



## 1 Stable water isotope monitoring network of different

# 2 water bodies in Shiyang River Basin, a typical arid

### 3 river in China

4 Guofeng Zhu<sup>a,b,\*</sup>, Yuwei Liu<sup>a,b</sup>, Peiji Shi<sup>a,b</sup>, Wenxiong Jia<sup>a,b</sup>, Junju Zhou<sup>a,b</sup>, Yuanfeng Liu<sup>a,b</sup>,

5 Xinggang Ma<sup>a,b</sup>, Hanxiong Pan<sup>a,b</sup>, Yu Zhang<sup>a,b</sup>, Zhiyuan Zhang<sup>a,b</sup>, Zhigang Sun<sup>a,b</sup>, Leilei Yong <sup>a,b</sup>,

6 Kailiang Zhao<sup>a,b</sup>

7 *a College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, Gansu, China* 

8 b Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070,

9 Gansu, China

10 Correspondence to: zhugf@nwnu.edu.cn

11 Abstract: We have established a stable water isotope monitoring network in the Shiyang River 12 Basin in China'arid northwest. The basin is characterized by low precipitation, high evaporation 13 and dense population. It is the basin with the most significant ecological pressure and the greatest 14 water resources shortage in China. The monitoring station covers the upper, middle and lower 15 reaches of the river basin, with six observation systems: river source area, oasis area, reservoir 16 canal system area, oasis farmland area, ecological restoration area, and salinized area. All data in 17 the data set are differentiated by water body types (precipitation, river water, lake water, 18 groundwater, soil water, plant water). The data set is updated annually to gradually improve each





| 19 | observation system and increase data from observation points. So far, the data have been obtained |
|----|---------------------------------------------------------------------------------------------------|
| 20 | for five consecutive years. The data set includes stable isotope data, meteorological data and    |
| 21 | hydrological data in the Shiyang River Basin. The data set can analyze the relationship between   |
| 22 | different water bodies and water circulation in the Shiyang River Basin. This observation         |
| 23 | network's construction provides us with stable water isotopes data and hydrometeorological data,  |
| 24 | and we can use theae data for hydrological and meteorological related scientific research. It can |
| 25 | also provide a scientific basis for water resources utilization, water conservancy project        |
| 26 | construction, and ecological environment restoration decision-making in China's arid areas. The   |
| 27 | data that support the findings of this study are openly available in Zhu (2021) at "Data sets of  |
| 28 | Stable water isotope monitoring network of different water bodies in Shiyang River Basin, a       |
| 29 | typical arid river in China (Supplemental Edition)", Mendeley Data, V1, doi:                      |
| 30 | 10.17632/w5rpxwf99g.1.                                                                            |

31 **Keywords**: Stable isotopes; Arid river; Monitoring network

32 1 Introduction

33 Hydrogen and oxygen isotopes are useful tracers in the water cycle (Zannoni et al., 2019). 34 While the proportion of stable isotopes such as  $\delta^2$ H and  $\delta^{18}$ O in natural water bodies is small,  $\delta^2$ H 35 and  $\delta^{18}$ O respond very quickly to environmental changes and historical record information on the





| 36 | water cycle evolution. Simultaneously, the fractionation of isotopes also runs through every link of   |
|----|--------------------------------------------------------------------------------------------------------|
| 37 | the water cycle (Song et al., 2007; Dansgaard W, 1953; Dansgaard W, 1964). Stable isotopes of          |
| 38 | hydrogen and oxygen in water have been widely used in the water cycle (Edwards et al., 2010;           |
| 39 | Penna et al., 2013; Timsic et al., 2014; Evaristo et al., 2015; Negrel et al., 2016), paleoclimate and |
| 40 | paleoenvironmental evolution (Wei et al., 1994; Speelman et al., 2010; Steinman et al., 2010;          |
| 41 | Hepp et al. 2015), reconstruction of pale plateau height (Thompson et al., 2000; Yao et al., 2008;     |
| 42 | Xu et al., 2015; Li et al., 2017) and other fields. Stable isotopes provide an effective method for    |
| 43 | studying of regional and global water cycles (Craig, 1961; Tian et al., 2001; Vallet-Coulomb et al.,   |
| 44 | 2008; Bowen et al., 2012; Gibson et al., 2017). In the water cycle, the composition of hydrogen        |
| 45 | and oxygen isotopes in different water bodies is affected by isotope fractionation. The isotopes are   |
| 46 | widely distributed in time and space, and different water bodies have different isotope                |
| 47 | characteristics (Zhang et al., 2015; Christophe et al., 1998;). Precipitation stable isotopes are      |
| 48 | affected by climate change caused by large scale weather events and local meteorological               |
| 49 | elements, and geographical conditions. With the change of precipitation isotopes, the isotopes of      |
| 50 | surface water and groundwater will also change in time and space sensitively (Yin et al., 2010).       |
| 51 | Many researchers have studied stable isotopes of hydrogen and oxygen in different regions of the       |
| 52 | world and have achieved fruitful results (Matthew et al., 2010). There are about 1400 precipitation    |





| 53 | stable isotopes monitoring stations worldwide (IAEA/WMO, 2014). In addition to GNIP, some            |
|----|------------------------------------------------------------------------------------------------------|
| 54 | national scale isotope monitoring networks have been built successively, such as Canada (Birks et    |
| 55 | al., 2009), The United States (Vachon et al., 2007), Austria (Kralik et al., 2004), France (Chery et |
| 56 | al., 2004), and India (Kumar et al., 2010). Since the beginning of the 21st century, international   |
| 57 | collaborative research programs on isotopes have been carried out with the auspices of               |
| 58 | international organizations such as the International Atomic Energy Agency (IAWA), UNESCO            |
| 59 | and WMO. For example, the Global Network of Isotopes in Rivers, GNIR (for short), The Isotope        |
| 60 | Global Observation Network of Water and Carbon cycle Dynamics (LEAFLET), and the National            |
| 61 | Coordinated Research Project (CRP) for determining farmland water cycle fluxes by applying           |
| 62 | environmental isotope technology. Compared with traditional hydrology methods,                       |
| 63 | hydrogen-oxygen stable isotope technology has significant advantages in solving the problems         |
| 64 | such as the recharge relationship between different water bodies, soil, and plant water sources, and |
| 65 | the calculation of lake surface evaporation (Liu et al., 2009; Tian et al., 2009; Pu et al., 2013;   |
| 66 | Wang et al., 2014; Wang, 2016; Ding et al., 2018). In particular, meteoric water - surface water -   |
| 67 | soil water - groundwater can be regarded as a unified "system" to quantitatively study the           |
| 68 | hydraulic connections between different water bodies (Burns, 2002). With the continuous              |
| 69 | improvement of stable isotope theory and analysis and determination technology, isotope              |





| 70 | hydrology has gradually become one of the crucial branches of hydrology. Its scope and depth of      |
|----|------------------------------------------------------------------------------------------------------|
| 71 | research have also been expanded constantly. However, due to the limitations of sampling time        |
| 72 | and space and the limitations of experimental analysis, there has always been a lack of              |
| 73 | comprehensive research on different water bodies in the same area or basin over a long period        |
| 74 | time, which makes it challenging to use stable isotope comparison to study the water cycle in a      |
| 75 | specific area.                                                                                       |
| 76 | This paper compiles the stable water isotope data of the Shiyang River Basin from 2015 to            |
| 77 | 2019 and its corresponding meteorological and hydrological data into a data set. The stable          |
| 78 | isotope data are all obtained by field sample collection and laboratory test and analysis.           |
| 79 | Meteorological and hydrological data are obtained by weather and hydrological stations in the        |
| 80 | Shiyang River Basin. We can ues these data to analyze the relationship between different water       |
| 81 | bodies, understand the Shiyang River Basin water cycle process, and provide a scientific basis for   |
| 82 | water resources utilization, water conservancy project construction, and ecological environment      |
| 83 | decision in the arid region of China. Thus, the present study underlines the effective use of stable |
| 84 | isotopes in studying the hydrologic cycle, which is not yet been utilized in many parts of the world |
|    |                                                                                                      |

- 86 China and other regions of the world.

85

The Shiyang River Basin study should reference for subsequent research in arid regions within





#### 87 2 Study area

| 88  | The Shiyang River Basin is located in the eastern section of Qilian Mountain and Hexi                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 89  | Corridor, and it is the third-largest river in the flowing water system in the Hexi Corridor of Gansu                       |
| 90  | Province. The topography of the Shiyang River Basin slopes sharply from southwest to northeast,                             |
| 91  | with Qilian Mountains in the south, alluvial plains and Gobi in the middle, and flood plains and                            |
| 92  | deserts in the north (Zhu et al., 2020). The river is about 250 km long, and the basin area is $4.16 \times$                |
| 93  | $10^4 \rm km^2$ (101°41'-104°16'E and 36°29'-39°27'N). The average annual runoff is about 15.75×                            |
| 94  | 10 <sup>8</sup> km <sup>3</sup> . From south to north, the Shiyang River Basin covers three different climatic regions: the |
| 95  | southern Qilian Mountain area has an alpine and semi-arid climate (2000-5000m above sea level),                             |
| 96  | with an annual average temperature below $6^{\circ}$ C and rainfall of 300-600mm; the central corridor                      |
| 97  | plain has a dry climate (1500-2000m above sea level), the annual average temperature is between                             |
| 98  | 6-8°C, and the rainfall is 150-300mm. In the north, there is an arid climate (1300-1500m above                              |
| 99  | sea level), with an annual average temperature higher than $8^{\circ}$ C and rainfall less than 150mm (Wen                  |
| 100 | et al., 2013). The precipitation in Shiyang River Basin is mainly from July to September, and the                           |
| 101 | average relative humidity in summer and autumn is higher than that in winter and spring. Because                            |
| 102 | the evaporation is far more than the precipitation, the farmland irrigation water in Shiyang River                          |





| 103 | Basin is mainly surface and groundwater. The Shiyang River Basin has complete surface water            |
|-----|--------------------------------------------------------------------------------------------------------|
| 104 | and groundwater irrigation system, irrigating 4.6 million mu of cultivated land in the basin.          |
| 105 | 3 Observation network design                                                                           |
| 106 | 3.1 Site Selection                                                                                     |
| 107 | To form a stable isotope monitoring network for different water bodies, we have set up 53              |
| 108 | monitoring points in the Shiyang River Basin from 2015 to 2019, among which 34 were upstream,          |
| 109 | 16 in the midstream, and 3 in the downstream. Systematic sampling is carried out once a month,         |
| 110 | and 6,760 samples have been obtained, including 1,210 precipitation samples, 1,101 surface water       |
| 111 | samples, 161 groundwater samples, 3,779 soil water samples, and 509 plant water samples. Fig. 1        |
| 112 | shows the distribution of stable water isotopes monitoring points in the Shiyang River Basin.          |
| 113 | These monitoring points are located in different positions (upstream, middle and downstream)           |
| 114 | within the basin, including six observation systems (Fig. 1): river source area, oasis area, reservoir |
| 115 | system area, oasis farmland area, ecological restoration area, and salinized area, which is            |
| 116 | convenient to comprehensively analyze the microscopic water circulation process in the arid area.      |







Figure. 1 Shiyang River Basin Monitoring Network (a: Ningchang River observation system,
river source area; b: Ice trench observation system, river source area; c: Xiying River Basin,
source observation system; d: Minqin soil system, ecological restoration; e: Dongtan
Wetland Observation System in the middle reaches of Shiyang River, ecological restoration;
f: Hongyashan reservoir canal observation system, ecological restoration; g: Datan
Farmland Observation System, ecological restoration; h: Qingtu Lake observation system,





#### 124 ecological restoration)

- 125 4 Instrument and data acquisition
- 126 **4.1 Collection of precipitation**

127 In order to collect precipitation, 16 weather stations were set up in Shiyang River Basin, 128 which included rainfall barrels for precipitation observation and sampling. The rainfall barrels 129 are placed in an open place outside and composed of rain carriers, funnel, water storage bottles, 130 and rain cups. The diameter of the rain carrier is 20 cm, and the port of the device is horizontal. 131 The height of the rain-bearing mouth of the instrument is set as 70 cm from the ground plane. The 132 rain gauge is used to observe precipitation and collect precipitation samples. The collected liquid 133 precipitation is transferred to a 100 ml high-density sample bottle immediately after each 134 precipitation event. Measuring cylinder for solid-state precipitation, with rain collection back to 135 indoor at room temperature  $(23^{\circ}C)$ , then transferred to the high density in the sample bottle. The 136 sample bottles were sealed with parafilm until the end of cryopreservation, at the same time, in 137 samples of the polyethene bottle label, label date, type of precipitation (rain, snow, hail) and 138 rainfall. For the occurrence of multiple precipitation events within a day, multiple sampling is 139 required.

#### 140 **4.2** Collection and storage of surface water and groundwater





| 141 | Polyethene bottles are used to collect surface water (rivers, lakes, reservoirs) and                  |
|-----|-------------------------------------------------------------------------------------------------------|
| 142 | groundwater samples. When collecting water samples, stratified sampling is carried out at             |
| 143 | different depths (surface layer, middle layer, bottom layer). The bottle of the sample is sealed with |
| 144 | parafilm film and then frozen until the experiment. Meanwhile, a label is pasted on the polyethene    |
| 145 | sample bottle, telling the date, sampling point, sampling depth of the sample and the stream and      |
| 146 | tributary stream. The collected water samples should be placed in places where the sunlight is not    |
| 147 | direct so as to avoid evaporation of water, which would affect the validity of the data. The samples  |
| 148 | were taken back to the refrigerator in the laboratory within 10 hours.                                |
| 149 | 4.3 Collection and storage of soil and plant water                                                    |
| 150 | The soil sample is collected at a depth of 100cm, and samples are taken sequentially at 10cm          |
| 151 | intervals. The soil samples collected were divided into two parts, one part of which was put into a   |
| 152 | 50 ml glass bottle. The bottle mouth was sealed with parafilm membrane and transported to the         |
| 153 | observation station within 10 hours after the sampling date was marked for cryopreservation to        |
| 154 | test stable isotope data. The other part of the sample was placed in a 50 ml aluminium box and by     |
| 155 | using the drying method to test the soil moisture content. Plants sample collection: sampling         |
| 156 | scissors collected the xylem stem of vegetation, the bark was stripped and put into a 50 ml glass     |
| 157 | bottle, sealed, and frozen until the experimental analysis.                                           |





| 158 | 5 Data set                                                                                       |
|-----|--------------------------------------------------------------------------------------------------|
| 159 | The stable isotope data is obtained through experimental analysis, and the meteorological        |
| 160 | data is obtained from the weather station in the Shiyang River Basin.                            |
| 161 | 5.1 Observation point                                                                            |
| 162 | From 2015 to 2019, a total of 53 monitoring points have been set up in the Shiyang River         |
| 163 | Basin. For the convenience of data recording, each monitoring point is recorded in short form.   |
| 164 | Table 1 lists each station's complete names and corresponding meteorological parameters, easy to |
| 165 | understand and use.                                                                              |

#### 166 Table 1 List of site parameters

| A1.1         | Full name    | Longitudo | Latitude | Elevation | Temperature | Precipitation | Sampling       | Location |
|--------------|--------------|-----------|----------|-----------|-------------|---------------|----------------|----------|
| Abbreviation |              | Longitude |          | (m)       | (°C)        | ( mm)         | type           |          |
|              | Qinghai      |           |          |           |             |               |                |          |
| QHLYXM       | Forestry     | 101°51'   | 37°32'   | 3899      | -           | -             | river water    | а        |
|              | Project      |           |          |           |             |               |                |          |
| MK           | Colliery     | 101°51'   | 37°33'   | 3647      | -0.23       | 1039.17       | precipitation  | а        |
| LXWL         | Winding Road | 101°50'   | 37°34'   | 3305      | -           | -             | river water    | a        |
| SDUUC        | Tunnel       | 101°50'   | 37°34'   | 3448      | -           |               | river water    | 0        |
| SDHHC        | Junction     |           |          |           |             | -             |                | a        |
| 202          | Transformer  | 101°51'   | 37°33'   | 3637      | -           | -             | soil, plant,   | 0        |
| DDL          | Substation   |           |          |           |             |               | river water    | a        |
| NQ           | Ningqian     | 101°49    | 37°37'   | 3235      | -           | -             | river water    | a        |
|              | Ningtanhe    |           |          |           |             |               | river water,   |          |
| SCG          | Middle East  | 101°50'   | 37°38'   | 3068      | -           | -             | precipitation, | а        |
|              | branch mixed |           |          |           |             |               | soil           |          |





|       | water                     |         |        |      |       |        |                |   |
|-------|---------------------------|---------|--------|------|-------|--------|----------------|---|
| MTQ   | Wood Bridge               | 101°53' | 37°41' | 2741 | -     | -      | river water    | а |
| SCLK  | Three-way<br>Intersection | 101°55' | 37°43' | 2590 | -     | -      | river water    | а |
| JTL   | Nine Ridge                | 102°02' | 37°51' | 2267 | -     | -      | groundwater    | а |
|       | The Bridge of             |         |        |      |       |        |                |   |
| WGQ   | the Cultural              | 102°07' | 37°53' | 2174 | -     | -      | river water    | а |
|       | Revolution                |         |        |      |       |        |                |   |
| XYSK  | Xiying<br>Reservoir       | 102°12' | 37°54' | 2058 | -     | -      | river water    | c |
| XYZ   | Xiying Town               | 102°26' | 37°58' | 1748 | 10.44 | 491.35 | precipitation  | с |
|       | Reform and                |         |        |      |       |        |                |   |
| GGKFQ | Opening                   | 101°58' | 37°46' | 2590 | -     | -      | river water    | с |
|       | Bridge                    |         |        |      |       |        |                |   |
|       |                           |         |        |      |       |        | river water,   |   |
| ніх   | Huajian                   | 102°00' | 37°50' | 2200 | 7.65  | 262.64 | groundwater,   | c |
| HJX   | Township                  |         | 57 50  | 2370 |       |        | precipitation, | c |
|       |                           |         |        |      |       |        | soil           |   |
| WW    | Wuwei                     | 102°37' | 37°53' | 1581 | 5.23  | 300.14 | river water    | с |
|       |                           |         |        |      |       |        | river water,   |   |
| HLZ   | Ranger<br>Stations        | 101°53' | 37°41' | 2721 | 3.25  | 469.44 | precipitation, | а |
|       |                           |         |        | _,   |       |        | soil, plant,   |   |
|       |                           |         |        |      |       |        | groundwater    |   |
| LLL   | Lenglong                  | 101°28' | 37°41' | 3500 | 5.78  | 350.34 | precipitation  | а |
|       | Ridge                     |         |        |      |       |        | r r            |   |
| ZZXL  | Zhuaxi                    | 103°20' | 37°18' | 3556 | -2.37 | 500.17 | precipitation  | d |
|       | Xiulong                   |         |        |      |       |        | r r            |   |
| JDT   | Jiudun Beach              | 102°45' | 38°07' | 1464 | 10.54 | -      | precipitation  | d |
|       |                           |         |        |      |       |        | precipitation, |   |
| SCG   | Shangchigou               | 102°25' | 38°03' | 2400 | 7.28  | 377.13 | river water,   | d |
|       |                           |         |        |      |       |        | groundwater    |   |
|       |                           |         |        |      |       |        | precipitation, |   |
| WWPD  | Wuwei Basin               | 102°42' | 38°06' | 1467 | -     | -      | groundwater,   | d |
|       |                           |         |        |      |       |        | soil, plant    |   |





| DT    | Dongton                 | 102047  | 20016  | 1424 | 8 00  | 240.05 | river water,   | 2 |
|-------|-------------------------|---------|--------|------|-------|--------|----------------|---|
| DI    | Dongtan                 | 102*47  | 38 10  | 1434 | 8.90  | 240.03 | soil, plant    | e |
|       | Housesshop              |         |        |      |       |        | river water,   |   |
| HYSSK | Desemvior               | 102°53' | 38°24' | 1416 | 7.81  | 100.17 | groundwater,   | f |
|       | Reservior               |         |        |      |       |        | soil           |   |
|       |                         |         |        |      |       |        | groundwater,   |   |
| CQQ   | Caiqi Bridge            | 102°45' | 38°13' | 1443 | 5.63  | 300.26 | river water,   | d |
|       |                         |         |        |      |       |        | soil, plant    |   |
| XJG   | Xiajiangou              | 102°42' | 38°07' | 1200 | 9.36  | 110.18 | groundwater    | d |
| UCC   | Mana al Malla           | 1029501 | 200211 | 1421 | 0.24  | 112.16 | precipitation, | , |
| HGG   | Hongqi Valley           | 102°50' | 38°21  | 1421 | 8.34  | 113.16 | groundwater    | d |
| BHZ   | Protection<br>Station   | 102°29' | 38°09' | 2787 | -     | -      | groundwater    | d |
| BDC   | Beidong<br>Township     | 103°02' | 38°32' | 1367 | 9.52  | 155.45 | groundwater    | g |
| XXWGZ | Xiyin Wugou<br>Township | 102°58' | 38°29' | 1393 | -     | -      | groundwater    | d |
| MQBQ  | Minqin Dam              | 103°08' | 39°02' | 1400 | 8.33  | 113.19 | soil           | d |
|       |                         |         |        |      |       |        | precipitation, |   |
| OTU   | Oinste Labo             | 1028261 | 209021 | 1212 | 7.96  | 110.70 | groundwater,   | h |
| QIH   | Qingtu Lake             | 103*30  | 39.03  | 1313 | 7.80  | 110.79 | lake water,    | n |
|       |                         |         |        |      |       |        | soil           |   |
|       | S                       |         |        |      |       |        | groundwater,   |   |
| SWX   | Suwu                    | 103°05' | 38°36' | 1372 | 9.82  | 155.84 | soil, plant,   | d |
|       | Township                |         |        |      |       |        | river water    |   |
|       |                         |         |        |      |       |        | precipitation, |   |
| DTV   | Datan                   | 102014  | 2004/1 | 1240 | 11.40 |        | groundwater,   |   |
| DIX   | Township                | 103-14  | 38-46  | 1349 | 11.49 | -      | soi, plant,    | g |
|       |                         |         |        |      |       |        | river water    |   |
|       |                         |         |        |      |       |        | precipitation, |   |
| YXB   | Yangxia Dam             | 102°41' | 38°01' | 1489 | 10.76 | -      | groundwater,   | d |
|       |                         |         |        |      |       |        | soil, plant    |   |
| XBZ   | Xuebai Toen             | 103°01  | 38°32' | 1387 | 10.77 | -      | precipitation  | b |
| SYQ   | Laboratory              | 102°22' | 37°42' | 2438 | -     | -      | river water,   | b |





|        | Area                      |         |        |       |       |        | soil                                          |   |
|--------|---------------------------|---------|--------|-------|-------|--------|-----------------------------------------------|---|
| XCL    | Small Valley              | 102°24' | 37°43' | 2267  | -     | -      | river water                                   | b |
| JCLK   | Intersection              | 102°20' | 37°41' | 2544  | -     | -      | river water,<br>soil                          | b |
| QSHSY  | Spring River              | 102°22' | 37°38' | 2747  | -     | -      | spring water                                  | b |
| HLD    | Confluence                | 102°26' | 37°44  | 2146  | -     | -      | river water,<br>soil, plant                   | b |
| QXZ    | Meteorological<br>Station | 102°20' | 37°42  | 2543  | 3.34  | 510.56 | precipitation, groundwater                    | b |
| BGH    | Binggou River             | 102°17' | 37°40' | 2872  | 5.28  | -      | river water,<br>soil water,                   | b |
| NCHHLH | South Nancha<br>River     | 102°26' | 37°43' | 2163  | -     | -      | river water                                   | b |
| LKS    | Two Pine                  | 102°17' | 37°40' | 2832  | 5.69  | -      | river water,<br>soil                          | b |
| NYSKRK | Nanying<br>Reservoir      | 102°29' | 37°47' | 1955  | 7.82  | 330.16 | river water                                   | b |
| SGZZ   | Sigou stckade             | 102°23' | 37°40' | 2492  | 10.34 | 675.54 | river water                                   | b |
| JZGD   | Construction<br>Site      | 102°25' | 37°41' | 2303  | -     | -      | river water                                   | b |
| QLX    | Qilian<br>Township        | 102°42' | 38°08' | 3394  | 5.13  | 300.15 | precipitation,<br>spring water                | d |
| XYWG   | Xiying Wugou              | 102°10' | 37°53' | 2097  | 7.99  | 197.67 | river water,<br>precipitation,<br>soil, plant | c |
| HSH    | Hongshui<br>River         | 102°45' | 38°13' | 1454' | -     | -      | river water                                   | d |
| XCL    | Small village             | 102°24' | 37°43' | 2267  | -     | -      | river water                                   | b |
| YHRJ   | A family                  | 102°20' | 37°42' | 2543  | -     | -      | river water                                   | b |

#### 167 **5.2 Meteorological and hydrological data set**

168

,

We obtained the meteorological data, including temperature, precipitation, atmospheric





- 169 pressure, relative humidity, wind speed, sunshine duration. Store the obtained weather data in the 170 corresponding weather station file. Through the classification and sorting of meteorological data, 171 the daily meteorological data, monthly meteorological data, seasonal meteorological data, and 172 annual meteorological data are formed. Finally, the meteorological data set is formed. The 173 obtained hydrological data includes the precipitation and flow data of each hydrological 174 observation point. Through the classification and arrangement of hydrological data, daily 175 hydrological data, monthly hydrological data, seasonal hydrological data, and annual hydrological 176 data are formed. Finally, the hydrological data set is formed.
- 177

#### 5.3 Stable water isotope data set

178 The stable water isotope data set is compiled from Fig. 2. Firstly, field sampling is conducted 179 to obtain samples of different water bodies. The sampling interval is one month, and the data set is 180 updated once a year. According to the types of samples, the samples can be divided into two 181 categories: precipitation, river water, lake water, and groundwater can be directly tested after 182 filtration, while soil water and vegetation water need to be vacuum condensed and extracted to 183 separate the water in soil and vegetation for testing and analysis. The assembly of the data set 184 relies mainly on the monitoring data and instrument test data. The extraction apparatus's use is 185 BJJL - 2200 fully automatic vacuum condensate extraction system. Analysis instrument is LWIA -





- 186 24 d liquid water isotope analyzer. Therefore, higher requirements are put forward for the quality
- 187 and feasibility of the data. We use manner-Kendall software to test the data obtained from
- 188 meteorological and hydrological stations. The inspection of data is an important step to judge the
- 189 validity of data. The stable isotope data set and the meteorological and hydrological data set are
- 190 combined into one data set.



191





#### 192 Figure. 2 Extraction, analysis of the instrument and data set production process

#### 193 6 Data quality

194 This monitoring network aims to provide data for the Shiyang River Basin, and there can be 195 no great lag. In practice, some quality problems have little impact on data users, because we will 196 test the quality data before opening data, on the one hand, for meteorological and hydrological 197 data, we will use manner-Kendall software to test the isotopes data. For isotopic data, we will use 198 LIMA post-analysis software to select the wrong samples and reanalyze them. On the other hand, 199 we will screen the experimental data again and let the data's users get the quality data. At present, 200 the leading cause of data error is instrument error. Here are some common problems. 201 6.1 Sample collection and storage

After sample collection, extraction and analysis are needed. The extraction work is aimed at soil and vegetation samples, which need to be stored in the freezer until the experimental analysis. From the point of view of the collection, vegetation samples should be collected quickly. Otherwise, resulting in a small amount of water in the vegetation, which will affect the quality of the data. From the sample storage perspective, when too many vegetation samples are collected, the time from sampling to extraction to analysis will be too long, and the isotope fraction caused by evaporation will affect the test results.





#### 209 **6.2 Experiments**

| 214 | 6.3 Modification of plant water isotope data                                                    |
|-----|-------------------------------------------------------------------------------------------------|
| 213 | test the data promptly manner, and select the wrong samples.                                    |
| 212 | checked and cleaned on time during sample analysis. After completing the experiment, we should  |
| 211 | other problems, leading to errors in the experimental data. Therefore, the instrument should be |
| 210 | The experimental equipment has impurities in the pipeline, methanol, ethanol pollution and      |

215 Suppose the water sample contains compounds with the same absorption characteristics of 216 the same wavelength. In that case, it will lead to errors in the measurement of the laser liquid 217 water analyzer, and the most likely pollutants to cause errors are methanol and ethanol. So using 218 deionized water with different concentrations of pure methanol and ethanol, the combination of 219 Los Gatos company LWIA - Spectral Contamination Identifier v1.0 Spectral analysis software 220 (NB) to determine methanol and ethanol (BB) pollution degree of spectrum measurement, 221 establishing the  $\delta^2$ H and  $\delta^{18}$ O correction method for the spectra of pollution (Meng et al., 2012; 222 Liu et al., 2013). In the correction process, the configuration of methanol and ethanol solution 223 concentration was similar to Meng's experiment (2012). Correction results for methanol its broadband measurements of NB metric logarithmic respectively with  $\Delta\delta^{2}H$  and  $\Delta\delta^{18}O$  are 224 225 significantly quadratic curve relationship, respectively is:





$$\Delta \delta^2 H = 0.018 (\ln NB)^3 + 0.092 (\ln NB)^2 + 0.388 \ln NB + 0.785 (R^2 = 0.991, p > 0.0001)$$
(2-1)

226

$$\Delta \delta^2 O = 0.017 (\ln NB)^3 - 0.017 (\ln NB)^2 + 0.545 \ln NB + 1.356 (R^2 = 0.998, p < 0.0001)$$
(2-2)

227 Its broadband measurements for ethanol correction results in BB metric and  $\Delta\delta^{2}$ H and  $\Delta\delta^{18}$ O, a

228 quadratic curve and linear relationship respectively, are:

$$\Delta \delta^2 H = -85.67BB + 93.664(R^2 = 0.747, p = 0.026)(BB < 1.2)$$
(2-3)

229

$$\Delta \delta^2 O = -21.421BB^2 + 39.935BB - 19.089(R^2 = 0.769, p < 0.012)$$
(2-4)

230 7 Results and discussion

#### 231 7.1 Stable isotopes characteristics of different water bodies

In the catchment dominated by precipitation, the seasonal difference between  $\delta^{18}$ O and  $\delta$ D values is large (Dansgaard W, 1964). In Fig. 3, we can be found that (1)  $\delta^{18}$ O and  $\delta$ D are periodic with time, that is, they are depleted in winter and spring, enriched in summer and autumn, and the value of stable isotopes reaches a high value in summer and a second high value in autumn. The former is related to precipitation dilution, while the latter is related to high temperature and intense





- 237 evaporation. (2)  $\delta^{18}$ O and  $\delta$ D of lake water fluctuate more than river water, groundwater, soil
- 238 water, and plant water, because the lake's evaporation is much more robust in summer than in
- 239 other seasons. (3) The change trend of  $\delta^{18}$ O and  $\delta$ D in surface water is the same, the change of
- 240 groundwater lags behind that of surface water, and its change range is smaller. (4) The variation of
- 241  $\delta^{18}$ O and  $\delta$ D in different water bodies are generally consistent, showing good consistency.







243 Figure. 3 Distribution of different water bodies'  $\delta^{18}$ O and  $\delta$ D in the Shiyang River Basin

242

245 **7.2 Changes in runoff** 

<sup>244</sup> from 2015 to 2019





| 246 | According to the four hydrological observation stations in the Shiyang River Basin, the                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
| 247 | multi-year average water level in the Shiyang River Basin from 2015 to 2019 was 9.71m. among                                         |
| 248 | which the average annual water level of 2015, 2016, 2017, 2018, and 2019 are 9.56m, 10.67m,                                          |
| 249 | 10.11m, 7.18m, and 11.06m, respectively. In 2018, Shiyang River Basin had the lowest water level                                     |
| 250 | of 7.18m. The water level in this basin peaks in summer and reaches a second peak in spring, and                                     |
| 251 | the water level in Shiyang River Basin is in the rainy season in summer with more precipitation.                                     |
| 252 | Spring mountain snow and ice melt supply Shiyang River related.                                                                      |
| 253 | The annual flow of the Shiyang River Basin from 2015 to the 2019 year is $1436.04$ m <sup>3</sup> /s,                                |
| 254 | among which the annual flow in 2015, 2016, 2017, 2018, and 2019 are 1435.9m <sup>3</sup> /s, 1435.81m <sup>3</sup> /s,               |
| 255 | 1436.05m <sup>3</sup> /s, 1436.14m <sup>3</sup> /s, and 1436.29m <sup>3</sup> /s, respectively. The flow in spring and summer is     |
| 256 | larger than that in winter and autumn. Take the year 2015 as an example, the maximum flow of the                                     |
| 257 | Shiyang River Basin was 57.0m <sup>3</sup> /s, which appeared on July 5. The annual runoff was $3.016 \times$                        |
| 258 | $10^8$ m/s, the runoff modulus was $0.936 \times 10^{-3}$ m <sup>3</sup> /(S.km <sup>2</sup> ), and the runoff depth was 29.5mm. The |
| 259 | largest flood volume1day, 3days, 7days, 15days, 30days, and 60days occurred on July 5, July 4,                                       |
| 260 | July 4, July 2, July 2, and June 22.                                                                                                 |

22







261



#### 263 7.3 Connections between different bodies of water

264 Based on the precipitation isotope data of the Shiyang River Basin from January 2016 to 265 December 2019 (Fig. 5), using the least squares of the LMWL of the Shiyang River Basin, the local waterline equation (LMWL) is obtained:  $\delta D = 7.65\delta^{18}O + 9.75$ , compared to the global 266 267 atmosphere waterline equation (GMWL), slope and intercept are small, but  $\delta D$  and  $\delta^{18}O$  maintain a good linear relationship ( $R^2 = 0.96$ ), which is related to the geographical location of the study 268 269 area. The Shiyang River Basin is located in the northwest inland of China, and the climate environment is dry. It is subject to intense secondary evaporation during the precipitation, making 270 the slope and intercepts relatively small. It also reflects the existence of stable isotope unbalanced 271





- 272 fractionation effect under the arid climate background.
- 273 Precipitation, river water, lake water, groundwater, soil water, and plant water are distributed 274 near GMWL, indicating that they share the same water source. The deviation of the lake from 275 GMWL indicates that it experienced intense evaporation. By comparing the slope and intercept of the relation expressions  $\delta^{18}$ O and  $\delta$ D of GMWL and 276 277 different water bodies, it can be seen that, as far as the slope is concerned, precipitation is the 278 highest (7.65), followed by groundwater (5.11), lake water is the lowest (2.14). There is little 279 difference between the slope of precipitation and groundwater, which means there is a mutual recharge relationship. In terms of intercept (d), the precipitation was the highest (9.75), followed 280 281 by the river (-8.44). When the water body evaporates in the unsaturated atmosphere, the light 282 isotopes evaporate preferentially. The combined effect of the dynamic fractionation effect of the 283 river accelerates the ratio of the  $\delta D$  and  $\delta^{18}O$  fractionation effects in the evaporated water vapor, 284 resulting in an increase in d in the water vapor and a decrease in d in the remaining water body. 285 The average value of  $\delta^{18}$ O and  $\delta$ D of soil water is between plant water and precipitation, but closer 286 to precipitation (Table 2), indicating that the soil is mainly recharged by precipitation. In the  $\delta^{18}$ O 287 and  $\delta D$  equations of precipitation, lake water, soil water, river water, plant water, and groundwater,  $R^2$  decreases in turn, and the linear relationship between  $\delta^{18}O$  and  $\delta D$  becomes smaller and smaller. 288



292



| 289 | These   | phenomena     | indicate | that  | different   | water  | bodies    | have   | different   | degrees  | of   | mutual   |
|-----|---------|---------------|----------|-------|-------------|--------|-----------|--------|-------------|----------|------|----------|
| 290 | comple  | ementarity. A | mong the | m, so | il water is | the mo | ost misci | ble an | d is suppli | ed by mu | ltip | le water |
| 291 | sources | 5.            |          |       |             |        |           |        |             |          |      |          |

Take  $\delta^{18}$ O for example, in terms of the variation coefficient, the absolute value of stable 293 isotopes (4.4) of the lake water is far higher than that of the other five water bodies (groundwater, 294 river water, soil water, precipitation, plant water: 0.08, 0.11, 0.37, 0.71, 2.54), reflecting the high

295 volatility of the lake water.

The correlation coefficient between  $\delta^{18}$ O and  $\delta$ D of lake water, groundwater, and plant water 296 297 is relatively low. The evaporation of lake water in summer is particularly intense, which leads to 298 the great difference in winter and summer. The stable isotopic value of lake water varies 299 significantly in different seasons, leading to a small correlation coefficient between them. The 300 main recharge source of groundwater and plant water is meteoric water. It takes a certain time for 301 meteoric water to converge into surface water and groundwater, leading to isotopic fraction, leading to a small correlation coefficient between  $\delta^{18}O$  and  $\delta D$  of the two water bodies. 302









305 Table 2 Comparison of water bodies  $\delta^{18}$ O and  $\delta$ D in the Shiyang River Basin from 2015 to

| 306 | 201 | 9 |
|-----|-----|---|
| 306 | 201 | ļ |

| Watar Trma        |         |                 |        | δD(‰)                    |        | ð     | 5 <sup>18</sup> O(‰) |                          |
|-------------------|---------|-----------------|--------|--------------------------|--------|-------|----------------------|--------------------------|
| water Type        | Min     | Min Max Average |        | Coefficient of variation | Min    | Max   | Average              | Coefficient of variation |
| Precipitation     | -238.62 | 75.41           | -54.63 | -0.85                    | -31.22 | 14.79 | -8.39                | -0.71                    |
| River Water       | -94.14  | -28.89          | -53.37 | -0.12                    | -13.98 | -3.44 | -8.62                | -0.11                    |
| Lake Water        | -57.84  | 13.56           | -18.43 | -1.11                    | -9.86  | 30.01 | 1.96                 | 4.4                      |
| Underground Water | -76.99  | -43.72          | -52.42 | -0.10                    | -10.44 | -6.57 | -8.80                | -0.08                    |
| Soil Water        | -102.95 | 11.81           | -59.39 | -0.20                    | -13.94 | 11.62 | -7.61                | -0.37                    |
| Plant Water       | -86.41  | 23.87           | -48.15 | -0.32                    | -11.43 | 37.37 | -2.27                | -2.54                    |

#### 307 8 Data availability

308 The data that support the findings of this study are openly available in Zhu (2021) at "Data sets





| 309 | of Stable | e water | isotope | e mo | nitoring | network of differ | rent water bo | odies in Shiy | ang Riv | ver Bas | sin, a |
|-----|-----------|---------|---------|------|----------|-------------------|---------------|---------------|---------|---------|--------|
| 310 | typical   | arid    | river   | in   | China    | (Supplemental     | Edition)",    | Mendeley      | Data,   | V1,     | doi:   |
| 311 | 10.17632  | 2/w5rp  | kwf99g. | 1.   |          |                   |               |               |         |         |        |

312 9 Summary and outlook

313 The data set provides a new observation and data basis for studying stable water isotopes in

314 different water bodies in China's inland river basins. Through these data, we can compare the

315 stable isotopes characteristics of different water bodies and study the correlation between different

316 water bodies, thus providing some guidance for the rational use of water resources in arid regions.

317 The data set will be updated year by year as observations are made. To improve this data set, we

318 encourage data set users to contact the author with suggestions.

319 Author contributions

Guofeng Zhu, and Yuwei Liu conceived the idea of the study; Peiji Shi, Wenxiong Jia and Junju Zhou set up observation system; Xinggang Ma, Hanxiong Pan,Yu, Zhang, Zhiyuan Zhang and Leilei Yong were responsible for field sampling; Zhigang Sun participated in the experiment; Kailiang Zhao and Yuanfeng Liu participated in the drawing; Yuwei Liu wrote the paper; All authors discussed the results and revised the manuscript.

**325 Competing interests** 





- 326 The authors declare no competing interests.
- 327 Acknowledgement
- 328 This research was financially supported by China's National Natural Science Foundation
- 329 (41867030, 41971036, 41661005). The authors thank the colleagues in the Northwest Normal
- 330 University for their help in fieldwork, laboratory analysis, and data processing.
- 331 References
- 332 Birks, S. J., Edwards, T. W., Biswas, N.C., Gibson, J. J., and McTavish, D.: Isotope climatology
- 333 of Canada: Insights from the first decade of CNIP operation (1997-2007), American
- 334 Geophysical Union, Spring Meeting, 2009.
- 335 Bowen, G. J., Kennedy, C. D., Henne, P. D., and Zhang, T. L.: Footprint of recycled water
- 336 subsidies downwind of Lake Michigan, Ecosph, 3, 1–16, 2012.
- 337 Chery, L., Garnier, J., and Petelet-Giraud, E.: Projet de mise en place d'une banque nationale
- dedonnées isotopiques. Etat d'avancement année, Orléans, France: BRGM (Bureau de
  Recherches Géologiques et Minières), 2004.
- 340 Craig, H.: Isotopic variation in meteoric waters, 133(3465), 1702-1703,
   341 https://doi.org/10.1126/science.133.3465.1702, 1961.





- 342 Dansgaard, W: Stable isotopes in pre cipitation , Tellus, 16, 436-468,
- 343 https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
- 344 Edwards, T.W.D., Birks, S. J., St Amour, N. A., Buhay, W. M., Mceachern, P., and Wolfe, B.:
- 345 Progress in isotope tracer hydrology in Canada. Hydrological Processes, 19, 1-1,
- 346 https://doi.org/10.1002/hyp.5766, 2010.
- Evaristo, J., Jasechko, S. and Mcdonnell, J.: Global separation of plant transpiration from
  groundwater and streamflow, Nature, 525, 91-91, 2015.
- 349 Gibson, J. J., Birks, S. J., Jeffries, D., and Yi, Y.: Regional trends in evaporation loss and water
- 350 yield based on stableisotope mass balance of lakes The Ontario Precambrian Shield surveys,
- 351 J. Hydrol, 544, 500–510, https://doi.org/10.1016/j.jhydrol.2016.11.016, 2017.
- 352 Kong, Y. I., Pang, Z. H., and Froehlich, K.: Quantifying recycled moisture fraction in precipitation
- 353 of an arid region using D-excess, Tellus B,65,19251,
   354 https://doi.org/10.3402/tellusb.v65i0.19251, 2013.
- 355 Kralik, M., Papesch, W., and Stichler, W. : Austrian Network of Isotopes in Precipitation (ANIP):
- 356 Quality assurance and climatological phenomenon in one of the oldest and densest networks
- in the world, Isotope Hydrology and Integrated Water Resources Management, 146-149,
- 358 2004.





| 359 | Kumar, B., Ra | ai, S. P., | Saravana, K | S. U., | Verma, | <b>S</b> , 1 | К., | and Pande, | N. | G.: | Isotopic | characteristics | s of |
|-----|---------------|------------|-------------|--------|--------|--------------|-----|------------|----|-----|----------|-----------------|------|
|-----|---------------|------------|-------------|--------|--------|--------------|-----|------------|----|-----|----------|-----------------|------|

- 360 Indian precipitation, Water Resources Research, 46, https://doi.org/ 10.1029/2009WR008532,
- 361 2010.
- 362 Li, J., Shi, P., Zhu, G., He, Y., Liu, Y., Tong, H., and Yang, L.: Characteristics of  $\delta^{18}$ O in
- precipitation and moisture transports in the central hexi corridor, Acta Scientiae
  Circumstantiae, 35, 947-955, https://doi.org/10.13671/j.hjkxxb.2014.0899, 2015.
- 365 Li, L., and Garzione, C. N.: Spatial distribution and controlling factors of stable isotopes in
- 366 meteoric waters on the tibetan plateau: implications for paleoelevation reconstruction, Earth
- 367 and Planetary Science Letters, 460, 302-314, https://doi.org/10.1016/j.epsl.2016.11.046,
  368 2017.
- 369 Liu, W. R., Peng, X. H., and Chen, X. M.: Determination of hydrogen and oxygen isotopes of
- 370 liquid water by laser isotope analyzer and correction of spectral pollution, Journal of Ecology,
- 371 32, 1181-1186, https://doi.org/CNKI:SUN:STXZ.0.2013-05-015, 2013.
- 372 Matthew, J., Currell, I. C., Dean, C., Bradley, D. H.: Recharge history and controls on
- 373 groundwater quality in the Yuncheng Basin, north China. Journal of Hydrology,
  374 385(1), 2010.
- 375 Meng, X. Q., Wen, X. F., Zhang, X. Y., Han, J. Y., Sun, X. M., Li, X. B.: Influence of organics on





- 376 the determination of  $\delta^{18}$ O and  $\delta$ D of plant leaves and stalk water by infrared spectroscopy,
- 377 Chin J Eco-agri, 20, 1359-1365, 2012, https://doi.org/ 10.3724/SP.J.1011.2012.01359, 2012.
- 378 Négrel, P., Petelet-Giraud, E., and Millot, R.: Tracing water cycle in regulated basin using stable
- 379  $\delta^{18}$ O- $\delta^{2}$ H isotopes: the ebro river basin (spain), Chemical Geology, 422, 71-81.
- 380 https://doi.org/10.1016/j.chemgeo.2015.12.009, 2016.
- Niu, B., Liu,X ,D., Jing,W ,M ., and Ma, J.: Analysis of temperature, precipitation and runoff
   characteristics in Dayekou basin of Qilian Mountains, Arid Land Geography, 37, 931–938,
- 383 2014.
- Penna, D., Oliviero, O., Assendelft, R., Zuecco, G., Meerveld, I. V., and Anfodillo, T.: Tracing the
  water sources of trees and streams: isotopic analysis in a small pre-alpine catchment,
  Procedia Environmental Sciences, 19, 106-112, https://doi.org/10.1016/j.proenv.2013.06.012,
- 387 2013.
- Song, C., Wang, G., Liu, G., Mao, T., Sun, X., and Chen, X.: Stable isotope variations of
  precipitation and streamflow reveal the young water fraction of a permafrost watershed,
  Hydrological Processes, 31, 935-947, https://doi.org/10.1002/hyp.11077, 2017.
- Speelman, E.N., Sewall, J.O., Noone, D., Huber, M., Heydt, A.V.D., and Damsté, J.S.: Modeling
   the influence of a reduced equator-to-pole sea surface temperature gradient on the





- distribution of water isotopes in the early/middle eocene, Earth and Planetary Science Letters,
- 394 298, 57-65, https://doi.org/10.1016/j.epsl.2010.07.026, 2010.
- 395 Steinman, B.A., Rosenmeier, M.F., Abbott, M.B., and Bain, D.J.: The isotopic and hydrologic
- 396 response of small, closed-basin lakes to climate forcing from predictive models: application
- to paleoclimate studies in the upper columbia river basin, Limnology and Oceanography, 55,
- 398 2231-2245, https://doi.org/10.4319/lo.2010.55.6.2231, 2010.
- 399 Sun, C. J., Chen, Y. N., Li, W. H., Li, X. G., and Yang, Y. H.: Isotopic time-series partitioning of
- 400 streamflow components under regional climate change in the Urumqi River, Northwest China,
- 401 Hydrol, Sci, J, 61, 1443–1459, https://doi.org/10.1080/ 02626667.2015.1031757, 2015a.
- 402 Sun, C. J., Chen, Y. N., Li, X. G., and Li, W. H.: Analysis on the stream flow components of the
- 403 typical inland river, Northwest China, Hydrol. Sci. J, 61, 970-981,
- 404 https://doi.org/10.1080/02626667.2014.1000914, 2015(b).
- 405 Sun, P., Gong, J., Jia, Z.Z., and Xie, Y. C.: Study on the spatiotemporal variation and inflfluence
- 406 factors of the Jiujin basin based on the size analysis, Geogr. Sci, 36, 902–909,
- 407 https://doi.org/10.13249/j.cnki.sgs.2016.06.013, 2016.





- 408 Sun, Z. G., Zhu, G. F., Zhang, Z. X., Xu, Y. X., Yong, L. L., Wan, Q. Z., Ma, H. Y., Sang, L. Y., and Liu,
- 409 Y. W.: Identifying surface water evaporation loss of inland river basin based on evaporation
- 410 enrichment model. Hydrological Processes, 2021.
- 411 Thompson, L.G., Yao, T., Mosleythompson, E., Davis, M.E., Henderson, K.A., and Lin, P.: A
- 412 high-resolution millennial record of the south asian monsoon from himalayan ice cores,

413 Science, 289, 1916-1920, https://doi.org/10.1126/science.289.5486.1916, 2000.

- 414 Timsic, S. and Patterson, W. P.: Spatial variability in stable isotope values of surface waters of
- 415 eastern canada and new england, Journal of Hydrology, 511, 594-604,
- 416 https://doi.org/10.1016/j.jhydrol.2014.02.017, 2014.
- 417 Tian, L. D., Yao, T. D., Numaguti, A., and Keqin, D.: Relation between stable isotope in monsoon
- 418 precipitationin southern Tibetan Plateau and moisture transport history, Sci. China Series
- 419 D-Earth Sci, 44, 267–273, https://doi.org/10.1007/BF02911996, 2001.
- 420 Vachon, R. W., White, J. W. C., Gutmann, E., Gutmann, E., and Welker, J. M.: Amount-weighted
- 421 annual isotopic ( $\delta^{18}$ O) values are affected by the seasonality of precipitation: A sensitivity
- 422 study, Geophysical Research Letters, 34, https://doi.org/10.1029/2007GL030547, 2007.
- 423 Vallet-Coulomb, C., Gasse, F., and Sonzogni, C.: Seasonal evolution of the isotopic composition
- 424 of atmospheric water vapour above a tropical lake: deuterium excess and implication for





- 425 water recyling, Geochimica Cosmochimica Acta. 72 (19), 4661–4674,
  426 https://doi.org/10.1016/j.gca.2008.06.025, 2008.
- 427 Wan, Q. Z., Zhu, G. F., Guo, H. W., Zhang, Y., Pan, H.X., Yong, L. L., and Ma, H, Y.: Influence of
- 428 Vegetation Coverage and Climate Environment on Soil Organic Carbon in the Qilian Mountains,
- 429 Scientific Reports, 9(1): 17623, https://doi.org/10.1038/s41598-019-53837-4, 2019.
- 430 Wang, X. Y., Li, Z. Q., Edwards, R., Ruozihan, T., and Zhou, P.: Characteristics of water isotopes
- 431 and hydrograph separation during the spring flflood period in Yushugou River basin, eastern
- 432 Tianshans, China, J, Earth Syst, Sci, 124, 115–124,
- 433 https://doi.org/10.1007/s12040-014-0517-x, 2015.
- 434 Wei, K., and Lin, R.: The influence of the monsoon climate on the isotopic composition of
- 435 precipitation in China, Geochimica, 1, 32-41,
  436 https://doi.org/CNKI:SUN:DQHX.0.1994-01-003, 1994.
- Wen, X., Wang, T., Xue, X., Duan, H. C., and Liao, J.: Spatial-temporal evolution of the oasis in
  shiyanghe river basin in 1975-2010, Journal of Desert Research, 249, 2013.
- 439 Xu, Q., Hoke, G.D., Liu-Zeng, J., Ding, L., Wang, W., and Yang, Y.: Stable isotopes of surface
- 440 water across the longmenshan margin of the eastern tibetan plateau, Geochemistry
- 441 Geophysics Geosystems, 15, 3416-3429, https://doi.org/10.1002/2014GC005252, 2015.





- 442 Yin, L., Hou, G., Su, X. et al. Isotopes ( $\delta D$  and  $\delta^{18}O$ ) in precipitation, groundwater
- 443 and surface water in the Ordos Plateau, China: implications with respect to
- 444 groundwater recharge and circulation. Hydrogeol J 19, 429–443.
- 445 https://doi.org/10.1007/s10040-010-0671-4, 2011.
- 446 Zannoni, D., Steen-Larsen, H. C., Rampazzo, G., Dreossi, G. L., Stenni, B., Bergamasco, A: The
- 447 atmospheric water cycle of a coastal lagoon: An isotope study of the interactions between
- 448 water vapor, precipitation and surface waters, Journal of Hydrology, 572, https://doi.org/
- 449 10.1016/j.jhydrol.2019.03.033, 2019.
- 450 Zech, C., Schöne, T., Illigner, J., Stolarczuk, N., Queißer, T., Köppl, M., Thoss, H., Zubovich, A.,
- 451 Sharshebaev, A., Zakhidov, K., Toshpulatov, K., Tillayev, Y., Olimov, S., Paiman, Z.,
- 452 Unger-Shayesteh, K., Gafurov, A., and Moldobekov, B.: Hydrometeorological Data from a
- 453 Remotely Operated Multi- Parameter Station network in Central Asia, Earth Syst. Sci. Data
- 454 Discuss, https://doi.org/10.5194/essd-2020-176, in review, 2020.
- 455 Zhang ,Y. H., Wu, Y. Q., Wen, X. H., and Su, J. P.: Application of environmental isotopes in
- 456 water cycle, Adv Water Sci, 5, 738–747, 2006.





- 457 Zhou, Y., Wei, W., Che, Q., Xu, Y., Wang, X., Huang, X., and Lai, R.:Bacillus pallidus sp. nov.,
- 458 isolated from forest soil, Int J Syst Evol Microbiol , 58, 2850–2854,
  459 https://doi.org/10.1099/ijs.0.014316-0, 2008.
- 460 Zhu, G. F., Wan, Q. Z., Yong, L. L., Li, Q. Q., Zhang, Z. Y., Guo, H. W., Zhang, Y., Sun, Z.G.,
- 461 Zhang, Z. X., and Ma, H. Y.: Dissolved organic carbon transport in the Qilian mountainous
- 462 areas of China: Hydrological Processes, 34, https://doi.org/10.1002/hyp.13918, 2020.
- 463 Zhu, G. F.: Data sets of Stable water isotope monitoring network of different water bodies in
- 464 Shiyang River Basin, a typical arid river in China(Supplemental Edition)", Mendeley Data,
- 465 V1, doi: 10.10.17632/w5rpxwf99g.1, 2021.
- 466 Zhang, L., Qin, X. G., Liu, J. Q., Mu, Y., An, S. K., L,C. H., and Chen, Y. C.: Characters of
- 467 Hydrogen and Oxygen Stable Isotope of Different Water Bodies in Huainan Coal Mining
  468 Area: Journal of Jilin University (Earth Science Edition), 45,
- 469 1502-1514,https://doi.org/10.13278/j.cnki.jjuese.201505205, 2015.
- 470 Christophe, L., Philippe, L., and François.: The hydrogen isotope composition of
- 471 seawater and the global water cycle.: Chemica Geology, 145(3),
  472 https://doi.org/10.1016/S0009-2541(97)00146-0, 1998.