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Abstract. The absence of a compiled large-scale catchment characteristics dataset is a key obstacle limiting the development 

of large sample hydrology research in China. We introduce the first large-scale catchment attribute dataset in China. We 

compiled diverse data sources, including soil, land cover, climate, topography, and geology, to develop the dataset. The dataset 10 

also includes catchment-scale 31-year meteorological time series from 1990 to 2020 for each basin. Potential 

evapotranspiration time series based on Penman's equation are derived for each basin. The 4,911 catchments included in the 

dataset cover all of China. We introduced several new indicators that describe the catchment geography and the underlying 

surface differently from previously proposed datasets. The resulting dataset has a total of 125 catchment attributes and includes 

a separate HydroMLYR dataset containing standardized weekly averaged streamflow for 102 basins in the Yellow River Basin. 15 

The standardized streamflow data should be able to support machine learning hydrology research in the Yellow River Basin. 

The dataset is freely available at http://doi.org/10.5281/zenodo.5137288. In addition, the accompanying code used to generate 

the dataset is freely available at https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-

dataset and supports the generation of catchment characteristics for any custom basin boundaries. Compiled data for the 4,911 

basins covering all of China and the open source code should be able to support the study of any selected basins rather than 20 

being limited to only a few basins. 

1 Introduction 

Rainfall, interception, evaporation and evapotranspiration, groundwater flow, subsurface flow and surface runoff are the main 

components of the terrestrial hydrological cycle. These processes are affected by the nature of the catchment, such as the ability 

of the soil to hold water. Catchment attributes influence water movement and the storage of the catchment such that hydrologic 25 

behaviors can vary across catchments (Van Werkhoven et al., 2008). Studying a large set of terrestrial catchments often 

provides insights that cannot be obtained when looking at individual cases or small sets (Coron et al., 2012; Kollat et al., 2012a; 

Newman et al., 2015; Lane et al., 2019). For example, a calibrated model may not be applicable in a watershed with vastly 

different properties. However, by examining a large sample of catchments, it is possible for a data-driven model to learn the 

similarities and differences among hydrological behaviors across catchments (Kratzert et al., 2019). Prediction in ungauged 30 
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basins presents a challenging problem in hydrology. The central challenge is how to extrapolate hydrologic information from 

gauged to ungauged basins, and solving this problem is contingent on understanding the similarities and differences between 

different catchments. Regionally and temporally imbalanced observations increase the difficulty of the problem. For a model 

to successfully simulate the ungauged areas, it must adapt itself to the varying hydrologic behaviors present in different 

catchments. Kratzert et al. (2019) show that encoding catchment characteristics (e.g., soil characteristics, land cover, 35 

topography) into a data-driven model can guide the model to behave differently in response to the meteorological time series 

input based on different sets of catchment attributes. 

 

Large sample hydrological datasets are the foundation of many hydrological studies (Silberstein, 2006; Shen et al., 2018; Nevo 

et al., 2019). The term “big hydrologic data” refers to all data influencing the water cycle, such as the meteorological variables, 40 

infiltration characteristics of the study area, land use or land cover types, physical and geological features of the study 

catchment, etc. Many studies are based on large-scale hydrologic data (Coron et al., 2012; Singh et al., 2014b; Berghuijs et al., 

2017; Gudmundsson et al., 2019; Tyralis et al., 2019). Basin-oriented datasets are of great significance in hydrological research. 

For example, comparative hydrology (De Araújo and González Piedra, 2009; Singh et al., 2014a) focuses on understanding 

how hydrological processes interact with the ecosystem—in particular, how hydrologic behaviors change in response to 45 

changes in the surface and subsurface of the earth to determine to what extent hydrological predictions can be transferred from 

one area to another. Large-sample catchment attribute datasets provide opportunities to research interrelationships among 

catchment attributes. Seybold et al. (2017) study the correlations between river junction angles and geometric factors, 

downstream concavity, and aridity. Oudin et al. (2008) investigate the link between land cover and mean annual streamflow 

based on 1,508 basins representing a large hydroclimatic variety. Voepel et al. (2011) examine how the interaction of climate 50 

and topography influences vegetation response. 

 

Worldwide data sharing has become a trend (Wickel et al., 2007; Ceola et al., 2015; Blume et al., 2018; Wang et al., 2020), 

and the amounts of hydrologic data available are ever increasing. However, these data typically come from different providers 

and are compiled in various formats. ASTGTM (Abrams et al., 2020) provides a global digital elevation model; GliM 55 

(Hartmann and Moosdorf, 2012) includes rock type data globally; MODIS provides data products (Didan, 2015; Knyazikhin, 

1999; Myneni et al., 2015; Running et al., 2017; Sulla-Menashe and Friedl, 2018) that describe features of the land and the 

atmosphere derived from remote sensing observations; Yamazaki et al. (2019) provide a global flow direction map at three 

arc-second resolution; HydroBASINS (Lehner, 2014) provides basin boundaries at different scales globally; GDBD 

(Masutomi et al., 2009) provides basin boundaries with geographic attributes; GLHYMPS (Gleeson et al., 2014) provides a 60 

global map of subsurface permeability and porosity; and the SoilGrids250 m (Hengl et al., 2017) dataset provides global 

numeric soil properties. Local government agencies often hold meteorological data such as precipitation and evaporation, and 

the amount of these data is also growing. 
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However, the data mentioned above are rarely spatially aggregated to the catchment scale, making it difficult for researchers 

to use them. Properly preprocessed and formatted datasets are of great importance in hydrology research. Searching for 65 

appropriate data sources, preprocessing, and formatting often consume considerable time. In some cases, individual research 

groups either do not know where to obtain the appropriate data or cannot properly process the data into the desired format. In 

summary, although data sharing is being advocated in the community, it is usually difficult for the public to obtain the required 

data, either because there are insufficient observations or because of the difficulties associated with data processing. 

 70 

Recently, there have been efforts (Addor et al., 2017; Alvarez-Garreton et al., 2018; Chagas et al., 2020; Coxon et al., 2020) 

to compile different types of data sources to form large-scale hydrological datasets. These four collected datasets cover the 

continental United States, Chile, Brazil, and Great Britain. Addor et al. (2020) review these datasets and discuss the guidelines 

for producing large-sample hydrological datasets and the limitations of the currently proposed datasets. The static properties 

of 671 river basins in the United States are calculated by CAMELS (Addor et al., 2017), which is an extension of a previously 75 

proposed hydrometeorological dataset (Newman et al., 2015). Unfortunately, it is impossible to publish streamflow data in 

China at present. The CAMELS dataset has been used to support much research. For example, Knoben et al. (2019) compare 

metrics used in hydrology based on simulations in many basins. Tyralis et al. (2019) study the relationship between shape 

parameters and basin attributes based on a sizeable basin-oriented dataset. 

 80 

There is currently no compilation of China-specific catchment attribute datasets. An alternative—the HydroATLAS (Linke et 

al., 2019) dataset, which is on a global scale—basically performs zonal statistics on the source data. HydroATLAS lacks many 

indicators that make derivations from source data, such as rainfall seasonality, the proportion of precipitation falling as snow, 

basin shape factors and root depth distributions. Moreover, the meteorological data are only up to the year 2000, which is 

outdated. 85 

 

In summary, a lack of a compiled catchment attribute dataset is a key obstacle limiting the development of large-sample 

hydrology research in China. Inspired by (Addor et al., 2017), we compiled multiple data sources, including basin topography, 

climate indices, land cover characteristics, soil characteristics and geological characteristics. Unlike (Addor et al., 2017), the 

catchments included in the dataset cover the entire study area instead of being limited to a few data sources. 90 

 

The proposed dataset is the first dataset that provides catchment meteorological time series and catchment attributes of China. 

We compiled and named the dataset following most standards set by the previously proposed datasets. The dataset consists of 

all derived basin boundaries from the Digital Elevation Model (DEM), which is a subset of the Global Drainage Basin Dataset 

(Masutomi et al., 2009). The Global Drainage Basin Dataset (GDBD) is derived at high resolution (100 m-1 km) and has good 95 

geographic agreement with existing global drainage basin data in China. In addition, previously proposed datasets (Addor et 
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al., 2017; Alvarez-Garreton et al., 2018; Chagas et al., 2020; Coxon et al., 2020) report only the most frequent catchment land 

cover and lithology types. By contrast, CCAM calculates the proportions of all land cover and lithology types. 

 

In addition to the basinwise attributes provided in CCAM, we propose HydroMLYR, a hydrology dataset for machine learning 100 

research in the Yellow River Basin providing weekly averaged standardized streamflow data for 102 basins in the Yellow 

River Basin (YRB). HydroMLYR is proposed to support machine learning hydrology research in the YRB. Traditional 

hydrological models face long-standing challenges, such as their inability to capture hydrological process mechanism 

complexity (Kollat et al., 2012b), which is due to the structural limitations of the conceptual models. Data-driven strategies 

represented by machine learning are proposed to overcome some existing obstacles, and these strategies offer a new way for 105 

researchers to acquire knowledge capable of transforming the research pattern from hypothesis-driven to data-driven. Feng et 

al. (2020) propose a flexible data integration fusing various types of observations to improve rainfall-runoff modeling. Their 

research shows that combining different data resources improves predictions in regions with high autocorrelation in 

streamflow. Wongso et al. (2020) develop a model predicting the state-level per capita water use in the United States, taking 

various geographic, climatic, and socioeconomic variables as input. Their research also identifies key factors associated with 110 

high water usage. Mei et al. (2020) propose a statistical framework for spatial downscaling to obtain hyperresolution 

precipitation data. Their results show improvements compared with the original product. Brodeur et al. (2020) apply machine 

learning techniques—namely, bootstrap aggregation and cross-validation—to reduce overfitting in reservoir control policy 

search. Ni and Benson (2020) propose an unsupervised machine learning method to differentiate flow regimes and identify 

capillary heterogeneity trapping and show the promise of machine learning methods for analyzing large datasets from 115 

coreflooding experiments. Legasa and Gutiérrez (2020) propose applying a Bayesian network for multisite precipitation 

occurrence generation, and the proposed methodology shows improvements over existing methods. The proposed dataset can 

be used to develop or verify machine learning models in the YRB. 

 

This paper is organized as follows. Section 2 describes the study area. Sections 3–7 describe the five classes of computed 120 

catchment attributes. Section 8 describes the proposed catchment-scale meteorological time series. Section 9 introduces the 

HydroMLYR dataset. Section 10 describes the code and data availability. Section 11 is our concluding remarks. 
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2 Study area 

 
Figure 1: Left: Study area of CCAM and the distribution of land cover types. The studied basins cover the whole of China. Right: 
Study area of HydroMLYR and the distribution of aridity (PET/P) index. YRB is a generally arid area. The dataset provided can 125 
be used as a good sample for studying hydrology in arid regions. 

The study area corresponds to the whole of China (Fig. 1), which is characterized by diverse climate and terrain characteristics 

and spans from 18.2° N to 52.3° N and 76.0° E to 134.3° E. Mountains, plateaus, and hills account for approximately two-

thirds of the area of China, and the remaining areas are basins and plains. China’s topography is similar to a three-level ladder 

in that it is high in the west and low in the east. The Qinghai-Tibet Plateau, which is located in western China and is the highest 130 

plateau globally with a mean elevation of over 4,000 meters, is the first step of China’s topography. The Xinjiang region, the 

Loess Plateau, the Sichuan Basin, and the Yunnan-Guizhou Plateau to the north and east are the second steps of China’s 

topography. The mean sea level here is between 1,000 and 2,000 meters. Plains and hills dominate the east of the Daxinganling-

Taihang Mountains to the coastline, which comprises the third step of China’s topography. The elevation of this step descends 

to 500-1,000 meters. To better characterize the studied catchments, we derived various attributes. Table 1 compares the number 135 

of derived attributes between several proposed datasets. 

 
Table 1: Number of computed attributes in CAMELS, CAMELS-BR and CCAM. 

Attribute class CAMELS(A17) CAMELS-BR CCAM 

Location and topography 9 11 12 

Geology 7 7 18 

Soil 11 6 54 

Land cover 8 11 22 
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Climatic indices 11 13 17 

Human intervention indices  - 4 2 

Total 46 52 125 

 

In China, precipitation and temperature vary significantly throughout China, which forms a diverse climatic environment. 140 

According to the Köppen Climate Classification System, moving from northwest to southeast, China’s climate gradually 

evolves from a cold desert (BWk) climate, a tundra (ET) climate, and a warm and temperate continental (Dfa and Dwb) climate 

to a humid subtropical (Cwa) climate and warm oceanic (Cfa) climate. From the perspective of temperature zones, there are 

tropical, subtropical, warm temperate, medium temperate, cold temperate and Qinghai-Tibet Plateau regions, and there are 

humid, semihumid, semiarid, and arid regions from the perspective of wet vs. dry zones. Moreover, the same temperature zone 145 

can contain multiple dry and wet zones. Therefore, there may be differences in heat and wetness in the same climate type. The 

complexity of the terrain makes the climate even more complex and diverse. In addition, China has a wide range of regions 

which are affected by alternating winter and summer monsoons. Compared with other parts of the world at the same latitude, 

these areas have lower winter temperatures, higher summer temperatures, significant annual temperature differences, and 

concentrated precipitation in summer. The cold and dry winter monsoon occurs in Asia’s interior, far from the ocean. Winter 150 

rainfall in most parts of China is low and accompanied by low temperatures. The summer monsoon is warm and humid and 

comes from the Pacific and Indian Oceans. Precipitation generally increases during this time. Table 2 compares the provided 

forcing variables in CAMELS, CAMELS-BR and CCAM. 

 
Table 2: Summary of forcing variables provided in CAMELS, CAMELS-BR and CCAM. 155 

Forcing data class CAMELS CAMELS-BR CCAM 

Temperature Yes Yes Yes 

Precipitation  Yes Yes Yes 

Solar radiation Yes No Yes 

Day length Yes No No 

Sunshine hours No No Yes 

Humidity Yes No Yes 

Snow water equivalent Yes No No 

Wind velocity No No Yes 

Ground surface pressure Yes No Yes 

Observed evaporation No Yes Yes 

Potential evapotranspiration No Yes Yes 
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3 Climatic indices 

Raw meteorological data are provided by the China Meteorological Data Network and released as the 

SURF_CLI_CHN_MUL_DAY (V3.0) dataset, which provides the longest period (1951-2020) of meteorological time series 

in China. The SURF_CLI_CHN_MUL_DAY product includes site observations of pressure, temperature, relative humidity, 160 

precipitation, evaporation, wind speed, sunshine duration, and ground surface temperature (Table 3). The inverse distance 

weighting method is used to interpolate the site observations. To ensure data quality, we use the latter 31-year record (from 

1990 to 2020) to construct the dataset since the site distribution was sparse in the early observations (Fig. 2). We computed 

more climatic characteristics than most other datasets (Table 2). These variables are useful in hydrological modeling; for 

example, wind speed can affect actual evapotranspiration. To remain consistent with CAMELS (Addor, Newman et al. 2017), 165 

we determined all climatic attributes (Woods, 2009) provided in the CAMELS dataset. As a result, the proposed dataset 

provides more meteorological variables and a longer time series (1990-2020) than CAMELS and CAMELS-CL. A summary 

of the derived climate indices is presented in Table A1. The national distributions of the climate indicators are shown in Fig. 

3. 

 
Figure 2: Changes in the number of meteorological stations in China. There were only 119 stations in 1951. This number increased 170 
rapidly from 1951 to the early 1960s, and the number of stations remained stable after 2000. To ensure data quality, we used the 
latter 31-years (from 1990 to 2020) to construct the dataset. 
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Figure 3: Distributions of climatic indices over China. All basins are plotted in the same size. When extreme values of a variable 
affect visualization (causing most areas to have the same color), the log values are used for visualization. 

The instruments used to measure potential evaporation were updated from 2000 to 2005. Early observations can be multiplied 175 

by a correction coefficient to approximate the new tools. However, the coefficient varies across stations, making the approach 

infeasible. To complement this, we calculated potential evapotranspiration (PET) based on a modified Penman’s equation 

(Appendix A) and other observed meteorological variables, which provides a series of consistent potential evaporation 

estimations for reference. 

 180 

The average daily precipitation in China is highest in the southeast and lowest in the northwest. It is also higher in coastal areas 

than in interior land. Ground surface pressure is positively correlated with elevation and is highest in the Qinghai-Tibet Plateau 

and the lowest in the Southeast Plain. The average relative humidity is generally positively correlated with precipitation; it is 

also higher in some forested areas, such as the Taihang and Daxingan Mountains. The Qinghai-Tibet Plateau has the lowest 

average temperature, and the southern coastal area has the highest. A distinctive feature of the distribution of wind speed is 185 

the high wind speed in mountainous areas. The highest wind speed occurs in the southeast coastal area (> 6 meters per second). 

4 Geology 

To describe the lithological characteristics of each catchment, we used the same two global datasets as CAMELS: Global 

Lithological Map (GliM) (Hartmann and Moosdorf, 2012) and Global Hydrogeology MaPS (GLHYMPS) (Gleeson et al., 

2014). Figure 4 presents the distributions of the geological types. 190 

 

GLiM provides a high-resolution global lithological map assembled from existing regional geological maps; it has been widely 

used to construct datasets (e.g., SoilGrids250 m (Hengl et al., 2017)). However, the data quality of GLiM can vary among 

spatial locations depending on the quality of the original regional geological maps. GLiM consists of three levels: the first 

level contains 16 lithological classes, and the additional two levels describe more specific lithological characteristics. The 195 

GLiM is represented by 1,235,400 polygons which are converted to raster format for the basin-scale lithological type statistics. 

For China, the compiled regional data sources (MGC, 1991; BGX, 1992; CGS, 2001) have slightly lower resolutions than the 

GLiM target resolution (1:1 000 000). However, for a basin-scale study with a mean basin area of over 2,000 km2, the 

classification accuracy should satisfy most applications. In contrast to CAMELS and CAMELS-CL, we determined each 

lithological class’s contribution to the catchment instead of recoding the first and second most frequent classes only. 200 
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Figure 4: Distributions of geological characteristics throughout China. For lithologies, the plot size is scaled by the lithology 
proportion. 

GLobal HYdrogeology MaPS (GLHYMPS) provides a global estimation of subsurface permeability and porosity, two critical 

characteristics for soil hydrological classification. Porosity and permeability influence an area’s infiltration capacity. Soil with 

high porosity is likely to contain more water, and highly permeable soil transmits water relatively quickly. Based on the high-205 

resolution map of GLiM, which can differentiate fine- and coarse-grained sediments and sedimentary rocks, GLHYMPS 

determines subsurface permeability depending on the different permeabilities of rock types. For the proposed dataset, we 

calculated the catchment arithmetic mean for porosity. Following (Gleeson et al., 2011), the logarithmic scale geometric mean 

is used to represent the subsurface permeability. A summary of the geological characteristics is presented in Table A1. 

 210 

Porosity and permeability have distributions similar to those of the geological classes. These two characteristics are highly 

dependent on rock properties; unconsolidated sediments, mixed sedimentary rocks, siliciclastic sedimentary rocks, carbonate 

sedimentary rocks, and acid plutonic rocks are the five most common geological classes in China. Unconsolidated sediment is 

the most common rock type in China as it is dominant in 31.9% of catchments and extends from Xinjiang inland to the northeast 

and the coastal area surrounding the Bohai Sea. Due to the high proportion of unconsolidated sediments present in the rock, 215 

these areas typically have high permeability and medium porosity. Mixed sedimentary rocks are the second most common 

rock type in China, accounting for 20.3% of catchments, and they are predominant in the southern Qinghai-Tibet Plateau, 

western Yunnan-Guizhou Plateau, and northern Inner Mongolia. These areas typically have high porosity and low 
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permeability. Siliciclastic sedimentary rocks are found in 17.7% of basins and are mainly distributed in the northern part of 

the Qinghai-Tibet Plateau and the junction of the Qinghai-Tibet and the Yunnan-Guizhou Plateaus; there are also observations 220 

in the eastern inland region. These areas have low subsurface permeability and high subsurface porosity. Among all 

catchments, 9.8% are dominated by carbonate sedimentary rocks, which are mainly located in eastern Yunnan and the northern 

Qinghai-Tibet Plateau. Acid plutonic rocks are typically distributed in the mountains surrounding the inland northeast—

namely, Daxinganling Mountain and the hills in southern Guangdong and southwestern Guangxi. They are also distributed 

along the Brahmiputra River in the southern part of the Qinghai-Tibet Plateau. The distribution of acid plutonic rocks is 225 

relatively scattered; there are many isolated acid plutonic rock distributions throughout in China which are characterized by 

medium permeability and high porosity. 

 

The types of rocks in China are dominated by unconsolidated sediments and mixed sedimentary rocks. In 33.86% of the 

catchments, the dominant rock types occupy less than 50% of the catchment areas, and only 16.8% of basins have a dominant 230 

rock type with an area proportion greater than 90%. Among 4,911 basins, 9.4% have prevalent rock types that occupy the area. 

5 Landcover 

   
(a) (b) (c) 

   
(d) (e) (f) 
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Figure 5: Distributions of land cover characteristics throughout China. For land cover types, the plot size is scaled by the size of the 
land cover proportion. 

We selected two indicators to characterize surface vegetation density and growth: the normalized difference vegetation index 235 

(NDVI) and the leaf area index (LAI). NDVI is an indicator with a valid range of -0.2 to 1 that assesses whether the area being 

observed contains live green vegetation and the plants’ overall health. However, NDVI is only a qualitative measurement of 

vegetation density and cannot provide a quantitative estimate of the vegetation density in the area. Moreover, NDVI often 

provides inaccurate vegetation density measurements, and only long-term measurements and comparisons can ensure its 

accuracy. NDVI alone is not enough to estimate the state of the vegetation in an area. Therefore, we selected another indicator, 240 

LAI, to supplement the deficiencies of NDVI. 

 

LAI is defined as the total needle surface area per unit of ground area and half of the entire needle surface area per unit of 

ground surface area. It is a quantifiable value that is functionally related to many hydrological processes, such as water 

interception (Van Wijk and Williams, 2005). Buermann et al. (2001) verify the validity of the LAI for characterizing vegetation 245 

growth. The data sources used are the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 

(Didan, 2015) for NDVI and the Moderate Resolution Imaging Spectroradiometer (MODIS) (Myneni et al., 2015) for LAI. 

Following (Addor et al., 2017), we determined the maximum monthly LAI as an indicator that characterizes the vegetation 

interception capacity, the maximum evaporative capacity and the difference between the maximum and minimum monthly 

LAI, which represents the LAI’s temporal variations. 250 
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Land cover classification refers to segmenting the ground into different categories based on remote sensing images. The Terra 

and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type provides different results 

depending on the classification system used. The Annual International Geosphere-Biosphere Programme (IGBP) classification 

is used to build the dataset, which is derived by the c4.5 decision tree algorithm. The IGBP classification system was formulated 255 

by the IGBP Land Cover Working Group in 1995, resulting in 17 categories of land cover types (Belward et al., 1999). Friedl 

et al. (2010) compare the IGBP data of MODIS with other reference datasets and conclude that the MODIS classification of 

IGBP has an accuracy of 75%. We determined the fraction of each land cover class for each basin based on the Terra and Aqua 

combined Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type (Sulla-Menashe and Friedl 2018), which 

differentiates our dataset from CAMELS and CAMELS-CL (which only calculate the proportion of the dominant types). 260 

 

Following (Addor et al., 2017), we computed the average rooting depth (50% and 90%) for each catchment based on the IGBP 

classification using a two-parameter method (Zeng, 2001). The root depth distribution of vegetation affects the ground water 

holding capacity and the topsoil layer’s annual evapotranspiration (Desborough, 1997). Many models use root depth as an 

essential parameter to characterize soil moisture absorption capacity. Zeng (2001) developed a two-parameter asymptotic 265 

equation to estimate root depth distribution, which is global and derived from the IGBP classification to avoid the problem of 

significantly different root distributions in various research efforts. Figure 5(g) shows root depth distributions of different 

vegetation types based on (Zeng, 2001). The 90% root depth is usually considered to be “rooting depth;” among the 17 

categories of IGBP, cropland has the smallest rooting depth, and open shrubland has the largest. The 90% root depth of all 

vegetation is less than 2 meters. The national distribution of catchment soil characteristics is shown in Fig. 5. 270 

6 Location and topography 

The catchment boundary files are obtained from the global drainage basin dataset (Masutomi et al., 2009). The GDBD dataset 

was derived from digital elevation models (DEMs) with a high resolution (100 m-1 km), and the errors were corrected by 

either automatic methods or manually. Additionally, GDBD also provides population and population density estimates for 

catchments, and these two indicators are also included in our dataset as a measure of human intervention. Global Runoff Data 275 

Centre1 discharge gauging stations were used to reference the derived basins. GDBD has a high average match area rate 

(AMAR) and good geographic agreement with existing global drainage basin data in China. Precise geographic and 

topographic information can be derived from the high-quality dataset. 

 

 
1 https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html  

https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
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The topography attributes of each catchment are determined by the ASTGTM product retrieved from https://lpdaac.usgs.gov 280 

and maintained by the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) at the USGS Earth 

Resources Observation and Science (EROS) Center. 

 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Distributions of topographic characteristics. 

The CAMELS dataset provides two parameters (i.e., two area estimates) to describe the catchment shape. The physical 285 

characteristics of a catchment can affect the streamflow volume and the streamflow hydrograph of the catchment under a 

storm. To provide a complete description of the catchment shape, we computed several geometrical parameters of the 

catchment related to the streamflow process (Fig. 6), including the catchment form factor, shape factor, compactness 

coefficient, circulatory ratio and elongation ratio (Subramanya, 2013). A summary of the location and topography attributes 

can be found in Table A1. 290 

7 Soil 

The proposed dataset has a total of 54 soil attributes (Table A1) derived from (Hengl et al., 2017; Dai et al., 2019; Shangguan 

et al., 2013). Five categories of soil characteristics (pH in H2O, organic carbon content, depth to bedrock, cation-exchange 

capacity, and bulk density) are determined from SoilGrids. SoilGrids (Hengl, Mendes de Jesus et al. 2017) provides global 

predictions for soil properties, including organic carbon, bulk density, cation exchange capacity (CEC), pH, soil texture 295 

https://lpdaac.usgs.gov/
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fractions and coarse fragments, by fusing multiple data sources, including MODIS land products, SRTM DEM, climatic images 

and global landform and lithology maps, at 250 m resolution (Fig. 7). SoilGrids makes predictions using machine learning 

algorithms and many covariate layers primarily derived from remote sensing data and has soil characteristics at several soil 

depths. 

 300 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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(j) (k) (l) 

Figure 7: Distributions of soil characteristics over China. 

Unlike CAMELS, whose reported results are obtained by a linear weighted combination of the different soil layers, and 

CAMELS-BR, whose products are soil characteristics at a depth of 30 cm, we computed soil characteristics at all soil layers 

provided by SoilGrids250 m. 

 305 

We determined the saturated water content and saturated hydraulic conductivity (Dai et al., 2019). Based on the same dataset, 

we also introduced the thermal conductivity of unfrozen saturated soils. Dai et al. (2019) provide a global estimation of soil 

hydraulic and thermal parameters using multiple Pedotransfer Functions (PTFs) based on the SoilGrids250 m dataset. Based 

on the SoilGrids250 m and GSDE (Shangguan et al., 2014) datasets, Dai et al. (2019) produce six soil layers with a spatial 

resolution of 30×30 arc-seconds. Their vertical resolution is the same as that of SoilGrids250 m, with six intervals of 0–0.05 310 

m, 0.05–0.15 m, 0.15–0.30 m, 0.30–0.60 m, 0.60–1.00 m, and 1.00–2.00 m. We determined and recorded catchment soil 

characteristics for all these layers. In addition, we determined seven more soil characteristics (Shangguan et al., 2013), 

including soil profile depth, porosity, clay/silt/sand content, rock fragment, and soil organic carbon content. Shangguan et al. 

(2013) provide the physical and chemical attributes of soils derived from 8,979 soil profiles at a 30×30 arc-second resolution 

using the polygon linkage method to derive the spatial distribution of soil properties. The profile attribute database and soil 315 

map are linked under a framework to avoid uncertainty in taxon referencing. 

 

Depth to bedrock controls many physical and chemical processes in soil. The distribution of depth to bedrock in China is 

characterized by (i) low values in mountainous areas, such as Yunnan Province and Chongqing City, and (ii) high values in 

barren areas, such as North and Northwest China. The introduced soil pH value is crucial since it influences many other 320 

physical and chemical soil characteristics. The spatial variability of soil pH in China is characterized by (i) soils in southern 

China being acidic to strongly acidic, (ii) soils in northern China being natural or alkaline, and (iii) soils in northeastern forested 

areas also being acidic (pH < 7.2). Cation exchange capacity can be seen as a measure of soil fertility since it measures how 

much nutrient content the soil can store such that it influences the growth of vegetation. Cation exchange capacity is positively 

correlated with soil organic matter and clay content and is generally low in sandy and silty soils. The spatial variability of 325 
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cation exchange capacity in China is characterized by (i) high values in peat and forested areas in the Qinghai-Tibet Plateau, 

central and northeast China and (ii) extremely low cation exchange capacity in desert areas such as the northwest. Soil 

hydraulic and thermal properties are greatly affected by soil organic matter (SOM). Soil organic matter has a similar 

distribution to cation exchange capacity in that it is high in the peat and forested areas in northeast China and low in the north 

and northwest. 330 

8 Meteorological time series 

Table 3: Summary table of catchment meteorological time series available in the proposed dataset 

Variable Description Unit 

prs catchment daily averaged ground pressure hPa 

tem catchment daily averaged temperature at 2 m above ground °C 

rhu catchment daily averaged relative humidity - 

pre catchment daily averaged precipitation mm d-1 

evp catchment daily averaged evaporation measured by ground 

instruments 

mm d-1 

win catchment daily averaged wind speed at 2 m above ground m s-1 

ssd catchment daily averaged sunshine duration h d-1 

gst  catchment daily averaged ground surface temperature °C 

pet catchment daily averaged potential evapotranspiration 

determined by Penman’s equation (Appendix A) 

mm d-1 

 

There have been many studies based on SURF_CLI_CHN_MUL_DAY in China (Xu et al., 2009; Liu et al., 2004; Huang et 

al., 2016; Liu et al., 2017), such as a trend analysis of pan evaporation (Liu et al., 2010). Nevertheless, there has not yet been 335 

a large-scale basin-oriented meteorological time series dataset in China. Researchers need to complete multiple iterations to 

extract historical meteorological data from the SURF_CLI_CHN_MUL_DAY dataset for this type of research. For the first 

time, we release a catchment-scale meteorological time series dataset. The open source code can generate any catchment’s 

meteorological time series within China. The basin-oriented dataset provides meteorological time series for 4,911 basins from 

1990 to 2020 based on the China Meteorological Data source. Meteorological time series include pressure, temperature, 340 

relative humidity, precipitation, evaporation, wind speed, sunshine duration, ground surface temperature and potential 

evapotranspiration (Table 3). 

 

The meteorological time series data from 1951 to 2010 are derived based on the "1951-2010 China National Ground Station 

Data Corrected Monthly Data File Basic Data Collection" data construction project. Other data include monthly reported data 345 
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to the National Meteorological Information Centre by province and hourly and daily data uploaded by automatic ground 

stations in real time. During the construction of the dataset, missing data were filled by interpolating to the nearest stations. 

 

Figure 2 presents the variation in the number of sites. The earliest recording was in 1951, but because the early site distribution 

was sparse, we only used records from 1990 to 2020 to ensure data quality. Inverse distance weighting shows better 350 

performance than other interpolation methods. In addition, potential evapotranspiration (PET) is estimated based on Penman’s 

equation (Appendix A) and other meteorological variables. 

9 HydroMLYR: Hydrology dataset for Machine Learning in YRB 

In addition to the basinwise static attributes provided in CCAM, we propose HydroMLYR, a hydrology dataset for machine 

learning research in the YRB (Fig. 1). HydroMLYR includes standardized streamflow measurements for 102 basins. The 355 

streamflow data are seven-day averaged and standardized basinwise to have zero mean and a standard deviation of 1 (Fig. 8). 

The HydroMLYR dataset is proposed to support machine learning or deep learning hydrology research (e.g., neural network-

based and tree-based algorithms) and can be used in two cases: (i) to develop machine learning models on the YRB or (ii) 

when it is desirable to verify the generalization ability of a machine learning model on the YRB. 

 360 
Figure 8: Example of standardized runoff 

The dataset provides 40 natural basins that are not affected by reservoirs and dams. The selection is based on a newer version2 

of the Global Reservoirs and Dams database (Lehner et al., 2011), which provides the locations of reservoirs and dams globally. 

HydroMLYR covers 102 basins in the YRB, including basin boundary shapefiles, static attributes, and standardized streamflow 

measurements for each basin. The covered basins have areas ranging from 134 to 804,421 square kilometers. Therefore, 365 

 
2 http://globaldamwatch.org/data/#core_global  

http://globaldamwatch.org/data/#core_global
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modeling the YRB on a large scale is also possible. Meteorological records in HydroMLYR introduced daily maxima and 

minima for some forcing variables (Table 4). 

 

The original streamflow observations are not continuous. The average record length is 11.3 years. Although the development 

of machine learning models does not necessarily require the data to be continuous, we separately provide continuous 370 

streamflow observations with an average record length of 8.3 years. 
Table 4: Meteorological variables provided in HydroMLYR 

Attribute name Description Unit 

evp catchment daily averaged evaporation (observations) mm d-1 

gst_mean catchment daily averaged ground surface temperature °C 

gst_min catchment daily minimum ground surface temperature °C 

gst_max catchment daily maximum ground surface temperature °C 

pre catchment daily averaged precipitation mm d-1 

prs_mean catchment daily averaged ground surface pressure hPa 

prs_max catchment daily maximum ground surface pressure hPa 

prs_min catchment daily minimum ground surface pressure hPa 

rhu catchment daily averaged relative humidity - 

ssd catchment daily averaged sunshine duration h 

tem_mean catchment daily averaged temperature °C 

tem_min catchment daily minimum temperature °C 

tem_max catchment daily maximum temperature °C 

win_max catchment daily maximum wind speed m s-1 

win_mean catchment daily averaged wind speed m s-1 

10 Data and code availability 

The proposed dataset is freely available at http://doi.org/10.5281/zenodo.5137288. The files provided are: (i) several separate 

files containing 120+ catchment attributes, (ii) the daily meteorological time series in a zip file, (iii) the catchment boundaries 375 

used to compute the attributes and extract the time series, (iv) the HydroMLYR dataset, (v) an attribute description file, and 

(v) a readme file. 
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11 Conclusion 

The CCAM dataset proposed in this paper provides a novel dataset for hydrological research in China. All basins delaminated 

from the DEM are studied, covering the whole of China. The dataset includes daily meteorological forcing time-series data, 380 

including precipitation, temperature, potential evapotranspiration, wind, ground surface temperature, pressure, humidity, 

sunshine duration and the derived potential evapotranspiration of 4,911 catchments. The proposed time series dataset is derived 

from the quality-controlled SURF_CLI_CHN_MUL_DAY dataset. CCAM includes 120+ catchment attributes, including soil, 

land cover, geology, climate indices and topography for each catchment. We produced a series of maps depicting the catchment 

attribute distributions in China. These maps present regional changes in various features; we also estimated the relationships 385 

between them based on Kendall’s correlation. Integrating multiple data sources into one dataset at a catchment scale simplifies 

the data compilation process in research. CCAM can help test hypotheses and formulate valid conclusions under various 

conditions (i.e., not limited to a few specific locations only) and help explore how different basin characteristics influence 

hydrological behaviors, learn the migration of hydrological behaviors between different basins, and develop general 

frameworks for large-scale model evaluation and benchmarking in China. A limitation of this study is its failure to estimate 390 

the uncertainty of the meteorological time series. An alternative is to evaluate the uncertainty of the basinwise meteorological 

data based on multiple independent data sources, but there are few data sources that provide as many data types as 

SURF_CLI_CHN_MUL_DAY. Hence, evaluating the uncertainty of these eight meteorological variables poses a challenge 

that is left for future studies. 

Appendix A: Attributes summary 395 

Table A1: Summary table of catchment attributes available in the proposed dataset. 

Attribute class Attribute name Description Unit Data source 

Climate indices 

(computed for 1 

Oct 1990 to 30 

Sep 2018) 

pet_mean mean daily pet (Penman–Monteith 

equation) 

mm d-1 Subramanya (2013) 

evp_mean mean daily evaporation 

(observations) 

mm d-1 SURF_CLI_CHN_MUL

_DAY 

gst_mean mean daily ground surface 

temperature 

°C 

pre_mean mean daily precipitation mm d-1 

prs_mean mean daily ground surface 

pressure 

hPa 

rhu_mean mean daily relative humidity - 

ssd_mean mean daily sunshine duration h 
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tem_mean mean daily temperature °C 

win_mean mean daily wind speed m s-1 

p_seasonality seasonality and timing of 

precipitation (estimated using sine 

curves to represent the annual 

temperature and precipitation 

cycles, positive [negative] values 

indicate that precipitation peaks in 

summer [winter], values close to 0 

indicate uniform precipitation 

throughout the year) 

- 

high_prec_freq frequency of high-precipitation 

days ( ≥  5 times mean daily 

precipitation) 

d yr-1 

high_prec_dur average duration of high-

precipitation events (number of 

consecutive days ≥ 5 times mean 

daily precipitation) 

d 

high_prec_timing season during which most high-

precipitation days ( ≥  5 times 

mean daily precipitation) occur 

season 

low_prec_freq frequency of dry days (< 1mm d-1) d yr-1 

low_prec_dur average duration of dry periods 

(number of consecutive days < 1 

mm d-1) 

d 

low_prec_timing season during which most dry days 

(< 1 mm d-1) occur 

season 

frac_snow_daily fraction of precipitation falling as 

snow (for days colder than 0 °C) 

- 

p_seasonality seasonality and timing of 

precipitation, positive [negative] 

values indicate that precipitation 

peaks in summer [winter], values 

-  
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close to 0 indicate uniform 

precipitation throughout the year 

Geological 

characteristics 

geol_porosity subsurface porosity - Gleeson et al. (2014) 

geol_permeability subsurface permeability (log-10) m2 

ig fraction of the catchment area 

associated with ice and glaciers 

- Hartmann and Moosdorf 

(2012) 

pa fraction of the catchment area 

associated with acid plutonic rocks  

- 

sc fraction of the catchment area 

associated with carbonate 

sedimentary rocks 

- 

su fraction of the catchment area 

associated with unconsolidated 

sediments 

- 

sm fraction of the catchment area 

associated with mixed 

sedimentary rocks 

- 

vi fraction of the catchment area 

associated with intermediate 

volcanic rocks 

- 

mt fraction of the catchment area 

associated with metamorphic 

- 

ss fraction of the catchment area 

associated with siliciclastic 

sedimentary rocks 

- 

pi fraction of the catchment area 

associated with intermediate 

plutonic rocks 

- 

va fraction of the catchment area 

associated with acid volcanic 

rocks 

- 

wb fraction of the catchment area 

associated with water bodies 

- 
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pb fraction of the catchment area 

associated with basic plutonic 

rocks 

- 

vb fraction of the catchment area 

associated with basic volcanic 

rocks 

- 

nd fraction of the catchment area 

associated with no data 

- 

py fraction of the catchment area 

associated with pyroclastic 

- 

ev fraction of the catchment area 

associated with evaporites 

- 

Land cover 

characteristics 

lai_max maximum monthly mean of the 

leaf area index (based on 12 

monthly means) 

- Myneni et al. (2015) 

lai_diff difference between the maximum 

and minimum monthly mean of the 

leaf area index (based on 12 

monthly means) 

- 

ndvi_mean mean normalized difference 

vegetation index (NDVI) 

- Didan (2015) 

root_depth_50 root depth (percentiles=50% 

extracted from a root depth 

distribution based on IGBP land 

cover) 

m Eq. 2 and Table 2 in 

(Zeng, 2001) 

root_depth_99 root depth (percentiles=99% 

extracted from a root depth 

distribution based on IGBP land 

cover) 

m 

evergreen 

needleleaf tree 

catchment area fraction covered by 

evergreen needleleaf tree 

- Sulla-Menashe and 

Friedl (2018) 

evergreen 

broadleaf tree 

catchment area fraction covered by 

evergreen broadleaf tree 

- 
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deciduous 

needleleaf tree 

catchment area fraction covered by 

deciduous needleleaf forests 

- 

deciduous 

broadleaf tree 

catchment area fraction covered by 

deciduous broadleaf tree 

- 

mixed forest catchment area fraction covered by 

mixed forest 

- 

closed shrubland catchment area fraction covered by 

closed shrubland 

- 

open shrubland catchment area fraction covered by 

open shrubland 

- 

woody savanna catchment area fraction covered by 

woody savanna 

- 

savanna catchment area fraction covered by 

savanna 

- 

grassland catchment area fraction covered by 

grassland 

- 

permanent 

wetland 

catchment area fraction covered by 

permanent wetland 

- 

cropland catchment area fraction covered by 

cropland 

- 

urban and built-up 

land 

catchment area fraction covered by 

urban and built-up land 

- 

cropland/natural 

vegetation 

catchment area fraction covered by 

cropland/natural vegetation 

- 

snow and ice catchment area fraction covered by 

snow and ice 

- 

barren catchment area fraction covered by 

barren 

- 

water bodies catchment area fraction covered by 

water bodies 

- 

Topography, 

location and 

basin_id drainage basin identifiers - Masutomi et al. (2009) 

pop population people 

pop_dnsty  population density people km-2  
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Human 

intervention 

lat mean latitude  °N 

lon mean longitude °E 

elev mean elevation M 

area catchment area km2 

slope mean slope m km-1 Horn (1981) 

length  The length of the mainstream 

measured from the basin outlet to 

the remotest point on the basin 

boundary. The mainstream is 

identified by starting from the 

basin outlet and moving up the 

catchment. 

km Subramanya (2013) 

form factor catchment area / (catchment 

length)2 

- 

shape factor (catchment length)2 / catchment 

area 

- 

compactness 

coefficient 

perimeter of the catchment / 

perimeter of the circle whose area 

is that of the basin 

- 

circulatory ratio catchment area / area of circle of 

catchment perimeter 

- 

elongation ratio diameter of circle whose area is 

basin area / catchment length 

- 

Soil  pdep soil profile depth cm Shangguan et al. (2013) 

clay percentage of clay content of the 

soil material 

% 

sand percentage of sand content of the 

soil material 

% 

por porosity cm3 cm-3 

silt percentage of silt content of the 

soil material 

% 

grav rock fragment content % 

som soil organic carbon content % 
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log_k_s4F3 log-10 transformation of saturated 

hydraulic conductivity 

cm d-1 Dai et al. (2019) 

theta_s4 saturated water content cm3 cm-3 

tksatu4 thermal conductivity of unfrozen 

saturated soils 

W m-1 K-1 

bldfie4 bulk density kg m-3 Hengl et al. (2017) 

cecsol4 cation-exchange capacity cmol+ kg-1 

orcdrc4 organic carbon content g kg-1 

phihox4 pH in H2O 10-1 

bdticm depth to bedrock cm 

 

Appendix B: Modified Penman’s equation 

Penman’s equation (Subramanya, 2013), incorporating some modifications to the original formula, is: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐴𝐴𝐻𝐻𝑛𝑛 + 𝐸𝐸𝑎𝑎γ
𝐴𝐴 + γ

 400 

where 𝑃𝑃𝑃𝑃𝑃𝑃 is the daily potential evapotranspiration in mm per day; 𝐴𝐴 is the slope of the saturation vapor pressure (𝑒𝑒𝑤𝑤) vs. 

temperature (𝑡𝑡) curve at the mean air temperature, in mm of mercury per Celsius; 𝐻𝐻𝐻𝐻 is the net radiation in mm of evaporable 

water per day; 𝐸𝐸𝑎𝑎 is a parameter including wind speed and saturation deficit; and γ is the psychrometric constant = 0.49 mm 

of mercury per Celsius. 

 405 

The relationship between 𝑒𝑒𝑤𝑤 and 𝑡𝑡 is defined as: 

𝑒𝑒𝑤𝑤 = 4.584 exp �
17.27𝑡𝑡

237.3 + 𝑡𝑡
� 

The following equation estimates the net radiation: 

𝐻𝐻𝑛𝑛 = 𝐻𝐻𝑎𝑎(1 − 𝑟𝑟) �𝑎𝑎 + 𝑏𝑏
𝑛𝑛
𝑁𝑁�

− σ𝑇𝑇𝑎𝑎4�0.56 − 0.092�𝑒𝑒𝑎𝑎� �0.10 + 0.90
𝑛𝑛
𝑁𝑁�

 

where 𝐻𝐻𝑎𝑎 is the incident solar radiation outside the atmosphere on a horizontal surface, expressed in mm of evaporable water 410 

per day (a function of the latitude and period of the year as indicated in Table B1); 𝑎𝑎 is a constant depending upon the latitude 

ϕ and is given by 𝑎𝑎 =  0.29 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙; 𝑏𝑏 is a constant = 0.52; 𝑛𝑛 is the sunshine duration in hours; 𝑁𝑁 is the maximum possible 

hours of bright sunshine (a function of latitude, see Table B2); 𝑟𝑟 is the reflection coefficient; σ is the Stefan-Boltzman constant 

 
3 The data source contains multi-layer soil data, soil characteristics for all layers are determined. 
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= 2.01 × 10−9 mm/day; 𝑇𝑇𝑎𝑎 is the mean air temperature in degrees kelvin; 𝑒𝑒𝑎𝑎 is the actual mean vapor pressure in the air in 

mm of mercury. 415 

 
Table B1: Mean Monthly Solar Radiation, 𝑯𝑯𝒂𝒂 in mm of Evaporable Water/Day 

North latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0° 14.5 15.0 15.2 14.7 13.9 13.4 13.5 14.2 14.9 15.0 14.6 14.3 

10° 12.8 13.9 14.8 15.2 15.0 14.8 14.8 15.0 14.9 14.1 13.1 12.4 

20° 10.8 12.3 13.9 15.2 15.7 15.8 15.7 15.3 14.4 12.9 11.2 10.3 

30° 8.5 10.5 12.7 14.8 16.0 16.5 16.2 15.3 13.5 11.3 9.1 7.9 

40° 6.0 8.3 11.0 13.9 15.9 16.7 16.3 14.8 12.2 9.3 6.7 5.4 

50° 3.6 5.9 9.1 12.7 15.4 16.7 16.1 13.9 10.5 7.1 4.3 3.0 

 

The parameter 𝐸𝐸𝑎𝑎 is estimated as: 

𝐸𝐸𝑎𝑎 = 0.35 �1 +
𝑢𝑢2

160�
(𝑒𝑒𝑤𝑤 − 𝑒𝑒𝑎𝑎) 420 

where 𝑢𝑢2 is the wind speed at 2𝑚𝑚 above ground in km/day; 𝑒𝑒𝑤𝑤 is the saturation vapor pressure at mean air temperature in mm 

of mercury; and 𝑒𝑒𝑎𝑎 is the actual vapor pressure. 

 
Table B2: Mean Monthly Values of Possible Sunshine Hours, 𝑵𝑵 

North latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0° 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 

10° 11.6 11.8 12.1 12.4 12.6 12.7 12.6 12.4 12.9 11.9 11.7 11.5 

20° 11.1 11.5 12.0 12.6 13.1 13.3 13.2 12.8 12.3 11.7 11.2 10.9 

30° 10.4 11.1 12.0 12.9 13.7 14.1 13.9 13.2 12.4 11.5 10.6 10.2 

40° 9.6 10.7 11.9 13.2 14.4 15.0 14.7 13.8 12.5 11.2 10.0 9.4 

50° 8.6 10.1 11.8 13.8 15.4 16.4 16.0 14.5 12.7 10.8 9.1 8.1 

Appendix C: Correlation analysis of catchment attributes 425 

To explore the potential connections between various types of watershed attributes, we performed correlation analysis using 

the Kendall rank correlation coefficient (Kendall, 1938). The Kendall rank correlation coefficient is a measure of rank 

correlation: the similarity of the sort order of the two sets of data. Kendall correlation will be high if the orderings of the 

observations of two variables are similar. Kendall correlation avoids the assumption of a linear relationship and that the 

distribution should be normal and continuous (e.g., Pearson correlation). When the relationship is not exactly linear, using 430 
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Pearson correlation will miss out on information that Kendall could capture. Table C1 shows the top five most relevant 

attributes for each attribute. The analysis result shows that the correlations between variables are in line with general 

understanding, justifying the rationality of the dataset, to name a few: 

(1) Subsurface permeability and porosity are most correlated with geological attributes. 

(2) LAI and NDVI are most positively correlated with each other but most negatively correlated with the fraction of barren 435 

land cover. 

(3) Urban and built ups are most positively correlated with population density. 

(4) In China, the savanna is mainly distributed in the southern coastal areas, resulting in it being most positively correlated 

with mean precipitation. 

(5) Sand is most positively correlated with saturated hydraulic conductivity, while clay is strongly negatively correlated with 440 

saturated hydraulic conductivity. 
Table C1: The top five most relevant characteristics for each attribute (different soil layers for the same attribute are excluded, e.g., 
phihox_sl2 is not included in the top five most relevant attributes of phihox_sl1, although they are highly correlated) 

Attribute  1st 2nd 3rd 4th 5th 

high_prec_fre

q 

root_depth_50(-

0.196) 
grassland(0.175) 

root_depth_99(-

0.171) 
som(0.136) tksatu_l1(-0.133) 

high_prec_dur 
theta_s_l6(-

0.277) 
theta_s_l5(-0.234) 

p_seasonality(0.2

33) 
elev(0.211) theta_s_l4(-0.201) 

low_prec_freq pre_mean(-0.766) aridity(0.745) ssd_mean(0.652) rhu_mean(-0.627) phihox_sl7(0.588) 

low_prec_dur aridity(0.78) pre_mean(-0.768) ssd_mean(0.731) rhu_mean(-0.709) phihox_sl7(0.579) 

frac_snow_dai

ly 
gst_mean(-0.802) tem_mean(-0.792) lat(0.575) 

evergreen_broadl

eaf_tree(-0.512) 
pre_mean(-0.436) 

prs_mean elev(-0.678) lon(0.552) rhu_mean(0.432) 
urban_and_built-

up_land(0.427) 
barren(-0.41) 

pre_mean aridity(-0.913) 
low_prec_dur(-

0.768) 

low_prec_freq(-

0.766) 
ssd_mean(-0.723) rhu_mean(0.712) 

evp_mean aridity(0.643) ndvi_mean(-0.632) rhu_mean(-0.617) ssd_mean(0.598) lai_dif(-0.593) 

gst_mean tem_mean(0.924) 
frac_snow_daily(-

0.802) 
lat(-0.512) 

evergreen_broadl

eaf_tree(0.507) 
pet_mean(0.442) 

rhu_mean aridity(-0.751) ssd_mean(-0.746) pre_mean(0.712) 
low_prec_dur(-

0.709) 

low_prec_freq(-

0.627) 

pet_mean 
cecsol_sl2(-

0.451) 
gst_mean(0.442) 

cecsol_sl3(-

0.441) 

cecsol_sl1(-

0.422) 
cecsol_sl4(-0.42) 
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ssd_mean aridity(0.753) rhu_mean(-0.746) 
low_prec_dur(0.7

31) 
pre_mean(-0.723) 

low_prec_freq(0.6

52) 

win_mean ssd_mean(0.426) 
woody_savanna(-

0.393) 

tem_mean(-

0.379) 
gst_mean(-0.377) 

mixed_forest(-

0.363) 

tem_mean gst_mean(0.924) 
frac_snow_daily(-

0.792) 

evergreen_broadl

eaf_tree(0.493) 
pop_dnsty(0.475) lat(-0.474) 

p_seasonality 
rhu_mean(-

0.421) 
tem_mean(-0.397) gst_mean(-0.393) ssd_mean(0.393) 

low_prec_dur(0.37

5) 

aridity pre_mean(-0.913) 
low_prec_dur(0.78

) 
ssd_mean(0.753) rhu_mean(-0.751) 

low_prec_freq(0.7

45) 

slope lat(-0.374) bdticm(-0.348) 
win_mean(-

0.341) 

mixed_forest(0.34

1) 

evergreen_needlel

eaf_tree(0.327) 

lon elev(-0.585) prs_mean(0.552) evp_mean(-0.5) barren(-0.482) ndvi_mean(0.47) 

elev prs_mean(-0.678) lon(-0.585) 
urban_and_built-

up_land(-0.485) 

pop_dnsty(-

0.481) 
cropland(-0.456) 

lat 
frac_snow_daily(

0.575) 

evergreen_broadle

af_tree(-0.548) 
gst_mean(-0.512) 

tem_mean(-

0.474) 

low_prec_freq(0.4

37) 

pop 
urban_and_built-

up_land(0.618) 
cropland(0.519) aridity(-0.511) pre_mean(0.505) rhu_mean(0.492) 

pop_dnsty 
urban_and_built-

up_land(0.639) 
aridity(-0.538) cropland(0.533) pre_mean(0.533) ssd_mean(-0.521) 

length area(0.684) 
form_factor(-

0.398) 

shape_factor(0.39

8) 

elongation_ratio(-

0.398) 

compactness_coeff

icient(0.363) 

area length(0.684) pop(0.23) pa(0.194) 
circulatory_ratio(-

0.187) 

compactness_coeff

icient(0.187) 

form_factor 
elongation_ratio(

1.0) 
shape_factor(-1.0) 

circulatory_ratio(

0.435) 

compactness_coef

ficient(-0.435) 
length(-0.398) 

shape_factor 
elongation_ratio(-

1.0) 
form_factor(-1.0) 

circulatory_ratio(-

0.435) 

compactness_coef

ficient(0.435) 
length(0.398) 

compactness_c

oefficient 

circulatory_ratio(

-1.0) 

elongation_ratio(-

0.435) 

shape_factor(0.43

5) 

form_factor(-

0.435) 
length(0.363) 

circulatory_rat

io 

compactness_coe

fficient(-1.0) 

elongation_ratio(0.

435) 

shape_factor(-

0.435) 

form_factor(0.435

) 
length(-0.363) 
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elongation_rati

o 

shape_factor(-

1.0) 
form_factor(1.0) 

circulatory_ratio(

0.435) 

compactness_coef

ficient(-0.435) 
length(-0.398) 

lai_dif 
ndvi_mean(0.808

) 
barren(-0.642) aridity(-0.638) pre_mean(0.609) 

woody_savanna(0.

607) 

lai_max 
ndvi_mean(0.779

) 
barren(-0.614) aridity(-0.613) 

woody_savanna(0

.612) 

phihox_sl2(-

0.602) 

ndvi_mean lai_dif(0.808) lai_max(0.779) barren(-0.677) evp_mean(-0.632) aridity(-0.607) 

root_depth_50 grassland(-0.485) pet_mean(0.232) barren(0.212) 
high_prec_freq(-

0.196) 
pdep(-0.176) 

root_depth_99 grassland(-0.339) barren(0.337) cropland(-0.336) pdep(-0.284) lon(-0.283) 

evergreen_nee

dleleaf_tree 

mixed_forest(0.5

72) 

woody_savanna(0.

481) 

phihox_sl7(-

0.416) 

phihox_sl6(-

0.411) 

phihox_sl5(-

0.409) 

evergreen_bro

adleaf_tree 
lat(-0.548) phihox_sl7(-0.538) 

phihox_sl6(-

0.529) 

phihox_sl5(-

0.522) 
pre_mean(0.512) 

deciduous_nee

dleleaf_tree 
cecsol_sl1(0.274) bldfie_sl1(-0.274) cecsol_sl2(0.272) orcdrc_sl2(0.27) cecsol_sl3(0.262) 

deciduous_bro

adleaf_tree 

mixed_forest(0.6

04) 

woody_savanna(0.

568) 
ndvi_mean(0.524) lai_max(0.5) lai_dif(0.497) 

mixed_forest 
woody_savanna(

0.713) 

deciduous_broadle

af_tree(0.604) 

evergreen_needlel

eaf_tree(0.572) 

phihox_sl7(-

0.565) 

phihox_sl6(-

0.563) 

closed_shrubla

nd 

deciduous_broadl

eaf_tree(0.217) 
savanna(0.16) 

mixed_forest(0.15

8) 
tksatu_l4(-0.153) theta_s_l2(-0.142) 

open_shrublan

d 

high_prec_dur(0.

179) 
rhu_mean(-0.174) elev(0.17) ssd_mean(0.17) prs_mean(-0.165) 

woody_savann

a 

mixed_forest(0.7

13) 
phihox_sl7(-0.628) 

phihox_sl4(-

0.628) 

phihox_sl3(-

0.627) 

phihox_sl6(-

0.627) 

savanna pre_mean(0.606) 
cropland_natural_v

egetaion(0.605) 

woody_savanna(0

.604) 
aridity(-0.602) ssd_mean(-0.591) 

grassland 
root_depth_50(-

0.485) 

cropland_natural_v

egetaion(-0.363) 

tem_mean(-

0.344) 
gst_mean(-0.344) 

root_depth_99(-

0.339) 

permanent_we

tland 

water_bodies(0.4

69) 
savanna(0.363) 

urban_and_built-

up_land(0.347) 
pre_mean(0.343) pop(0.343) 
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cropland 
urban_and_built-

up_land(0.546) 
pop_dnsty(0.533) pop(0.519) elev(-0.456) lon(0.417) 

urban_and_bui

lt-up_land 
pop_dnsty(0.639) pop(0.618) cropland(0.546) elev(-0.485) 

cropland_natural_

vegetaion(0.428) 

cropland_natur

al_vegetaion 
savanna(0.605) rhu_mean(0.546) aridity(-0.523) ssd_mean(-0.52) pre_mean(0.51) 

snow_and_ice ig(0.431) barren(0.379) lon(-0.373) elev(0.369) pdep(-0.354) 

barren 
ndvi_mean(-

0.677) 
lai_dif(-0.642) lai_max(-0.614) aridity(0.581) evp_mean(0.574) 

water_bodies 
permanent_wetla

nd(0.469) 
wb(0.39) 

cropland_natural_

vegetaion(0.17) 

urban_and_built-

up_land(0.158) 
elev(-0.154) 

geol_permeabi

lity 
sm(-0.345) su(0.326) ss(-0.316) bdticm(0.228) pdep(0.161) 

geol_porosity su(0.455) pa(-0.417) 
woody_savanna(-

0.323) 
phihox_sl3(0.315) phihox_sl4(0.314) 

ig 
snow_and_ice(0.

431) 
elev(0.194) theta_s_l2(-0.185) pdep(-0.184) theta_s_l3(-0.182) 

pa 
geol_porosity(-

0.417) 
mt(0.3) pi(0.295) va(0.271) vi(0.246) 

sc 
geol_porosity(-

0.285) 
lat(-0.264) bdticm(-0.26) slope(0.246) 

mixed_forest(0.23

1) 

su bdticm(0.52) 
geol_porosity(0.45

5) 

woody_savanna(-

0.349) 

geol_permeability

(0.326) 
phihox_sl7(0.326) 

sm 
geol_permeabilit

y(-0.345) 
su(-0.283) bdticm(-0.228) cropland(-0.199) elev(0.194) 

vi pa(0.246) pi(0.203) va(0.171) 
geol_porosity(-

0.169) 

deciduous_broadle

af_tree(0.166) 

mt pa(0.3) 
geol_porosity(-

0.286) 
pi(0.199) 

deciduous_broadl

eaf_tree(0.187) 
area(0.18) 

ss 
geol_permeabilit

y(-0.316) 
su(-0.17) bdticm(-0.136) 

evergreen_needlel

eaf_tree(0.106) 
tksatu_l6(-0.096) 

pi pa(0.295) vi(0.203) mt(0.199) 
geol_porosity(-

0.183) 
va(0.172) 
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va pa(0.271) 
geol_porosity(-

0.219) 
vb(0.21) 

deciduous_needle

leaf_tree(0.186) 
pi(0.172) 

wb 
water_bodies(0.3

9) 

permanent_wetlan

d(0.264) 
bldfie_sl4(0.148) bldfie_sl5(0.147) 

urban_and_built-

up_land(0.138) 

pb mt(0.176) pa(0.132) theta_s_l5(-0.128) area(0.127) length(0.123) 

vb va(0.21) 
geol_porosity(-

0.171) 
vi(0.165) cecsol_sl7(0.161) cecsol_sl6(0.157) 

nd barren(0.154) aridity(0.146) pre_mean(-0.144) lai_dif(-0.141) 
snow_and_ice(0.1

41) 

py 
phihox_sl1(-

0.237) 
phihox_sl2(-0.233) 

phihox_sl3(-

0.233) 
phihox_sl4(-0.23) 

woody_savanna(0.

227) 

ev barren(0.036) orcdrc_sl5(-0.035) 
orcdrc_sl4(-

0.035) 

cecsol_sl3(-

0.034) 
orcdrc_sl7(-0.034) 

tksatu_l1 grav(-0.346) som(-0.344) bldfie_sl3(0.298) bldfie_sl1(0.295) bldfie_sl2(0.291) 

tksatu_l2 som(-0.365) bldfie_sl3(0.326) bldfie_sl1(0.326) bldfie_sl2(0.323) grav(-0.308) 

tksatu_l3 som(-0.344) bldfie_sl2(0.328) bldfie_sl1(0.325) bldfie_sl3(0.324) bldfie_sl4(0.308) 

tksatu_l4 bldfie_sl2(0.398) som(-0.397) bldfie_sl1(0.388) bldfie_sl3(0.384) bldfie_sl4(0.358) 

tksatu_l5 bldfie_sl3(0.386) bldfie_sl2(0.376) som(-0.369) bldfie_sl4(0.364) bldfie_sl1(0.358) 

tksatu_l6 bldfie_sl3(0.366) som(-0.362) bdticm(0.36) bldfie_sl2(0.343) bldfie_sl7(0.338) 

log_k_s_l1 sand(0.71) clay(-0.59) savanna(-0.441) silt(-0.436) rhu_mean(-0.423) 

log_k_s_l2 sand(0.709) clay(-0.578) savanna(-0.452) phihox_sl7(0.438) silt(-0.433) 

log_k_s_l3 sand(0.682) clay(-0.592) savanna(-0.448) phihox_sl7(0.442) phihox_sl6(0.435) 

log_k_s_l4 sand(0.612) clay(-0.603) savanna(-0.49) pre_mean(-0.489) phihox_sl7(0.485) 

log_k_s_l5 clay(-0.561) sand(0.555) phihox_sl7(0.506) savanna(-0.501) phihox_sl6(0.501) 

log_k_s_l6 clay(-0.563) pre_mean(-0.555) aridity(0.548) phihox_sl7(0.534) phihox_sl6(0.532) 

theta_s_l1 grav(-0.582) clay(0.325) sand(-0.315) elev(-0.314) pdep(0.311) 

theta_s_l2 grav(-0.585) pdep(0.377) elev(-0.366) clay(0.35) sand(-0.326) 

theta_s_l3 grav(-0.522) pdep(0.42) elev(-0.414) prs_mean(0.365) clay(0.359) 

theta_s_l4 grav(-0.515) pdep(0.463) elev(-0.412) prs_mean(0.349) lon(0.328) 

theta_s_l5 grav(-0.433) elev(-0.401) pdep(0.376) sand(-0.349) rhu_mean(0.331) 

theta_s_l6 
evergreen_broadl

eaf_tree(0.372) 
grav(-0.357) elev(-0.344) sand(-0.343) tem_mean(0.337) 



34 
 

orcdrc_sl7 
bldfie_sl4(-

0.581) 
bldfie_sl5(-0.572) bldfie_sl6(-0.548) bldfie_sl3(-0.535) bldfie_sl7(-0.523) 

orcdrc_sl3 
bldfie_sl3(-

0.738) 
bldfie_sl2(-0.728) bldfie_sl1(-0.701) bldfie_sl4(-0.691) bldfie_sl5(-0.621) 

orcdrc_sl4 
bldfie_sl3(-

0.702) 
bldfie_sl2(-0.682) bldfie_sl4(-0.676) bldfie_sl1(-0.657) bldfie_sl5(-0.614) 

orcdrc_sl5 
bldfie_sl4(-

0.641) 
bldfie_sl3(-0.636) bldfie_sl2(-0.611) bldfie_sl5(-0.6) bldfie_sl1(-0.592) 

orcdrc_sl6 
bldfie_sl4(-

0.584) 
bldfie_sl5(-0.567) bldfie_sl6(-0.556) bldfie_sl3(-0.552) bldfie_sl7(-0.534) 

orcdrc_sl2 
bldfie_sl2(-

0.787) 
bldfie_sl1(-0.769) bldfie_sl3(-0.749) bldfie_sl4(-0.68) cecsol_sl1(0.629) 

orcdrc_sl1 
phihox_sl2(-

0.599) 
phihox_sl3(-0.594) 

phihox_sl4(-

0.591) 

phihox_sl5(-

0.586) 

phihox_sl6(-

0.585) 

phihox_sl7 
woody_savanna(-

0.628) 
pre_mean(-0.598) aridity(0.592) 

low_prec_freq(0.

588) 
orcdrc_sl1(-0.583) 

phihox_sl6 
woody_savanna(-

0.627) 
pre_mean(-0.594) aridity(0.59) lai_max(-0.587) orcdrc_sl1(-0.585) 

phihox_sl5 
woody_savanna(-

0.626) 
lai_max(-0.593) pre_mean(-0.592) aridity(0.589) orcdrc_sl1(-0.586) 

phihox_sl4 
woody_savanna(-

0.628) 
lai_max(-0.599) 

orcdrc_sl1(-

0.591) 
lai_dif(-0.578) pre_mean(-0.576) 

phihox_sl3 
woody_savanna(-

0.627) 
lai_max(-0.595) 

orcdrc_sl1(-

0.594) 
lai_dif(-0.576) pre_mean(-0.568) 

phihox_sl2 
woody_savanna(-

0.627) 
lai_max(-0.602) 

orcdrc_sl1(-

0.599) 
lai_dif(-0.583) 

low_prec_freq(0.5

69) 

phihox_sl1 
woody_savanna(-

0.601) 
lai_max(-0.586) 

orcdrc_sl1(-

0.584) 
lai_dif(-0.565) bldfie_sl2(0.55) 

bldfie_sl7 
orcdrc_sl5(-

0.547) 
orcdrc_sl4(-0.546) 

orcdrc_sl3(-

0.543) 

orcdrc_sl6(-

0.534) 
orcdrc_sl7(-0.523) 

bldfie_sl6 
orcdrc_sl5(-

0.559) 
orcdrc_sl6(-0.556) 

orcdrc_sl4(-

0.553) 

orcdrc_sl7(-

0.548) 
orcdrc_sl3(-0.547) 
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bldfie_sl5 
orcdrc_sl3(-

0.621) 
orcdrc_sl4(-0.614) orcdrc_sl5(-0.6) 

orcdrc_sl2(-

0.597) 
orcdrc_sl7(-0.572) 

bldfie_sl4 
orcdrc_sl3(-

0.691) 
orcdrc_sl2(-0.68) 

orcdrc_sl4(-

0.676) 

orcdrc_sl5(-

0.641) 
orcdrc_sl6(-0.584) 

bldfie_sl1 
orcdrc_sl2(-

0.769) 
orcdrc_sl3(-0.701) 

cecsol_sl1(-

0.686) 

orcdrc_sl4(-

0.657) 
som(-0.606) 

bldfie_sl3 
orcdrc_sl2(-

0.749) 
orcdrc_sl3(-0.738) 

orcdrc_sl4(-

0.702) 

orcdrc_sl5(-

0.636) 
som(-0.633) 

bldfie_sl2 
orcdrc_sl2(-

0.787) 
orcdrc_sl3(-0.728) 

orcdrc_sl4(-

0.682) 

cecsol_sl1(-

0.671) 
som(-0.651) 

cecsol_sl1 
bldfie_sl1(-

0.686) 
bldfie_sl2(-0.671) orcdrc_sl2(0.629) bldfie_sl3(-0.598) orcdrc_sl3(0.579) 

cecsol_sl2 
bldfie_sl1(-

0.579) 
bldfie_sl2(-0.566) orcdrc_sl2(0.553) orcdrc_sl3(0.523) bldfie_sl3(-0.515) 

cecsol_sl5 
bldfie_sl1(-

0.445) 
bldfie_sl2(-0.429) orcdrc_sl2(0.412) orcdrc_sl3(0.393) pet_mean(-0.392) 

cecsol_sl4 
bldfie_sl1(-

0.472) 
bldfie_sl2(-0.459) orcdrc_sl2(0.447) orcdrc_sl3(0.43) orcdrc_sl5(0.424) 

cecsol_sl3 
bldfie_sl1(-

0.532) 
bldfie_sl2(-0.52) orcdrc_sl2(0.508) orcdrc_sl3(0.49) orcdrc_sl4(0.478) 

cecsol_sl7 
bldfie_sl1(-

0.413) 
bldfie_sl2(-0.396) orcdrc_sl2(0.38) pet_mean(-0.374) orcdrc_sl3(0.362) 

cecsol_sl6 
bldfie_sl1(-

0.409) 
bldfie_sl2(-0.393) orcdrc_sl2(0.378) pet_mean(-0.373) orcdrc_sl3(0.36) 

bdticm su(0.52) 
woody_savanna(-

0.412) 

low_prec_freq(0.

382) 
phihox_sl7(0.378) 

mixed_forest(-

0.374) 

pdep theta_s_l4(0.463) elev(-0.436) grav(-0.424) theta_s_l3(0.42) lon(0.4) 

por som(0.363) bldfie_sl1(-0.335) 
phihox_sl1(-

0.329) 

phihox_sl3(-

0.328) 

phihox_sl2(-

0.328) 

clay sand(-0.67) log_k_s_l4(-0.603) 
log_k_s_l3(-

0.592) 
log_k_s_l1(-0.59) 

log_k_s_l2(-

0.578) 

sand log_k_s_l1(0.71) log_k_s_l2(0.709) log_k_s_l3(0.682) clay(-0.67) log_k_s_l4(0.612) 
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silt sand(-0.573) log_k_s_l1(-0.436) 
log_k_s_l2(-

0.433) 
log_k_s_l3(-0.4) 

log_k_s_l4(-

0.316) 

grav 
theta_s_l2(-

0.585) 
theta_s_l1(-0.582) theta_s_l3(-0.522) theta_s_l4(-0.515) theta_s_l5(-0.433) 

som 
bldfie_sl2(-

0.651) 
bldfie_sl3(-0.633) bldfie_sl1(-0.606) orcdrc_sl2(0.599) orcdrc_sl3(0.576) 

high_prec_fre

q 

root_depth_50(-

0.196) 
grassland(0.175) 

root_depth_99(-

0.171) 
som(0.136) tksatu_l1(-0.133) 

high_prec_dur 
theta_s_l6(-

0.277) 
theta_s_l5(-0.234) 

p_seasonality(0.2

33) 
elev(0.211) theta_s_l4(-0.201) 

low_prec_freq pre_mean(-0.766) aridity(0.745) ssd_mean(0.652) rhu_mean(-0.627) phihox_sl7(0.588) 

Appendix D: Data sources and processing 

The program to generate the dataset is mainly written in Python. The rasterio4 library is used to extract from the raster for the 445 

given basin boundary, reproject and merge rasters; The shapely5 library is used to calculate the geometry; The pyproj6 library 

is used for coordinate system conversions; The richdem7 library is used to calculate slope; The netCDF48 and xarray9 library 

is used to read the netCDF files; The pyshp10 library is used to handle shapefiles; The gdal11 command-line programs are used 

for data format conversions; The Python multiprocessing12 library is used for multithreaded data processing such as the 

calculation of meteorological time series; The interpolation program is written based on SciPy and NumPy. In addition, the 450 

calculation of the catchment boundary uses ArcPy13. However, ArcPy is not open sourced. Upon submission, due to policy 

adjustments, the SURF_CLI_CHN_MUL_DAY dataset has just been closed for sharing (may reopen), we provide two options: 

(1) calculate time series using the archived SURF_CLI_CHN_MUL_DAY data if the researcher had (2) calculate time series 

using our released data; the principle is to calculate the overlapping areas of the given watershed and the watersheds we have 

 
4 https://rasterio.readthedocs.io/en/latest/  
5 https://shapely.readthedocs.io/en/stable/manual.html  
6 https://pyproj4.github.io/pyproj/stable/  
7 https://richdem.readthedocs.io/en/latest/  
8 https://unidata.github.io/netcdf4-python/  
9 http://xarray.pydata.org/en/stable/  
10 https://pypi.org/project/pyshp/  
11 https://gdal.org/api/python.html  
12 https://docs.python.org/3/library/multiprocessing.html  
13 https://pro.arcgis.com/zh-cn/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm  

https://rasterio.readthedocs.io/en/latest/
https://shapely.readthedocs.io/en/stable/manual.html
https://pyproj4.github.io/pyproj/stable/
https://richdem.readthedocs.io/en/latest/
https://unidata.github.io/netcdf4-python/
http://xarray.pydata.org/en/stable/
https://pypi.org/project/pyshp/
https://gdal.org/api/python.html
https://docs.python.org/3/library/multiprocessing.html
https://pro.arcgis.com/zh-cn/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm
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calculated and then calculate the meteorological time series of the given watersheds by weighting, codes can be found in the 455 

GitHub repository. The GDBD dataset can be downloaded at https://www.cger.nies.go.jp/db/gdbd/gdbd_index_e.html. 

ASTER GDEM dataset can be downloaded at: https://asterweb.jpl.nasa.gov/gdem.asp. The GLHYMPS dataset can be 

downloaded at https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO; MODIS 

MCD12Q1 can be obtained from https://lpdaac.usgs.gov/products/mcd12q1v006/; MODIS MCD15A3 can be obtained from 

https://lpdaac.usgs.gov/products/mcd15a3hv006/; soil hydraulic and thermal properties can be downloaded after registration: 460 

http://globalchange.bnu.edu.cn/research/soil5.jsp; soil property data can be downloaded after registration: 

http://globalchange.bnu.edu.cn/research/soil2; and SoilGrids250 m data download links: 

https://files.isric.org/soilgrids/former/2017-03-10/data/ with a list of descriptions: 

https://github.com/ISRICWorldSoil/SoilGrids250m/blob/master/grids/models/META_GEOTIFF_1B.csv. 

Appendix E: Basin boundaries 465 

This section briefly introduces how the basin boundaries are derived. The basin boundary data used in this research are obtained 

from the GBDB (Masutomi et al., 2009) dataset. The GDBD dataset first distinguishes sinks caused by DEM errors; then, 

stream burning (Maidment, 1996) and ridge fencing methods are used to modify the seeded DEM, and basin boundaries are 

produced with standardized procedures (Jenson and Domingue, 1988; Maidment and Morehouse, 2002). Then, the gauging 

station data from the GRDC dataset are used to calibrate the derived basin boundaries. The derived basin areas were compared 470 

with the observed basin areas, and they showed a high degree of consistency with the observed basin data. 

Appendix F: Guidelines for calculating attributes for custom catchments 

The published code14 supports the automation of the calculation of the attributes for any given river basin and the generation 

of statistics files. In general, the user only needs to prepare the source data and ensure that the code environment is installed 

correctly, and then the user can run the code to calculate all attributes for the given river basin. The following describes the 475 

steps to generate data for any given watershed. 

 

1. Prepare source data 

In this step, the user needs to download the source data and place it in the cor-responding location (Table F1). The code 

supports the calculation of meteorological time series based on the SURF_CLI_CHN_MUL_DAY dataset. If the basin the 480 

user needs to calculate is not in China, then the user needs to format the collected meteorological time series into the same 

format as the time series generated by the code. A sample file is available in the GitHub library. 

 
14 https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset  

https://www.cger.nies.go.jp/db/gdbd/gdbd_index_e.html
https://asterweb.jpl.nasa.gov/gdem.asp
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
http://globalchange.bnu.edu.cn/research/soil5.jsp
http://globalchange.bnu.edu.cn/research/soil2
https://files.isric.org/soilgrids/former/2017-03-10/data/
https://github.com/ISRICWorldSoil/SoilGrids250m/blob/master/grids/models/META_GEOTIFF_1B.csv
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset
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Table F1: Instructions for preparing data sources 

Data source Download link Example Note 

ASTER 

GDEM 

https://search.earthdata.nasa

.gov/search/ 

https://www.jspacesystems.

or.jp/ersdac/GDEM/E/ 

./data/dems/ *.tif  

GLHYMPS https://dataverse.scholarspor

tal.info/dataset.xhtml?persis

tentId=doi:10.5683/SP2/DL

GXYO (using source data 

requires merging multiple 

small pieces to a single 

TIFF) 

https://1drv.ms/u/s!AqzR0f

Lyn9KKspF6HAAuXU9Tw

kkz1Q?e=QCPFAm (our 

processed file) 

https://1drv.ms/u/s!AqzR0f

Lyn9KKspF70EPmDubS5V

2qTQ?e=Rbybwa (our 

processed file) 

./data/processed_permeability

.tif 

./data/processed_porosity.tif 

 

GLiM https://csdms.colorado.edu/

wiki/Data:GLiM  

https://1drv.ms/u/s!AqzR0f

Lyn9KKspF5Vktb-

zlmd_Ctxg?e=G6fOuh (our 

processed file) 

./data/processed_glim.py  

MCD12Q1 https://lpdaac.usgs.gov/prod

ucts/mcd12q1v006/  

https://1drv.ms/u/s!AqzR0f

Lyn9KKspF4xxbe0xM7qJN

./data/processed_igbp.tif  

https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://www.jspacesystems.or.jp/ersdac/GDEM/E/
https://www.jspacesystems.or.jp/ersdac/GDEM/E/
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://1drv.ms/u/s!AqzR0fLyn9KKspF6HAAuXU9Twkkz1Q?e=QCPFAm
https://1drv.ms/u/s!AqzR0fLyn9KKspF6HAAuXU9Twkkz1Q?e=QCPFAm
https://1drv.ms/u/s!AqzR0fLyn9KKspF6HAAuXU9Twkkz1Q?e=QCPFAm
https://1drv.ms/u/s!AqzR0fLyn9KKspF70EPmDubS5V2qTQ?e=Rbybwa
https://1drv.ms/u/s!AqzR0fLyn9KKspF70EPmDubS5V2qTQ?e=Rbybwa
https://1drv.ms/u/s!AqzR0fLyn9KKspF70EPmDubS5V2qTQ?e=Rbybwa
https://csdms.colorado.edu/wiki/Data:GLiM
https://csdms.colorado.edu/wiki/Data:GLiM
https://1drv.ms/u/s!AqzR0fLyn9KKspF5Vktb-zlmd_Ctxg?e=G6fOuh
https://1drv.ms/u/s!AqzR0fLyn9KKspF5Vktb-zlmd_Ctxg?e=G6fOuh
https://1drv.ms/u/s!AqzR0fLyn9KKspF5Vktb-zlmd_Ctxg?e=G6fOuh
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://1drv.ms/u/s!AqzR0fLyn9KKspF4xxbe0xM7qJNzkA?e=vyFcFj
https://1drv.ms/u/s!AqzR0fLyn9KKspF4xxbe0xM7qJNzkA?e=vyFcFj
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zkA?e=vyFcFj (our 

processed file) 

MCD15A3 https://lpdaac.usgs.gov/prod

ucts/mcd15a3hv006/  

./data/MCD15A3/ 

MCD15A3H.A2002185.h22v

04.006.2015149102803.hdf 

 

MOD13Q1 https://lpdaac.usgs.gov/prod

ucts/mod13q1v006/  

./data/MOD13Q1/MOD13Q1

.A2002186.h22v04.006.2015

149102803.hdf 

 

Soil http://globalchange.bnu.edu.

cn/research/soil5.jsp  

./data/soil_souce_data/binary/

log_k_s_l1 

 

Soil https://files.isric.org/soilgrid

s/former/2017-03-10/data/  

./data/soil_souce_data/tif/BD

TICM_M_250m_ll.tif 

Description: 

https://github.com/ISRICWorldSoil/SoilG

rids250m/blob/master/grids/models/MET

A_GEOTIFF_1B.csv 

Soil http://globalchange.bnu.edu.

cn/research/soil2  

./data/soil_souce_data/tif/SA.

nc 

 

Root depth https://github.com/haozhen3

15/CCAM-China-

Catchment-Attributes-and-

Meteorology-

dataset/blob/main/data/root_

depth_calculated.txt  

./data/root_depth_calculated.t

xt 

Calculated root depth of each land type 

according to (Zeng, 2001). 

GLiM name 

mapping 

https://github.com/haozhen3

15/CCAM-China-

Catchment-Attributes-and-

Meteorology-

dataset/blob/main/data/glim

_name_short_long.txt  

https://github.com/haozhen3

15/CCAM-China-

Catchment-Attributes-and-

Meteorology-

./data/glim_cate_number_ma

pping.csv 

./data/glim_name_short_long.

txt 

These files are used for name conversions 

in the program. 

https://1drv.ms/u/s!AqzR0fLyn9KKspF4xxbe0xM7qJNzkA?e=vyFcFj
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod13q1v006/
http://globalchange.bnu.edu.cn/research/soil5.jsp
http://globalchange.bnu.edu.cn/research/soil5.jsp
https://files.isric.org/soilgrids/former/2017-03-10/data/
https://files.isric.org/soilgrids/former/2017-03-10/data/
http://globalchange.bnu.edu.cn/research/soil2
http://globalchange.bnu.edu.cn/research/soil2
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
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dataset/blob/main/data/glim

_cate_number_mapping.csv  

GDBD https://www.cger.nies.go.jp/

db/gdbd/gdbd_index_e.html 

./data/river_network/as_strea

ms_wgs.shp 

River network shapefiles are used to 

determine river basin shape factors. The 

source data need to be reprojected to 

EPSG:4326 (using ArcMap or QGIS) to 

successfully run the code. Note that files in 

different regions have different names. 

 485 

2. Run the code 

When all the data are ready, the user can run the code calculate_all_attributes.py to calculate all attributes or run separate 

scripts (e.g., soil.py) to calculate indicators for specific categories. The result will appear in the output folder. 
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