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Abstract. 

We introduce the first large-scale catchment attributes and meteorological time series dataset of contiguous China. To develop 

the dataset, we compiled diverse data sources to generate basin-oriented features describing the catchment characteristics 10 

related to hydrological processes. The proposed dataset consists of catchment characteristics, including soil, land cover, climate, 

topography, geology, and 29-year meteorological time series (from 1990 to 2018). The meteorological variables include 

precipitation, temperature, evapotranspiration, wind speed, ground surface temperature, pressure, humidity and sunshine 

duration. We also derived a daily potential evapotranspiration time series based on a modified Penman’s equation. The studied 

catchments are 4875 catchments within contiguous China derived from digital elevation models. We analysed and organised 15 

the spatial variations of catchment characteristics into a series of maps. Correlation analysis between attributes was conducted. 

Compared to the previously proposed datasets, we derived more catchment characteristics resulting in 125 attributes, providing 

a complete description of the catchments. Besides, we propose Normal-Camels-YR, a hydrological dataset covering 102 basins 

of the Yellow River basin with normalized streamflow observations. The proposed dataset provides numerous opportunities 

for comparative hydrological research, such as examining the difference in hydrological behaviours across different 20 

catchments and building general rainfall-runoff modelling frameworks for many catchments instead of limited to a few. The 

dataset is freely available via http://doi.org/10.5281/zenodo.4704017 for community use. We will open-source the complement 

code for generating the dataset such that the user can generate meteorological series and catchment attributes for any watershed 

within contiguous China. 

1 Introduction 25 

Studying a large set of catchments often provides insights that cannot be obtained when looking at a single or few catchments 

(Coron, Andreassian et al. 2012, Kollat, Reed et al. 2012, Newman, Clark et al. 2015, Lane, Coxon et al. 2019). The hydrologic 

cycle consists of many sub-processes, including evaporation from the ocean, raindrop, interception, surface runoff, infiltration, 

etc. Catchment attributes such as soil characteristics, land cover characteristics and climate indices influence the water 

movement and storage in these sub-processes such that hydrologic behaviours can vary across catchments (van Werkhoven, 30 
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Wagener et al. 2008). The same hydrological model may not be applicable in another basin. However, by examining a large 

sample of catchments, it is possible for the hydrological model to learn the similarities and differences of hydrological 

behaviours across catchments. For example, prediction in ungauged basins is a challenging problem present in hydrology. The 

central challenge is how to extrapolate hydrologic information from gauged basins to ungauged ones. Solving the problem 

relies on understanding the similarities and differences between different catchments. However, regionally and temporally 35 

imbalanced observations bring a difficulty to the problem. For a hydrologic model to successfully simulate the ungauged areas, 

it must adapt itself to the different hydrologic behaviours present in different catchments. (Kratzert, Klotz et al. 2019) shows 

encoding catchment characteristics (e.g., soil characteristics, land cover, topography) into a data-driven model can teach model 

to behave differently responding the meteorological time series input based on different sets of static catchment attributes. 

 40 

(Silberstein 2006, Shen, Laloy et al. 2018, Nevo, Anisimov et al. 2019) pointed out that large sample hydrological datasets are 

the foundation and key of many hydrological studies. The term big hydrologic data refers to all data influencing the water 

cycle, such as the meteorological variables, infiltration characteristics of the study area, land use or land cover types, physical 

and geological features of the study area, etc. Many studies cannot be carried out without large-scale hydrologic data (Coron, 

Andreassian et al. 2012, Singh, van Werkhoven et al. 2014, Berghuijs, Aalbers et al. 2017, Gudmundsson, Leonard et al. 2019, 45 

Tyralis, Papacharalampous et al. 2019). For hydrological research, basin-orientated large sample datasets are of great 

significance. For example, comparative hydrology (de Araújo and González Piedra 2009, Singh, Archfield et al. 2014) focus 

on understanding how hydrological processes interact with the ecosystem, in particular, how hydrologic behaviours change 

under changes in the surface and sub-surface of the earth to determine to what extent hydrological predictions can be transferred 

from one area to another. Large-sample catchment attributes dataset provide opportunities for research studying 50 

interrelationships among catchment attributes. (Seybold, Rothman et al. 2017) studied the correlations between river junction 

angle with geometric factors, downstream concavity, and aridity. (Oudin, Andréassian et al. 2008) investigates the link between 

land cover and mean annual streamflow based on 1508 basins representing a large hydroclimatic variety. (Voepel, Ruddell et 

al. 2011) examines how the interaction of climate and topography influences vegetation response.  

 55 

Data-driven methods can best benefit from large-scale data. Data-driven approaches have shown great potential in various 

fields, transforming the applications in many industries (LeCun, Bengio et al. 2015). However, data-driven methods, especially 

the deep learning-based approaches, usually require high data volumes. Limited data will cause the over-fitting (Blumer, 

Ehrenfeucht et al. 1987, Abu-Mostafa, Magdon-Ismail et al. 2012) problem. Therefore, big hydrologic data is the fundamental 

support for the successful deployment of powerful data-driven strategies.  60 

 

Traditional hydrological models have some long standing challenges, such as the inability to capture hydrological processes’ 

mechanism complexity (Kollat, Reed et al. 2012), which is due to the structural limitations of the conceptual models. Data-

driven methods are proposed to overcome some existing obstacles. Data-driven strategies open a new way for researchers to 
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acquire knowledge transforming the research pattern from hypothesis-driven to data-driven. (Feng, Fang et al. 2020) proposed 65 

a flexible data integration fusing various types of observations to improve rainfall-runoff modelling. The research shows that 

combining different resources of data benefits predictions in regions with high autocorrelation in streamflow. (Wongso, 

Nateghi et al. 2020) developed a model predicting the state-level, per capita water uses in the United States, taking various 

geographic, climatic, and socioeconomic variables as input. The research also identified key factors associated with high water 

usage. (Mei, Maggioni et al. 2020) proposed a statistical framework for spatial downscaling to obtain hyper‐resolution 70 

precipitation data. The results show improvements compared with the original product. (Brodeur, Herman et al. 2020) applied 

machine learning techniques, namely bootstrap aggregation and cross-validation, to reduce overfitting in reservoir control 

policy search. (Ni and Benson 2020) proposed an unsupervised machine learning method to differentiate flow regimes and 

identify capillary heterogeneity trapping, showing the promise of machine learning methods for analysing large datasets from 

coreflooding experiments. (Legasa and Gutiérrez 2020) propose to apply Bayesian Network for multisite precipitation 75 

occurrence generation. The proposed methodology shows improvements for existing methods.  

 

World-wide data sharing has become a trend (Wickel, Lehner et al. 2007, Ceola, Arheimer et al. 2015, Blume, van Meerveld 

et al. 2018, Wang, Chen et al. 2020), and the amounts of hydrologic data available are ever-increasing. However, these data 

typically came from different providers and are compiled in various formats. For example, ASTGTM1 provides a global digital 80 

elevation model; GliM (Hartmann and Moosdorf 2012) includes rock types data globally; MODIS provides data products 

(Knyazikhin 1999, Didan 2015, Myneni, Knyazikhin et al. 2015, Running, Mu et al. 2017, Sulla-Menashe and Friedl 2018) 

describing features of the land and the atmosphere derived from remote sensing observations; (Yamazaki, Ikeshima et al. 2019) 

provides a global flow direction map at three arc-second resolution; HydroBASINS (Lehner 2014) provides basin boundaries 

at different scales globally; and GDBD (Masutomi, Inui et al. 2009) provides basin boundaries with geographic attributes; 85 

GLHYMPS (Gleeson, Moosdorf et al. 2014) provides a global map of subsurface permeability and porosity; SoilGrids250m 

(Hengl, Mendes de Jesus et al. 2017) dataset provides global numeric soil properties. Local government agencies often hold 

meteorological data such as precipitation and evaporation, and the amount of this data is also growing, however, data 

transparency has still been a problem (Viglione, Borga et al. 2010). The data mentioned above are rarely spatially aggregated 

to the catchment-scale, making it difficult for researchers to use these data. Properly pre-processed and formatted datasets on 90 

a large scale are of great importance for the hydrology research. Searching for appropriate data sources, pre-processing, and 

formatting often consumes a lot of researchers’ time. In some cases, individual research groups either do not know where to 

obtain the appropriate data or cannot properly process the data to receive the desired format.  

 

In summary, both data-driven and traditional hydrological research need diverse hydrologic datasets to learn the generalisation 95 

capability from one area to another. For a model to adapt to various behaviours in different catchments, the dataset must be 

 
1 https://asterweb.jpl.nasa.gov/gdem.asp  

https://doi.org/10.5194/essd-2021-71

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 21 April 2021
c© Author(s) 2021. CC BY 4.0 License.



4 
 

large enough to represent the complex heterogeneity presented in the natural hydrologic system. Although data sharing is being 

advocated in the community, it is usually difficult for the public to obtain certain data such as meteorological data and 

streamflow observations, either because there are not enough observations or because there are no open access permissions. 

 100 

Recently, there are efforts (Addor, Newman et al. 2017, Alvarez-Garreton, Mendoza et al. 2018, Chagas, Chaffe et al. 2020, 

Coxon, Addor et al. 2020) compiling different types of data sources to form large scale hydrological datasets. These four 

collected datasets cover the continental United States, Chile, Brazil, and Great Britain. (Addor, Do et al. 2020) reviewed these 

datasets and discussed the guidelines for producing large-sample hydrological datasets and the limitations of the currently 

proposed datasets. The CAMELS dataset has been used to support a lot of research. Based on CAMELS, (Kratzert, Klotz et 105 

al. 2018) built a Long Short-Term Memory (LSTM) network for rainfall-runoff modelling, showing that one model can predict 

the discharge for a variety of catchments. (Knoben, Freer et al. 2019) compared metrics used in hydrology based on simulations 

on many basins. (Tyralis, Papacharalampous et al. 2019) studied the relationship between the shape parameter and basin 

attributes based on the sizeable basin-oriented dataset.  

 110 

However, there is no large-scale compilation of hydrological datasets in contiguous China. An alternative is on a global scale, 

the HydroATLAS (Linke, Lehner et al. 2019) dataset. However, since it is on a world-wide scale, compared with other datasets 

constructed for regions, the dataset lacks many attributes and is not built according to the CAMELS standards. Besides, the 

climatic data is not up to date (1950-2000), and the derivation of climatic data lacks ground surface observations inputs, such 

that the data quality is not guaranteed.  115 

 

Therefore, researchers still need to do repetitive works to compile data from different sources such as obtaining historical 

meteorological data (temperature, rainfall, evapotranspiration) of a catchment in contiguous China. Inspired by (Addor, 

Newman et al. 2017), in this paper, we present a catchment scale hydrologic dataset compiling a wide variety of hydrological 

data, including basin topography, climate indices, land cover characteristics, soil characteristics and geological characteristics 120 

covering contiguous China. 

 

The proposed dataset is the first dataset providing catchments meteorological time series and catchments attributes of 

contiguous China. We compiled and named the dataset following most standards of the previously proposed datasets. Unlike 

CAMELS and CAMELS-CL, catchments in the proposed dataset are not selective. Instead, the dataset consists of all generated 125 

basins from the Digital Elevation Model (DEM), based on the Global Drainage Basin Dataset (Masutomi, Inui et al. 2009). 

The GDBD is derived at high-resolution (100m-1km) and has a good geographic agreement with existing global drainage 
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basin data in China2. Besides, an essential feature of the proposed dataset is that it provides a complete description of the 

catchment, rather than an abstraction. For example, both CAMELS and CAMELS-CL only report the most frequent and second 

most frequent catchment land cover and lithology types. Instead, the proposed dataset calculates the proportion of each land 130 

cover and lithology type for each catchment to serve data-driven research better. We also introduced many more climate 

characteristics and soil characteristics to support more diverse potential research.  

 

Researchers from different places can use the proposed dataset in conjunction with their streamflow data, simplifying 

organising and compiling various data resources, which is usually repetitive work. The proposed dataset is undoubtedly the 135 

most comprehensive catchment attributes and meteorological time series dataset in contiguous China and is suitable for multi-

purpose data-driven research. The dataset consists of basin boundaries in the shapefile format, computed catchment attributes 

of climate, land cover, soil, topography and lithology and 29-year meteorological time series. Table 1 compares the number of 

static attributes between CAMELS, CAMELS-BR, and the proposed dataset.  

 140 

The paper is organized as follows: Section 2 describes the study area. Section 3-7 describes the five classes of the computed 

catchment attributes. In section 3-7, each unit follows the same structure: first introduce the meaning and significance of each 

added feature and data source used, then describe the variables’ spatial variability if necessary. Section 8 describes the proposed 

catchment-scale meteorological forcing time series. Section 9 introduce the Normal-Camels-YR dataset, which provides 

normalized streamflow measurements for 102 catchments of Yellow River. Section 10 describes the code and data availability. 145 

Section 11 presents the concluding remark.  

 

In summary, our contributions are as follows: 

(1) The proposed dataset is the first large-scale dataset containing catchment-scale meteorological time series of contiguous 

China, which is the basis for many hydrological studies. 150 

(2) We present the first basin-oriented static attributes dataset in contiguous China. 

(3) We introduce several new catchment characteristics providing a complete description of the catchment compared with the 

previously proposed datasets such that the proposed dataset is prepared for potential hydrological studies. 

(4) We offer a self-contained dataset covering 102 basins of the Yellow River basin with normalized runoff observation 

supporting many potential studies. 155 

 
2 In this study, gauge streamflow measurements are not available in areas other than the Yellow River such that it is infeasible to specify a 

gauge location for generating the basin boundary for most of the areas. Streamflow measurements have strict redistribution policy; 

however, local research institutions have their streamflow measurements for hydrological research, the proposed dataset can used in 

conjunction with the streamflow data of researchers in various places. 
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(5) We will open-source the code for generating the dataset such that the user can generate a dataset for any watershed within 

contiguous China. 
Table 1 Number of computed attributes in CAMELS, CAMELS-BR and the proposed dataset. 

Attribute class CAMELS(A17) CAMELS-BR Ours 

Location and topography 9 11 12 

Geology 7 7 18 

Soil 11 6 54 

Land cover 8 11 22 

Climatic indices 11 13 17 

Human intervention indices not computed 4 2 

Total 46 52 125 

 
Table 2 Summary of basin daily discharge and forcing data in CAMELS, CAMELS-BR and the proposed dataset. 160 

Forcing data class CAMELS CAMELS-BR Ours 

Temperature available available available 

Precipitation  available available available 

Solar radiation available not available available 

Day length available not available not available 

Sunshine hours not available not available available 

Humidity available not available available 

Snow water equivalent available not available not available 

Wind velocity not available not available available 

Ground surface pressure available not available available 

Observed evaporation not available available available 

Potential evapotranspiration not available available available 

Streamflow available available partially available (see 

Section 9) 
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2 Study area 

  

(a) (b) 
Figure 1. Overview of the study area. The study area covers a wide range of latitude and longitude, from 18.2° N to 52.3° N, and 
from 76.0° E to 134.3° E. (a) The main geographical features map of contiguous China. China is mountainous; mountains and hills 
occupy two-thirds of the area. (b) The distribution map of the delimited catchments based on the ASTER DEM, the catchments 165 
studied are all catchment areas delimited from the DEM, covering contiguous China, with 4875 catchments, most of which are 2000 
to 5000 square kilometres. 

The study area corresponds to contiguous China, with diverse climate and terrain characteristics, spanning from 18.2° N to 

52.3° N and 76.0° E to 134.3° E.  Mountains, plateaus, and hills account for about two-thirds of areas of contiguous China, 

and the remaining are basins and plains. China’s topography is like a three-level ladder, high in the west and low in the east. 170 

The Qinghai-Tibet Plateau, the highest plateau globally, located in the west of contiguous China, with a mean elevation of 

over 4000 meters, is the first step of China’s topography. The Xinjiang region, the Loess Plateau, the Sichuan Basin, and the 

Yunnan-Guizhou Plateau to the north and east are the second step of China’s topography. The mean sea level here is between 

1000 to 2000 meters. Plains and hills dominate the east of the Daxinganling-Taihang Mountain to the coastline, the third step 

of contiguous China. The elevation of this step descends to 500-1,000 meters.  175 

 

In contiguous China, precipitation and temperature vary significantly in different places, forming a diverse climate 

environment. According to the Köppen Climate Classification System, from northwest to southeast, China’s climate gradually 

evolves from Cold desert (BWk) climate, Tundra (ET) climate, Warm and temperate continental (Dfa and Dwb) climate to 

Humid subtropical (Cwa) climate and Warm oceanic (Cfa) climate. From the perspective of temperature zones, there are tropical, 180 

subtropical, warm temperate, medium temperate, cold temperate and Qinghai-Tibet Plateau regions, and there are humid 

regions, semi-humid regions, semiarid regions, and arid regions from the perspective of wet and dry zones. Moreover, the 

same temperature zone can contain different dry and wet zones. Therefore, there will be differences in heat and wetness in the 
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same climate type. The complexity of the terrain makes the climate even more complex and diverse. Besides, China has a wide 

range of regions affected by the alternating winter and summer monsoons. Compared with other parts of the world at the same 185 

latitude, these areas have low winter temperatures, high summer temperatures, significant annual temperature differences, and 

concentrated precipitation in summer. The cold and dry winter monsoon occurs in Asia’s interior, far away from the ocean. 

Under its influence, winter rainfall in most parts of China is low, accompanied by low temperature. The summer monsoon is 

warm and humid, coming from the Pacific Ocean and the Indian Ocean. Under its influence, precipitation generally increases.  
Table 3 Summary table of catchment attributes available in the proposed dataset 190 

Attribute class Attribute name Description Unit Data source 

Climate indices 

(computed for 1 

Oct 1990 to 30 

Sep 2018) 

pet_mean mean daily pet (Penman–Monteith 

equation) 

mm d-1 (Subramanya 2013) 

evp_mean mean daily evaporation 

(observations) 

mm d-1 SURF_CLI_CHN_MUL_DAY3 

gst_mean mean daily ground surface 

temperature 

°C 

pre_mean mean daily precipitation mm d-1 

prs_mean mean daily ground surface pressure hPa 

rhu_mean mean daily relative humidity - 

ssd_mean mean daily sunshine duration h 

tem_mean mean daily temperature °C 

win_mean mean daily wind speed m s-1 

p_seasonality seasonality and timing of 

precipitation (estimated using sine 

curves to represent the annual 

temperature and precipitation 

cycles, positive [negative] values 

indicate that precipitation peaks in 

summer [winter], values close to 0 

indicate uniform precipitation 

throughout the year) 

- 

 
3 http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html  
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high_prec_freq frequency of high-precipitation 

days ( ≥  5 times mean daily 

precipitation) 

d yr-1 

high_prec_dur average duration of high-

precipitation events (number of 

consecutive days ≥ 5 times mean 

daily precipitation) 

d 

high_prec_timing season during which most high-

precipitation days (≥ 5 times mean 

daily precipitation) occur 

season 

low_prec_freq frequency of dry days (< 1mm d-1) d yr-1 

low_prec_dur average duration of dry periods 

(number of consecutive days < 1 

mm d-1) 

d 

low_prec_timing season during which most dry days 

(< 1 mm d-1) occur 

season 

frac_snow_daily fraction of precipitation falling as 

snow (for days colder than 0 °C) 

- 

p_seasonality seasonality and timing of 

precipitation, positive [negative] 

values indicate that precipitation 

peaks in summer [winter], values 

close to 0 indicate uniform 

precipitation throughout the year 

-  

Geological 

characteristics 

geol_porosity subsurface porosity - (Gleeson, Moosdorf et al. 2014) 

geol_permeability subsurface permeability (log-10) m2 

ig fraction of the catchment area 

associated with ice and glaciers 

- (Hartmann and Moosdorf 2012) 

pa fraction of the catchment area 

associated with acid plutonic rocks  

- 

sc fraction of the catchment area 

associated with carbonate 

sedimentary rocks 

- 
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su fraction of the catchment area 

associated with unconsolidated 

sediments 

- 

sm fraction of the catchment area 

associated with mixed sedimentary 

rocks 

- 

vi fraction of the catchment area 

associated with intermediate 

volcanic rocks 

- 

mt fraction of the catchment area 

associated with metamorphic 

- 

ss fraction of the catchment area 

associated with siliciclastic 

sedimentary rocks 

- 

pi fraction of the catchment area 

associated with intermediate 

plutonic rocks 

- 

va fraction of the catchment area 

associated with acid volcanic rocks 

- 

wb fraction of the catchment area 

associated with water bodies 

- 

pb fraction of the catchment area 

associated with basic plutonic 

rocks 

- 

vb fraction of the catchment area 

associated with basic volcanic 

rocks 

- 

nd fraction of the catchment area 

associated with no data 

- 

py fraction of the catchment area 

associated with pyroclastic 

- 

ev fraction of the catchment area 

associated with evaporites 

- 
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Land cover 

characteristics 

lai_max maximum monthly mean of the leaf 

area index (based on 12 monthly 

means) 

- (Myneni, Knyazikhin et al. 

2015) 

lai_diff difference between the maximum 

and minimum monthly mean of the 

leaf area index (based on 12 

monthly means) 

- 

ndvi_mean mean normalized difference 

vegetation index (NDVI) 

- (Didan 2015) 

root_depth_50 root depth (percentiles=50% 

extracted from a root depth 

distribution based on IGBP land 

cover) 

m Eq. 2 and Table 2 in (Zeng 2001) 

root_depth_99 root depth (percentiles=99% 

extracted from a root depth 

distribution based on IGBP land 

cover) 

m 

evergreen 

needleleaf tree 

catchment area fraction covered by 

evergreen needleleaf tree 

- (Sulla-Menashe and Friedl 2018) 

evergreen 

broadleaf tree 

catchment area fraction covered by 

evergreen broadleaf tree 

- 

deciduous 

needleleaf tree 

catchment area fraction covered by 

deciduous needleleaf forests 

- 

deciduous 

broadleaf tree 

catchment area fraction covered by 

deciduous broadleaf tree 

- 

mixed forest catchment area fraction covered by 

mixed forest 

- 

closed shrubland catchment area fraction covered by 

closed shrubland 

- 

open shrubland catchment area fraction covered by 

open shrubland 

- 

woody savanna catchment area fraction covered by 

woody savanna 

- 
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savanna catchment area fraction covered by 

savanna 

- 

grassland catchment area fraction covered by 

grassland 

- 

permanent wetland catchment area fraction covered by 

permanent wetland 

- 

cropland catchment area fraction covered by 

cropland 

- 

urban and built-up 

land 

catchment area fraction covered by 

urban and built-up land 

- 

cropland/natural 

vegetation 

catchment area fraction covered by 

cropland/natural vegetation 

- 

snow and ice catchment area fraction covered by 

snow and ice 

- 

barren catchment area fraction covered by 

barren 

- 

water bodies catchment area fraction covered by 

water bodies 

- 

Topography, 

location, and 

Human 

intervention 

basin_id drainage basin identifiers - (Masutomi, Inui et al. 2009) 

pop population people 

pop_dnsty  population density 

people 

km-2  

lat mean latitude  °N 

lon mean longitude °E 

elev mean elevation M 

area catchment area km2 

slope mean slope m km-1 (Horn 1981) 

length  The length of the mainstream 

measured from the basin outlet to 

the remotest point on the basin 

boundary. The mainstream is 

identified by starting from the basin 

km (Subramanya 2013) 
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outlet and moving up the 

catchment. 

form factor catchment area / (catchment 

length)2 

- 

shape factor (catchment length)2 / catchment 

area 

- 

compactness 

coefficient 

perimeter of the catchment / 

perimeter of the circle whose area 

is that of the basin 

- 

circulatory ratio catchment area / area of circle of 

catchment perimeter 

- 

elongation ratio diameter of circle whose area is 

basin area / catchment length 

- 

Soil  pdep soil profile depth cm (Shangguan, Dai et al. 2013) 

clay percentage of clay content of the 

soil material 

% 

sand percentage of sand content of the 

soil material 

% 

por porosity cm3 

cm-3 

silt percentage of silt content of the soil 

material 

% 

grav rock fragment content % 

som soil organic carbon content % 

log_k_s4 log-10 transformation of saturated 

hydraulic conductivity 

cm d-1 (Dai, Xin et al. 2019) 

theta_s4 saturated water content cm3 

cm-3 

tksatu4 thermal conductivity of unfrozen 

saturated soils 

W m-1 

K-1 

bldfie4 bulk density kg m-3 

 
4 The data source contains multi-layer soil data, soil characteristics for all layers are determined. 
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cecsol4 cation-exchange capacity cmol+ 

kg-1 

(Hengl, Mendes de Jesus et al. 

2017) 

orcdrc4 organic carbon content g kg-1 

phihox4 pH in H2O 10-1 

bdticm depth to bedrock cm 

 

3 Climate indices 

Meteorological raw data was provided by the China Meteorological Data Network3, released as the 

SURF_CLI_CHN_MUL_DAY (V3.0) dataset, which provides complete variable types and the longest period (1951-2018) of 

meteorological time series of China. The SURF_CLI_CHN_MUL_DAY product includes site observations of pressure, 195 

temperature, relative humidity, precipitation, evaporation, wind speed, sunshine duration, and ground surface temperature. The 

summary is presented in Table 4. The Inverse distance weighting method is used for interpolating the site observations. Climate 

indices are then obtained by taking the average of the catchment-scale extraction from the interpolated raster. To ensure data 

quality, we chose the latter 29-year record (from 1990 to 2018) to construct the dataset since sites’ distribution was sparse in 

the early days (Fig. 2). We computed more climatic characteristics compared with other datasets (Table 2). These 200 

characteristics have critical potential effects on the hydrological processes; for example, wind speed can affect actual 

evapotranspiration. To be consistent with the CAMELS (Addor, Newman et al. 2017), we also determined all climatic 

attributes (Woods 2009) in the CAMELS dataset. The proposed dataset provides more meteorological variables and longer 

time series (1990-2018) than CAMELS and CAMELS-CL. A summary of the computed Climate indices is presented in Table 

3. The national distribution of meteorological attributes of catchments is shown in Fig. 3. 205 

   

(a) (b) (c) 
Figure 2. Overview of changes in the number and distribution of meteorological stations in China. (a) The number of meteorological 
stations varies with the year. There were only 119 stations in 1951. This number increased rapidly from 1951 to the early 1960s, and 
the number of stations remained stable after 2000. (b) Distribution map of China’s meteorological stations in 1951. (c) Distribution 
map of China’s meteorological stations in 2000. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 
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(m) (n) (o) 

   
(p) (q) (r) 

Figure 3. Maps of climatic indices over contiguous China. The histograms and bar plots indicate the number of catchments (out of 210 
4875) in each bin or category. 

The instruments for measuring evaporation were updated from 2000 to 2005. Early observations can be multiplied by a 

correction coefficient to approximate the new tools. However, the coefficient varies across stations making the approach 

infeasible. To complement this, we calculated potential evapotranspiration (PET) based on a modified Penman’s Equation (see 

Appendix) and other observed meteorological variables, providing a series of consistent evapotranspiration estimation. 215 

 

The average daily precipitation in contiguous China is highest in the southeast and lowest in the northwest. It is also higher in 

the coastal areas than in the interior land. Ground surface pressure is positively correlated with elevation, the highest in the 

Qinghai-Tibet Plateau and the lowest in the Southeast Plain. The average relative humidity is generally positively correlated 

with precipitation; they are also higher in some forested areas, such as the Taihang Mountains and Daxingan Mountains. The 220 

Qinghai-Tibet Plateau has the lowest average temperature, and the southern coastal area has the highest. A distinctive feature 

of the distribution of wind speed is the high wind speed in mountainous areas. The highest wind speed occurs in the southeast 

coastal area (> 6 meters per second). Refer to Section 8 for a detailed description of the proposed catchment-scale 

meteorological time series dataset of contiguous China. 
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4 Geology 225 

To describe the lithological characteristics of each catchment, we used the same two global datasets as CAMELS, Global 

Lithological Map (GLiM) (Hartmann and Moosdorf 2012) and GLobal HYdrogeology MaPS (GLHYMPS) (Gleeson, 

Moosdorf et al. 2014). Figure 4 presents the results. 

 

GLiM provides a high resolution global lithological map assembled from existing regional geological maps; it has been widely 230 

used for constructing datasets (e.g. SoilGrids250m (Hengl, Mendes de Jesus et al. 2017)). However, the data quality of GLiM 

can vary in different spatial locations depending on the quality of the original regional geological maps. GLiM consists of 

three levels, the first level contains 16 lithological classes, and the additional two levels describe more specific lithological 

characteristics. For contiguous China, the compiled regional data sources (China 1991, Xinjiang 1992, Survey 2001) have 

slightly lower resolutions than the GLiM target resolution (1:1 000 000). However, for a basin-scale study with a mean basin 235 

area of over 2000 km2, the classification accuracy should satisfy most applications. 

   
(a) (b) (c) 

   

(a) (b) (c) 
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(a) (b)  

Figure 4. Maps of geological characteristics over contiguous China. The histograms indicate the number of catchments (out of 4875) 
in each bin. 

Compared to CAMELS and CAMELS-CL, one design consideration of the proposed dataset is that it should be more prepared 

for the data-driven research, such that we aim to generate as many types of catchment-scale data as possible since advanced 240 

data-driven methods can learn the representation of inputs automatically. To this end, we determined and recorded each 

lithological class’s contribution to the catchment instead of recoding just the first and second most frequent classes. The GLiM 

is represented by 1,235,400 polygons; the polygons are converted to raster format for the basin-scale lithological type statistics.  

 

GLobal HYdrogeology MaPS (GLHYMPS) provides a global estimation of subsurface permeability and porosity, two critical 245 

characteristics for the soils’ hydrological classification. Porosity and permeability influence an area’s infiltration capacity. Soil 

with high porosity is likely to contain s amounts of water, and high permeable soil transmits water relatively quickly. Based 

on the high-resolution map of GLiM, which can differentiate fine and coarse-grained sediments and sedimentary rocks, 

GLHYMPS determined subsurface permeability depending on the different permeabilities of rock types. For the proposed 

dataset, we calculated the catchment arithmetic mean for porosity. Followed (Gleeson, Smith et al. 2011), the logarithmic scale 250 

geometric mean is used for representing subsurface permeability. The summary of geological characteristics is present in Table 

3. 

 

Porosity and permeability have similar distributions as geological classes. These two characteristics are highly dependent on 

rock properties, unconsolidated sediments, mixed sedimentary rocks, siliciclastic sedimentary rocks, carbonate sedimentary 255 

rocks, and acid plutonic rocks are the five most common geological classes in contiguous China. Unconsolidated sediment is 

the most common rock type in contiguous China, dominating 31.9% of catchments; it extends from Xinjiang to the inland of 

the northeast and the coastal area surrounding the Bohai Sea, due to the high proportion of unconsolidated sediments present 

in the rock, these areas typically have high permeability and medium porosity. Mixed sedimentary rocks are the second most 

common rock type in contiguous China, accounting for 20.3% of catchments, it dominated the southern Qinghai-Tibet Plateau, 260 

western Yunnan-Guizhou Plateau, and northern Inner Mongolia. These areas typically have high porosity and low permeability. 

Siliciclastic sedimentary rocks dominate 17.7% of basins, mainly distributed in the northern part of the Qinghai-Tibet Plateau 
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and the junction of the Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau; there are also some distributions in the eastern 

inland. These areas have low subsurface permeability and high subsurface porosity. Amongst all catchments, 9.8% of 

catchments are dominated by carbonate sedimentary rocks. Carbonate sedimentary rocks are mainly located in eastern Yunnan 265 

and northern Qinghai-Tibet Plateau. Acid plutonic rocks are typically distributed in the mountains surrounding the inland 

northeast, namely the Daxinganling Mountain and the hills in southern Guangdong and southwestern Guangxi. They are also 

distributed along the Brahmiputra river in the south part of the Qinghai-Tibet Plateau. The distribution of Acid plutonic rocks 

is relatively scattered; there are many isolated Acid plutonic rocks distributions in different locations of contiguous China, 

accompanied by medium permeability and high porosity.  270 

 

In summary, the types of rocks in contiguous China are dominated by unconsolidated sediments and mixed sedimentary rocks. 

In 33.86% of the catchments, the dominant rock types occupy less than 50% of the catchment areas, and only 16.8% basins 

are having a dominant rock type with an area fraction greater than 90%. Amongst 4875 basins, 9.4% of basins have prevalent 

rock types wholly occupying the area. 275 

5 Landcover 

 
  

(a) (b) (c) 

   
(d) (e) (f) 
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(g)  
Figure 5. Maps of land cover characteristics over contiguous China. The histograms indicate the number of catchments (out of 4875) 
in each bin.  

We selected two indicators to characterize vegetation density and growth on the surface: Normalized difference vegetation 

index (NDVI) and Leaf area index (LAI). NDVI is an indicator with a valid range of -0.2 to 1, assessing whether the area being 280 

observed contains live green vegetation or the plants’ health. However, NDVI is just a qualitative measurement of the 

vegetation density; it cannot provide a quantitative estimate of the vegetation density in the area. Moreover, NDVI often 

provides inaccurate vegetation density measurements, and only long-term measurement and comparison can ensure its 

accuracy. NDVI alone is not enough to estimate the state of plants in an area. Therefore, we have selected another indicator, 

LAI, to supplement the deficiencies of NDVI.  285 

 

LAI is defined as the total needle surface area per unit ground area and half of the entire needle surface area per unit ground 

surface area. It is a quantifiable value. It is functionally related to many hydrological processes like water interception (van 

Wijk and Williams 2005). (Buermann, Dong et al. 2001) verifies the validity of LAI used to characterize vegetation growth. 

The data sources used are The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (Didan 290 

2015) for NDVI and Moderate Resolution Imaging Spectroradiometer (MODIS) (Myneni, Knyazikhin et al. 2015) for LAI. 

Followed (Addor, Newman et al. 2017), we determined maximum monthly LAI as an indicator characterising vegetation 

interception capacity and the maximum evaporative capacity and the difference between the maximum and minimum monthly 

LAI representing LAI’s temporal variations.  

 295 

Land cover classification refers to segmenting the ground into different categories based on remote sensing images. The Terra 

and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type provides different results 

depending on the classification system used. Annual International Geosphere-Biosphere Programme (IGBP) classification is 

used for building the dataset, which is derived by the c4.5 decision tree algorithm. The IGBP classification system was 

formulated by the IGBP Land Cover Working Group in 1995, resulting in 17 categories of land cover types (Belward, Estes 300 

et al. 1999). (Friedl, Sulla-Menashe et al. 2010) compared the IGBP data of MODIS with other reference dataset and concluded 

that the MODIS classification of IGBP has an accuracy of 75%. We determined the fraction of each land cover class for each 

basin based on the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type 
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(Sulla-Menashe and Friedl 2018), which differentiates our dataset from CAMELS and CAMELS-CL (only calculated the 

proportion of the dominant types). 305 

 

Followed (Addor, Newman et al. 2017), we also computed the average rooting depth (50% and 90%) for each catchment based 

on the IGBP classification using a two-parameter method (Zeng 2001). The root depth distribution of vegetation affects the 

ground’s water holding capacity and the topsoil layer’s annual evapotranspiration (Desborough 1997). Many models use root 

depth as an essential parameter to characterize soil moisture absorption capacity. (Zeng 2001) developed a two-parameter 310 

asymptotic equation for estimating root depth distribution; the root depth distribution is global, derived based on the IGBP 

classification avoiding the problem of significantly different root distributions in various research. Figure 5(g) shows root 

depth distributions of different vegetation types, based on (Zeng 2001)‘s method. The 90% root depth is usually considered to 

be “rooting depth”, among the 17 categories of IGBP, cropland has the smallest rooting depth, and open shrubland has the 

largest.  The 90% root depth of all vegetation is less than 2 meters. The national distribution of catchments soil characteristics 315 

is shown in Fig. 5. 

6 Location and topography 

The catchments’ boundary files are obtained from the global drainage basin dataset (Masutomi, Inui et al. 2009). The PDBD 

dataset was derived from digital elevation models (DEMs) with a high-resolution (100m-1km), and the errors were corrected 

by either automatic methods or manually. Additionally, PDBD also provides population and population density estimates for 320 

catchments, and these two indicators are also included in our dataset as a measure of human intervention. Global Runoff Data 

Centre (Center 2005) discharge gauging stations were used for referencing the derived basins. In contiguous China, PDBD has  

a high average match area rate (AMAR) and good geographic agreement with existing global drainage basin data. Based on 

the high-quality dataset, precise geographic and topographic information can be derived. See Fig. 6 for a summary. 

 325 

The topography attributes of each catchment are determined based on the ASTGTM product retrieved from 

https://lpdaac.usgs.gov, maintained by the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) at 

the USGS Earth Resources Observation and Science (EROS) Center. 
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(a) (b) (c) 

   
(d) (e) (f) 

  

 

(g) (h)  
Figure 6. Maps of topographic characteristics over contiguous China. The histograms indicate the number of catchments (out of 330 
4875) in each bin. 

The CAMELS dataset just provides two parameters (two area estimates) for describing the catchment shape; however, the 

physical characteristics of a catchment can affect the runoff volume and the runoff hydrograph of the catchment under a storm. 

To provide a complete description of the catchment shape, we computed several geometrical parameters of the catchment 

related to the runoff process, including catchment form factor, shape factor, compactness coefficient, circulatory ratio and the 335 

elongation ratio (Subramanya 2013). A summary of the location and topography attributes can be found in Table 3. 
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7 Soil 

The proposed dataset has a total of 54 soil attributes (Table 3) derived from (Hengl, Mendes de Jesus et al. 2017), (Dai, Xin et 

al. 2019) and (Shangguan, Dai et al. 2013). The summary result is shown in Fig. 7. Five categories of soil characteristics (pH 

in H2O, organic carbon content, depth to bedrock, cation-exchange capacity, and bulk density) are determined from SoilGrids. 340 

SoilGrids (Hengl, Mendes de Jesus et al. 2017) provides global predictions for soil properties including organic carbon, bulk 

density, cation exchange capacity (CEC), pH, soil texture fractions and coarse fragments by fusing multiple data sources 

including MODIS land products, SRTM DEM, climatic images and global landform and lithology maps at the 250m resolution. 

SoilGrids made predictions based on machine learning algorithms and many covariates layers primarily derived from remote 

sensing data. SoilGrids has soil characteristics for several soil depths.  345 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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(j) (k) (l) 

Figure 7. Maps of soil characteristics over contiguous China. The histograms indicate the number of catchments (out of 4875) in 
each bin. 

Unlike CAMELS, whose reported results are obtained by a linear weighted combination of the different soil layers, and 

CAMELS-BR, whose products are soil characteristics at a depth of 30cm. We computed soil characteristics at all soil layers 350 

provided by SoilGrids such that advanced models can learn directly from the raw inputs. 

 

To be consistent with CAMELS, we also determined saturated water content and saturated hydraulic conductivity (Dai, Xin 

et al. 2019). We also introduced thermal conductivity of unfrozen saturated soils (Dai, Xin et al. 2019). (Dai, Xin et al. 2019) 

provides a global estimation of soil hydraulic and thermal parameters using multiple Pedotransfer Functions (PTFs) based on 355 

SoilGrids. Based on the SoilGrids and GSDE (Shangguan, Dai et al. 2014) datasets, (Dai, Xin et al. 2019) produced six soil 

layers with a spatial resolution 30×30 arc-second. The vertical resolution of (Dai, Xin et al. 2019) is the same as the SoilGrids, 

with six intervals of  0–0.05 m, 0.05–0.15 m, 0.15–0.30 m, 0.30–0.60 m, 0.60–1.00 m, and 1.00–2.00 m. Same as the methods 

applied to SoilGrids, we determined and records catchment soil characteristics for all these layers. 

 360 

To provide even more complete description of the soil, we determined seven more soil characteristics (Shangguan, Dai et al. 

2013) including soil profile depth, porosity, clay/silt/sand content, rock fragment, and soil organic carbon content. (Shangguan, 

Dai et al. 2013) provides physical and chemical attributes of soils derived from 8979 soil profiles at 30×30 arc-second 

resolution, the polygon linkage method was used to derive the spatial distribution of soil properties. The profile attribute 

database and soil map are linked under a framework avoiding uncertainty in taxon referencing.  365 

 

Depth to bedrock controls many physical and chemical processes in soil. The distribution of depth to bedrock in contiguous 

China is characterised by (i) low in the mountainous areas, such as Yunnan province and Chongqing City; (ii) high in barren 

areas, e.g. North and Northwest China. The introduced soil pH value is crucial since it influences many other physical and 

chemical soil characteristics. The spatial variability of soil pH in contiguous China is characterised by (i) soils in southern 370 

contiguous China are acid to strongly acid; (ii) soils in northern China are natural or alkaline; (iii) soils in north-eastern forested 

areas are also acid (pH < 7.2). Cation exchange capacity can be seen as a measure of soil fertility since it measures how much 
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nutrient the soil can store such that it influences the growth of the vegetations. Cation exchange capacity is positively correlated 

with soil organic matter content and clay content, which Cation exchange capacity is generally low in sandy and silty soils. 

The spatial variability of Cation exchange capacity in contiguous China is characterised by (i) high in peat and forested areas 375 

in Qinghai-Tibet Plateau, central and northeast China (ii) The Cation exchange capacity in the desert area such as the northwest 

is extremely low. Soil hydraulic and thermal properties are greatly affected by soil organic matter (SOM). Soil organic matter 

has a similar distribution to the cation exchange capacity: high in the peat and forested areas such as northeast China and low 

in the north and northwest.  

8 Meteorological time series 380 

Table 4 Summary table of catchment meteorological time series available in the proposed dataset 

Variable Description Unit 

prs catchment daily averaged ground pressure hPa 

tem catchment daily averaged temperature at 2 m above ground °C 

rhu catchment daily averaged relative humidity - 

pre catchment daily averaged precipitation mm d-1 

evp catchment daily averaged evaporation measured by ground instruments mm d-1 

win catchment daily averaged wind speed at 2 m above ground m s-1 

ssd catchment daily averaged sunshine duration h d-1 

gst  catchment daily averaged ground surface temperature °C 

pet catchment daily averaged potential evapotranspiration determined by Penman’s equation (see 

Appendix A) 

mm d-1 

 

There have been many studies based on SURF_CLI_CHN_MUL_DAY in China (Liu, Xu et al. 2004, Xu, Gao et al. 2009, 

Huang, Han et al. 2016, Liu, Zheng et al. 2017), such as trend analysis of the pan evaporation (Liu, Yang et al. 2010). Still, 

there has not yet been a large-scale basin-oriented meteorological time series dataset in contiguous China. Researchers still 385 

need to do repeated works to extract historical meteorological data from the SURF_CLI_CHN_MUL_DAY dataset for the 

research. For the first time, we release a catchment-scale meteorological time series dataset. We will also open-source the code 

for researchers to generate any catchment’s meteorological time series within contiguous China. The basin-oriented dataset 

provides meteorological time series for 4875 basins from 1990 to 2018 based on the China Meteorological Data Network. 

Meteorological time series includes pressure, temperature, relative humidity, precipitation, evaporation, wind speed, sunshine 390 

duration, ground surface temperature and potential evapotranspiration (see Table 4 for a summary).  
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The meteorological time series data from 1951 to 2010 is derived based on the "1951-2010 China National Ground Station 

Data Corrected Monthly Data File Basic Data Collection" data construction project. Other data include monthly reported data 

to the National Meteorological Information Centre by the provinces, and hourly and daily data uploaded by automatic ground 395 

stations in real-time. The SURF_CLI_CHN_MUL_DAY dataset is quality controlled, the quality and completeness of each 

variable are significantly improved compared to the previous similar products. M the development of the dataset, missing data 

were filled by interpolating its nearest stations. 

 

Figure 2 presents the variation of the distribution of the observation sites. The start date of the recording is 1951, but because 400 

the early site distribution is sparse, we only used records from 1990 to 2018 to construct the dataset to ensure the data quality. 

The interpolation method used is the Inverse distance weighting since it shows better performance than other comparators. 

Catchment-scale raster is extracted from the interpolated national raster using the open-source rasterio 5 package. For all 

variables, we take the arithmetic mean on the extracted catchment raster as the catchment mean. Potential evapotranspiration 

(PET) is estimated based on Penman’s Equation and other catchment meteorological variables. 405 

9 Normal Camels YR – Normalized Catchment attributes and meteorology for Yellow River basin 

Apart from the dataset providing the catchment attributes and meteorological forcing for contiguous China, we also offer a 

self-contained dataset covering the Yellow River basin with normalized streamflow measurements. The streamflow data are 

normalized to have zero mean and a standard deviation of 1 for each basin. The Normal-Camels-YR dataset is designed to 

support machine learning and deep learning research related to hydrology. In particular, fifty-four watersheds are less affected 410 

by human activities (selection is based on the Global Reservoirs and Dam databases (GRanD) (Lehner, Liermann et al. 2011) 

which provides the locations of reservoirs and dams globally), which makes them suitable for rainfall-runoff modelling 

research. For most machine learning and deep learning algorithms, data normalization will not affect model performance (e.g., 

neural network-based and tree-based algorithms). Besides, other research, such as trend analysis, can also be carried out. The 

Normal-Camels-YR dataset is self-contained to fully describe the Yellow River basin and is particularly helpful for the 415 

hydrology research of the Yellow River. 

 

During the dataset development, basins with too few observations are removed, resulting in discontinuous basin identifiers. 

Normal-Camels-YR covers 102 gauges in the Yellow River basin, providing basin boundary shapefiles, static attributes and 

normalized streamflow measurements for each basin. The covered basins have areas ranging from 134 to 804,421 square 420 

kilometres. The time resolution of streamflow measurements is seven days, and the mean length of records of the streamflow 

measurements is 684, which means the mean period of the streamflow measurements for each basin is over 13 years. 

 
5 https://github.com/mapbox/rasterio   
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Meteorological variables included in Normal-Camels-YR is slightly different; it introduced daily maximum and minimum for 

some variables (Table 5).  

 425 
Table 5 Meteorological variables provided in Normal-Camels-YR, the time series length is 22 years (1999-2020) 

Attribute name Description Unit 

evp catchment daily averaged evaporation (observations) 0.1 mm d-1 

gst_mean catchment daily averaged ground surface temperature 0.1 °C 

gst_min catchment daily minimum ground surface temperature 0.1 °C 

gst_max catchment daily maximum ground surface temperature 0.1 °C 

pre catchment daily averaged precipitation 0.1 mm d-1 

prs_mean catchment daily averaged ground surface pressure 0.1 hPa 

prs_max catchment daily maximum ground surface pressure 0.1 hPa 

prs_min catchment daily minimum ground surface pressure 0.1 hPa 

rhu catchment daily averaged relative humidity - 

ssd catchment daily averaged sunshine duration 0.1 h 

tem_mean catchment daily averaged temperature 0.1 °C 

tem_min catchment daily minimum temperature 0.1 °C 

tem_max catchment daily maximum temperature 0.1 °C 

win_max catchment daily maximum wind speed 0.1 m s-1 

win_mean catchment daily averaged wind speed 0.1 m s-1 

 

10 Data availability and software packages used. 

The proposed dataset is freely available at http://doi.org/10.5281/zenodo.4704017. The files provided are (i) several separate 

files containing 120+ catchments attributes, (ii) the daily meteorological time series in a zip file, (iii) the catchment boundaries 430 

used to compute the attributes and extract the time series, (iv) the Normal-Camels-YR dataset, (v) an attribute description file 

and (v) a readme file. The code used to generate the dataset is mainly based on several publicly available packages: rasterio, 
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gdal6, pyshp7, geopandas8, fiona9, and xarray10. Complement code for generating any watershed’s dataset will be released 

soon. 

11 Conclusion 435 

The dataset proposed in this paper provides a novel dataset for hydrological research in contiguous China. In the study area, 

there is no catchment attributes dataset has been proposed before, either a catchment-scale time series meteorological dataset. 

All catchments delaminated from the DEM are studied, covering contiguous China. The dataset includes daily meteorological 

forcing time-series data including precipitation, temperature, potential evapotranspiration, wind, ground surface temperature, 

pressure, humidity, sunshine duration and derived potential evapotranspiration of 4875 catchments. The proposed time series 440 

dataset is derived based on the quality-controlled site observation dataset, SURF_CLI_CHN_MUL_DAY. We will also release 

the complement code for generating any shapefile’s meteorological time series within contiguous China based on the 

SURF_CLI_CHN_MUL_DAY dataset (freely available for Chinese researchers). The dataset has longer time series (from 

1990 to 2018) and more meteorological variables than the previously proposed datasets. The dataset also includes 120+ 

catchment attributes, including soil, land cover, geology, climate indices and topography for each catchment.  We produced a 445 

series of maps depicting the catchment attributes distributions in contiguous China. These maps present regional changes of 

various features; we also describe the relationships between them. The integration of multiple data sources into one dataset at 

a catchment-scale dramatically simplifies the data compilation process in research. Based on the dataset, we can test hypotheses 

and formulate valid conclusions under various conditions, not just limited to a few specific locations. Together with the 

Normal-Camels-YR dataset, the proposed dataset can help explore how different basin characteristics influence hydrological 450 

behaviours, learn the migration of hydrological behaviours between different basins, and to develop general frameworks for 

large-scale model evaluation and benchmarking in China. 

Appendix A: Modified Penman’s equation 

Penman’s equation (Subramanya 2013), incorporating some modifications to the original formula, is: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐴𝐴𝐻𝐻𝑛𝑛 + 𝑃𝑃𝑎𝑎γ
𝐴𝐴 + γ

 455 

 
6 https://github.com/OSGeo/gdal  
7 https://github.com/GeospatialPython/pyshp  
8 https://github.com/geopandas/geopandas  
9 https://github.com/Toblerity/Fiona   
10 https://github.com/pydata/xarray  
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where 𝑃𝑃𝑃𝑃𝑃𝑃 is the daily potential evapotranspiration in mm per day; 𝐴𝐴 is the slope of the saturation vapour pressure (𝑒𝑒𝑤𝑤) vs 

temperature (𝑡𝑡) curve at the mean air temperature, in mm of mercury per Celsius; 𝐻𝐻𝐻𝐻 is the net radiation in mm of evaporable 

water per day; 𝑃𝑃𝑎𝑎 is a parameter including wind speed and saturation deficit; γ is the psychrometric constant = 0.49 mm of 

mercury per Celsius. 

 460 

The relationship between 𝑒𝑒𝑤𝑤 and 𝑡𝑡 is defined as: 

𝑒𝑒𝑤𝑤 = 4.584 exp �
17.27𝑡𝑡

237.3 + 𝑡𝑡
� 

The following equation estimates the net radiation: 

𝐻𝐻𝑛𝑛 = 𝐻𝐻𝑎𝑎(1 − 𝑟𝑟) �𝑎𝑎 + 𝑏𝑏
𝐻𝐻
𝑁𝑁�

− σ𝑃𝑃𝑎𝑎4�0.56 − 0.092�𝑒𝑒𝑎𝑎� �0.10 + 0.90
𝐻𝐻
𝑁𝑁�

 

where 𝐻𝐻𝑎𝑎 is the incident solar radiation outside the atmosphere on a horizontal surface, expressed in mm of evaporable water 465 

per day (a function of the latitude and period of the year as indicated in Table A1); 𝑎𝑎 is a constant depending upon the latitude 

ϕ and is given by 𝑎𝑎 =  0.29 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙; 𝑏𝑏 is a constant = 0.52; 𝐻𝐻 is the sunshine duration in hours; 𝑁𝑁 is the maximum possible 

hours of bright sunshine (a function of latitude, see Table A2); 𝑟𝑟 is the reflection coefficient; σ is the Stefan-Boltzman constant 

= 2.01 × 10−9 mm/day; 𝑃𝑃𝑎𝑎 is the mean air temperature in degrees kelvin; 𝑒𝑒𝑎𝑎 is the actual mean vapour pressure in the air in 

mm of mercury. 470 
Table A1. Mean Monthly Solar Radiation, 𝑯𝑯𝒂𝒂 in mm of Evaporable Water/Day 

North latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0° 14.5 15.0 15.2 14.7 13.9 13.4 13.5 14.2 14.9 15.0 14.6 14.3 

10° 12.8 13.9 14.8 15.2 15.0 14.8 14.8 15.0 14.9 14.1 13.1 12.4 

20° 10.8 12.3 13.9 15.2 15.7 15.8 15.7 15.3 14.4 12.9 11.2 10.3 

30° 8.5 10.5 12.7 14.8 16.0 16.5 16.2 15.3 13.5 11.3 9.1 7.9 

40° 6.0 8.3 11.0 13.9 15.9 16.7 16.3 14.8 12.2 9.3 6.7 5.4 

50° 3.6 5.9 9.1 12.7 15.4 16.7 16.1 13.9 10.5 7.1 4.3 3.0 

 

The parameter 𝑃𝑃𝑎𝑎 is estimated as: 

𝑃𝑃𝑎𝑎 = 0.35 �1 +
𝑢𝑢2

160�
(𝑒𝑒𝑤𝑤 − 𝑒𝑒𝑎𝑎) 

where 𝑢𝑢2 is the wind speed at 2𝑚𝑚 above ground in km/day; 𝑒𝑒𝑤𝑤 is the saturation vapour pressure at mean air temperature in 475 

mm of mercury; 𝑒𝑒𝑎𝑎 is the actual vapour pressure. 

Table A2. Mean Monthly Values of Possible Sunshine Hours, 𝑵𝑵 

North latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0° 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 
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10° 11.6 11.8 12.1 12.4 12.6 12.7 12.6 12.4 12.9 11.9 11.7 11.5 

20° 11.1 11.5 12.0 12.6 13.1 13.3 13.2 12.8 12.3 11.7 11.2 10.9 

30° 10.4 11.1 12.0 12.9 13.7 14.1 13.9 13.2 12.4 11.5 10.6 10.2 

40° 9.6 10.7 11.9 13.2 14.4 15.0 14.7 13.8 12.5 11.2 10.0 9.4 

50° 8.6 10.1 11.8 13.8 15.4 16.4 16.0 14.5 12.7 10.8 9.1 8.1 

Appendix B: Correlation analysis of catchment attributes 

To explore the potential connections between various types of watershed attributes, we did correlation analysis using the 

Pearson correlation coefficient; the results can be found in Table B1, which shows the top five most relevant attributes for 480 

each attribute, and the Fig. S1, the correlation matrix. The analysis result shows that the correlations between variables are 

consistent with general understanding, justifying the rationality of the dataset: 

(1) Subsurface permeability and porosity are highly correlated with geological attributes. 

(2) LAI and NDVI have a high positive correlation (0.866). 

(3) Root depth is most correlated with land cover types. 485 

(4) In China, the savanna is mainly distributed in the southern coastal areas, resulting in that it is positively correlated with 

average rainfall (0.604). 

(5) Sand is positively correlated with saturated hydraulic conductivity (0.86) while the clay is negatively correlated (-0.763), 

and catchments with a lot of rainfall are less likely to have soil with high hydraulic conductivity (-0.647). 

(6) High altitude catchments tend to have lower saturated water content (-0.705). 490 
Table B1. The top five most relevant characteristics for each attribute (different soil layers for the same attribute are excluded, e.g. 
phihox_sl2 is not included in the top five most relevant attributes of phihox_sl1 though they are highly correlated) 

Attribute  1st 2nd 3rd 4th 5th 

high_prec_freq low_prec_dur(-0.58) root_depth_50(-0.438) root_depth_99(-0.436) barren(-0.39) pet_mean(-0.261) 

high_prec_dur elev(0.544) theta_s_l6(-0.503) prs_mean (-0.49) theta_s_l5(-0.458) rhu_mean(-0.431) 

low_prec_freq pre_mean(-0.881) ssd_mean(0.841) phihox_sl7(0.825) phihox_sl6(0.818) phihox_sl5(0.814) 

low_prec_dur barren(0.728) rhu_mean(-0.723) evp_mean(0.721) ndvi_mean(-

0.684) 

root_depth_99(0.66) 

frac_snow_daily tem_mean(-0.951) gst_mean(-0.949) ssd_mean(0.777) pre_mean(-0.762) n_min(0.703) 

p_seasonality pre_mean(0.901) rhu_mean(0.765) ssd_mean(-0.764) low_prec_freq(-

0.712) 

frac_snow_daily(-

0.683) 

pet_mean cecsol_sl2(-0.66) cecsol_sl1(-0.634) cecsol_sl3(-0.628) gst_mean(0.622) bldfie_sl1(0.608) 

pre_mean p_seasonality(0.901) low_prec_freq(-0.881) ssd_mean(-0.858) rhu_mean(0.832) phihox_sl7(-0.819) 

tem_mean gst_mean(0.992) frac_snow_daily(-

0.951) 

pre_mean(0.747) ssd_mean(-0.709) p_seasonality(0.681) 

prs_mean elev(-0.889) e_max(0.707) lon(0.707) e_min(0.707) rhu_mean(0.603) 
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rhu_mean ssd_mean(-0.887) pre_mean(0.832) evp_mean(-0.823) ndvi_mean(0.813) low_prec_freq(-0.803) 

evp_mean ndvi_mean(-0.845) rhu_mean(-0.823) ssd_mean(0.756) e_min(-0.731) lon(-0.73) 

win_mean ssd_mean(0.581) frac_snow_daily(0.571) tem_mean(-0.52) gst_mean(-0.507) low_prec_freq(0.477) 

ssd_mean rhu_mean(-0.887) pre_mean(-0.858) low_prec_freq(0.841) frac_snow_daily(

0.777) 

p_seasonality(-0.764) 

gst_mean tem_mean(0.992) frac_snow_daily(-

0.949) 

pre_mean(0.743) n_min(-0.693) lat(-0.693) 

geol_permeability ss(-0.408) sm(-0.403) su(0.399) sc(0.323) bdticm(0.24) 

geol_porosity su(0.627) pa(-0.575) phihox_sl1(0.46) phihox_sl3(0.454) phihox_sl4(0.453) 

ig snow and ice(0.471) tksatu_l5(0.324) tksatu_l3(0.318) tksatu_l4(0.306) tksatu_l2(0.275) 

pa geol_porosity(-0.575) phihox_sl1(-0.314) phihox_sl3(-0.302) phihox_sl2(-

0.301) 

phihox_sl4(-0.297) 

sc geol_porosity(-0.362) geol_permeability(0.32

3) 

n_max(-0.317) lat(-0.317) n_min(-0.316) 

su geol_porosity(0.627) bdticm(0.599) cropland(0.468) phihox_sl1(0.44) phihox_sl4(0.439) 

sm geol_permeability(-

0.403) 

su(-0.385) cropland(-0.268) bdticm(-0.233) e_max(-0.228) 

vi deciduous broadleaf 

tree(0.214) 

geol_porosity(-0.18) lai_max(0.165) lai_dif(0.159) e_max(0.157) 

mt geol_porosity(-0.412) evergreen needleleaf 

tree(0.327) 

orcdrc_sl3(0.265) orcdrc_sl4(0.258) bldfie_sl5(-0.254) 

ss geol_permeability(-

0.408) 

su(-0.287) sm(-0.206) geol_porosity(0.2) tksatu_l6(-0.156) 

pi deciduous broadleaf 

tree(0.299) 

geol_porosity(-0.208) e_max(0.161) lon(0.161) e_min(0.16) 

va geol_porosity(-0.218) high_prec_dur(0.191) tem_mean(-0.167) gst_mean(-0.16) su(-0.16) 

wb water bodies(0.674) permanent 

wetland(0.379) 

root_depth_50(-0.164) theta_s_l3(0.148) theta_s_l4(0.147) 

pb theta_s_l6(-0.137) theta_s_l5(-0.133) elev(m)(0.124) theta_s_l4(-0.114) prs_mean(-0.102) 

vb cecsol_sl2(0.222) cecsol_sl3(0.213) cecsol_sl1(0.212) cecsol_sl4(0.211) cecsol_sl5(0.208) 

nd snow and ice(0.206) theta_s_l2(-0.154) theta_s_l3(-0.151) theta_s_l1(-0.144) tksatu_l4(0.136) 

py phihox_sl1(-0.214) phihox_sl2(-0.207) phihox_sl3(-0.207) phihox_sl4(-

0.205) 

phihox_sl5(-0.202) 

ev tksatu_l3(0.07) tksatu_l4(0.066) barren(0.064) tksatu_l2(0.061) tksatu_l1(0.061) 

lai_dif ndvi_mean(0.866) phihox_sl4(-0.809) phihox_sl2(-0.807) phihox_sl5(-

0.807) 

phihox_sl6(-0.807) 

lai_max ndvi_mean(0.856) phihox_sl4(-0.815) phihox_sl5(-0.814) phihox_sl6(-

0.814) 

phihox_sl2(-0.813) 

ndvi_mean lai_dif(0.866) lai_max(0.856) evp_mean(-0.845) rhu_mean(0.813) barren(-0.772) 

root_depth_50 barren(0.856) low_prec_dur(0.626) grassland(-0.537) ndvi_mean(-

0.513) 

evp_mean(0.497) 
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root_depth_99 barren(0.897) low_prec_dur(0.66) ndvi_mean(-0.628) evp_mean(0.604) rhu_mean(-0.486) 

evergreen 

needleleaf tree 

slope(0.398) bldfie_sl4(-0.391) bldfie_sl5(-0.384) bldfie_sl3(-0.372) bldfie_sl7(-0.366) 

evergreen broadleaf 

tree 

pre_mean(0.504) lai_max(0.483) phihox_sl7(-0.477) lai_dif(0.471) phihox_sl6(-0.47) 

deciduous 

needleleaf tree 

woody savanna(0.241) cecsol_sl2(0.231) orcdrc_sl2(0.226) pet_mean(-0.215) bldfie_sl1(-0.214) 

deciduous broadleaf 

tree 

lai_max(0.459) lai_dif(0.452) cecsol_sl1(0.433) bldfie_sl1(-0.413) e_max(0.361) 

mixed forest orcdrc_sl1(0.501) lai_max(0.471) lai_dif(0.466) phihox_sl6(-

0.462) 

phihox_sl7(-0.461) 

closed shrubland theta_s_l1(-0.084) grav(0.079) sc(0.075) theta_s_l2(-0.072) urban and built-up 

land(0.064) 

open shrubland high_prec_dur(0.155) theta_s_l6(-0.151) rhu_mean(-0.149) prs_mean(-0.147) evp_mean(0.139) 

woody savanna lai_max(0.633) lai_dif(0.631) phihox_sl7(-0.592) phihox_sl6(-0.59) phihox_sl5(-0.585) 

savanna pre_mean(0.604) phihox_sl7(-0.55) clay(0.547) phihox_sl6(-

0.543) 

phihox_sl5(-0.537) 

grassland root_depth_50(-0.537) tem_mean(-0.496) gst_mean(-0.491) frac_snow_daily(

0.469) 

phihox_sl6(0.438) 

permanent wetland wb(0.379) water bodies(0.349) p_seasonality(0.3) pre_mean(0.248) pop_dnsty(0.23) 

cropland su(0.468) lon(0.412) e_min(0.412) e_max(0.412) elev(-0.388) 

urban and built-up 

land 

pop_dnsty(0.811) pop(0.399) p_seasonality(0.286) tem_mean(0.261) elev(-0.244) 

cropland/natural 

vegetaion 

ssd_mean(-0.458) savanna(0.381) rhu_mean(0.371) frac_snow_daily(-

0.367) 

tem_mean(0.364) 

snow and ice tksatu_l5(0.568) tksatu_l3(0.561) tksatu_l4(0.533) tksatu_l2(0.506) tksatu_l1(0.503) 

barren root_depth_99(0.897) root_depth_50(0.856) ndvi_mean(-0.772) low_prec_dur(0.7

28) 

evp_mean(0.698) 

water bodies wb(0.674) permanent 

wetland(0.349) 

root_depth_50(-0.192) root_depth_99(-

0.154) 

theta_s_l3(0.153) 

length area(0.849) circulatory_ratio(-

0.491) 

elongation_ratio(-0.451) form_factor(-

0.436) 

compactness_coefficien

t(0.292) 

area length(0.849) pop(0.418) circulatory_ratio(-

0.255) 

cecsol_sl1(0.142) bldfie_sl2(-0.138) 

form_factor elongation_ratio(0.992) circulatory_ratio(0.647) shape_factor(-0.506) length(-0.436) compactness_coefficien

t(-0.383) 

shape_factor compactness_coefficien

t(0.786) 

elongation_ratio(-

0.566) 

form_factor(-0.506) circulatory_ratio(-

0.372) 

length(0.266) 

compactness_coeffi

cient 

shape_factor(0.786) circulatory_ratio(-

0.594) 

elongation_ratio(-0.421) form_factor(-

0.383) 

length(0.292) 
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circulatory_ratio elongation_ratio(0.651) form_factor(0.647) compactness_coefficien

t(-0.594) 

length(-0.491) shape_factor(-0.372) 

elongation_ratio form_factor(0.992) circulatory_ratio(0.651) shape_factor(-0.566) length(-0.451) compactness_coefficien

t(-0.421) 

elev(m) prs_mean(-0.889) e_min(-0.753) lon(-0.752) e_max(-0.752) theta_s_l4(-0.7) 

slope(m/km) n_min(-0.552) lat(-0.551) n_max(-0.55) phihox_sl7(-

0.491) 

orcdrc_sl1(0.49) 

n_min lat(1.0) frac_snow_daily(0.703) gst_mean(-0.693) pre_mean(-0.651) tem_mean(-0.648) 

n_max lat(1.0) frac_snow_daily(0.701) gst_mean(-0.692) pre_mean(-0.65) tem_mean(-0.647) 

e_min lon(1.0) elev(-0.753) evp_mean(-0.731) prs_mean(0.707) ndvi_mean(0.691) 

e_max lon(1.0) elev(-0.752) evp_mean(-0.729) prs_mean(0.707) ndvi_mean(0.69) 

pop(people) area(0.418) urban and built-up 

land(0.399) 

tem_mean(0.318) p_seasonality(0.3

17) 

frac_snow_daily(-

0.304) 

pop_dnsty(people/k

m2) 

urban and built-up 

land(0.811) 

p_seasonality(0.426) tem_mean(0.412) gst_mean(0.395) frac_snow_daily(-0.39) 

lon e_max(1.0) e_min(1.0) elev(-0.752) evp_mean(-0.73) prs_mean(0.707) 

lat n_min(1.0) n_max(1.0) frac_snow_daily(0.702) gst_mean(-0.693) pre_mean(-0.651) 

tksatu_l1 snow and ice(0.503) silt(-0.465) som(-0.366) sand(0.362) log_k_s_l5(0.327) 

tksatu_l2 snow and ice(0.506) silt(-0.49) sand(0.406) som(-0.365) log_k_s_l5(0.364) 

tksatu_l3 snow and ice(0.561) silt(-0.489) sand(0.409) ndvi_mean(-

0.368) 

clay(-0.334) 

tksatu_l4 snow and ice(0.533) silt(-0.49) sand(0.465) ndvi_mean(-

0.455) 

log_k_s_l5(0.414) 

tksatu_l5 snow and ice(0.568) silt(-0.402) ndvi_mean(-0.375) sand(0.348) lai_dif(-0.326) 

tksatu_l6 snow and ice(0.449) bdticm(0.403) log_k_s_l6(0.384) su(0.38) low_prec_freq(0.36) 

log_k_s_l1 sand(0.858) clay(-0.733) pre_mean(-0.553) phihox_sl7(0.551) phihox_sl6(0.546) 

log_k_s_l2 sand(0.86) clay(-0.729) phihox_sl7(0.575) phihox_sl6(0.569) pre_mean(-0.568) 

log_k_s_l3 sand(0.859) clay(-0.728) pre_mean(-0.571) phihox_sl7(0.571) phihox_sl6(0.565) 

log_k_s_l4 sand(0.82) clay(-0.752) pre_mean(-0.647) phihox_sl7(0.636) phihox_sl6(0.63) 

log_k_s_l5 sand(0.773) clay(-0.714) phihox_sl7(0.654) phihox_sl6(0.649) phihox_sl5(0.646) 

log_k_s_l6 sand(0.688) clay(-0.687) phihox_sl7(0.665) phihox_sl6(0.662) pre_mean(-0.662) 

theta_s_l1 grav(-0.705) elev(-0.422) rhu_mean(0.407) clay(0.401) pdep(0.4) 

theta_s_l2 grav(-0.713) elev(-0.505) pdep(0.475) e_min(0.442) lon(0.441) 

theta_s_l3 grav(-0.662) elev(-0.638) prs_mean(0.554) pdep(0.52) e_min(0.516) 

theta_s_l4 elev(-0.7) grav(-0.663) prs_mean(0.594) pdep(0.571) e_min(0.51) 

theta_s_l5 elev(-0.656) grav(-0.584) prs_mean(0.536) pdep(0.501) rhu_mean(0.467) 

theta_s_l6 elev(-0.637) prs_mean(0.525) grav(-0.513) high_prec_dur(-

0.503) 

rhu_mean(0.475) 

orcdrc_sl7 cecsol_sl2(0.758) bldfie_sl2(-0.745) bldfie_sl4(-0.744) bldfie_sl1(-0.737) cecsol_sl3(0.735) 

orcdrc_sl3 bldfie_sl2(-0.876) bldfie_sl4(-0.875) bldfie_sl3(-0.874) bldfie_sl5(-0.849) bldfie_sl1(-0.848) 

orcdrc_sl4 bldfie_sl4(-0.823) bldfie_sl2(-0.809) bldfie_sl3(-0.803) bldfie_sl5(-0.803) bldfie_sl1(-0.787) 

https://doi.org/10.5194/essd-2021-71

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 21 April 2021
c© Author(s) 2021. CC BY 4.0 License.



34 
 

orcdrc_sl5 bldfie_sl4(-0.759) bldfie_sl2(-0.754) bldfie_sl5(-0.745) bldfie_sl1(-0.745) bldfie_sl3(-0.731) 

orcdrc_sl6 cecsol_sl2(0.733) bldfie_sl4(-0.733) bldfie_sl2(-0.728) bldfie_sl1(-0.725) bldfie_sl5(-0.721) 

orcdrc_sl2 bldfie_sl2(-0.917) bldfie_sl1(-0.908) bldfie_sl3(-0.861) cecsol_sl1(0.854) bldfie_sl4(-0.854) 

orcdrc_sl1 phihox_sl2(-0.826) phihox_sl1(-0.824) phihox_sl3(-0.822) phihox_sl4(-

0.819) 

phihox_sl5(-0.813) 

phihox_sl7 low_prec_freq(0.825) pre_mean(-0.819) lai_max(-0.806) orcdrc_sl1(-

0.804) 

lai_dif(-0.799) 

phihox_sl6 low_prec_freq(0.818) lai_max(-0.814) pre_mean(-0.81) orcdrc_sl1(-

0.807) 

lai_dif(-0.807) 

phihox_sl5 lai_max(-0.814) low_prec_freq(0.814) orcdrc_sl1(-0.813) lai_dif(-0.807) pre_mean(-0.801) 

phihox_sl4 orcdrc_sl1(-0.819) lai_max(-0.815) lai_dif(-0.809) low_prec_freq(0.8

04) 

pre_mean(-0.781) 

phihox_sl3 orcdrc_sl1(-0.822) lai_max(-0.813) lai_dif(-0.806) low_prec_freq(0.7

99) 

pre_mean(-0.772) 

phihox_sl2 orcdrc_sl1(-0.826) lai_max(-0.813) lai_dif(-0.807) low_prec_freq(0.7

98) 

pre_mean(-0.767) 

phihox_sl1 orcdrc_sl1(-0.824) lai_max(-0.804) lai_dif(-0.798) low_prec_freq(0.7

8) 

pre_mean(-0.741) 

bldfie_sl7 orcdrc_sl3(-0.775) orcdrc_sl4(-0.747) orcdrc_sl5(-0.698) orcdrc_sl2(-

0.698) 

orcdrc_sl6(-0.671) 

bldfie_sl6 orcdrc_sl3(-0.776) orcdrc_sl4(-0.748) orcdrc_sl5(-0.701) orcdrc_sl2(-

0.694) 

orcdrc_sl6(-0.677) 

bldfie_sl5 orcdrc_sl3(-0.849) orcdrc_sl2(-0.81) orcdrc_sl4(-0.803) orcdrc_sl5(-

0.745) 

orcdrc_sl7(-0.728) 

bldfie_sl4 orcdrc_sl3(-0.875) orcdrc_sl2(-0.854) orcdrc_sl4(-0.823) cecsol_sl1(-0.763) orcdrc_sl5(-0.759) 

bldfie_sl1 orcdrc_sl2(-0.908) cecsol_sl1(-0.891) orcdrc_sl3(-0.848) cecsol_sl2(-0.828) orcdrc_sl4(-0.787) 

bldfie_sl3 orcdrc_sl3(-0.874) orcdrc_sl2(-0.861) orcdrc_sl4(-0.803) cecsol_sl1(-0.795) som(-0.787) 

bldfie_sl2 orcdrc_sl2(-0.917) orcdrc_sl3(-0.876) cecsol_sl1(-0.87) orcdrc_sl4(-

0.809) 

som(-0.808) 

cecsol_sl1 bldfie_sl1(-0.891) bldfie_sl2(-0.87) orcdrc_sl2(0.854) bldfie_sl3(-0.795) orcdrc_sl3(0.781) 

cecsol_sl2 bldfie_sl1(-0.828) orcdrc_sl2(0.822) bldfie_sl2(-0.798) orcdrc_sl7(0.758) orcdrc_sl3(0.746) 

cecsol_sl5 bldfie_sl1(-0.681) orcdrc_sl2(0.664) orcdrc_sl7(0.649) bldfie_sl2(-0.645) orcdrc_sl6(0.636) 

cecsol_sl4 bldfie_sl1(-0.72) orcdrc_sl2(0.717) orcdrc_sl7(0.693) bldfie_sl2(-0.692) orcdrc_sl6(0.679) 

cecsol_sl3 bldfie_sl1(-0.784) orcdrc_sl2(0.776) bldfie_sl2(-0.76) orcdrc_sl7(0.735) orcdrc_sl3(0.733) 

cecsol_sl7 bldfie_sl1(-0.661) orcdrc_sl7(0.654) orcdrc_sl2(0.642) orcdrc_sl6(0.64) orcdrc_sl5(0.619) 

cecsol_sl6 bldfie_sl1(-0.648) orcdrc_sl2(0.637) orcdrc_sl7(0.632) orcdrc_sl6(0.62) bldfie_sl2(-0.61) 

bdticm su(0.599) low_prec_freq(0.463) log_k_s_l6(0.439) phihox_sl2(0.437) phihox_sl7(0.436) 

pdep elev(-0.662) theta_s_l4(0.571) e_min(0.566) lon(0.565) e_max(0.564) 

por silt(0.573) clay(0.366) tksatu_l2(-0.317) som(0.314) tksatu_l1(-0.309) 

clay pre_mean(0.763) log_k_s_l4(-0.752) log_k_s_l1(-0.733) log_k_s_l2(-

0.729) 

log_k_s_l3(-0.728) 
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sand log_k_s_l2(0.86) log_k_s_l3(0.859) log_k_s_l1(0.858) log_k_s_l4(0.82) log_k_s_l5(0.773) 

silt por(0.573) sand(-0.558) log_k_s_l3(-0.557) log_k_s_l2(-

0.547) 

log_k_s_l1(-0.545) 

grav theta_s_l2(-0.713) theta_s_l1(-0.705) theta_s_l4(-0.663) theta_s_l3(-0.662) theta_s_l5(-0.584) 

som bldfie_sl2(-0.808) bldfie_sl3(-0.787) bldfie_sl1(-0.759) bldfie_sl4(-0.747) orcdrc_sl2(0.74) 
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