainty at the deeper layers would also be high because fewer source datasets were 

available than for the shallower layers (Tables S1–S4). The SM trends (Figure S12) were broadly consistent with previous 

reports on historical changes in agricultural droughts (Dai and Zhao, 2017; Liu et al., 2019; Lu et al., 2019).  

The primarily positive partial correlations between the SM and precipitation, and the primarily negative partial correlations 495 

between the SM and air temperature or shortwave radiation, were consistent with expectations from physical processes. The 

existence of significant positive partial correlations between air temperature and SM might be caused by less precipitation 

falling as snow at higher temperatures. The weaker relationships between precipitation and SM in the CMIP5- and CMIP6-

based merged products than these in the ORS-based products (Figure S14) may be because the EC method did not fully explain 

the temporal mismatch between the source datasets and the real world because the relationships were insignificant in various 500 

grids and time steps (Figure S4). The stronger relationships between air temperature and SM of the CMIP5- and CMIP6-based 

merged products than these of the ORS-based products (Figure S15) may be partially caused by compensation for the weaker 

relationships between shortwave radiation and SM (Figure S16). Because the temperature and shortwave radiation tend to be 

highly correlated, shortwave radiation was not considered as a predictor for the EC method in the present research. 

5 Data availability 505 

The seven SM products, including the estimated SM values and uncertainty intervals, are available from 

https://doi.org/10.6084/m9.figshare.13661312.v1 (Wang and Mao, 2021). The files are in NetCDF4 format.  

6 Code availability 

The source codes for developing all the SM datasets are available at 

https://ywang11@bitbucket.org/ywang11/soil_moisture_merge.git  510 
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7 Conclusions 

This study achieved the goal of creating long-term, gap-free, multi-layer SM products (1970–2016, 0.5°, monthly, 0–10, 10–

30, 30–50, and 50–100 cm) that displayed realistic temporal evolutions and spatial patterns and outperformed the source SM 

datasets in the systematic evaluations against independent in situ measurements and semi-independent gridded SM estimates. 

Three new SM products (mean ORS, OLC ORS, and EC ORS) developed from the satellite observations, reanalysis, and 515 

offline LSMs were shown to perform better than those based on the ESMs. Therefore, they are recommended for future 

applications, such as the detection and attribution of historical changes of SM and associated extreme events, providing the 

initial and boundary conditions for atmospheric models, benchmarking various types of models, and managing drought and 

flood risks. By comparing three different merging methods (unweighted averaging, OLC, and EC), this study further denoted 

that the OLC method may require more in situ observations to exceed the unweighted averaging, and that linear regression-520 

based EC with a limited range of un-lagged predictors was inadequate in correcting all the ESM errors. Future SM 

developments may aim to assemble more in situ SM datasets and to implement other advanced fusion algorithms (e.g., 

extended collocation, machine learning).  
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