CCAM: China Catchment Attributes and Meteorology dataset

Zhen Hao^{2, *}, Jin Jin^{1,2, *}, Runliang Xia², Shimin Tian², Wushuang Yang², Qixing Liu², Min Zhu², Tao Ma², Chengran Jing², <u>Yanning Zhang¹</u>

¹School of Computer Science, Northwestern Polytechnical University, Xi'an, China, 710072

² Yellow River Institute of Hydraulic Research, Zhengzhou, China, 450003 *These authors contributed equally to this work.

Correspondence to: Jin Jin (jinjinhao@21cn.com)

Abstract. The laekabsence of a complied compiled large-scale catchment characteristics dataset is a key obstacle limiting the development of large sample hydrology research in China. We introduce the first large-scale catchment attributesattribute
 10 dataset in China. We compiled diverse data sources, including soil, land cover, climate, topography, and geology, to develop the dataset. The dataset also includes catchment—scale 31-year meteorological time series from 1990 to 2020 for each basin. Potential evapotranspiration time series based on Penman's equation isare derived for each basin. The 49114,911 catchments included in the dataset covers the entire cover all of China. We introduced several new indicators describing that describe the catchment geography and the underlying surface compared withdifferently from previously proposed datasets. The resulting

- 15 dataset has a total of 125 catchment attributes. The proposed dataset also and includes a separate HydroMLYR dataset containing standardized weekly averaged streamflow for 102 basins in the Yellow River Basin. The standardized streamflow data should be able to support machine learning hydrology research in the Yellow River Basin. The proposed dataset is freely available at http://doi.org/10.5281/zenodo.5137288. In addition, the accompanying code for generatingused to generate the dataset is freely available at https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset;
- 20 supporting and supports the generation of catchment characteristics for any custom basin boundaries. CompliedCompiled data for the 49114,911 basins covering the entireall of China and the open-sourced source code should be able to support the study of any arbitraryselected basins instead of rather than being limited to only a few basins.

1 Introduction

5

Rainfall, interception, evaporation and evapotranspiration, groundwater flow, subsurface flow and surface runoff are the main components of the terrestrial hydrological cycle. These processes are affected by the nature of the catchment, such as the ability of the soil to hold water. Catchment attributes influence the water movement and the storage of the catchment such that hydrologic behavioursbehaviors can vary across catchments (van Werkhoven, Wagener et al. 2008). (Van Werkhoven et al., 2008). Studying a large set of terrestrial catchments often provides insights that cannot be obtained when looking at a singleindividual cases or fewsmall sets (Coron, Andreassian et al., 2012; Kollat, Reed et al., 2012, 2012a; Newman, Clark

30 et aliza 2015; Lane, Coxon et aliza 2019). For example, a calibrated model may not be applicable in a watershed with vastly

Style Definition: List Paragraph

Formatted: Superscript

Formatted: Font color: Auto

different properties. However, by examining a large sample of catchments, it is possible for a data-driven model to learn the similarities and differences of among hydrological behaviours behaviors across catchments (Kratzert, Klotz et al. 2019). (Kratzert et al., 2019). Prediction in ungauged basins ispresents a challenging problem present in hydrology. The central challenge is how to extrapolate hydrologic information from gauged basins to ungauged ones, basins, and solving the this

35 problem relies contingent on understanding the similarities and differences between different catchments. Regionally, and temporally imbalanced observations bring aincrease the difficulty toof the problem. For a model to successfully simulate the ungauged areas, it must adapt itself to the differentvarying hydrologic behavioursbehaviors present in different catchments. Kratzert, Klotz et al. (2019) showsKratzert et al. (2019) show that encoding catchment characteristics (e.g., soil characteristics) land cover, topography) into a data-driven model can guide the model to behave differently respondingin response to the 40 meteorological time series input based on different sets of catchment attributes.

Large sample hydrological datasets are the foundation and key of many hydrological studies (Silberstein, 2006; Shen, Laloy et al., 2018; Nevo, Anisimov et al., 2019). The term "big hydrologic data" refers to all data influencing the water cycle, such as the meteorological variables, infiltration characteristics of the study area, land use or land cover types, physical and

- geological features of the study catchment, etc. Many studies are based on large-scale hydrologic data (Coron, Andreassian et 45 al-., 2012; Singh, van Werkhoven et al. 2014, 2014b; Berghuijs, Aalbers et al., 2017; Gudmundsson, Leonard et al., 2019; Tyralis, Papacharalampous et al., 2019). For hydrological research, basin orientatedBasin-oriented datasets are of great significance- in hydrological research. For example, comparative hydrology (de Araújo and González Piedra 2009, Singh, Archfield et al. 2014) focus(De Araújo and González Piedra, 2009; Singh et al., 2014a) focuses on understanding how
- 50 hydrological processes interact with the ecosystem, ___in particular, how hydrologic behaviours behaviours change under in response to changes in the surface and sub-surfacesubsurface of the earth to determine to what extent hydrological predictions can be transferred from one area to another. Large-sample catchment attributes attribute datasets provide opportunities forto research studying interrelationships among catchment attributes. Seybold, Rothman et al. (2017)Seybold et al. (2017) studiedstudy the correlations between river junction angle withangles and geometric factors, downstream concavity, and
- 55 aridity. Oudin, Andréassian et al. (2008)Oudin et al. (2008) investigates investigates the link between land cover and mean annual streamflow based on 15081,508 basins representing a large hydroclimatic variety. Voepel, Ruddell et al. (2011) Voepel et al. (2011) examines examine how the interaction of climate and topography influences vegetation response. World-wide

Worldwide data sharing has become a trend (Wickel, Lehner et al., 2007, Ceola, Arheimer et al., 2015, Blume, van Meerveld 60 et al., 2018; Wang, Chen et al., 2020), and the amounts of hydrologic data available are ever increasing. However, these data

typically came from different providers and are compiled in various formats. ASTGTM (Abrams, Crippen et al. 2020) provides a global digital elevation model; GliM (Hartmann and Moosdorf 2012) includes rock types data globally; MODIS provides data products, and the amounts of hydrologic data available are ever increasing. However, these data typically come from different providers and are compiled in various formats. ASTGTM (Abrams et al., 2020) provides a global digital elevation

Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Black

Formatted: Font color: Black

- model; GliM (Hartmann and Moosdorf, 2012) includes rock type data globally; MODIS provides data products (Didan, 2015; 65 Knyazikhin, 1999, Didan 2015,; Myneni, Knyazikhin et al., 2015; Running, Mu et al., 2017; Sulla-Menashe and Friedl, 2018) describing features of the land and the atmosphere derived from remote sensing observations; Yamazaki, Ikeshima et al. (2019) provides a global flow direction map at three are second resolution; HydroBASINS (Lehner 2014) provides basin boundaries at different scales globally; and GDBD (Masutomi, Inui et al. 2009) provides basin boundaries with geographic
- 70 attributes; GLHYMPS (Gleeson, Moosdorf et al. 2014) provides a global map of subsurface permeability and porosity; SoilGrids250m (Hengl, Mendes de Jesus et al. 2017) dataset provides global numeric soil properties. Local government agencies often hold meteorological data such as precipitation and evaporation, and the amount of this data is also growing. that describe features of the land and the atmosphere derived from remote sensing observations; Yamazaki et al. (2019) provide a global flow direction map at three arc-second resolution; HydroBASINS (Lehner, 2014) provides basin boundaries
- at different scales globally; GDBD (Masutomi et al., 2009) provides basin boundaries with geographic attributes; GLHYMPS 75 (Gleeson et al., 2014) provides a global map of subsurface permeability and porosity; and the SoilGrids250 m (Hengl et al., 2017) dataset provides global numeric soil properties. Local government agencies often hold meteorological data such as precipitation and evaporation, and the amount of these data is also growing.

However, the data mentioned above are rarely spatially aggregated to the catchment scale, making it difficult for researchers 80 to use these datathem. Properly pre-processed and formatted datasets are of great importance for in hydrology research. Searching for appropriate data sources, pre-processing preprocessing, and formatting often consumes a lot of consume considerable time. In some cases, individual research groups either do not know where to obtain the appropriate data or cannot properly process the data to receive into the desired format. In summary, although data sharing is being advocated in the community, it is usually difficult for the public to obtain the required data, either because there are not enough insufficient 85 observations or because of the difficulties in the associated with data processing.

Recently, there arehave been efforts (Addor, Newman et al., 2017; Alvarez-Garreton, Mendoza et al., 2018; Chagas, Chaffe et al., 2020; Coxon, Addor et al., 2020) to compile different types of data sources forming large scale hydrological datasets. These four collected datasets cover the continental United States, Chile, Brazil, and Great Britain. Addor, Do et al. (2020)

- 90 reviewed these datasets and discussed the guidelines for producing large-sample hydrological datasets and the limitations of the currently proposed datasets. The static properties of 671 river basins in the United States are calculated by CAMELS (Addor, Newman et al. 2017), which is an extension of a previously proposed hydrometeorological data set (Newman, Clark et al. 2015). Unfortunately, it is impossible to publish streamflow data in China for the time being. The CAMELS dataset has been used to support a lot of research. For example, Knoben, Freer et al. (2019) compared metrics used in hydrology based on
- 95 simulations on many basins. Tyralis, Papacharalampous et al. (2019) studied the relationship between the shape parameter and basin attributes based on the sizeable basin-oriented dataset.

to compile different types of data sources to form large-scale hydrological datasets. These four collected datasets cover the continental United States, Chile, Brazil, and Great Britain. Addor et al. (2020) review these datasets and discuss the guidelines

for producing large-sample hydrological datasets and the limitations of the currently proposed datasets. The static properties
 of 671 river basins in the United States are calculated by CAMELS (Addor et al., 2017), which is an extension of a previously proposed hydrometeorological dataset (Newman et al., 2015). Unfortunately, it is impossible to publish streamflow data in China at present. The CAMELS dataset has been used to support much research. For example, Knoben et al. (2019) compare metrics used in hydrology based on simulations in many basins. Tyralis et al. (2019) study the relationship between shape parameters and basin attributes based on a sizeable basin-oriented dataset.

105

110

There is currently no compilation of China-specific catchment attributesattribute datasets. An alternative, ____the HydroATLAS (Linke, Lehner et al. 2019)(Linke et al., 2019) dataset, which is on a global scale, is ____basically performingperforms zonal statistics on the source data. HydroATLAS lacks many indicators which needthat make derivations based on thefrom source data, such as rainfall seasonality, the fractionproportion of precipitation falling as snow, basin shape factors and root depth distributions. What's worseMoreover, the meteorological data is only up to the year 2000, which is outdated.

In summary, a lack of a complied complied catchment attributes attribute dataset is a key obstacle limiting the development of large—sample hydrology research in China, —Inspired by (Addor, Newman et al. 2017)(Addor et al., 2017), we complied complied multiple data sources, including basin topography, climate indices, land cover characteristics, soil characteristics and geological characteristics, <u>Different from (Addor, Newman et al. 2017)Unlike (Addor et al., 2017)</u>, the catchments included in the dataset covers the entire study area; instead of being limited to a few- data sources.

The proposed dataset is the first dataset providing eatchmentsthat provides catchment meteorological time series and eatchmentscatchment attributes of China. We compiled and named the dataset following most standards ofset by the previously proposed datasets. The dataset consists of all derived basin boundaries from the Digital Elevation Model (DEM), which eame from is a subset of the Global Drainage Basin Dataset (Masutomi, Inui et al. 2009). The Global Drainage Basin Dataset (GDBD) is derived at high resolution (100 m-1 km) and has a(Masutomi et al., 2009). The Global Drainage Basin Dataset (GDBD) is derived at high resolution (100 m-1 km) and has good geographic agreement with existing global drainage basin data in China. In addition, previously proposed datasets (Addor, Newman et al., 2017; Alvarez-Garreton, Mendoza et al., 2018; Chagas;

125 Chaffe et al., 2020, Coxon, Addor et al., 2020) report only the most frequent catchment land cover and lithology types. InsteadBy contrast, CCAM calculates the proportions of all land cover and lithology types.

In addition to the basin-wisebasinwise attributes provided in CCAM, we propose HydroMLYR, a hydrology dataset for machine learning research in the Yellow River Basin providing weekly averaged standardized streamflow data for 102 basins

130 in the Yellow River Basin (YRB). HydroMLYR is proposed to support machine learning hydrology research<u>atin the YRB</u>. Traditional hydrological models <u>have someface</u> long_standing challenges, such as <u>thetheir</u> inability to capture hydrological processes'process mechanism complexity (Kollat, Reed et al. 2012)(Kollat et al., 2012b), which is due to the structural Formatted: Font color: Black
 Formatted: Font color: Black
 Formatted: Font color: Black

limitations of the conceptual models, Data-driven strategies represented by machine learning are proposed to overcome some existing obstacles, and they openthese strategies offer a new way for researchers to acquire knowledge capable of transforming

- 135 the research pattern from hypothesis-driven to data-driven. Feng, Fang et al. (2020) proposed a flexible data integration fusing various types of observations to improve rainfall-runoff modelling. The research shows that combining different resources of data benefitsFeng et al. (2020) propose a flexible data integration fusing various types of observations to improve rainfall-runoff modelling. Their research shows that combining different data resources improves predictions in regions with high autocorrelation in streamflow. Wongso, Nateghi et al. (2020) developed a model predicting the state-level, per capita water
- 140 usesWongso et al. (2020) develop a model predicting the state-level per capita water use in the United States, taking various geographic, climatic, and socioeconomic variables as input. TheTheir research also identifiedidentifies key factors associated with high water usage. Mei, Maggioni et al. (2020) proposed a statistical framework for spatial downscaling to obtain hyper-resolution precipitation data. TheMei et al. (2020) propose a statistical framework for spatial downscaling to obtain hyper-resolution precipitation data. Their results show improvements compared with the original product. Brodeur, Herman et
- 145 al. (2020) applied machine learning techniques, namely bootstrap aggregation and cross-validation, to reduce overfitting in reservoir control policy search. Brodeur et al. (2020) apply machine learning techniques—namely, bootstrap aggregation and cross-validation—to reduce overfitting in reservoir control policy search. Ni and Benson (2020) proposedpropose an unsupervised machine learning method to differentiate flow regimes and identify capillary heterogeneity trapping, showing and show the promise of machine learning methods for analysinganalyzing large datasets from coreflooding experiments.
- 150 Legasa and Gutiérrez (2020) propose to applyapplying a Bayesian Networknetwork for multisite precipitation occurrence generation, and the proposed methodology shows improvements forover existing methods. The proposed data setdataset can be used to develop or verify machine learning models in the YRB. The

 This paper is organized as follows: Section 2 describes the study area. SectionSections 3-7 describes describe the five classes

 155
 of the computed catchment attributes. Section 8 describes the proposed catchment-scale meteorological time series. Section 9 introduceintroduces

 1bit introduceintroduces
 the HydroMLYR dataset. Section 10 describes the code and data availability. Section 11 is theour concluding remark

Formatted: English (United Kingdom)

Formatted: Font color: Black

Formatted: Font color: Black
Formatted: Font color: Black

2 Study area

Figure 1: Left: Study area of CCAM and the distribution of land cover types. The studied basins cover the whole of China. Right: 160 Study area of HydroMLYR and the distribution of aridity (PET/P) index. YRB is a generally arid area. The data set<u>dataset</u> provided can be used as a good sample for studying hydrology in arid regions.

The study area corresponds to the whole of China (Fig. 1), withwhich is characterized by diverse climate and terrain characteristics, spanning and spans from 18.2° N to 52.3° N and 76.0° E to 134.3° E_x-Mountains, plateaus, and hills account for aboutapproximately two-thirds of areasthe area of China, and the remaining areas are basins and plains. China's topography is likesimilar to a three-level ladder, in that it is high in the west and low in the east. The Qinghai-Tibet Plateau, which is located in western China and is the highest plateau globally, located in the west of China, with a mean elevation of over 40004,000 meters, is the first step of China's topography. The Xinjiang region, the Loess Plateau, the Sichuan Basin, and the Yunnan-Guizhou Plateau to the north and east are the second stepsteps of China's topography. The mean sea level here is between 1000 to 20001,000 and 2,000 meters. Plains and hills dominate the east of the Daxinganling-Taihang MountainMountains to the coastline, which comprises the third step of China's topography. The elevation of this step descends to 500-1,000 meters. To better characterize the studied catchments, we have derived various attributes. Table 1 compares the number of derived attributes between several proposed datasets.

Table 1: Number of computed attributes in CAMELS, CAMELS-BR and CCAM.

Attribute class	CAMELS(A17)	CAMELS-BR	CCAM
Location and topography	9	11	12
Geology	7	7	18
Soil	11	6	54

 Formatted: Font color: Black
 Formatted: Font color: Black
 Formatted: Font color: Black
 Formatted: Font color: Black

Land cover	8	11	22
Climatic indices	11	13	17
Human intervention indices	not computed -	4	2
Total	46	52	125

175

In China, precipitation and temperature vary significantly in different places, forming throughout China, which forms a diverse elimateclimatic environment. According to the Köppen Climate Classification System, moving from northwest to southeast, China's climate gradually evolves from Colda cold desert (BWk) climate, Tundraa tundra (ET) climate, Warmand a warm and temperate continental (Dfa and Dwb) climate to Humida humid subtropical (Cwa) climate and Warmwarm oceanic (Cfa) climate. 180 From the perspective of temperature zones, there are tropical, subtropical, warm temperate, medium temperate, cold temperate and Qinghai-Tibet Plateau regions, and there are humid regions, semi-humid regions, semihumid, semiarid regions, and arid regions from the perspective of wet andys. dry zones. Moreover, the same temperature zone can contain different multiple dry and wet zones. Therefore, there will may be differences in heat and wetness in the same climate type. The complexity of the terrain makes the climate even more complex and diverse. Besides In addition, China has a wide range of regions which are 185 affected by the alternating winter and summer monsoons. Compared with other parts of the world at the same latitude, these areas have lowlower winter temperatures, highligher summer temperatures, significant annual temperature differences, and concentrated precipitation in summer. The cold and dry winter monsoon occurs in Asia's interior, far away from the ocean. Under its influence, winterWinter rainfall in most parts of China is low, and accompanied by low temperaturetemperatures. The summer monsoon is warm and humid, eoming and comes from the Pacific Ocean and the Indian Ocean. Under its 190 influence, precipitationOceans. Precipitation generally increases during this time. Table 2 compares the provided forcing

variables in CAMELS, CAMELS-BR and CCAM.

Table 2: Summary of forcing variables provided in CAMELS, CAMELS-BR and CCAM.

Forcing data class	CAMELS	CAMELS-BR	CCAM
Temperature	availableYes	available <u>Yes</u>	availableYes
Precipitation	available <u>Yes</u>	availableYes	available <u>Yes</u>
Solar radiation	availableYes	not available<u>No</u>	availableYes
Day length	available <u>Yes</u>	not available<u>No</u>	not available<u>No</u>
Sunshine hours	not available<u>No</u>	not available<u>No</u>	availableYes
Humidity	available <u>Yes</u>	not available<u>No</u>	availableYes
Snow water equivalent	available <u>Yes</u>	not available<u>No</u>	not available<u>No</u>
Wind velocity	not available<u>No</u>	not available<u>No</u>	availableYes
Ground surface pressure	available <u>Yes</u>	not available<u>No</u>	available <u>Yes</u>

 Observed evaporation
 not availableNo
 availableYes

 Potential evapotranspiration
 not availableNo
 availableYes

<u>Yes</u> available<u>Yes</u> <u>Yes</u> available<u>Yes</u>

195 Table 3; Summary table of catchment attributes available in the proposed dataset.

Attribute class	Attribute name	Description	Unit	Data source
Climate indices	pet_mean	mean daily pet (Penman-Monteith	mm d-1	(Subramanya 2013)
(computed for 1		equation)		
Oct 1990 to 30	evp_mean	mean daily evaporation	mm-d-+	SURF_CLI_CHN_MUL_DAY
Sep 2018)		(observations)		3F ¹
	gst_mean	mean daily ground surface	≌€	
		temperature		
	pre_mean	mean daily precipitation	mm d ⁻¹	
	prs_mean	mean daily ground surface pressure	hPa	
	rhu_mean	mean daily relative humidity	=	
	ssd_mean	mean daily sunshine duration	ł	
	tem_mean	mean daily temperature	°€	
	win_mean	mean daily wind speed	m s⁺	
	p_seasonality	scasonality and timing of	=	
		precipitation (estimated using sine		
		curves to represent the annual		
		temperature and precipitation		
		eycles, positive [negative] values		
		indicate that precipitation peaks in		
		summer [winter], values close to 0		
		indicate uniform precipitation		
		throughout the year)		
	high_pree_freq	frequency of high-precipitation	d yr ¹	
		days (🌫 5 times mean daily		
		precipitation)		
	high_pree_dur	average duration of high-	d	
		precipitation events (number of		

¹ <u>http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html</u>

Formatted: Normal, Don't keep with next

Formatted: Font: Bold, Kern at 16 pt

		consecutive days ≥ 5 times mean			
		daily precipitation)			
	high_prec_timing	season during which most high-	scason		-
		precipitation days (\geq 5 times mean			
		daily precipitation) occur			
	low_prec_freq	frequency of dry days (< 1mm d ⁻¹)	d yr ¹		-
	low_pree_dur	average duration of dry periods	đ		-
		(number of consecutive days < 1			
		mm d⁻¹)			
	low_prec_timing	season during which most dry days	scason		-
		(<1 mm d⁻¹) occur			
	frac_snow_daily	fraction of precipitation falling as	-		-
		snow (for days colder than 0 °C)			
	p_seasonality	seasonality and timing of	-		
		precipitation, positive [negative]			
		values indicate that precipitation			
		peaks in summer [winter], values			
		close to 0 indicate uniform			
		precipitation throughout the year			
Geological	geol_porosity	subsurface porosity	-	(Gleeso	n, Moosdorf et al. 2014)
characteristics	geol_permeability	subsurface permeability (log-10)	m^2		-
	ig	fraction of the catchment area	-	(Hartma	ann and Moosdorf 2012)
		associated with ice and glaciers			
	pa	fraction of the catchment area	*		-
		associated with acid plutonic rocks			
	90	fraction of the catchment area	-		-
		associated with carbonate			
		associated with carbonate sedimentary rocks			
	SU	associated with earbonate sedimentary rocks fraction of the catchment area	-		
	80	associated with carbonate sedimentary rocks fraction of the catchment area associated with unconsolidated	-		

	sm	fraction of the catchment area	-			
		associated with mixed sedimentary				
		rocks				
	¥İ.	fraction of the catchment area	*			
		associated with intermediate				
		voleanie rocks				
	mt	fraction of the catchment area	-			
		associated with metamorphic				
	88	fraction of the catchment area	-			
		associated with siliciclastic				
		sedimentary rocks				
	pi	fraction of the catchment area	-			
		associated with intermediate				
		plutonic rocks				
	¥8	fraction of the catchment area	=			
		associated with acid volcanic rocks				
	₩b	fraction of the catchment area	-			
		associated with water bodies				
	pb	fraction of the catchment area	-			
		associated with basic plutonic				
		rocks				
	₩b	fraction of the catchment area	*			
		associated with basic volcanic				
		rocks				
	nd	fraction of the catchment area	*			
		associated with no data				
	PY	fraction of the catchment area	*			
		associated with pyroclastic				
	€¥	fraction of the catchment area	*			
		associated with evaporites				
Land cover	lai_max	maximum monthly mean of the leaf	-	(Myneni,	Knyazikhin	et al.
eharacteristics		area index (based on 12 monthly		2015)		
		means)				

lai_diff	difference between the maximum	-	
	and minimum monthly mean of the		
	leaf area index (based on 12		
	monthly means)		
ndvi_mean	mean normalized difference	-	(Didan 2015)
	vegetation index (NDVI)		
root_depth_50	root depth (percentiles=50%	m	Eq. 2 and Table 2 in (Zeng 2001)
	extracted from a root depth		
	distribution based on IGBP land		
	cover)		
root_depth_99	root depth (percentiles=99%	Ħ	
	extracted from a root depth		
	distribution based on IGBP land		
	cover)		
evergreen	catchment area fraction covered by	-	(Sulla-Menashe and Friedl 2018)
needleleaf tree	evergreen needleleaf tree		
evergreen	catchment area fraction covered by	-	
broadleaf tree	evergreen broadleaf tree		
deciduous	catchment area fraction covered by	-	
needleleaf tree	deciduous needleleaf forests		
deciduous	catchment area fraction covered by	-	
broadleaf tree	deciduous broadleaf tree		
mixed forest	catchment area fraction covered by	-	
	mixed forest		
elosed shrubland	catchment area fraction covered by	-	
	closed shrubland		
open shrubland	catchment area fraction covered by	=	
	open shrubland		
woody savanna	eatchment area fraction covered by	-	
	woody savanna		
savanna	catchment area fraction covered by	=	
	savanna		

	grassland	eatchment area fraction covered by	-		
		grassland			
	permanent wetland	catchment area fraction covered by	-		-
		permanent wetland			
	eropland	catchment area fraction covered by	=		-
		eropland			
	urban and built-up	catchment area fraction covered by	-		-
	land	urban and built-up-land			
	cropland/natural	eatchment area fraction covered by	-		-
	vegetation	eropland/natural vegetation			
	snow and ice	catchment area fraction covered by	-		-
		snow and ice			
	barren	eatchment area fraction covered by	-		-
		barren			
	water bodies	catchment area fraction covered by	-		-
		water bodies			
Topography,	basin_id	drainage basin identifiers	-	(Masute	əmi, Inui et al. 2009)
location and	pop	population	people		-
Human	pop_dnsty	population density	people k	m²	-
intervention	lat	mean latitude	<u>°N</u>		-
	lon	mean longitude	≗E		-
	elev	mean elevation	M		-
	area	catchment area	1 km ²		-
	slope	mean slope	m-km-+	(Horn 1	981)
	slope length	mean slope The length of the mainstream	m km ⁺ Km	(Horn 1 (Subran	981) nanya 2013)
	slope length	mean slope The length of the mainstream measured from the basin outlet to	m km ⁻⁺ Km	(Horn 1 (Subran	981) nanya 2013)
	slope length	mean slope The length of the mainstream measured from the basin outlet to the remotest point on the basin	m km ⁺ Km	(Horn 1 (Subran	981) nanya 2013)
	slope length	mean slope The length of the mainstream measured from the basin outlet to the remotest point on the basin boundary. The mainstream is	m-km ⁻⁺ Km	(Horn 1 (Subran	981) nanya 2013)
	slope length	mean slope The_length_of_the_mainstream measured from the basin outlet to the_remotest_point_on_the_basin boundaryThe_mainstreamis identified by starting from the basin	m km ⁺⁺ Km	(Horn 1 (Subran	981) nanya 2013)
	slope length	mean slope The length of the mainstream measured from the basin outlet to the remotest point on the basin boundary. The mainstream is identified by starting from the basin outlet and moving up the	m km ⁻⁺ Km	(Horn 1 (Subran	981) nanya 2013)
	slope length	mean slope The length of the mainstream measured from the basin outlet to the remotest point on the basin boundary. The mainstream is identified by starting from the basin outlet and moving up the catchment.	m km ⁺ Km	(Horn 1 (Subran	981) nanya 2013)
	slope length	mean slope The length of the mainstream measured from the basin outlet to the remotest point on the basin boundary. The mainstream is identified by starting from the basin outlet and moving up the catchment. catchment area / (catchment	m km ⁺ Km	(Horn 1 (Subran	981) nanya 2013) -

	shape factor	(catchment length) ^{2−} / catchment	-
		area	
	compactness	perimeter of the eatchment +	*
	coefficient	perimeter of the circle whose area	
		is that of the basin	
	circulatory ratio	catchment area / area of circle of	-
		eatchment perimeter	
	elongation ratio	diameter of circle whose area is	-
		basin area / catchment length	
Soil	pdep	soil profile depth	cm (Shangguan, Dai et al. 2013)
	clay	percentage of elay content of the	<u>9/0</u>
		soil material	
	sand	percentage of sand content of the	<u>%</u>
		soil material	
	por	porosity	em ³ em ⁻³
	silt	percentage of silt content of the soil	<u>0/6</u>
		material	
	grav	rock fragment content	<u>9/6</u>
	som	soil organic carbon content	<u>9/6</u>
	log_k_s4F ²	log-10 transformation of saturated	em d ⁻¹ (Dai, Xin et al. 2019)
		hydraulic conductivity	
	theta_s4	saturated water content	em ³ em ³
	tksatu ⁴	thermal conductivity of unfrozen	₩m [≠] K [≠]
		saturated soils	
	bldfie ⁴	bulk density	kg m ⁻³ (Hengl, Mendes de Jesus et al.
			2017)
	cecsol⁴	cation-exchange capacity	cmol+ kg⁺
	oredre ⁴	organic carbon content	g kg ⁺
	phihox ⁴	pH in H2O	10⁺
	bdtiem	depth to bedrock	em

² The data source contains multi-layer soil data, soil characteristics for all layers are determined.

3 Climatic indices

Raw meteorological data isare, provided by the China Meteorological Data Network; and released as the SURF_CLI_CHN_MUL_DAY (V3.0) dataset², which provides the longest period (1951-2020) of meteorological time series in China. The SURF_CLI_CHN_MUL_DAY product includes site observations of pressure, temperature, relative humidity, precipitation, evaporation, wind speed, sunshine duration, and ground surface temperature (Table 43). The Inverse inverse distance weighting method is used for interpolating to interpolate the site observations. To ensure data quality, we use the latter 31-year record (from 1990 to 2020) to construct the dataset since sites the site distribution was sparse in the early daysobservations (Fig. 2). We computed more climatic characteristics eompared with than most other datasets (Table 2). These variables are useful in hydrological modellingmodeling; for example, wind speed can affect actual evapotranspiration. To beremain consistent with the CAMELS (Addor, Newman et al. 2017), we determined all climatic attributes (Woods 2009) (Woods, 2009) provided in the CAMELS dataset. As a result, the proposed dataset provides more meteorological variables and a longer time series (1990-2020) than CAMELS and CAMELS-CL. A summary of the derived climate indices is presented in Table 3. Table A1, The national distributions of the climate indicators are shown in Fig. 3.

Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	
Formatted:	English (United S	tates)	

Figure 2: Changes in the number of meteorological stations in China. There were only 119 stations in 1951. This number increased rapidly from 1951 to the early 1960s, and the number of stations remained stable after 2000. To ensure the data quality, we used the latter 31-year records years (from 1990 to 2020) to construct the dataset.

³ SURF CLI CHN MUL DAY is freely available for global researchers.

Figure 3: Distributions of climatic indices over China. All basins are plotted in the same size. When extreme values of a variable affect visualization (<u>eausecausing</u> most areas to have the same <u>eolourcolor</u>), the log values are used for visualization.

- The instruments for measuringused to measure potential evaporation were updated from 2000 to 2005. Early observations can
 be multiplied by a correction coefficient to approximate the new tools. However, the coefficient varies across stations, making the approach infeasible. To complement this, we calculated potential evapotranspiration (PET) based on a modified Penman's Equation
 Equation
 (Appendix A) and other observed meteorological variables, providingwhich provides a series of consistent potential evaporation estimations for reference.
- The average daily precipitation in China is highest in the southeast and lowest in the northwest. It is also higher in the coastal areas than in the interior land. Ground surface pressure is positively correlated with elevation, the and is highest in the Qinghai-Tibet Plateau and the lowest in the Southeast Plain. The average relative humidity is generally positively correlated with precipitation; they areit is also higher in some forested areas, such as the Taihang Mountains and Daxingan Mountains. The Qinghai-Tibet Plateau has the lowest average temperature, and the southern coastal area has the highest. A distinctive feature of the distribution of wind speed is the high wind speed in mountainous areas. The highest wind speed occurs in the southeast coastal area (> 6 meters per second).

4 Geology

To describe the lithological characteristics of each catchment, we used the same two global datasets as CAMELS, Global Lithological Map (GliM) (Hartmann and Moosdorf 2012) and Global Hydrogeology MaPS (GLHYMPS) (Gleeson, Moosdorf 230 et al. 2014). Figure 4 presents the distributions of the geological types.

To describe the lithological characteristics of each catchment, we used the same two global datasets as CAMELS: Global Lithological Map (GliM) (Hartmann and Moosdorf, 2012) and Global Hydrogeology MaPS (GLHYMPS) (Gleeson et al., 2014). Figure 4 presents the distributions of the geological types.

- GLiM provides a high_resolution global lithological map assembled from existing regional geological maps; it has been widely used for constructing datasets (e.g., SoilGrids250m (Hengl, Mendes de Jesus et al. 2017)). However, the data quality of GLiM can vary in different construct datasets (e.g., SoilGrids250 m (Hengl et al., 2017)). However, the data quality of GLiM can vary among spatial locations depending on the quality of the original regional geological maps. GLiM consists of three levels: the first level contains 16 lithological classes, and the additional two levels describe more specific lithological characteristics.
- 240 The GLiM is represented by 1,235,400 polygons; the polygons which are converted to raster format for the basin-scale lithological type statistics. For China, the compiled regional data sources (China 1991, Xinjiang 1992, Survey 2001)(MGC, 1991; BGX, 1992; CGS, 2001) have slightly lower resolutions than the GLiM target resolution (1:1 000 000). However, for a basin-scale study with a mean basin area of over 20002,000 km², the classification accuracy should satisfy most applications. Different fromIn contrast to CAMELS and CAMELS-CL, we determined each lithological class's contribution to the catchment instead of recoding just the first and second most frequent classes only.

Figure 4: Distributions of geological characteristics over<u>throughout</u> China. For lithologies, the plot size is scaled by the lithology proportion.

GLobal HYdrogeology MaPS (GLHYMPS) provides a global estimation of subsurface permeability and porosity, two critical characteristics for the soils'soil hydrological classification. Porosity and permeability influence an area's infiltration capacity.

250 Soil with high porosity is likely to contain s amounts ofmore water, and highhighly permeable soil transmits water relatively quickly. Based on the high-resolution map of GLiM, which can differentiate fine, and coarse-grained sediments and sedimentary rocks, GLHYMPS determined determines subsurface permeability depending on the different permeabilities of rock types. For the proposed dataset, we calculated the catchment arithmetic mean for porosity. FollowedFollowing (Gleeson, Smith et al. 2011), the logarithmic scale geometric mean is used for representing subsurface permeability. The summary of geological characteristics is present in Table 3. (Gleeson et al., 2011), the logarithmic scale geometric mean is used to represent

the subsurface permeability. A summary of the geological characteristics is presented in Table A1,

- Porosity and permeability have similar distributions assimilar to those of the geological classes. These two characteristics are highly dependent on rock properties, unconsolidated sediments, mixed sedimentary rocks, siliciclastic sedimentary rocks, carbonate sedimentary rocks, and acid plutonic rocks are the five most common geological classes in China. Unconsolidated sediment is the most common rock type in China, dominating as it is dominant in 31.9% of catchments; it and extends from Xinjiang inland to the inland of the northeast and the coastal area surrounding the Bohai Sea, due, Due to the high proportion of unconsolidated sediments present in the rock, these areas typically have high permeability and medium porosity. Mixed sedimentary rocks are the second most common rock type in China, accounting for 20.3% of catchments, it dominated and they are predominant in the southern Qinghai-Tibet Plateau, western Yunnan-Guizhou Plateau, and northern Inner Mongolia. These areas typically have high porosity and low permeability. Siliciclastic sedimentary rocks dominateare found in 17.7% of basins, and are mainly distributed in the northern part of the Qinghai-Tibet Plateau and the junction of the Qinghai-Tibet Plateau; there are also some distributions observations in the eastern inland region. These areas have low subsurface permeability and high subsurface porosity. AmongsAmong all catchments, 9.8% of catchments are
- 270 dominated by carbonate sedimentary rocks. Carbonate sedimentary rocks, which are mainly located in eastern Yunnan and the northern Qinghai-Tibet Plateau. Acid plutonic rocks are typically distributed in the mountains surrounding the inland northeast, ______namely_the, Daxinganling Mountain and the hills in southern Guangdong and southwestern Guangxi. They are also distributed along the Brahmiputra riverRiver in the southsouthern part of the Qinghai-Tibet Plateau. The distribution of Acidacid plutonic rocks is relatively scattered; there are many isolated Acidacid plutonic rocks distributions throughout in different locations of China, accompanied which are characterized by medium permeability and high porosity.
 - The types of rocks in China are dominated by unconsolidated sediments and mixed sedimentary rocks. In 33.86% of the catchments, the dominant rock types occupy less than 50% of the catchment areas, and only 16.8% of basins are havinghave

-	Formatted: English (United States)
+	Formatted: English (United States)
-	Formatted: English (United States)
4	Formatted: English (United States)
4	Formatted: English (United States)
+	Formatted: English (United States)
+	Formatted: English (United States)

Formatted: English (United States)

Formatted: Font color: Black Formatted: Font color: Black

Formatted: Font color: Black

Formatted: Font color: Black

a dominant rock type with an area fraction proportion greater than 90%. Amongst 4911 Among 4,911 basins, 9.4% of basins have prevalent rock types wholly occupying that occupy the area.

5 Landcover

280

Figure 5: Distributions of land cover characteristics over<u>throughout</u> China. For land cover types, the plot size is scaled by the size of the land cover proportion.

- We selected two indicators to characterize <u>surface</u> vegetation density and growth<u>on</u>: the <u>surface</u>: <u>Normalizednormalized</u> difference vegetation index (NDVI) and <u>Leafthe leaf</u> area index (LAI). NDVI is an indicator with a valid range of -0.2 to 1₅ assessing that assesses whether the area being observed contains live green vegetation <u>orand</u> the <u>plants' overall health</u>. However, NDVI is <u>justonly</u> a qualitative measurement of <u>the</u> vegetation density; <u>it and</u> cannot provide a quantitative estimate of the vegetation density in the area. Moreover, NDVI often provides inaccurate vegetation density measurements, and only long-term <u>measurementmeasurements</u> and <u>comparisoncomparisons</u> can ensure its accuracy. NDVI alone is not enough to
- 290 estimate the state of plantsthe vegetation in an area. Therefore, we have selected another indicator, LAI, to supplement the deficiencies of NDVI.

LAI is defined as the total needle surface area per unit <u>of</u> ground area and half of the entire needle surface area per unit <u>of</u> ground surface area. It is a quantifiable value-<u>It that</u> is functionally related to many hydrological processes-<u>like</u>, <u>such as</u> water

- 295 interception (van Wijk and Williams 2005)(Van Wijk and Williams, 2005). (Buermann, Dong et al. 2001)Buermann et al. (2001) verifiesverify the validity of the LAI used to characterizefor characterizing vegetation growth. The data sources used are Thethe Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (Didan 2015)(Didan, 2015) for NDVI and the Moderate Resolution Imaging Spectroradiometer (MODIS) (Myneni, Knyazikhin et al. 2015)(Myneni et al., 2015) for LAI. FollowedFollowing (Addor, Newman et al. 2017)(Addor et al., 2017), we determined the maximum monthly
- 300 LAI as an indicator characterisingthat characterizes the vegetation interception capacity and the maximum evaporative capacity and the difference between the maximum and minimum monthly LAI-representing, which represents the LAI's temporal variations.

Land cover classification refers to segmenting the ground into different categories based on remote sensing images. The Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Typeland cover type provides different results depending on the classification system used, The Annual International Geosphere-Biosphere Programme (IGBP) classification is used for buildingto build the dataset, which is derived by the c4.5 decision tree algorithm. The IGBP Formatted: Font color: Black
Formatted: Font color: Black

Formatted: Font color: Black

classification system was formulated by the IGBP Land Cover Working Group in 1995, resulting in 17 categories of land cover types (Belward, Estes et al. 1999)(Belward et al., 1999). Friedl, Sulla-Menashe et al. (2010) compared the IGBP data of MODIS with other reference datasets and concludedFriedl et al. (2010) compare the IGBP data of MODIS with other reference datasets and concluded Friedl et al. (2010) compare the IGBP data of MODIS with other reference datasets and conclude that the MODIS classification of IGBP has an accuracy of 75%. We determined the fraction of each land cover class for each basin based on the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Typeland cover type (Sulla-Menashe and Friedl 2018), which differentiates our dataset from CAMELS and CAMELS-CL (which only ealeulatedcalculate the proportion of the dominant types).

315 Followed

Following (Addor, Newman et al. 2017)(Addor et al., 2017), we computed the average rooting depth (50% and 90%) for each catchment based on the IGBP classification using a two-parameter method (Zeng. 2001).(Zeng, 2001). The root depth distribution of vegetation affects the ground'sground water holding capacity and the topsoil layer's annual evapotranspiration (Desborough 1997).(Desborough, 1997). Many models use root depth as an essential parameter to characterize soil moisture

- 320 absorption capacity. (Zeng 2001)Zeng (2001) developed a two-parameter asymptotic equation for estimatingto estimate root depth distribution; the root depth distribution, which is global, and derived based on from the IGBP classification avoidingto avoid the problem of significantly different root distributions in various research efforts. Figure 5(g) shows root depth distributions of different vegetation types, based on (Zeng 2001). The 90% root depth is usually considered to be "rooting depth", among the 17 categories of IGBP, cropland has the smallest rooting depth, and open shrubland has the
- 325 largest_{*}-The 90% root depth of all vegetation is less than 2 meters. The national distribution of <u>catchmentscatchment</u> soil characteristics is shown in Fig. 5.

Formatted: Font color: Black

6 Location and topography

The catchments'catchment boundary files are obtained from the global drainage basin dataset (Masutomi, Inui et al. 2009). The GDBD dataset was derived from digital elevation models (DEMs) with a high resolution (100m-1km(Masutomi et al., 2009). The GDBD dataset was derived from digital elevation models (DEMs) with a high resolution (100m-1km(Masutomi et al., 2009). The GDBD dataset was derived from digital elevation models (DEMs) with a high resolution (100m-1km), and the errors were corrected by either automatic methods or manually. Additionally, GDBD also provides population and population density estimates for catchments, and these two indicators are also included in our dataset as a measure of human intervention. Global Streamflow Data Centre (Center 2005) discharge gauging stations were used for referencingGlobal Runoff Data Centre⁴ discharge gauging stations were used to reference the derived basins. GDBD has a high average match area rate (AMAR) and good geographic agreement with existing global drainage basin data in China. Based on the high-quality dataset, precisePrecise geographic and topographic information can be derived from the high-quality dataset.

⁴ https://www.bafg.de/GRDC/EN/01 GRDC/grdc node.html

Formatted: English (United States)
Formatted: English (United States)
Formatted: Default Paragraph Font, Underline, English
(United States)
Formatted: English (United States)

Figure 6. Distributions of topographic characteristics.

345

The CAMELS dataset provides two parameters (i.e., two area estimates) for describingto describe the catchment shape. The physical characteristics of a catchment can affect the streamflow volume and the streamflow hydrograph of the catchment under a storm. To provide a complete description of the catchment shape, we computed several geometrical parameters of the catchment related to the streamflow process (Fig. 6), including the catchment form factor, shape factor, compactness coefficient, circulatory ratio and the elongation ratio (Subramanya 2013). (Subramanya, 2013). A summary of the location and topography attributes can be found in Table 3. Table A1.

7 Soil

350 The proposed dataset has a total of 54 soil attributes (Table 3)(Table A1) derived from (Hengl, Mendes de Jesus et al. 2017), (Dai, Xin et al. 2019) and (Shangguan, Dai et al. 2013)(Hengl et al., 2017; Dai et al., 2019; Shangguan et al., 2013). Five categories of soil characteristics (pH in H2O, organic carbon content, depth to bedrock, cation-exchange capacity, and bulk density) are determined from SoilGrids. SoilGrids (Hengl, Mendes de Jesus et al. 2017) provides global predictions for soil properties_a including organic carbon, bulk density, cation exchange capacity (CEC), pH, soil texture fractions and coarse fragments_a by fusing multiple data sources_a including MODIS land products, SRTM DEM, climatic images and global landform and lithology maps_a at the 250m250 m resolution (Fig. 7). SoilGrids mademakes predictions based onusing machine learning algorithms and many covariates² covariate layers primarily derived from remote sensing data. SoilGrids and has soil characteristics forat several soil depths.

Different fromUnlike CAMELS, whose reported results are obtained by a linear weighted combination of the different soil layers, and CAMELS-BR, whose products are soil characteristics at a depth of 30cm. We30 cm, we computed soil characteristics at all soil layers provided by SoilGrids250mSoilGrids250 m.

We determined saturated water content and saturated hydraulic conductivity (Dai, Xin et al. 2019). Based on the same dataset,

- 365 we also introduced the thermal conductivity of unfrozen saturated soils. Dai, Xin et al. (2019) provides a global estimation of soil hydraulic and thermal parameters using multiple Pedotransfer Functions (PTFs) based on the SoilGrids250m dataset. Based on the SoilGrids250m and GSDE (Shangguan, Dai et al. 2014) datasets, Dai, Xin et al. (2019) produced six soil layers with a spatial resolution of 30×30 are second. The vertical resolution of (Dai, Xin et al. 2019) is the same as the SoilGrids250m, with six intervals of 0 0.05 m, 0.05 0.15 m, 0.15 0.30 m, 0.30 0.60 m, 0.60 - 1.00 m, and 1.00 - 2.00 m. We determine and
- 370 record catchment soil characteristics for all these layers. In addition, we determined seven more soil characteristics (Shangguan, Dai et al. 2013) including soil profile depth, porosity, clay/silt/sand content, rock fragment, and soil organic carbon content. Shangguan, Dai et al. (2013) provides physical and chemical attributes of soils derived from 8979 soil profiles at 30×30 arc-second resolution, the polygon linkage method was used to derive the spatial distribution of soil properties. The profile attribute database and soil map are linked under a framework avoiding uncertainty in taxon referencing.
- 375 Depth to bedrock controls many physical and chemical processes in soil. We determined the saturated water content and saturated hydraulic conductivity (Dai et al., 2019). Based on the same dataset, we also introduced the thermal conductivity of unfrozen saturated soils. Dai et al. (2019) provide a global estimation of soil hydraulic and thermal parameters using multiple Pedotransfer Functions (PTFs) based on the SoilGrids250 m and GSDE (Shangguan et al., 2014) datasets, Dai et al. (2019) produce six soil layers with a spatial
- 380 resolution of 30×30 arc-seconds. Their vertical resolution is the same as that of SoilGrids250 m, with six intervals of 0–0.05 m, 0.05–0.15 m, 0.15–0.30 m, 0.30–0.60 m, 0.60–1.00 m, and 1.00–2.00 m. We determined and recorded catchment soil characteristics for all these layers. In addition, we determined seven more soil characteristics (Shangguan et al., 2013), including soil profile depth, porosity, clay/silt/sand content, rock fragment, and soil organic carbon content. Shangguan et al. (2013) provide the physical and chemical attributes of soils derived from 8,979 soil profiles at a 30×30 arc-second resolution

385 using the polygon linkage method to derive the spatial distribution of soil properties. The profile attribute database and soil map are linked under a framework to avoid uncertainty in taxon referencing.

Depth to bedrock controls many physical and chemical processes in soil. The distribution of depth to bedrock in China is characterisedcharacterized by (i) low values in the mountainous areas, such as Yunnan provinceProvince and Chongqing City;

and (ii) high values in barren areas, e.g. such as North and Northwest China. The introduced soil pH value is crucial since it influences many other physical and chemical soil characteristics. The spatial variability of soil pH in China is characterisedcharacterized by (i) soils in southern China are acidbeing acidic to strongly acid; acidic, (ii) soils in northern China are being natural or alkaline; and (iii) soils in northeastern forested areas are also acidbeing acidic (pH < 7.2). Cation exchange capacity can be seen as a measure of soil fertility since it measures how much nutrient content the soil can store such that it influences the growth of the vegetation. Cation exchange capacity is positively correlated with soil organic matter content and clay content, which Cation exchange capacity and is generally low in sandy and silty soils. The spatial variability of Cationcation exchange capacity in China is characterized by (i) high values in peat and forested areas in the Qinghai-Tibet Plateau, central and northeast China, and (ii) The Cationextremely low cation exchange capacity in the desert areaareas such as the northwest is extremely low. Soil hydraulic and thermal properties are greatly affected by soil organic matter has a similar distribution to the cation exchange capacity; in that it is high in the peat and</p>

Formatted: Font color: Black

Formatted: Font color: Black

Formatted: Font color: Black

8 Meteorological time series

Table 4:3: Summary table of catchment meteorological time series available in the proposed dataset

forested areas such as in northeast China and low in the north and northwest.

Variable	Description									
prs	catchment daily averaged ground pressure									
tem	catchment daily averaged temperature at 2 m above ground									
rhu	catchment daily averaged relative humidity	-								
pre	catchment daily averaged precipitation									
evp	catchment daily averaged evaporation measured by ground									
	instruments									
win	catchment daily averaged wind speed at 2 m above ground	m s ⁻¹								
ssd	catchment daily averaged sunshine duration	h d-1								
gst	catchment daily averaged ground surface temperature	°C								
pet	catchment daily averaged potential evapotranspiration	mm d ⁻¹								
	determined by Penman's equation (Appendix A)									

Formatted Table

- 405 There have been many studies based on SURF_CLI_CHN_MUL_DAY in China (Liu, Xu et al. 2004, Xu, Gao. 2009; Liu et al. 2009, 2004; Huang, Han et al., 2016; Liu, Zheng et al., 2017), such as a trend analysis of the pan evaporation (Liu, Yang et al. 2010). Still(Liu et al., 2010). Nevertheless, there has not yet been a large-scale basin-oriented meteorological time series dataset in China. Researchers still need to do repeated workscomplete multiple iterations to extract historical meteorological data from the SURF_CLI_CHN_MUL_DAY dataset for the this type of research. For the first time, we release a catchment_
- 410 scale meteorological time series dataset. The open-<u>sourced source</u> code can generate any catchment's meteorological time series within China. The basin-oriented dataset provides meteorological time series for <u>49114,911</u> basins from 1990 to 2020 based on the China Meteorological Data <u>Networksource</u>. Meteorological time series <u>includesinclude</u> pressure, temperature, relative humidity, precipitation, evaporation, wind speed, sunshine duration, ground surface temperature and potential evapotranspiration (<u>Table 4). (Table 3).</u>

415

420

425

430

The meteorological time series data from 1951 to 2010 isare derived based on the "1951-2010 China National Ground Station Data Corrected Monthly Data File Basic Data Collection" data construction project. Other data include monthly reported data to the National Meteorological Information Centre by the provinces, province, and hourly and daily data uploaded by automatic ground stations in real-time. During the development construction of the dataset, missing data were filled by interpolating itsto the nearest stations.

Figure 2 presents the variation ofin the number of sites. The start date of the<u>carliest</u> recording iswas in 1951, but because the early site distribution iswas sparse, we only used records from 1990 to 2020 to construct the dataset to ensure the data quality. Inverse distance weighting shows better performance than other interpolation methods. In addition, potential evapotranspiration (PET) is estimated based on Penman's Equationequation (Appendix A) and other meteorological variables.

9 HydroMLYR: Hydrology dataset for Machine Learning in YRB

In addition to the basin-wisebasinwise static attributes provided in CCAM, we propose HydroMLYR, a hydrology dataset for machine learning research in the YRB (Fig. 1). HydroMLYR includes standardized streamflow measurements for 102 basins. The streamflow data isare seven-day averaged and standardized basin-wisebasinwise to have zero mean and a standard deviation of 1 (Fig. 8). The HydroMLYR dataset is proposed to support machine learning or deep learning hydrology research (e.g., neural network-based and tree-based algorithms). It) and can be used in two cases: (4) to develop machine learning models on the YRB or (2i) when it is desirable to verify the generalization ability of a machine learning model on the YRB.

Figure 8: Examples Example of standardized runoff

435 <u>The dataset provides 40 natural basins in the dataset which that</u> are not affected by reservoirs and dams. The selection is based on a newer version⁵ of the Global Reservoirs and <u>Dam databasesDams database</u> (Lehner, Liermann et al. 2011) (Lehner et al., 2011), which provides the locations of reservoirs and dams globally. HydroMLYR covers 102 basins in the YRB, including basin boundary shapefiles, static attributes, and standardized streamflow measurements for each basin. The covered basins have areas ranging from 134 to 804,421 square kilometers, Therefore, modelling modeling the YRB on a large scale of the YRB is also possible. Meteorological records in HydroMLYR introduced daily maximum and minimum inima.

for some forcing variables (Table 5). 4).

445

The original streamflow observations are not continuous. The average record length is 11.3 years. Although the development of machine learning models does not necessarily require the data to be continuous, we separately provide continuous streamflow observations with an average record length of 8.3 years.

Table 5:4: Meteorological variables provided in HydroMLYR

Attribute name	Description	Unit
evp	catchment daily averaged evaporation (observations)	mm d ⁻¹
gst_mean	catchment daily averaged ground surface temperature	°C
gst_min	catchment daily minimum ground surface temperature	°C
gst_max	catchment daily maximum ground surface temperature	°C
pre	catchment daily averaged precipitation	mm d ⁻¹
prs_mean	catchment daily averaged ground surface pressure	hPa
prs_max	catchment daily maximum ground surface pressure	hPa

Formatted: English (United States)
Formatted: English (United States)
Formatted: Default Paragraph Font, English (United States), Superscript
Formatted: English (United States)
Formatted: English (United Kingdom)

⁵ http://globaldamwatch.org/data/#core_global

prs_min	catchment daily minimum ground surface pressure	hPa
rhu	catchment daily averaged relative humidity	-
ssd	catchment daily averaged sunshine duration	h
tem_mean	catchment daily averaged temperature	°C
tem_min	catchment daily minimum temperature	°C
tem_max	catchment daily maximum temperature	°C
win_max	catchment daily maximum wind speed	m s ⁻¹
win_mean	catchment daily averaged wind speed	m s ⁻¹

10 Data and code availability

The proposed dataset is freely available at http://doi.org/10.5281/zenodo.5137288. The files provided are: (i) several separate files containing 120+ catchmentscatchment attributes, (ii) the daily meteorological time series in a zip file, (iii) the catchment boundaries used to compute the attributes and extract the time series, (iv) the HydroMLYR dataset, (v) an attribute description file, and (v) a readme file.

11 Conclusion

450

The CCAM dataset proposed in this paper provides a novel dataset for hydrological research in China. All basins delaminated from the DEM are studied, covering entirethe whole of China. The dataset includes daily meteorological forcing time-series 455 data, including precipitation, temperature, potential evapotranspiration, wind, ground surface temperature, pressure, humidity, sunshine duration and the derived potential evapotranspiration of 49114,911 catchments. The proposed time series dataset is derived based on from the quality-controlled SURF CLI CHN MUL DAY dataset. CCAM includes 120+ catchment attributes, including soil, land cover, geology, climate indices and topography for each catchment. We produced a series of maps depicting the catchment attributesattribute distributions in China. These maps present regional changes ofin various features; we also estimateestimated the relationships between them based on Kendall's correlation. Integrating multiple data 460 sources into one dataset at a catchment scale simplifies the data compilation process in research. CCAM can help test hypotheses and formulate valid conclusions under various conditions, (i.e., not just limited to a few specific locations only) and help explore how different basin characteristics influence hydrological behavioursbehaviors, learn the migration of hydrological behavioursbehaviors between different basins, and develop general frameworks for large-scale model evaluation 465 and benchmarking in China. A limitation of thethis study is the lack of estimation of its failure to estimate the uncertainty of the meteorological time series. An alternative is to evaluate the uncertainty of the basin-wisebasinwise meteorological data SURF_CLI_CHN_MUL_DAY. Hence, it poses a challenge for evaluating the uncertainty of these eight meteorological variables, which poses a challenge that is left for future studies.

Data source

470 Appendix A: Attributes summary

Formatted: Font color: Black

Table A1; Summary table of catchment attributes available in the proposed dataset.							
Attribute class	Attribute name	Description	<u>Unit</u>				
Climate indices	pet_mean	mean daily pet (Penman-Monteith	<u>mm d-1</u>				

Climate indices	pet_mean	mean daily pet (Penman–Monteith	<u>mm d⁻¹</u>	Subramanya (2013)
(computed for 1		equation)		
Oct 1990 to 30	evp_mean	mean daily evaporation	<u>mm d⁻¹</u>	SURF_CLI_CHN_MUL
<u>Sep 2018)</u>		(observations)		DAY
	gst_mean	mean daily ground surface	<u>°C</u>	
		temperature		
	pre_mean	mean daily precipitation	<u>mm d⁻¹</u>	
	prs_mean	mean daily ground surface	<u>hPa</u>	
		pressure		
	<u>rhu_mean</u>	mean daily relative humidity	=	
	ssd_mean	mean daily sunshine duration	<u>h</u>	
	tem_mean	mean daily temperature	<u>°C</u>	
	win_mean	mean daily wind speed	<u>m s⁻¹</u>	
	p_seasonality	seasonality and timing of	=	·
		precipitation (estimated using sine		
		curves to represent the annual		
		temperature and precipitation		
		cycles, positive [negative] values		
		indicate that precipitation peaks in		
		summer [winter], values close to 0		
		indicate uniform precipitation		
		throughout the year)		
	high prec freq	frequency of high-precipitation	<u>d yr⁻¹</u>	
		$days$ (\geq 5 times mean daily		
		precipitation)		

Formatted: Font: Bold, Kern at 16 pt

Formatted: Normal, Don't keep with next

Formatted Table

4

	high prec dur	average duration of high-	<u>d</u>	
		precipitation events (number of		
		<u>consecutive days \ge 5 times mean</u>		
		daily precipitation)		
	high prec timing	season during which most high-	season	-
		precipitation days (\geq 5 times		
		mean daily precipitation) occur		
	low_prec_freq	frequency of dry days (< 1mm d ⁻¹)	<u>d yr⁻¹</u>	-
	low_prec_dur	average duration of dry periods	<u>d</u>	-
		<u>(number of consecutive days < 1</u>		
		<u>mm d⁻¹)</u>		
	low_prec_timing	season during which most dry days	season	-
		<u>(< 1 mm d⁻¹) occur</u>		
	frac_snow_daily	fraction of precipitation falling as	=	-
		snow (for days colder than 0 °C)		
	<u>p_seasonality</u>	seasonality and timing of	Ē	
		precipitation, positive [negative]		
		values indicate that precipitation		
		peaks in summer [winter], values		
		close to 0 indicate uniform		
		precipitation throughout the year		
Geological	geol_porosity	subsurface porosity	=	Gleeson et al. (2014)
characteristics	geol_permeability	subsurface permeability (log-10)	<u>m²</u>	-
	ig	fraction of the catchment area	=	Hartmann and Moosdorf
		associated with ice and glaciers		<u>(2012)</u>
	pa	fraction of the catchment area	=	-
		associated with acid plutonic rocks		
	<u>SC</u>	fraction of the catchment area	=	-
		associated with carbonate		
		sedimentary rocks		
	<u>su</u>	fraction of the catchment area	=	-
		associated with unconsolidated		
		sediments		

<u>sm</u>	<u>fraction of the catchment area</u> -
	associated with mixed
	sedimentary rocks
vi	fraction of the catchment area -
	associated with intermediate
	volcanic rocks
mt	fraction of the catchment area -
	associated with metamorphic
SS	fraction of the catchment area -
	associated with siliciclastic
	sedimentary rocks
pi	fraction of the catchment area -
	associated with intermediate
	<u>plutonic rocks</u>
va	fraction of the catchment area =
	associated with acid volcanic
	rocks
wb	fraction of the catchment area -
	associated with water bodies
pb	fraction of the catchment area -
	associated with basic plutonic
	rocks
<u>vb</u>	fraction of the catchment area -
	associated with basic volcanic
	rocks
nd	fraction of the catchment area -
	associated with no data
py	fraction of the catchment area -
	associated with pyroclastic
ev	fraction of the catchment area -
	associated with evaporites

Land cover	<u>lai_max</u>	maximum monthly mean of the	=	Myneni et al. (2015)
characteristics		leaf area index (based on 12		
		monthly means)		
	<u>lai_diff</u>	difference between the maximum	E	
		and minimum monthly mean of the		
		leaf area index (based on 12		
		monthly means)		
	ndvi_mean	mean normalized difference	=	<u>Didan (2015)</u>
		vegetation index (NDVI)		
	root_depth_50	root depth (percentiles=50%	<u>m</u>	Eq. 2 and Table 2 in
		extracted from a root depth		(Zeng, 2001)
		distribution based on IGBP land		
		<u>cover)</u>		
	root_depth_99	root depth (percentiles=99%	<u>m</u>	
		extracted from a root depth		
		distribution based on IGBP land		
		<u>cover)</u>		
	evergreen	catchment area fraction covered by	=	Sulla-Menashe and
	needleleaf tree	evergreen needleleaf tree		Friedl (2018)
	evergreen	catchment area fraction covered by	=	
	broadleaf tree	evergreen broadleaf tree		
	deciduous	catchment area fraction covered by	=	
	needleleaf tree	deciduous needleleaf forests		
	deciduous	catchment area fraction covered by	=	
	broadleaf tree	deciduous broadleaf tree		
	mixed forest	catchment area fraction covered by	=	
		mixed forest		
	closed shrubland	catchment area fraction covered by	=	
		closed shrubland		
	open shrubland	catchment area fraction covered by	=	
		open shrubland		
	woody savanna	catchment area fraction covered by	=	
		woody savanna		

	savanna	catchment area fraction covered by	=	
		savanna		
	grassland	catchment area fraction covered by	=	
		grassland		
	permanent	catchment area fraction covered by	=	
	wetland	permanent wetland		
	cropland	catchment area fraction covered by	-	
		<u>cropland</u>		
	urban and built-up	catchment area fraction covered by	=	
	land	urban and built-up land		
	cropland/natural	catchment area fraction covered by	=	
	vegetation	cropland/natural vegetation		
	snow and ice	catchment area fraction covered by	=	
		snow and ice		
	barren	catchment area fraction covered by	=	
		barren		
	water bodies	catchment area fraction covered by	=	
		water bodies		
Topography,	basin_id	drainage basin identifiers	=	Masutomi et al. (2009)
location and	pop	population	people	
<u>Human</u>	pop_dnsty	population density	people km ⁻²	
intervention	lat	mean latitude	<u>°N</u>	
	lon	mean longitude	<u>°E</u>	
	elev	mean elevation	M	
	area	catchment area	<u>km²</u>	
	slope	mean slope	<u>m km⁻¹</u>	<u>Horn (1981)</u>
	length	The length of the mainstream	<u>km</u>	Subramanya (2013)
		measured from the basin outlet to		
		the remotest point on the basin		
		boundary. The mainstream is		
		identified by starting from the		
		basin outlet and moving up the		
		catchment.		

	form factor	catchment area / (catchment	=	
		<u>length)²</u>		
	shape factor	(catchment length) ² / catchment	=	_
		area		
	compactness	perimeter of the catchment /	=	_
	coefficient	perimeter of the circle whose area		
		is that of the basin		
	circulatory ratio	catchment area / area of circle of	=	_
		catchment perimeter		
	elongation ratio	diameter of circle whose area is	=	_
		basin area / catchment length		
Soil	<u>pdep</u>	soil profile depth	<u>cm</u>	Shangguan et al. (2013)
	<u>clay</u>	percentage of clay content of the	<u>%</u>	_
		soil material		
	sand	percentage of sand content of the	<u>%</u>	_
		soil material		
	por	<u>porosity</u>	cm ³ cm ⁻³	_
	silt	percentage of silt content of the	<u>%</u>	_
		soil material		
	grav	rock fragment content	<u>%</u>	_
	som	soil organic carbon content	<u>%</u>	_
	log_k_s4F ⁶	log-10 transformation of saturated	<u>cm d⁻¹</u>	<u>Dai et al. (2019)</u>
		hydraulic conductivity		
	theta_s ⁴	saturated water content	cm ³ cm ⁻³	_
	tksatu ⁴	thermal conductivity of unfrozen	W m ⁻¹ K ⁻¹	_
		saturated soils		
	bldfie ⁴	bulk density	kg m ⁻³	Hengl et al. (2017)
	<u>cecsol⁴</u>	cation-exchange capacity	cmol+ kg-1	_
	orcdrc ⁴	organic carbon content	<u>g kg⁻¹</u>	_
	phihox ⁴	<u>pH in H2O</u>	10-1	_
	bdticm	depth to bedrock	<u>cm</u>	_

⁶ The data source contains multi-layer soil data, soil characteristics for all layers are determined.

Appendix B: Modified Penman's equation

Penman's equation (Subramanya 2013), incorporating some modifications to the original formula, is:
 Penman's equation (Subramanya, 2013), incorporating some modifications to the original formula, is:

$$PET = \frac{AH_n + E_a\gamma}{A + \gamma}$$

where *PET* is the daily potential evapotranspiration in mm per day; *A* is the slope of the saturation vapourvapor pressure (*ew*) vs₂ temperature (*t*) curve at the mean air temperature, in mm of mercury per Celsius; *Hn* is the net radiation in mm of evaporable water per day; *Ea* is a parameter including wind speed and saturation deficit; and γ is the psychrometric constant = 0.49 mm of mercury per Celsius.

The relationship between ew and t is defined as:

$$e_w = 4.584 \exp\left(\frac{17.27t}{237.3+t}\right)$$

The following equation estimates the net radiation:

485

490

480

$$H_n = H_a(1-r)\left(a+b\frac{n}{N}\right) - \sigma T_a^4 \left(0.56 - 0.092\sqrt{e_a}\right) \left(0.10 + 0.90\frac{n}{N}\right)$$

where Ha is the incident solar radiation outside the atmosphere on a horizontal surface, expressed in mm of evaporable water per day (a function of the latitude and period of the year as indicated in Table A1B1); *a* is a constant depending upon the latitude ϕ and is given by $a = 0.29 \cos \phi$; *b* is a constant = 0.52; *n* is the sunshine duration in hours; *N* is the maximum possible hours of bright sunshine (a function of latitude, see Table A2B2); *r* is the reflection coefficient; σ is the Stefan-Boltzman constant = $2.01_{a} \times 10^{-9}$ mm/day; *Ta* is the mean air temperature in degrees kelvin; *ea* is the actual mean vapouryapor pressure in the air in mm of mercury.

Formatted: German (Germany)

Table A1B1: Mean Monthly Solar Radiation, Ha in mm of Evaporable Water/Day

North latitude	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0°	14.5	15.0	15.2	14.7	13.9	13.4	13.5	14.2	14.9	15.0	14.6	14.3
10°	12.8	13.9	14.8	15.2	15.0	14.8	14.8	15.0	14.9	14.1	13.1	12.4
20°	10.8	12.3	13.9	15.2	15.7	15.8	15.7	15.3	14.4	12.9	11.2	10.3
30°	8.5	10.5	12.7	14.8	16.0	16.5	16.2	15.3	13.5	11.3	9.1	7.9
40°	6.0	8.3	11.0	13.9	15.9	16.7	16.3	14.8	12.2	9.3	6.7	5.4
50°	3.6	5.9	9.1	12.7	15.4	16.7	16.1	13.9	10.5	7.1	4.3	3.0

495 The parameter *Ea* is estimated as:

$$E_a = 0.35 \left(1 + \frac{u_2}{160} \right) (e_w - e_a)$$

where u2 is the wind speed at 2m above ground in km/day; ew is the saturation vapourvapor pressure at mean air temperature in mm of mercury; and ea is the actual vapourvapor pressure.

500 Table A2B2: Mean Monthly Values of Possible Sunshine Hours, N

North latitude	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0°	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1
10°	11.6	11.8	12.1	12.4	12.6	12.7	12.6	12.4	12.9	11.9	11.7	11.5
20°	11.1	11.5	12.0	12.6	13.1	13.3	13.2	12.8	12.3	11.7	11.2	10.9
30°	10.4	11.1	12.0	12.9	13.7	14.1	13.9	13.2	12.4	11.5	10.6	10.2
40°	9.6	10.7	11.9	13.2	14.4	15.0	14.7	13.8	12.5	11.2	10.0	9.4
50°	8.6	10.1	11.8	13.8	15.4	16.4	16.0	14.5	12.7	10.8	9.1	8.1

Appendix **BC**: Correlation analysis of catchment attributes

To explore the potential connections between various types of watershed attributes, we <u>didperformed</u> correlation analysis using the Kendall rank correlation coefficient (Kendall 1938).(Kendall, 1938). The Kendall rank correlation coefficient is a measure of rank correlation: the similarity of the sort order of the two sets of data. Kendall correlation will be high if the orderings of the observations of two variables are similar. Kendall correlation avoids the assumption of <u>a</u> linear relationship and that the distribution should be normal and continuous (e.g., Pearson correlation). When the relationship is not exactly linear, using Pearson correlation will miss out on information that Kendall could capture. Table <u>B4C1</u> shows the top five most relevant attributes for each attribute. The analysis result shows that the correlations between variables are in line with general understanding, justifying the rationality of the dataset, to name a few:

510 (1) Subsurface permeability and porosity are most correlated with geological attributes.

(2) LAI and NDVI are most positively correlated with each other but most negatively correlated with the fraction of barren land cover.

- (3) Urban and built ups are most positively correlated with population density.
- (4) In China, the savanna is mainly distributed in the southern coastal areas, resulting in that it isbeing most positively
- 515 correlated with mean precipitation.
 - (5) Sand is most positively correlated with the saturated hydraulic conductivity, while the clay is strongly negatively correlated with saturated hydraulic conductivity.

Attribute	1 st	2 nd	3 rd	4 th	5 th
high_prec_fre	root_depth_50(- 0.196)	grassland(0.175)	root_depth_99(- 0.171)	som(0.136)	tksatu_11(-0.133)
high_prec_dur	theta_s_16(- 0.277)	theta_s_15(-0.234)	p_seasonality(0.2 33)	elev(0.211)	theta_s_l4(-0.201)
low_prec_freq	pre_mean(-0.766)	aridity(0.745)	ssd_mean(0.652)	rhu_mean(-0.627)	phihox_sl7(0.588)
low_prec_dur	aridity(0.78)	pre_mean(-0.768)	ssd_mean(0.731)	rhu_mean(-0.709)	phihox_sl7(0.579)
frac_snow_dai ly	gst_mean(-0.802)	tem_mean(-0.792)	lat(0.575)	evergreen_broadl eaf_tree(-0.512)	pre_mean(-0.436)
prs_mean	elev(-0.678)	lon(0.552)	rhu_mean(0.432)	urban_and_built- up_land(0.427)	barren(-0.41)
pre_mean	aridity(-0.913)	low_prec_dur(- 0.768)	low_prec_freq(- 0.766)	ssd_mean(-0.723)	rhu_mean(0.712)
evp_mean	aridity(0.643)	ndvi_mean(-0.632)	rhu_mean(-0.617)	ssd_mean(0.598)	lai_dif(-0.593)
gst_mean	tem_mean(0.924)	frac_snow_daily(- 0.802)	lat(-0.512)	evergreen_broadl eaf_tree(0.507)	pet_mean(0.442)
rhu_mean	aridity(-0.751)	ssd_mean(-0.746)	pre_mean(0.712)	low_prec_dur(- 0.709)	low_prec_freq(- 0.627)
pet_mean	cecsol_sl2(- 0.451)	gst_mean(0.442)	cecsol_sl3(- 0.441)	cecsol_sl1(- 0.422)	cecsol_sl4(-0.42)
ssd_mean	aridity(0.753)	rhu_mean(-0.746)	low_prec_dur(0.7 31)	pre_mean(-0.723)	low_prec_freq(0.6 52)
win_mean	ssd_mean(0.426)	woody_savanna(- 0.393)	tem_mean(- 0.379)	gst_mean(-0.377)	mixed_forest(- 0.363)
tem_mean	gst_mean(0.924)	frac_snow_daily(- 0.792)	evergreen_broadl eaf_tree(0.493)	pop_dnsty(0.475)	lat(-0.474)
p_seasonality	rhu_mean(- 0.421)	tem_mean(-0.397)	gst_mean(-0.393)	ssd_mean(0.393)	low_prec_dur(0.37 5)
aridity	pre_mean(-0.913)	low_prec_dur(0.78	ssd_mean(0.753)	rhu_mean(-0.751)	low_prec_freq(0.7 45)

Table B1C1: The top five most relevant characteristics for each attribute (different soil layers for the same attribute are excluded, e.g., phihox_sl2 is not included in the top five most relevant attributes of phihox_sl1-though, although they are highly correlated)

slope	lat(-0.374)	bdticm(-0.348)	win_mean(- 0.341)	mixed_forest(0.34	evergreen_needlel eaf_tree(0.327)
lon	elev(-0.585)	prs_mean(0.552)	evp_mean(-0.5)	barren(-0.482)	ndvi_mean(0.47)
elev	prs_mean(-0.678)	lon(-0.585)	urban_and_built- up_land(-0.485)	pop_dnsty(- 0.481)	cropland(-0.456)
lat	frac_snow_daily(0.575)	evergreen_broadle af_tree(-0.548)	gst_mean(-0.512)	tem_mean(- 0.474)	low_prec_freq(0.4 37)
рор	urban_and_built- up_land(0.618)	cropland(0.519)	aridity(-0.511)	pre_mean(0.505)	rhu_mean(0.492)
pop_dnsty	urban_and_built- up_land(0.639)	aridity(-0.538)	cropland(0.533)	pre_mean(0.533)	ssd_mean(-0.521)
length	area(0.684)	form_factor(- 0.398)	shape_factor(0.39 8)	elongation_ratio(- 0.398)	compactness_coeff icient(0.363)
area	length(0.684)	pop(0.23)	pa(0.194)	circulatory_ratio(- 0.187)	compactness_coeff icient(0.187)
form_factor	elongation_ratio(1.0)	shape_factor(-1.0)	circulatory_ratio(0.435)	compactness_coef ficient(-0.435)	length(-0.398)
shape_factor	elongation_ratio(- 1.0)	form_factor(-1.0)	circulatory_ratio(- 0.435)	compactness_coef ficient(0.435)	length(0.398)
compactness_c oefficient	circulatory_ratio(-1.0)	elongation_ratio(- 0.435)	shape_factor(0.43 5)	form_factor(- 0.435)	length(0.363)
circulatory_rat io	compactness_coe fficient(-1.0)	elongation_ratio(0. 435)	shape_factor(- 0.435)	form_factor(0.435)	length(-0.363)
elongation_rati o	shape_factor(- 1.0)	form_factor(1.0)	circulatory_ratio(0.435)	compactness_coef ficient(-0.435)	length(-0.398)
lai_dif	ndvi_mean(0.808)	barren(-0.642)	aridity(-0.638)	pre_mean(0.609)	woody_savanna(0. 607)
lai_max	ndvi_mean(0.779)	barren(-0.614)	aridity(-0.613)	woody_savanna(0 .612)	phihox_sl2(- 0.602)
ndvi_mean	lai_dif(0.808)	lai_max(0.779)	barren(-0.677)	evp_mean(-0.632)	aridity(-0.607)
root_depth_50	grassland(-0.485)	pet_mean(0.232)	barren(0.212)	high_prec_freq(- 0.196)	pdep(-0.176)
root_depth_99	grassland(-0.339)	barren(0.337)	cropland(-0.336)	pdep(-0.284)	lon(-0.283)

	evergreen_nee	mixed_forest(0.5	woody_savanna(0.	phihox_sl7(-	phihox_sl6(-	phihox_sl5(-	
	dleleaf_tree	72)	481)	0.416)	0.411)	0.409)	
	evergreen_bro	lat(0.548)	white $a17(0.528)$	phihox_sl6(-	phihox_sl5(-	mma maam(0,512)	
	adleaf_tree	lat(-0.548)	phillox_si7(-0.558)	0.529)	0.522)	pre_mean(0.512)	
	deciduous_nee	cecsol s11(0.274)	bldfie_s11(-0.274)	cecsol s (0.272)	orcdrc sl2(0.27)	cecsol s13(0.262)	
	dleleaf_tree	cccsol_si1(0.274)	blune_sir(-0.274)	siz(0.272)	oreare_si2(0.27)	cccsol_si5(0.202)	
	deciduous_bro	mixed_forest(0.6	woody_savanna(0.	ndvi mean(0.524)	lai max(0.5)	lai dif(0.497)	
	adleaf_tree	04)	568)	nuvi_incan(0.524)	Iui_Iuix(0.5)	m_un(0.497)	
	mixed forest	woody_savanna(deciduous_broadle	evergreen_needlel	phihox_sl7(-	phihox_sl6(-	
	inixed_forest	0.713)	af_tree(0.604)	eaf_tree(0.572)	0.565)	0.563)	
	closed_shrubla	deciduous_broadl	sayanna(0,16)	mixed_forest(0.15	tksatu 14(-0,153)	theta s 12(-0.142)	
	nd	eaf_tree(0.217)	su valina(0110)	8)			
	open_shrublan	high_prec_dur(0.	rhu mean(-0.174)	elev(0.17)	ssd mean(0.17)	prs_mean(-0.165)	
	d	179)			()	F()	
	woody_savann	mixed_forest(0.7	phihox_s17(-0.628)	phihox_sl4(-	phihox_sl3(-	phihox_sl6(-	
	a	13)	pilliox_317(-0.020)	0.628)	0.627)	0.627)	
	savanna	pre_mean(0.606)	cropland_natural_v woody_savanna(0 aridity(aridity(-0.602)	ssd_mean(-0.591)		
	Savanna	pre_mean(0.000)	egetaion(0.605)	.604)	andny(-0.002)	354_mean(-0.571)	
	grassland	root_depth_50(-	cropland_natural_v	tem_mean(-	ast mean(-0.344)	root_depth_99(-	
	grassiana	0.485)	egetaion(-0.363)	0.344)	gst_mean(-0.544)	0.339)	
	permanent_we	water_bodies(0.4	savanna(0.363)	urban_and_built-	pre_mean(0.343)	pop(0.343)	
	tland	69)	savainia(0.505)	up_land(0.347)	pre_mean(0.545)	pop(0.343)	
	cropland	urban_and_built-	non $dnsty(0.533)$	pop(0.519)	elev(-0.456)	lon(0.417)	
	eropland	up_land(0.546)	pop_dilsty(0.555)	pop(0.51))	elev(-0.450)	101(0.417)	
	urban_and_bui	non $dnsty(0.639)$	pop(0.618)	cropland(0.546)	elev(-0.485)	cropland_natural_	
	lt-up_land	pop_unsty(0.057)	pop(0.010)	croptand(0.540)	elev(-0.403)	vegetaion(0.428)	
	cropland_natur	savanna(0.605)	rhu_mean(0.546)	aridity(-0.523)	ssd mean(-0.52)	pre mean (0.51)	
	al_vegetaion	savaina(0.005)	Ind_inean(0.546)	andny(-0.525)	33u_mean(-0.52)	pre_mean(0.51)	
	snow_and_ice	ig(0.431)	barren(0.379)	lon(-0.373)	elev(0.369)	pdep(-0.354)	
	barren	ndvi_mean(-	lai dif(-0.642)	lai max(-0.614)	aridity(0.581)	evn mean(0.574)	
	ourien	0.677)	uii(-0.0+2)	inax(-0.014)	undity(0.501)	etp_mean(0.574)	
	water bodies	permanent_wetla	wb(0.39)	cropland_natural_	urban_and_built-	elev(-0.154)	
water_bodies n		nd(0.469)		vegetaion(0.17)	up_land(0.158)	elev(-0.154)	

geol_permeabi lity	sm(-0.345)	su(0.326)	ss(-0.316)	bdticm(0.228)	pdep(0.161)
geol_porosity	su(0.455)	pa(-0.417)	woody_savanna(- 0.323)	phihox_sl3(0.315)	phihox_sl4(0.314)
ig	snow_and_ice(0. 431)	elev(0.194)	theta_s_l2(-0.185)	pdep(-0.184)	theta_s_13(-0.182)
pa	geol_porosity(- 0.417)	mt(0.3)	pi(0.295)	va(0.271)	vi(0.246)
SC	geol_porosity(- 0.285)	lat(-0.264)	bdticm(-0.26)	slope(0.246)	mixed_forest(0.23 1)
su	bdticm(0.52)	geol_porosity(0.45 5)	woody_savanna(- 0.349)	geol_permeability (0.326)	phihox_sl7(0.326)
sm	geol_permeabilit y(-0.345)	su(-0.283)	bdticm(-0.228)	cropland(-0.199)	elev(0.194)
vi	pa(0.246)	pi(0.203)	va(0.171)	geol_porosity(- 0.169)	deciduous_broadle af_tree(0.166)
mt	pa(0.3)	geol_porosity(- 0.286)	pi(0.199)	deciduous_broadl eaf_tree(0.187)	area(0.18)
SS	geol_permeabilit y(-0.316)	su(-0.17)	bdticm(-0.136)	evergreen_needlel eaf_tree(0.106)	tksatu_16(-0.096)
pi	pa(0.295)	vi(0.203)	mt(0.199)	geol_porosity(- 0.183)	va(0.172)
va	pa(0.271)	geol_porosity(- 0.219)	vb(0.21)	deciduous_needle leaf_tree(0.186)	pi(0.172)
wb	<pre>water_bodies(0.3 9)</pre>	permanent_wetlan d(0.264)	bldfie_sl4(0.148)	bldfie_sl5(0.147)	urban_and_built- up_land(0.138)
pb	mt(0.176)	pa(0.132)	theta_s_15(-0.128)	area(0.127)	length(0.123)
vb	va(0.21)	geol_porosity(- 0.171)	vi(0.165)	cecsol_sl7(0.161)	cecsol_sl6(0.157)
nd	barren(0.154)	aridity(0.146)	pre_mean(-0.144)	lai_dif(-0.141)	snow_and_ice(0.1 41)
ру	phihox_sl1(- 0.237)	phihox_sl2(-0.233)	phihox_sl3(- 0.233)	phihox_sl4(-0.23)	woody_savanna(0. 227)

ev	barren(0.036)	orcdrc_sl5(-0.035)	orcdrc_sl4(- 0.035)	cdrc_sl4(- cecsol_sl3(- 035) 0.034)	
tksatu_11	grav(-0.346)	som(-0.344)	bldfie_sl3(0.298)	bldfie_sl1(0.295)	bldfie_sl2(0.291)
tksatu_l2	som(-0.365)	bldfie_sl3(0.326)	bldfie_sl1(0.326)	bldfie_sl2(0.323)	grav(-0.308)
tksatu_13	som(-0.344)	bldfie_sl2(0.328)	bldfie_sl1(0.325)	bldfie_sl3(0.324)	bldfie_sl4(0.308)
tksatu_l4	bldfie_sl2(0.398)	som(-0.397)	bldfie_sl1(0.388)	bldfie_sl3(0.384)	bldfie_sl4(0.358)
tksatu_15	bldfie_sl3(0.386)	bldfie_sl2(0.376)	som(-0.369)	bldfie_sl4(0.364)	bldfie_sl1(0.358)
tksatu_16	bldfie_sl3(0.366)	som(-0.362)	bdticm(0.36)	bldfie_sl2(0.343)	bldfie_sl7(0.338)
log_k_s_l1	sand(0.71)	clay(-0.59)	savanna(-0.441)	silt(-0.436)	rhu_mean(-0.423)
log_k_s_l2	sand(0.709)	clay(-0.578)	savanna(-0.452)	phihox_sl7(0.438)	silt(-0.433)
log_k_s_l3	sand(0.682)	clay(-0.592)	savanna(-0.448)	phihox_sl7(0.442)	phihox_sl6(0.435)
log_k_s_l4	sand(0.612)	clay(-0.603)	savanna(-0.49)	pre_mean(-0.489)	phihox_sl7(0.485)
log_k_s_15	clay(-0.561)	sand(0.555)	phihox_sl7(0.506)	savanna(-0.501)	phihox_sl6(0.501)
log_k_s_l6	clay(-0.563)	pre_mean(-0.555)	aridity(0.548)	phihox_sl7(0.534)	phihox_sl6(0.532)
theta_s_11	grav(-0.582)	clay(0.325)	sand(-0.315)	elev(-0.314)	pdep(0.311)
theta_s_12	grav(-0.585)	pdep(0.377)	elev(-0.366)	clay(0.35)	sand(-0.326)
theta_s_13	grav(-0.522)	pdep(0.42)	elev(-0.414)	prs_mean(0.365)	clay(0.359)
theta_s_l4	grav(-0.515)	pdep(0.463)	elev(-0.412)	prs_mean(0.349)	lon(0.328)
theta_s_15	grav(-0.433)	elev(-0.401)	pdep(0.376)	sand(-0.349)	rhu_mean(0.331)
theta_s_l6	evergreen_broadl eaf_tree(0.372)	grav(-0.357)	elev(-0.344)	sand(-0.343)	tem_mean(0.337)
orcdrc_sl7	bldfie_sl4(- 0.581)	bldfie_sl5(-0.572)	bldfie_sl6(-0.548)	bldfie_sl3(-0.535)	bldfie_sl7(-0.523)
orcdrc_sl3	bldfie_sl3(- 0.738)	bldfie_sl2(-0.728)	bldfie_sl1(-0.701)	bldfie_sl4(-0.691)	bldfie_sl5(-0.621)
orcdrc_sl4	bldfie_sl3(- 0.702)	bldfie_sl2(-0.682)	bldfie_sl4(-0.676)	bldfie_sl1(-0.657)	bldfie_sl5(-0.614)
orcdrc_sl5	bldfie_sl4(- 0.641)	bldfie_sl3(-0.636)	bldfie_sl2(-0.611)	bldfie_sl5(-0.6)	bldfie_sl1(-0.592)
orcdrc_sl6	bldfie_sl4(- 0.584)	bldfie_sl5(-0.567)	bldfie_sl6(-0.556)	bldfie_sl3(-0.552)	bldfie_sl7(-0.534)
orcdrc_sl2	bldfie_sl2(- 0.787)	bldfie_sl1(-0.769)	bldfie_sl3(-0.749)	bldfie_sl4(-0.68)	cecsol_sl1(0.629)

aradra sl1	phihox_sl2(-	phihox_s12(0.504)	phihox_sl4(-	phihox_sl5(-	phihox_sl6(-	
orcure_sir	0.599)	phillox_315(-0.594)	0.591)	0.586)	0.585)	
nhihoy al7	woody_savanna(-	ma maan(0 508)	anidity(0.502)	low_prec_freq(0.	anadna (11(0.592)	
phillox_si7	0.628)	pre_mean(-0.598)	andity(0.592)	588)	orcdrc_s11(-0.585)	
phihox s16	woody_savanna(-	pro. moon(0.504)	aridity(0.50)	lai may (0.587)	aradra (11(0.585)	
plillox_slo	0.627)	pre_mean(-0.394)	andity(0.59)	lal_llax(-0.387)	ofcure_si1(-0.585)	
phihox sl5	woody_savanna(-	lai max(-0.503)	pre_mean(_0.502)	aridity(0.589)	oredre s11(-0.586)	
phillox_315	0.626)	Iai_IIIax(-0.555)	pre_mean(-0.5)2)	andity(0.505)	oreare_311(-0.500)	
phihox sl4	woody_savanna(-	lai max(-0 599)	orcdrc_sl1(-	lai dif(-0.578)	pre_mean(-0.576)	
phillox_511	0.628)	m_max(0.599)	0.591)	iui_uii(0.570)	pre_mean(0.570)	
phihox sl3	woody_savanna(-	lai max(-0 595)	orcdrc_sl1(-	lai dif(-0.576)	pre_mean(-0.568)	
phillion_bib	0.627)		0.594)		pro_moun(0.000)	
phihox sl2	woody_savanna(-	lai max(-0.602)	orcdrc_sl1(-	lai dif(-0.583)	low_prec_freq(0.5	
phillion_biz	0.627)		0.599)	iai_aii(0.000)	69)	
phihox sl1	woody_savanna(-	lai max(-0.586)	orcdrc_sl1(-	lai dif(-0.565)	bldfie_s12(0.55)	
phillion_bit	0.601)		0.584)		010110_012(01000)	
bldfie sl7	orcdrc_sl5(-	oredre s14(-0.546)	orcdrc_sl3(-	orcdrc_sl6(-	oredre s17(-0.523)	
	0.547)		0.543)	0.534)	010410_01/(01020)	
bldfie sl6	orcdrc_sl5(-	oredre s16(-0.556)	orcdrc_sl4(-	orcdrc_sl7(-	oredre s13(-0.547)	
	0.559)		0.553)	0.548)		
bldfie sl5	orcdrc_sl3(-	oredre s14(-0.614)	oredre s15(-0.6)	orcdrc_sl2(-	oredre s17(-0.572)	
	0.621)			0.597)		
bldfie sl4	orcdrc_sl3(-	oredre s12(-0.68)	orcdrc_sl4(-	orcdrc_sl5(-	oredre s16(-0.584)	
	0.691)		0.676)	0.641)		
bldfie sl1	orcdrc_sl2(-	oredre s13(-0.701)	cecsol_sl1(-	orcdrc_sl4(-	som(-0.606)	
onano_pri	0.769)		0.686)	0.657)	5511(01000)	
bldfie sl3	orcdrc_sl2(-	oredre s13(-0.738)	orcdrc_sl4(-	orcdrc_s15(-	som(-0.633)	
onanio_bio	0.749)		0.702)	0.636)	5611(61655)	
bldfie sl2	orcdrc_sl2(-	oredre s13(-0.728)	orcdrc_sl4(-	cecsol_sl1(-	som(-0.651)	
514110_512	0.787)	sicale_515(0.720)	0.682)	0.671)	som(-0.031)	
cecsol sl1	bldfie_sl1(-	bldfie_sl2(-0.671)	oredre s12(0,629)	bldfie_s13(-0.598)	oredre s13(0 579)	
	0.686)					

cecsol_sl2	bldfie_sl1(- 0.579)	bldfie_sl2(-0.566)	orcdrc_sl2(0.553)	orcdrc_sl3(0.523)	bldfie_sl3(-0.515)
cecsol_sl5	bldfie_sl1(- 0.445)	bldfie_sl2(-0.429)	orcdrc_sl2(0.412)	orcdrc_sl3(0.393)	pet_mean(-0.392)
cecsol_sl4	bldfie_sl1(- 0.472)	bldfie_sl2(-0.459)	orcdrc_sl2(0.447)	orcdrc_sl3(0.43)	orcdrc_sl5(0.424)
cecsol_sl3	bldfie_sl1(- 0.532)	bldfie_sl2(-0.52)	orcdrc_sl2(0.508)	orcdrc_sl3(0.49)	orcdrc_sl4(0.478)
cecsol_sl7	bldfie_sl1(- 0.413)	bldfie_sl2(-0.396)	orcdrc_sl2(0.38)	pet_mean(-0.374)	orcdrc_sl3(0.362)
cecsol_sl6	bldfie_sl1(- 0.409)	bldfie_sl2(-0.393)	orcdrc_sl2(0.378)	pet_mean(-0.373)	orcdrc_sl3(0.36)
bdticm	su(0.52)	woody_savanna(- 0.412)	low_prec_freq(0. 382)	phihox_s17(0.378)	mixed_forest(- 0.374)
pdep	theta_s_14(0.463)	elev(-0.436)	grav(-0.424)	theta_s_13(0.42)	lon(0.4)
			phihox_sl1(-	phihox_sl3(-	phihox_sl2(-
nor	som(() 363)	bldfie_sl1(-() 335)			
por	som(0.363)	bldfie_sl1(-0.335)	0.329)	0.328)	0.328)
por clay	som(0.363) sand(-0.67)	bldfie_s11(-0.335)	0.329) log_k_s_l3(- 0.592)	0.328)	0.328) log_k_s_l2(- 0.578)
clay sand	som(0.363) sand(-0.67) log_k_s_11(0.71)	bldfie_s11(-0.335) log_k_s_14(-0.603) log_k_s_12(0.709)	0.329) log_k_s_l3(- 0.592) log_k_s_l3(0.682)	0.328) log_k_s_l1(-0.59) clay(-0.67)	0.328) log_k_s_l2(- 0.578) log_k_s_l4(0.612)
clay sand silt	som(0.363) sand(-0.67) log_k_s_11(0.71) sand(-0.573)	bldfie_s11(-0.335) log_k_s_14(-0.603) log_k_s_12(0.709) log_k_s_11(-0.436)	0.329) log_k_s_l3(- 0.592) log_k_s_l3(0.682) log_k_s_l2(- 0.433)	0.328) log_k_s_11(-0.59) clay(-0.67) log_k_s_13(-0.4)	0.328) log_k_s_l2(- 0.578) log_k_s_l4(0.612) log_k_s_l4(- 0.316)
por clay sand silt grav	som(0.363) sand(-0.67) log_k_s_11(0.71) sand(-0.573) theta_s_12(- 0.585)	bldfie_s11(-0.335) log_k_s_14(-0.603) log_k_s_12(0.709) log_k_s_11(-0.436) theta_s_11(-0.582)	0.329) log_k_s_l3(- 0.592) log_k_s_l3(0.682) log_k_s_l2(- 0.433) theta_s_l3(-0.522)	0.328) log_k_s_11(-0.59) clay(-0.67) log_k_s_13(-0.4) theta_s_14(-0.515)	0.328) log_k_s_l2(- 0.578) log_k_s_l4(0.612) log_k_s_l4(- 0.316) theta_s_l5(-0.433)
clay clay sand silt grav som	som(0.363) sand(-0.67) log_k_s_l1(0.71) sand(-0.573) theta_s_l2(- 0.585) bldfie_sl2(- 0.651)	bldfie_s11(-0.335) log_k_s_14(-0.603) log_k_s_12(0.709) log_k_s_11(-0.436) theta_s_11(-0.582) bldfie_s13(-0.633)	0.329) log_k_s_l3(- 0.592) log_k_s_l3(0.682) log_k_s_l2(- 0.433) theta_s_l3(-0.522) bldfie_sl1(-0.606)	0.328) log_k_s_11(-0.59) clay(-0.67) log_k_s_13(-0.4) theta_s_14(-0.515) orcdrc_s12(0.599)	0.328) log_k_s_l2(- 0.578) log_k_s_l4(0.612) log_k_s_l4(- 0.316) theta_s_l5(-0.433) orcdrc_sl3(0.576)
por clay sand silt grav som high_prec_fre q	som(0.363) sand(-0.67) log_k_s_11(0.71) sand(-0.573) theta_s_12(- 0.585) bldfie_s12(- 0.651) root_depth_50(- 0.196)	bldfie_s11(-0.335) log_k_s_14(-0.603) log_k_s_12(0.709) log_k_s_11(-0.436) theta_s_11(-0.582) bldfie_s13(-0.633) grassland(0.175)	0.329) log_k_s_13(- 0.592) log_k_s_13(0.682) log_k_s_12(- 0.433) theta_s_13(-0.522) bldfie_s11(-0.606) root_depth_99(- 0.171)	0.328) log_k_s_11(-0.59) clay(-0.67) log_k_s_13(-0.4) theta_s_14(-0.515) orcdrc_s12(0.599) som(0.136)	0.328) log_k_s_l2(- 0.578) log_k_s_l4(0.612) log_k_s_l4(- 0.316) theta_s_l5(-0.433) orcdrc_sl3(0.576) tksatu_l1(-0.133)
por clay sand silt grav som high_prec_fre q high_prec_dur	som(0.363) sand(-0.67) log_k_s_l1(0.71) sand(-0.573) theta_s_l2(- 0.585) bldfie_sl2(- 0.651) root_depth_50(- 0.196) theta_s_l6(- 0.277)	bldfie_s11(-0.335) log_k_s_14(-0.603) log_k_s_12(0.709) log_k_s_11(-0.436) theta_s_11(-0.582) bldfie_s13(-0.633) grassland(0.175) theta_s_15(-0.234)	0.329) log_k_s_l3(- 0.592) log_k_s_l3(0.682) log_k_s_l2(- 0.433) theta_s_l3(-0.522) bldfie_sl1(-0.606) root_depth_99(- 0.171) p_seasonality(0.2 33)	0.328) log_k_s_11(-0.59) clay(-0.67) log_k_s_13(-0.4) theta_s_14(-0.515) orcdrc_s12(0.599) som(0.136) elev(0.211)	0.328) log_k_s_l2(- 0.578) log_k_s_l4(- 0.316) theta_s_l5(-0.433) orcdrc_sl3(0.576) tksatu_l1(-0.133) theta_s_l4(-0.201)

520 Appendix <u>CD</u>: Data sources and <u>data</u> processing

		The program to generate the data setdataset is mainly written in Python. The rasterio? library is used to extract from the raster Formatted
		for the given basin boundary, reproject and merge rasters; The shapely library is used to calculate the geometry; The pyproj?
		library is used for coordinate system conversions; The richdem ¹⁰ library is used to calculate slope; The netCDF4 ¹¹ and xarray ¹²
		library is used to read the netCDF files; The pyshp ¹³ library is used to handle shapefiles; The gdal ¹⁴ command-line programs
5	525	are used for data format conversions; The Python multiprocessing ¹⁵ library is used for multi-threaded multithreaded data
		processing such as the calculation of meteorological time series; The interpolation program is written based on SciPy and
		NumPy. In addition, the calculation of the catchment boundary uses ArcPy ¹⁶ _{A K} However, ArcPy is not open sourced. The
		SURF_CLI_CHN_MUL_DAY dataset can be downloaded from
		https://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html. It is freely available to global researchers
5	530	but registration is required. Upon submission, due to policy adjustments, the SURF_CLI_CHN_MUL_DAY dataset has just
		been closed for sharing (may reopen), we provide two options: (1) calculate time series using the archived
		SURF_CLI_CHN_MUL_DAY data if the researcher had (2) calculate time series using our released data; the principle is to
		calculate the overlapping areas of the given watershed and the watersheds we have calculated and then calculate the
		meteorological time series of the given watersheds by weighting, codes can be found in the GitHub repository, The GDBD
5	535	dataset can be downloaded at https://www.cger.nies.go.jp/db/gdbd/gdbd_index_e.html, ASTER GDEM dataset can be Formatted
		downloaded at: https://asterweb.jpl.nasa.gov/gdem.asp, The GLHYMPS dataset can be downloaded at: Formatted
		https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO; MODIS MCD12Q1 can be Formatted
		obtained from: https://lpdaac.usgs.gov/products/mcd12q1v006/; MODIS MCD15A3 can be obtained from: Formatted
		https://lpdaac.usgs.gov/products/mcd15a3hv006/; Soilsoil, hydraulic and thermal properties can_, be downloaded after Formatted
5	540	registration: http://globalchange.bnu.edu.cn/research/soil5.jsp; Soil propertiessoil property, data can be downloaded after Formatted
		registration: http://globalchange.bnu.edu.cn/research/soil2; SoilGrids250mand SoilGrids250 m, data download links: Formatted

⁷ <u>https://rasterio.readthedocs.io/en/latest/</u>

- ⁸ https://shapely.readthedocs.io/en/stable/manual.html
- ⁹ <u>https://pyproj4.github.io/pyproj/stable/</u>
- 10 https://richdem.readthedocs.io/en/latest/
- 11 https://unidata.github.io/netcdf4-python/
- 12 http://xarray.pydata.org/en/stable/
- 13 https://pypi.org/project/pyshp/
- 14 https://gdal.org/api/python.html
- 15 https://docs.python.org/3/library/multiprocessing.html

¹⁶ https://pro.arcgis.com/zh-cn/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm

https://files.isric.org/soilgrids/former/2017-03-10/data/	with	а	list	of	description
https://github.com/ISRICWorldSoil/SoilGrids250m/blob	b/master/grids/mod	lels/MET	A GEOTIFI	F 1B.csv.	

Appendix D: Basin boundaries

545 This section briefly introduces how the basin boundaries are derived. The basin boundaries data used in this research are obtained from the GBDB (Masutomi, Inui et al. 2009) dataset. The GDBD dataset first distinguishing sinks caused by DEM errors, then the stream burning (Maidment 1996), and ridge fencing methods are used to modify the seeded DEM, then basin boundaries are produced with standardized procedures (Jenson, Domingue et al. 1988, Maidment and Morehouse 2002). Then the gauging station data from the GRDC (Center 2005) dataset is used to calibrate the derived basin boundaries. The derived basin areas were compared with the observed basin areas, and they showed a high degree of consistency with the observed basin data.

Appendix E: Appendix E: Basin boundaries

This section briefly introduces how the basin boundaries are derived. The basin boundary data used in this research are obtained from the GBDB (Masutomi et al., 2009) dataset. The GDBD dataset first distinguishes sinks caused by DEM errors; then, stream burning (Maidment, 1996) and ridge fencing methods are used to modify the seeded DEM, and basin boundaries are produced with standardized procedures (Jenson and Domingue, 1988; Maidment and Morehouse, 2002). Then, the gauging station data from the GRDC dataset are used to calibrate the derived basin boundaries. The derived basin areas were compared with the observed basin areas, and they showed a high degree of consistency with the observed basin data.

Appendix F: Guidelines for generating basincalculating attributes for any basincustom catchments

560 The published code¹⁷ supports the automation of the calculation of the attributes for any given river basin and the generation of statistics files. In general, the user only needs to prepare the source data and ensure that the code environment is installed correctly, and then the user can run the code to calculate all attributes for the given river basin. The following describes the steps to generate data for any given watershed.

565 <u>1.</u> Prepare source data

555

In this step, the user needs to download the source data and place it in the corresponding cor-responding location (Table D4F1). The code supports the calculation of meteorological time series based on the SURF_CLI_CHN_MUL_DAY data setdataset.

46

Formatted: Default Paragraph Font, Underline, English (United States)

Formatted: English (United States)

Formatted: Default Paragraph Font, Underline, English (United States)

Formatted: English (United States)

Formatted: English (United States)

Formatted: List Paragraph, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.63 cm + Indent at: 1.27 cm

¹⁷ https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset

If the basin the user <u>needneeds</u> to calculate is not in China, then the user needs to format the collected meteorological time series into the same format as the time series generated by the code. A sample file is available in the GitHub library.

570

Table **D1<u>F1</u>**: Instructions for preparing data sources

Data source	Download link	Example	Note	Formatte	d Table
ASTER	https://search.earthdata.nasa	./data/dems/ *.tif			
GDEM	.gov/search/				
	https://www.jspacesystems.				
	or.jp/ersdac/GDEM/E/				
GLHYMPS	https://dataverse.scholarspor	./data/processed_permeability			
	tal.info/dataset.xhtml?persis	.tif			
	tentId=doi:10.5683/SP2/DL	./data/processed_porosity.tif			
	GXYO (using source data				
	requires merging multiple				
	small pieces to a single				
	TIFF)				
	https://1drv.ms/u/s!AqzR0f				
	Lyn9KKspF6HAAuXU9Tw				
	kkz1Q?e=QCPFAm (our				
	processed file)				
	https://1drv.ms/u/s!AqzR0f				
	Lyn9KKspF70EPmDubS5V				
	<u>2qTQ?e=Rbybwa</u> (our				
	processed file)				
GLiM	https://csdms.colorado.edu/	./data/processed_glim.py			
	wiki/Data:GLiM				
	https://1drv.ms/u/s!AqzR0f				
	Lyn9KKspF5Vktb-				
	<u>zlmd_Ctxg?e=G6fOuh</u> (our				
	processed file)				
MCD12Q1	https://lpdaac.usgs.gov/prod	./data/processed_igbp.tif			
	ucts/mcd12q1v006/				

	https://1drv.ms/u/s!AqzR0f			
	Lyn9KKspF4xxbe0xM7qJN			
	<u>zkA?e=vyFcFj</u> (our			
	processed file)			
MCD15A3	https://lpdaac.usgs.gov/prod	./data/MCD15A3/		
	ucts/mcd15a3hv006/	MCD15A3H.A2002185.h22v		
		04.006.2015149102803.hdf		
MOD13Q1	https://lpdaac.usgs.gov/prod	./data/MOD13Q1/MOD13Q1		
	ucts/mod13q1v006/	.A2002186.h22v04.006.2015		
		149102803.hdf		
Soil	http://globalchange.bnu.edu.	./data/soil_souce_data/binary/		
	cn/research/soil5.jsp	log_k_s_l1		
Soil	https://files.isric.org/soilgrid	./data/soil_souce_data/tif/BD	Description:	
	s/former/2017-03-10/data/	TICM_M_250m_ll.tif	https://github.com/ISRICWorldSoil/SoilG	
			rids250m/blob/master/grids/models/MET	
			A_GEOTIFF_1B.csv	
Soil	http://globalchange.bnu.edu.	./data/soil_souce_data/tif/SA.		
	cn/research/soil2	nc		
SURF_CLI_	https://data.cma.cn/data/cdc	-/data/SURF_CLI_CHN_MU	If basin boundary is outside China, format	
CHN_MUL	detail/dataCode/SURF_CLI	L_DAY/Data/EVP/SURF_C	and place the collected time series data in	
<u>_DAY</u>	<u>_CHN_MUL_DAY.html</u>	LI_CHN_MUL_DAY-EVP-	./output/catchment_meteorological	
		13240-195101.TXT		
Root depth	https://github.com/haozhen3	./data/root_depth_calculated.t	Calculated root depth of each land type 🗲	Formatted Table
	15/CCAM-China-	xt	according to (Zeng 2001).Calculated root	
	Catchment-Attributes-and-		depth of each land type according to (Zeng,	
	Meteorology-		<u>2001).</u>	
	<u>Meteorology-</u> dataset/blob/main/data/root_		<u>2001).</u>	
	<u>Meteorology-</u> <u>dataset/blob/main/data/root_</u> <u>depth_calculated.txt</u>		<u>2001).</u>	
GLiM name	Meteorology- dataset/blob/main/data/root_ depth_calculated.txt https://github.com/haozhen3	./data/glim_cate_number_ma	2001). These files are used for name conversions	
GLiM name mapping	Meteorology- dataset/blob/main/data/root_ depth_calculated.txt https://github.com/haozhen3 15/CCAM-China-	./data/glim_cate_number_ma pping.csv	2001). These files are used for name conversions in the program.	
GLiM name mapping	Meteorology- dataset/blob/main/data/root_ depth_calculated.txt https://github.com/haozhen3 15/CCAM-China- Catchment-Attributes-and-	./data/glim_cate_number_ma pping.csv ./data/glim_name_short_long.	2001). These files are used for name conversions in the program.	

	dataset/blob/main/data/glim				
	_name_short_long.txt			1	
	https://github.com/haozhen3				
	15/CCAM-China-				ŀ
	Catchment-Attributes-and-			/	
	Meteorology-				┝
	dataset/blob/main/data/glim				┢
	_cate_number_mapping.csv				
GDBD	https://www.cger.nies.go.jp/	./data/river_network/as_strea	River network shapefiles are used to		
	db/gdbd/gdbd index e.html	ms wgs.shp	determine river basin shape factors. The		
			source data need to be reprojected to		
			EPSG:4326 (using ArcMap or OGIS) to		
			successfully run the code. Note that files in		
			different regions have different names.		┝
			8		

2. Run the code

V 575 s

When all the data <u>isare</u> ready, the user can run the code calculate_all_attributes.py to calculate all attributes or run separate scripts (e.g., soil.py) to calculate indicators for specific categories. The result will appear in the output folder.

Financial support

This research has beenwas supported by the National Key Research and Development Program (2018YFC0407901, 2018YFC0407905), the National Natural Science Fund of China (51779100), and the Central Public-interest Scientific Institution Basal Research Fund (HKY-JBYW-2020-21, HKY-JBYW-2020-07, <u>HKY-JBYW-2021-02</u>).

580 References

Abrams, M., R. Crippen, R., and H. J. R. S. Fujisada (2020). ", H.: AST	FER global digital elevation model (GDEM) and ASTER global water
body dataset (ASTWBD)."), Remote Sensing, 12(7):, 1156, 2020,	
Addor, N., H. X. Do, C. Alvarez-Garreton, G. Coxon, K. Fowler and	P. A. J. H. S. J. Mendoza (2020). "Large-sample hydrology: recent
progress guidelines for new datasets and grand challenges " 65(5): 7	2_725_

585 Addor, N., A. J. Newman, N.A. J., Mizukami, N., and M. P. Clark (2017). ", M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies." Hydrology and Earth System Sciences (HESS), 21(40), 5293-5313, 2017, Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and Mendoza, P. A.: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrological Sciences Journal, 65, 712-725, 2020. Alvarez-Garreton, C., P. A., Mendoza, J.-P. A., Boisier, N.J. P., Addor, M.N., Galleguillos, M., Zambrano-Bigiarini, A.M., Lara, G.A.,

590 Cortes, R.G., Garreaud, R., and J. McPhee (2018). ", J.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies-Chile dataset." Hydrology and Earth System Sciences, 22(11): 5817-5846, 2018.

	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	(
	Formatted	()
	Formatted	(
	Formatted	(
	Formatted	
je je	Formatted	(
10	Formatted	····
S.	Formatted	(
	Formatted	····
	Formatted	(
- Ja	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	
	Formatted	<u></u>
	Formatted	
	Formatted	
	Formatted	
	Formatted	·
	Formatted	<u></u>
	Formatted	
	Formatted	(
	Formatted	
//	Formatted	
	Formatted	
	Formatted	
"//	Formatted	
1//	Formatted	·
/	Formatted	<u></u>
\leq	Formatted	<u></u>
	Formatted	····

	Belward, A. S., J. E., Estes, J. E., and K. D., Kline (1999). ", K. D.: The IGBP-DIS global 1-km land-cover data set DISCover: A project		Formatted	
	overview-", Photogrammetric Engineering and Remote Sensing, 65 (9): , 1013-1020, 1999,			
	Bureau of Geology and Mineral Resources of Xinjiang [BGX].: 'Geological map of Xinjiang Uygur, Autonomous Region, China, version 2,			
595	scale 1:1,500,000', 1992			
	Berghuijs, W. R., E. E., Aalbers, J. R.E. E., Larsen, J. R., Trancoso, R., and R. A., Woods (2017). R. A.: Recent changes in extreme floods		Formatted	
	across multiple continents. ⁴ , Environmental Research Letters, 12(41), 114035, 2017,			
	Blume, T., I-van Meerveld, Land M. Weiler (2018). ". M.: Incentives for field hydrology and data sharing: collaboration and compensation:	_	Formatted	
	reply to "A need for incentivizing field hydrology especially in an era of open data?"", Hydrological Sciences Journal, 63(8): 1266-1268		Tormatted	
600				
000	Brodeur, 7 P. L.D. Herman, I.D. and S. Steinschneider (2020) "S. Bootstran Aggregation and Cross-Validation Methods to Reduce	1	Farmer Mar J	_
	Overfitting in Reservoir Control Policy Segreb " Water Resources Research 5(6): e2020WB027184 2020		Formatted	
	Busemann W. L. Dong, V. L. Zang, P. R. Y. Mumani, P. B. and P. E. Dickinson (2001) " P. E. Evaluation of the utility of stallite based	· .		_
	buchtain, w., st. Dong, K.J. Zeng, K.B. A. Wynen, K. D. and K.E. Dickinson (2007). K.E. Evaluation of the utility of satellite-based	7	Formatted	 <u> </u>
605	Cantar G. G. P. D. (2005). Clabel Buneff Database Kablanz.			
005	Carle S. D. Astrony, C. D. Barrette, C. E. District M. D. Cartellarin, I.A. Franz, D.I. Har, M.D. Harshamita, V. I. H.M.			
	Leoia, S., B., Aneimer, E.B., Bataut, G.E., Bioscin, K.G., Capeli, A.K., Castenarin, F.A., Freer, B.J., and, M.D., Hachowitz, H.J., H.M.,	-7	Formatted	(
	and Hundecha and E. S. Selences (2015), Yirtual laboratories: new opportunities for collaborative water science, Hydrology Earth	/		
	System Sciences, 19(4): 2101-2117, 2015.			
(10	Chagas, V. B., P. L. Chatte, A. P. L., Addor, F. M., Fan, A. S.F. M., Fleischmann, K. C.A. S., Paiva, K. C., and V. A., Siquerra (2020).	-1	Formatted	(
610	V. A.: CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil- Barth System Science Data	/		
	12 (3); 2075-2096 <u>, 2020</u>			
	China, M. o. G. a. M. R. o. t. P. s. R. o. (1991). "Geological map of Nei Mongol Autonomous Region, People's Republic of China, scale			
	1:1,500,000."			
	Coron, L., V. Andreassian, C.V., Perrin, J.C., Lerat, J., Vaze, M.J., Bourqui, M., and F. Hendrickx (2012). ", F.: Crash testing hydrological		Formatted	<u> </u>
615	models in contrasted climate conditions: An experiment on 216 Australian catchments.", Water Resources Research, 48(5), 2012,			
	CoxonChina Geological Survey [CGS].: '1:2,500,000-scale digital geological map database of China', 2001Coxon, G., N., Addor, J. P. N.,	-1	Formatted	
	Bloomfield, J. P., Freer, H.J., Fry, J.M., Hannaford, N.J., Howden, R.N. J., Lane, M.R., Lewis, M., and E. L., Robinson (2020). ", E. L.:			
	CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain." Earth System Science Data	/		
	12 (4): 2459-2483, 2020.	·		
620	Dai, Y., Q., Xin, N.Q., Wei, Y.N., Zhang, W.Y., Shangguan, H.W., Yuan, S.H., Zhang, S., Liu, S., and X. Lu-(2019). ", X.: A global high-		Formatted	
	resolution data set of soil hydraulic and thermal properties for land surface modeling-"_Journal of Advances in Modeling Earth Systems	1	·	
	11 (9): 2996-3023, 2019.			
	de Araújo, J. C. and J. I. González Piedra (2009). ", J. I.: Comparative hydrology: analysis of a semiarid and a humid tropical watershed.",		Formatted	\square
	Hydrological Processes: An International Journal 23(8): 1169-1178. 2009.			
625	Desborough, C. E. (1997). ".:. The impact of root weighting on the response of transpiration to moisture stress in land surface schemes."		Formatted	
	Monthly Weather Review 125 (8): 1920-1930, 1997.			
	Didan, K. (2015) MOD13A3 MODIS/Terra vegetation indices monthly L3 global 1km SIN grid V006 (Data set) NASA EOSDIS Land		Formatted	
	Process, DAAC 2015	/ `		
	Feng, D., K., Fang, K., and C., Shen (2020). ", C.: Enhancing streamflow forecast and extracting insights using long-short term memory		Formatted	
630	networks with data integration at continental scales.", Water Resources Research 56(9): c2019WR026793. 2020,	/		
	Friedl, M. A., D. Sulla-Menashe, B.D., Tan, A.B., Schneider, N.A., Ramankutty, A.N., Sibley, A., and X. Huang-(2010). ", X.: MODIS		Formatted	
	Collection 5 global land cover: Algorithm refinements and characterization of new datasets.", Remote sensing of Environment, 14(1):, 168-	//		
	182, 2010.			
	Gleeson, T., N., Moosdorf, J.N., Hartmann, J., and L., Van Beek (2014). ", L.: A glimpse beneath earth's surface: GLobal HYdrogeology		Formatted	
635	MaPS (GLHYMPS) of permeability and porosity.", Geophysical Research Letters, 41(11):, 3891-3898, 2014,			
	Gleeson, T., L., Smith, N.L., Moosdorf, J.N., Hartmann, H.H.J., Dürr, A.H. H., Manning, L. P.A. H., van Beek, L. P., and A. M., Jellinek		Formatted	
	(2011).", A. M.: Mapping permeability over the surface of the Earth.", Geophysical Research Letters, 38(2), 2011,	~	Tornatica	
	Gudmundsson, L., M-Leonard, H. X.M., Do, S.H. X., Westra, S., and S. J. Seneviratne (2019), ". S. L. Observed trends in global indicators		Formatted	_
	of mean and extreme streamflow	\geq	Tormatted	
640	Hartmann, J. and N-Moosdorf-(2012)." N: The new global lithological map database GLIM: A representation of rock properties at the	_	Formatted	_
	Earth surface,", Geochemistry, Geophysics, Geosystems, 13(12), 2012.	~	i oi matteu	(
1	Hengl, T., J. Mendes de Jesus, G. B.J., Heuvelink, M.G. B., Ruiperez Gonzalez, M., Kilibarda, A.M., Blagotić, W.A., Shangguan, M.N.W.	_	Formatted	_
	Wright, X.M. N., Geng, X., and B., Bauer-Marschallinger (2017). B.: SoilGrids250m: Global gridded soil information based on machine		i oi matteu	<u> </u>
	learning ", PLoS one. 12(2), e0169748 2017.			
645	Horn B. K-(1981) " Hill shading and the reflectance man". Proceedings of the IEEE . 69(1): 14-47, 1981	_	Formattod	_
0.15	Huang H. Y. Han M.Y. Cao, H.M. Song L. and H. Xiao (2016) "H. Snatial temporal variation of aridity index of China during 1960.		roimatteu	 _ L
	2013 Advances in Meteorolovy 2016, 2016		Formatted	(

	Jenson, S. K., J. O. J. P. e. and Domingue and r. sensing (1988). ", J. O.: Extracting topographic structure from digital elevation data for		Formatted	
	geographic information system analysis:", Photogrammetric engineering remote sensing, 54(11):, 1593-1600, 1988			(
650	Kendall, M. G. J. B. (1938). ".: A new measure of rank correlation.", Biometrika, 30(1/2): 81-93, 1938	[Formatted	[
	Knoben, W. J., J. E., Freer, J. E., and R. A., Woods (2019). ", R. A.: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta	_	Formatted	\geq
	efficiency scores.", Hydrology and Earth System Sciences, 23(10):, 4323-4331, 2019.	- 5	Tormatted	 (
	Knyazikhin, Y. (1999). MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR)		Formatted	(
(= =	product (MOD 15) algorithm theoretical basis document. http://cospsg.gstc.nasa.gov/atbd/modistabls.heml_1999.		Formatted	
633	Kollar, J., $+$, keed, $+$, and $+$, wagener (2012). $-$, 1.:, when are multiobjective calibration trade-offs in hydrologic models meaningful $+$ /2.		Farman and	
	Water resources research (16(3), 2012a, Kallet L. D. Paed D. and Wagang T. L.W. P. P. Wagang (2012), ": When are multiplicative calibration trade offic in hydrologic models.	—	Formatted	 <u>[</u>
	Kona, S., F. Jecce, F. and Wagelet, J. S. W. K. K. Wagelet (2012) When are multiobjective canoration nade-ons in hydrologic models magning 12 (2012).		Formatted	
	Kratzert F D-Klotz GD Shaley G. Klambauer S.G. Hochreiter S. and G. Nearing/2019) "G. Towards learning universal regional	, L	Courses	\geq
660	and local bydrological behaviors via machine learning annihile to large sample datasets" Hydrology & Farth System Sciences 23(12)	\nearrow	Formatted	 l
000	2019.			
	Lane, R. A., G. Coxon, J. E.G., Freer, T.J. E., Wagener, P. J., Johnes, J. P. J., Bloomfield, S.J. P., Greene, C. J.S., Macleod, C. J., and S.		Formatted	
	M. Reancy (2019). ", S. M.: Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across		loimatted	<u>(</u>
	over 1000 catchments in Great Britain.", Hydrology and Earth System Sciences, 23(10):, 4011-4032, 2019,			
665	Legasa, M. and J. M. Gutiérrez-(2020).", J. M.: Multisite Weather Generators using Bayesian Networks: An illustrative case study for		Formatted	
	precipitation occurrence.", Water Resources Research, 56(7): 2020/2020			(
	Lehner, B. (2014). HydroBASINS: Global watershed boundaries and sub-basin delineations derived from HydroSHEDS data at 15 second		Formatted	
	resolution—Technical documentation version 1. c <u>. 2014</u>			(
	Lehner, B., C. R., Liermann, C. R., Revenga, C., Vörösmarty, B.C., Fekete, P.B., Crouzet, P., Döll, M.P., Endejan, K.M., Frenken, K., and		Formatted	<u></u>
670	J. J. T. D. Magome, Version (2011). "J.: Global reservoir and dam (grand) database.", Technical Documentation, Version, 1:, 1-14, 2011,			(
	Linke, S., B. Lehner, C. O.B., Dallaire, J.C. O., Ariwi, G.J., Grill, M.G., Anand, P.M., Beames, V.P., Burchard-Levine, S.V., Maxwell, S.,	1	Formatted	(
	and H. Moidu (2019). ". H.: Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution." Scientific data.	7		
	b(+)+,1-15,2019	0		
(75	Lu, B., M., Xu, M., Henderson, M., and W. Gong (2004). W. A spatial analysis of pan evaporation trends in China, 1955–2000. Journal	\nearrow	Formatted	
6/5	of Geophysical Research: Atmospheres, 109(H15), 2004.			
	Liu, Q., Z. and A. Ala (2010). All rends for pan evaporation during 1939-2000 in China. Procedia Environmental Sciences.	~	Formatted	 (
	Transmission of the second sec	ſ	F	
	is southern Ching the rate 160 years." Advances in Atmospheric Sciences 34(9), 977-982, 2017	\nearrow	Formatted	L
680	Maidment D R - (1996) : GIS and hydrologic modeline-an assessment of propress. Third International Conference on GIS and	_	Formatted	
000	Environmental Modeline. Santa Fe. New Mexico	\geq	Formatted	L
	Maidment, D. R. and S. Morehouse (2002). S. Arc Hydro: GIS for water resources, ESRI, Inc. 2002,		Formatted	
	Masutomi, Y., Y., Inui, K.Y., Takahashi, K., and Y., Matsuoka (2009). ", Y.: Development of highly accurate global polygonal drainage basin	Z	-	<u> </u>
	data.", Hydrological Processes: An International Journal, 23(4):, 572-584, 2009.		Formatted	 (
685	Mei, Y., V. Maggioni, P. Houser, Y. Xue and T. Rouf (2020). "Ministry of Geology and Mineral Resources of the People's Republic of			
	China [MGC].: 'Geological map of Nei Mongol Autonomous Region, People's Republic of China, scale 1:1,500,000', 1991Mei, Y.,			
	Maggioni, V., Houser, P., Xue, Y., and Rouf, T.: A nonparametric statistical technique for spatial downscaling of precipitation over High	-	Formatted	
	Mountain Asia.", Water Resources Research, 56(11):, e2020WR027472, 2020,			(
600	Myneni, R., Y. Knyazikhin, Y., and T. Park (2015).", T.: MOD15A2H MODIS/terra leaf area index/FPAR 8-day L4 global 500 m SIN grid	-	Formatted	(
690	V006 , NASA EOSDIS Land Processes DAAC, 2015,			
	Nevo, S., 4-Anisimov, G.V., Elidan, K.G., El-Yaniv, P.K., Giencke, A.P., Gigi, A.Y., Hassidim, Z.A., Moshe, M.Z., Schlesinger, M., and		Formatted	(
	La Shalev (2019), G.; ML for flood forecasting at scale, arXiv preprint arXiv:1901.0905, 2019.			_
	Newman, A., M. Liark, K.M. Sampson, H.K. Wood, L.A., Ray, K.L., BOCK, K.A., Viger, D.K. Biodgeit, E.J., Brekke, L., and F. Annoid (2015) I. L. Dwildement of a lorge comple undershed cash a hudemeteorelicited to act for the anti-field data set for the a	1	Formatted	 (
605	(2013) Development of a targe-sample watersted-scale flyer one control to the contiguous OSA, data set characteristics and assessment of regional using straining in biddelogic modal performance." Hydrology and Earth System Scalegoe. 10(1): 200 232 2015			
0,5	Ni H and S. M. Beson-(2022) S. M. Using Unsupervised Machine Learning to Characterize Conflary Flow and Residual Transming."	_	Formattad	_
	Water Resources Research, 56(8), e2020/WR07473, 2020.	7	roimatteu	L
	Oudin, L. V-Andréassian, I.V., Lerat, J., and C. Michel (2008). ", C.; Has land cover a significant impact on mean annual streamflow? An		Formatted	_
	international assessment using 1508 catchments.", Journal of hydrology. 357(3,4): 303-316, 2008.	-	roimatteu	L
700	Running, S., O., Mu, O., and M. Zhao (2017). M. MODI6A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid		Formatted	
	V006. NASA EOSDIS Land Processes DAAC, 2017,			 <u>(</u>
	Seybold, H., D. H., Rothman, D. H., and J. W. Kirchner (2017). ", J. W.: Climate's watermark in the geometry of stream networks."		Formatted	
1	Geophysical Pasagraph Latters 44(5): 2272 2280 2017			(···

	Shangguan, W., Y. Dai, Q.Y., Duan, B.Q., Liu, B., and H., Yuan (2014).", H.: A global soil data set for earth system modeling.", Journal of	-	Formatted	
705	Advances in Modeling Earth Systems, 6(1):, 249-263, 2014			
	Shangguan, W., Y., Dai, B.Y., Liu, A.B., Zhu, Q.A., Duan, L.Q., Wu, D.L., Ji, A.D., Ye, H.A., Yuan, H., and Q. Zhang (2013). ", Q.: A		Formatted	
	China data set of soil properties for land surface modeling Journal of Advances in Modeling Earth Systems 5(2): 212-224, 2013			
	Shen, C., E. Laloy, A.E., Elshorbagy, A., Albert, J.A., Bales, FJ., Chang, S.FJ., Ganguly, KL.S., Hsu, D.KL., Kifer, D., and Z. Fang	-1	Formatted	
	(2018). ", Z.: HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community.", Hydrology and Earth	7		
710	System Sciences (Online)),22(11), 2018,			
	Silberstein, R- (2006). ".: Hydrological models are so good, do we still need data?"?, Environmental Modelling & Software, 21(9):, 1340-		Formatted	
	1352.2006			
	Singh, R., S. Archfield, S., and T. Wagener (2014). ", T.: Identifying dominant controls on hydrologic parameter transfer from gauged to	-	Formatted	
	ungauged catchments-A comparative hydrology approach." Journal of Hydrology 517: 985-996. 2014a			
715	Singh, R., K. van Werkhoven, K., and T., Wagener (2014). ", T.: Hydrological impacts of climate change in gauged and ungauged watersheds	-	Formatted	
	of the Olifants basin: a trading-space-for-time approach.", Hydrological Sciences Journal, 59(1): 29-55, 2014b,			
	Subramanya, K-(2013).: Engineering Hydrology, 4e, Tata McGraw-Hill EducationEducation2013.		Formatted	
	Sulla-Menashe, D. and M. A., Friedl (2018). ", M. A.: User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product."		Formattad	
	USGS: Reston, VA, USA: 1-18, 2018	-(Formatteu	[
720	Survey, C. G. (2001). "1:2,500,000-scale digital geological map database of China."			
	Tyralis, H., G., Papacharalampous, G., and S., Tantanee (2019). ", S.: How to explain and predict the shape parameter of the generalized	-	Formatted	
	extreme value distribution of streamflow extremes using a big dataset.", Journal of Hydrology, 574:, 628-645, 2019			
	van Werkhoven, K., T., Wagener, P.T., Reed, P., and Tang, Y. J. W. R. R. Tang (2008). ": Characterization of watershed model behavior	-	Formatted	
	across a hydroclimatic gradient." 44(1)-, 2008			
725	van Wijk, M. T. and M. Williams (2005). ", M.: Optical instruments for measuring leaf area index in low vegetation: application in arctic	-	Formatted	
	ecosystems: Ecological Applications, 15(4):, 1462-1470, 2005,			
	Voepel, H., BRuddell, R.B. Schumer, P. A.R. Troch, P. D.A. Brooks, A.P. D., Neal, M.A. Durcik, M., and MSivapalan (2011). ", M.:	1	Formatted	()
	Quantifying the role of climate and landscape characteristics on hydrologic partitioning and vegetation response." Water Resources	7 °		.
	Research_47(10)2011	0		
/30	Wang, J., M. Chen, G.M., Lü, S.G., Yue, Y.S., Wen, Z.Y., Lan, Z., and S.Zhang (2020). ", S.: A data sharing method in the open web	\nearrow	Formatted	
	environment: Data sharing in hydrology-"Journal of Hydrology, 887-124973, 2020.	6		
	Wickel, B., B., Lehner, B., and N., Sindorf (2007), N., HydroSHEDS: A global comprehensive hydrographic dataset. AGU Fall Meeting		Formatted	
	AbstractsHill-10	C		
725	wongso, E., K. Tvategni, B.K. Zaitchik, S.B., Quiring, S., and K., tumar (2020). K.: A Data-Driven Framework to Characterize State-		Formatted	
/35	Level Water Use in the United States: water Resources Research 2609# e2019WR024894, 2020	,		
	woods, K. AJ. AI. W. K. (2007). "Analytical model of seasonal climate impacts on snow hydrology: Continuous snowpacks- <u>Advances</u>	1	Formatted	
	In water Resources, 52(10), 1405-1481, 2009.			
	Amjiang, B. o. G. a. M. K. o. (1992). "Geological map of Alinjang Cygur, Autonomous Region, China, Version 2, scale 11,500,000."	C		
740	Au, 1., A-Ado, +A., Shen, -1., Au, +C., Shi, 1., and H-Arorgi (2007). a.: A daily temperature dataset over China and its application	~	Formatted	()
/40	in vanuaring a New simulation	(
	i amazaki, D., & Kissima, & Z., 2008, F. H., Dates, G. H.F. D., Alter, U. H., and H. M., Pavelsky (2019) - 1. M.: MERTI Hydro: a high- weaking albeit here and mean here the former for the mean frame for the former present of the former presen	~	Formatted	
	resolution global nydrography map based on latest topography dataset	C		
1	Zeng, X. (2001) Giobal vegetation root distribution for land modeling	-1	Formatted	· · · · ·