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Abstract. 

 The lack of a complied large-scale catchment characteristics dataset is a key obstacle limiting the development of large sample 10 

hydrology research in China. We introduce the first large-scale catchment attributes and meteorological time series dataset of 

contiguousin China. To develop the dataset, weWe compiled diverse data sources to generate basin-oriented features 

describing the catchment characteristics related to hydrological processes. The proposed dataset consists of catchment 

characteristics, including soil, land cover, climate, topography, and geology, and 29to develop the dataset. The dataset also 

includes catchment scale 31-year meteorological time series (from 1990 to 2018). The meteorological variables include 15 

precipitation, temperature, evapotranspiration, wind speed, ground surface temperature, pressure, humidity and sunshine 

duration. We also derived a daily potential2020 for each basin. Potential evapotranspiration time series based on a modified 

Penman’sPenman's equation. is derived for each basin. The studied4911 catchments are 4875 catchments within contiguous 

China derived from digital elevation models. We analysed and organisedincluded in the spatial variations of catchment 

characteristics into a series of maps. Correlation analysis between attributes was conducted. Compared to dataset covers the 20 

entire China. We introduced several new indicators describing the catchment geography and the underlying surface compared 

with previously proposed datasets, we derived more catchment characteristics . The resulting in dataset has a total of 125 

catchment attributes, providing a complete description of the catchments. Besides, we propose Normal-Camels-YR, a 

hydrological. The proposed dataset coveringalso includes a separate HydroMLYR dataset containing standardized weekly 

averaged streamflow for 102 basins ofin the Yellow River basin with normalized streamflow observations.Basin. The 25 

standardized streamflow data should be able to support machine learning hydrology research in the Yellow River Basin. The 

proposed dataset provides numerous opportunities for comparative hydrological research, such as examining the difference in 

hydrological behaviours across different catchments and building general rainfall-runoff modelling frameworks for many 

catchments instead of limited to a few. The dataset is is freely available via http://doi.org/10.5281/zenodo.4704017 for 

community use. We will open-source the complementat http://doi.org/10.5281/zenodo.5137288. In addition, the 30 

accompanying code for generating the dataset such that the user can generate meteorological series and catchment attributesis 

freely available at https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset, supporting 

mailto:jinjinhao@21cn.com


2 
 

the generation of catchment characteristics for any watershed within contiguous China.custom basin boundaries. Complied 

data for the 4911 basins covering the entire China and the open-sourced code should be able to support the study of any 

arbitrary basins instead of being limited to only a few basins. 35 

1 Introduction 

Studying a large set of catchments often provides insights that cannot be obtained when looking at a single or few catchments 

(Coron, Andreassian et al. 2012, Kollat, Reed et al. 2012, Newman, Clark et al. 2015, Lane, Coxon et al. 2019). The hydrologic 

cycle consists of many sub-processes, including evaporation from the ocean, raindropRainfall, interception, evaporation and 

evapotranspiration, groundwater flow, subsurface flow and surface runoff, infiltration, etc. are the main components of the 40 

terrestrial hydrological cycle. These processes are affected by the nature of the catchment, such as the ability of the soil to hold 

water. Catchment attributes such as soil characteristics, land cover characteristics and climate indices influence the water 

movement and storage in these sub-processesof the catchment such that hydrologic behaviours can vary across catchments 

(van Werkhoven, Wagener et al. 2008). The same hydrological model may not be applicable in another basin. However, by 

examining a large sample of catchments, it is possible for the hydrological model to learn the similarities and differences of 45 

hydrological behaviours across catchments. For example, predictionStudying a large set of terrestrial catchments often 

provides insights that cannot be obtained when looking at a single or few (Coron, Andreassian et al. 2012, Kollat, Reed et al. 

2012, Newman, Clark et al. 2015, Lane, Coxon et al. 2019). For example, a calibrated model may not be applicable in a 

watershed with vastly different properties. However, by examining a large sample of catchments, it is possible for a data-

driven model to learn the similarities and differences of hydrological behaviours across catchments (Kratzert, Klotz et al. 50 

2019). Prediction in ungauged basins is a challenging problem present in hydrology. The central challenge is how to extrapolate 

hydrologic information from gauged basins to ungauged ones. Solving, solving the problem relies on understanding the 

similarities and differences between different catchments. However, regionallyRegionally, and temporally imbalanced 

observations bring a difficulty to the problem. For a hydrologic model to successfully simulate the ungauged areas, it must 

adapt itself to the different hydrologic behaviours present in different catchments. (Kratzert, Klotz et al. 2019) Kratzert, Klotz 55 

et al. (2019) shows encoding catchment characteristics (e.g., soil characteristics, land cover, topography) into a data-driven 

model can teachguide the model to behave differently responding to the meteorological time series input based on different 

sets of static catchment attributes. 

 

(Silberstein 2006, Shen, Laloy et al. 2018, Nevo, Anisimov et al. 2019) pointed out that largeLarge sample hydrological 60 

datasets are the foundation and key of many hydrological studies. (Silberstein 2006, Shen, Laloy et al. 2018, Nevo, Anisimov 

et al. 2019). The term big hydrologic data refers to all data influencing the water cycle, such as the meteorological variables, 

infiltration characteristics of the study area, land use or land cover types, physical and geological features of the study 

areacatchment, etc. Many studies cannot be carried out withoutare based on large-scale hydrologic data (Coron, Andreassian 
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et al. 2012, Singh, van Werkhoven et al. 2014, Berghuijs, Aalbers et al. 2017, Gudmundsson, Leonard et al. 2019, Tyralis, 65 

Papacharalampous et al. 2019). For hydrological research, basin- orientated large sample datasets are of great significance. 

For example, comparative hydrology (de Araújo and González Piedra 2009, Singh, Archfield et al. 2014) focus on 

understanding how hydrological processes interact with the ecosystem, in particular, how hydrologic behaviours change under 

changes in the surface and sub-surface of the earth to determine to what extent hydrological predictions can be transferred 

from one area to another. Large-sample catchment attributes datasetdatasets provide opportunities for research studying 70 

interrelationships among catchment attributes. (Seybold, Rothman et al. 2017)Seybold, Rothman et al. (2017) studied the 

correlations between river junction angle with geometric factors, downstream concavity, and aridity. (Oudin, Andréassian et 

al. 2008)Oudin, Andréassian et al. (2008) investigates the link between land cover and mean annual streamflow based on 1508 

basins representing a large hydroclimatic variety. (Voepel, Ruddell et al. 2011)Voepel, Ruddell et al. (2011) examines how 

the interaction of climate and topography influences vegetation response.  75 

 

Data-driven methods can best benefit from large-scale data. Data-driven approaches have shown great potential in various 

fields, transforming the applications in many industries (LeCun, Bengio et al. 2015). However, data-driven methods, especially 

the deep learning-based approaches, usually require high data volumes. Limited data will cause the over-fitting (Blumer, 

Ehrenfeucht et al. 1987, Abu-Mostafa, Magdon-Ismail et al. 2012) problem. Therefore, big hydrologic data is the fundamental 80 

support for the successful deployment of powerful data-driven strategies.  

 

Traditional hydrological models have some long standing challenges, such as the inability to capture hydrological processes’ 

mechanism complexity (Kollat, Reed et al. 2012), which is due to the structural limitations of the conceptual models. Data-

driven methods are proposed to overcome some existing obstacles. Data-driven strategies open a new way for researchers to 85 

acquire knowledge transforming the research pattern from hypothesis-driven to data-driven. (Feng, Fang et al. 2020) proposed 

a flexible data integration fusing various types of observations to improve rainfall-runoff modelling. The research shows that 

combining different resources of data benefits predictions in regions with high autocorrelation in streamflow. (Wongso, 

Nateghi et al. 2020) developed a model predicting the state-level, per capita water uses in the United States, taking various 

geographic, climatic, and socioeconomic variables as input. The research also identified key factors associated with high water 90 

usage. (Mei, Maggioni et al. 2020) proposed a statistical framework for spatial downscaling to obtain hyper‐resolution 

precipitation data. The results show improvements compared with the original product. (Brodeur, Herman et al. 2020) applied 

machine learning techniques, namely bootstrap aggregation and cross-validation, to reduce overfitting in reservoir control 

policy search. (Ni and Benson 2020) proposed an unsupervised machine learning method to differentiate flow regimes and 

identify capillary heterogeneity trapping, showing the promise of machine learning methods for analysing large datasets from 95 

coreflooding experiments. (Legasa and Gutiérrez 2020) propose to apply Bayesian Network for multisite precipitation 

occurrence generation. The proposed methodology shows improvements for existing methods.  
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World-wide data sharing has become a trend (Wickel, Lehner et al. 2007, Ceola, Arheimer et al. 2015, Blume, van Meerveld 

et al. 2018, Wang, Chen et al. 2020), and the amounts of hydrologic data available are ever-increasing. However, these data 100 

typically came from different providers and are compiled in various formats. For example, ASTGTM1ASTGTM (Abrams, 

Crippen et al. 2020) provides a global digital elevation model; GliM (Hartmann and Moosdorf 2012) includes rock types data 

globally; MODIS provides data products (Knyazikhin 1999, Didan 2015, Myneni, Knyazikhin et al. 2015, Running, Mu et al. 

2017, Sulla-Menashe and Friedl 2018) describing features of the land and the atmosphere derived from remote sensing 

observations; (Yamazaki, Ikeshima et al. 2019)Yamazaki, Ikeshima et al. (2019) provides a global flow direction map at three 105 

arc-second resolution; HydroBASINS (Lehner 2014) provides basin boundaries at different scales globally; and GDBD 

(Masutomi, Inui et al. 2009) provides basin boundaries with geographic attributes; GLHYMPS (Gleeson, Moosdorf et al. 2014) 

provides a global map of subsurface permeability and porosity; SoilGrids250m (Hengl, Mendes de Jesus et al. 2017) dataset 

provides global numeric soil properties. Local government agencies often hold meteorological data such as precipitation and 

evaporation, and the amount of this data is also growing, however, data transparency has still been a problem (Viglione, Borga 110 

et al. 2010). The.  

However, the data mentioned above are rarely spatially aggregated to the catchment- scale, making it difficult for researchers 

to use these data. Properly pre-processed and formatted datasets on a large scale are of great importance for the hydrology 

research. Searching for appropriate data sources, pre-processing, and formatting often consumes a lot of researchers’ time. In 

some cases, individual research groups either do not know where to obtain the appropriate data or cannot properly process the 115 

data to receive the desired format. In summary, although data sharing is being advocated in the community, it is usually difficult 

for the public to obtain the required data, either because there are not enough observations or because of the difficulties in the 

data processing. 

 

In summary, both data-driven and traditional hydrological research need diverse hydrologic datasets to learn the generalisation 120 

capability from one area to another. For a model to adapt to various behaviours in different catchments, the dataset must be 

large enough to represent the complex heterogeneity presented in the natural hydrologic system. Although data sharing is being 

advocated in the community, it is usually difficult for the public to obtain certain data such as meteorological data and 

streamflow observations, either because there are not enough observations or because there are no open access permissions. 

 125 

Recently, there are efforts (Addor, Newman et al. 2017, Alvarez-Garreton, Mendoza et al. 2018, Chagas, Chaffe et al. 2020, 

Coxon, Addor et al. 2020) compiling different types of data sources to form large scale hydrological datasets. These four 

collected datasets cover the continental United States, Chile, Brazil, and Great Britain. (Addor, Do et al. 2020) reviewed these 

datasets and discussed the guidelines for producing large-sample hydrological datasets and the limitations of the currently 

proposed datasets. The CAMELS dataset has been used to support a lot of research. Based on CAMELS, (Kratzert, Klotz et 130 

 
1 https://asterweb.jpl.nasa.gov/gdem.asp  
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al. 2018) built a Long Short-Term Memory (LSTM) network for rainfall-runoff modelling, showing that one model can predict 

the discharge for a variety of catchments. (Knoben, Freer et al. 2019) compared metrics used in hydrology based on simulations 

on many basins. (Tyralis, Papacharalampous et al. 2019) studied the relationship between the shape parameter and basin 

attributes based on the sizeable basin-oriented dataset.  

 135 

However, there is no large-scale compilation of hydrological datasets in contiguous China. An alternative is on a global scale, 

the HydroATLAS (Linke, Lehner et al. 2019) dataset. However, since it is on a world-wide scale, compared with other datasets 

constructed for regions, the dataset lacks many attributes and is not built according to the CAMELS standards. Besides, the 

climatic data is not up to date (1950-2000), and the derivation of climatic data lacks ground surface observations inputs, such 

that the data quality is not guaranteed.  140 

 

Therefore, researchers still need to do repetitive works to compile data from different sources such as obtaining historical 

meteorological data (temperature, rainfall, evapotranspiration) of a catchment in contiguous China. Inspired by (Addor, 

Newman et al. 2017), in this paper, we present a catchment scale hydrologic dataset compiling a wide variety of hydrological 

data, including basin topography, climate indices, land cover characteristics, soil characteristics and geological characteristics 145 

covering contiguous China. 

 

 to compile different types of data sources forming large scale hydrological datasets. These four collected datasets cover the 

continental United States, Chile, Brazil, and Great Britain. Addor, Do et al. (2020) reviewed these datasets and discussed the 

guidelines for producing large-sample hydrological datasets and the limitations of the currently proposed datasets. The static 150 

properties of 671 river basins in the United States are calculated by CAMELS (Addor, Newman et al. 2017), which is an 

extension of a previously proposed hydrometeorological data set (Newman, Clark et al. 2015). Unfortunately, it is impossible 

to publish streamflow data in China for the time being. The CAMELS dataset has been used to support a lot of research. For 

example, Knoben, Freer et al. (2019) compared metrics used in hydrology based on simulations on many basins. Tyralis, 

Papacharalampous et al. (2019) studied the relationship between the shape parameter and basin attributes based on the sizeable 155 

basin-oriented dataset.  

There is currently no compilation of China-specific catchment attributes datasets. An alternative, the HydroATLAS (Linke, 

Lehner et al. 2019) dataset, which is on a global scale, is basically performing zonal statistics on the source data. HydroATLAS 

lacks many indicators which need derivations based on the source data, such as rainfall seasonality, the fraction of precipitation 

falling as snow, basin shape factors and root depth distributions. What’s worse, the meteorological data is only up to 2000, 160 

which is outdated. 

In summary, a lack of a complied catchment attributes dataset is a key obstacle limiting the development of large sample 

hydrology research in China.  Inspired by (Addor, Newman et al. 2017), we complied multiple data sources, including basin 

topography, climate indices, land cover characteristics, soil characteristics and geological characteristics.  Different from 
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(Addor, Newman et al. 2017), the catchments included in the dataset covers the entire study area, instead of being limited to a 165 

few.  

The proposed dataset is the first dataset providing catchments meteorological time series and catchments attributes of 

contiguous China. We compiled and named the dataset following most standards of the previously proposed datasets. Unlike 

CAMELS and CAMELS-CL, catchments in the proposed dataset are not selective. Instead, theThe dataset consists of all 

generated basinsderived basin boundaries from the Digital Elevation Model (DEM), based on) which came from the Global 170 

Drainage Basin Dataset (Masutomi, Inui et al. 2009). The Global Drainage Basin Dataset (GDBD) is derived at high-resolution 

(100m-1km) and has a good geographic agreement with existing global drainage basin data in China2. Besides, an essential 

feature of the. In addition, previously proposed dataset is that it provides a complete description of the catchment, rather than 

an abstraction. For example, both CAMELS and CAMELS-CL only datasets (Addor, Newman et al. 2017, Alvarez-Garreton, 

Mendoza et al. 2018, Chagas, Chaffe et al. 2020, Coxon, Addor et al. 2020) report only the most frequent and second most 175 

frequent catchment land cover and lithology types. Instead, the proposed datasetCCAM calculates the proportionproportions 

of eachall land cover and lithology type for each catchment to serve data-driven research better. We also introduced many 

more climate characteristics and soil characteristics to support more diverse potential researchtypes.  

 

Researchers from different places can use the proposed dataset in conjunction with their streamflow data, simplifying 180 

organising and compiling various data resources, which is usually repetitive work. The proposed dataset is undoubtedly the 

most comprehensive catchment attributes and meteorological time series dataset in contiguous China and is suitable for multi-

purpose data-driven research. The dataset consists of basin boundaries in the shapefile format, computed catchment attributes 

of climate, land cover, soil, topography and lithology and 29-year meteorological time series. Table 1 compares the number of 

static attributes between CAMELS, CAMELS-BR, and the proposed dataset.  185 

 

In addition to the basin-wise attributes provided in CCAM, we propose HydroMLYR, a hydrology dataset for machine learning 

research in the Yellow River Basin providing weekly averaged standardized streamflow data for 102 basins in the Yellow 

River Basin (YRB). HydroMLYR is proposed to support machine learning hydrology research at YRB. Traditional 

hydrological models have some long standing challenges, such as the inability to capture hydrological processes’ mechanism 190 

complexity (Kollat, Reed et al. 2012), which is due to the structural limitations of the conceptual models. Data-driven strategies 

represented by machine learning are proposed to overcome some existing obstacles and they open a new way for researchers 

to acquire knowledge transforming the research pattern from hypothesis-driven to data-driven. Feng, Fang et al. (2020) 

 
2 In this study, gauge streamflow measurements are not available in areas other than the Yellow River such that it is infeasible to specify a 

gauge location for generating the basin boundary for most of the areas. Streamflow measurements have strict redistribution policy; 

however, local research institutions have their streamflow measurements for hydrological research, the proposed dataset can used in 

conjunction with the streamflow data of researchers in various places. 
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proposed a flexible data integration fusing various types of observations to improve rainfall-runoff modelling. The research 

shows that combining different resources of data benefits predictions in regions with high autocorrelation in streamflow. 195 

Wongso, Nateghi et al. (2020) developed a model predicting the state-level, per capita water uses in the United States, taking 

various geographic, climatic, and socioeconomic variables as input. The research also identified key factors associated with 

high water usage. Mei, Maggioni et al. (2020) proposed a statistical framework for spatial downscaling to obtain hyper‐

resolution precipitation data. The results show improvements compared with the original product. Brodeur, Herman et al. 

(2020) applied machine learning techniques, namely bootstrap aggregation and cross-validation, to reduce overfitting in 200 

reservoir control policy search. Ni and Benson (2020) proposed an unsupervised machine learning method to differentiate flow 

regimes and identify capillary heterogeneity trapping, showing the promise of machine learning methods for analysing large 

datasets from coreflooding experiments. Legasa and Gutiérrez (2020) propose to apply Bayesian Network for multisite 

precipitation occurrence generation, and the proposed methodology shows improvements for existing methods. The proposed 

data set can be used to develop or verify machine learning models in the YRB. 205 

The paper is organized as follows: Section 2 describes the study area. Section 3-7 describes the five classes of the computed 

catchment attributes. In section 3-7, each unit follows the same structure: first introduce the meaning and significance of each 

added feature and data source used, then describe the variables’ spatial variability if necessary. Section 8 describes the proposed 

catchment- scale meteorological forcing time series. Section 9 introduce the Normal-Camels-YRHydroMLYR dataset, which 

provides normalized streamflow measurements for 102 catchments of Yellow River.. Section 10 describes the code and data 210 

availability. Section 11 presentsis the concluding remark.  

 

In summary, our contributions are as follows: 

(1) The proposed dataset is the first large-scale dataset containing catchment-scale meteorological time series of contiguous 

China, which is the basis for many hydrological studies. 215 

(2) We present the first basin-oriented static attributes dataset in contiguous China. 

(3) We introduce several new catchment characteristics providing a complete description of the catchment compared with the 

previously proposed datasets such that the proposed dataset is prepared for potential hydrological studies. 

(4) We offer a self-contained dataset covering 102 basins of the Yellow River basin with normalized runoff observation 

supporting many potential studies. 220 

(5) We will open-source the code for generating the dataset such that the user can generate a dataset for any watershed within 

contiguous China. 
Table 1 Number of computed attributes in CAMELS, CAMELS-BR and the proposed dataset. 

Attribute class CAMELS(A17) CAMELS-BR Ours 

Location and 

topography 

9 11 12 
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Geology 7 7 18 

Soil 11 6 54 

Land cover 8 11 22 

Climatic indices 11 13 17 

Human intervention 

indices 

not 

computed 

4 2 

Total 46 52 125 

 
Table 2 Summary of basin daily discharge and forcing data in CAMELS, CAMELS-BR and the proposed dataset. 225 

Forcing data class CAMELS CAMELS-BR Ours 

Temperature available available available 

Precipitation  available available available 

Solar radiation available not 

available 

available 

Day length available not 

available 

not available 

Sunshine hours not 

available 

not 

available 

available 

Humidity available not 

available 

available 

Snow water equivalent available not 

available 

not available 

Wind velocity not 

available 

not 

available 

available 

Ground surface pressure available not 

available 

available 

Observed evaporation not 

available 

available available 

Potential 

evapotranspiration 

not 

available 

available available 

Streamflow available available partially available (see Section 9) 
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2 Study area 

 

 

(a) (

b

) 
Figure 1. Overview of the study area. The study area covers a wide range of latitude and longitude, from 18.2° N to 52.3° N, and 
from 76.0° E to 134.3° E. (a) The main geographical features map of contiguous China. China is mountainous; mountains and hills 
occupy two-thirds of the area. (b) The distribution map of the delimited catchments based on the ASTER DEM, the catchments 230 
studied are all catchment areas delimited from the DEM, covering contiguous China, with 4875 catchments, most of which are 2000 
to 5000 square kilometres. 

: Left: Study area of CCAM and the distribution of land cover types. The studied basins cover the whole of China. Right: Study area 
of HydroMLYR and the distribution of aridity (PET/P) index. YRB is a generally arid area. The data set provided can be used as a 
good sample for studying hydrology in arid regions. 235 
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The study area corresponds to contiguousthe whole of China, (Fig. 1), with diverse climate and terrain characteristics, spanning 

from 18.2° N to 52.3° N and 76.0° E to 134.3° E.  Mountains, plateaus, and hills account for about two-thirds of areas of 

contiguous China, and the remaining are basins and plains. China’s topography is like a three-level ladder, high in the west 

and low in the east. The Qinghai-Tibet Plateau, the highest plateau globally, located in the west of contiguous China, with a 

mean elevation of over 4000 meters, is the first step of China’s topography. The Xinjiang region, the Loess Plateau, the Sichuan 240 

Basin, and the Yunnan-Guizhou Plateau to the north and east are the second step of China’s topography. The mean sea level 

here is between 1000 to 2000 meters. Plains and hills dominate the east of the Daxinganling-Taihang Mountain to the coastline, 

the third step of contiguous China. The elevation of this step descends to 500-1,000 meters. To better characterize the studied 

catchments, we have derived various attributes. Table 1 compares the number of derived attributes between several proposed 

datasets. 245 

 
Table 1: Number of computed attributes in CAMELS, CAMELS-BR and CCAM. 

Attribute class CAMELS(A17) CAMELS-BR CCAM 

Location and topography 9 11 12 

Geology 7 7 18 

Soil 11 6 54 

Land cover 8 11 22 

Climatic indices 11 13 17 

Human intervention indices not computed 4 2 

Total 46 52 125 

 

In contiguous China, precipitation and temperature vary significantly in different places, forming a diverse climate 

environment. According to the Köppen Climate Classification System, from northwest to southeast, China’s climate gradually 250 

evolves from Cold desert (BWk) climate, Tundra (ET) climate, Warm and temperate continental (Dfa and Dwb) climate to 

Humid subtropical (Cwa) climate and Warm oceanic (Cfa) climate. From the perspective of temperature zones, there are tropical, 

subtropical, warm temperate, medium temperate, cold temperate and Qinghai-Tibet Plateau regions, and there are humid 

regions, semi-humid regions, semiarid regions, and arid regions from the perspective of wet and dry zones. Moreover, the 

same temperature zone can contain different dry and wet zones. Therefore, there will be differences in heat and wetness in the 255 

same climate type. The complexity of the terrain makes the climate even more complex and diverse. Besides, China has a wide 

range of regions affected by the alternating winter and summer monsoons. Compared with other parts of the world at the same 

latitude, these areas have low winter temperatures, high summer temperatures, significant annual temperature differences, and 

concentrated precipitation in summer. The cold and dry winter monsoon occurs in Asia’s interior, far away from the ocean. 

Under its influence, winter rainfall in most parts of China is low, accompanied by low temperature. The summer monsoon is 260 
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warm and humid, coming from the Pacific Ocean and the Indian Ocean. Under its influence, precipitation generally increases. 

Table 2 compares the provided forcing variables in CAMELS, CAMELS-BR and CCAM. 

 
Table 2: Summary of forcing variables provided in CAMELS, CAMELS-BR and CCAM. 

Forcing data class CAMELS CAMELS-BR CCAM 

Temperature available available available 

Precipitation  available available available 

Solar radiation available not available available 

Day length available not available not available 

Sunshine hours not available not available available 

Humidity available not available available 

Snow water equivalent available not available not available 

Wind velocity not available not available available 

Ground surface pressure available not available available 

Observed evaporation not available available available 

Potential evapotranspiration not available available available 

 265 
Table 3: Summary table of catchment attributes available in the proposed dataset. 

Attribute class Attribute name Description Unit Data source 

Climate indices 

(computed for 1 

Oct 1990 to 30 

Sep 2018) 

pet_mean mean daily pet (Penman–Monteith 

equation) 

mm d-

1 

(Subramanya 2013) 

evp_mean mean daily evaporation 

(observations) 

mm d-

1 

SURF_CLI_CHN_MUL_DAY3F3 

gst_mean mean daily ground surface 

temperature 

°C 

pre_mean mean daily precipitation mm d-

1 

prs_mean mean daily ground surface 

pressure 

hPa 

rhu_mean mean daily relative humidity - 

ssd_mean mean daily sunshine duration h 

 
3 http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html  

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html
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tem_mean mean daily temperature °C 

win_mean mean daily wind speed m s-1 

p_seasonality seasonality and timing of 

precipitation (estimated using sine 

curves to represent the annual 

temperature and precipitation 

cycles, positive [negative] values 

indicate that precipitation peaks in 

summer [winter], values close to 0 

indicate uniform precipitation 

throughout the year) 

- 

high_prec_freq frequency of high-precipitation 

days ( ≥  5 times mean daily 

precipitation) 

d yr-1 

high_prec_dur average duration of high-

precipitation events (number of 

consecutive days ≥ 5 times mean 

daily precipitation) 

d 

high_prec_timing season during which most high-

precipitation days ( ≥  5 times 

mean daily precipitation) occur 

season 

low_prec_freq frequency of dry days (< 1mm d-1) d yr-1 

low_prec_dur average duration of dry periods 

(number of consecutive days < 1 

mm d-1) 

d 

low_prec_timing season during which most dry days 

(< 1 mm d-1) occur 

season 

frac_snow_daily fraction of precipitation falling as 

snow (for days colder than 0 °C) 

- 

p_seasonality seasonality and timing of 

precipitation, positive [negative] 

values indicate that precipitation 

peaks in summer [winter], values 

-  
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close to 0 indicate uniform 

precipitation throughout the year 

Geological 

characteristics 

geol_porosity subsurface porosity - (Gleeson, Moosdorf et al. 2014) 

geol_permeability subsurface permeability (log-10) m2 

ig fraction of the catchment area 

associated with ice and glaciers 

- (Hartmann and Moosdorf 2012) 

pa fraction of the catchment area 

associated with acid plutonic rocks  

- 

sc fraction of the catchment area 

associated with carbonate 

sedimentary rocks 

- 

su fraction of the catchment area 

associated with unconsolidated 

sediments 

- 

sm fraction of the catchment area 

associated with mixed 

sedimentary rocks 

- 

vi fraction of the catchment area 

associated with intermediate 

volcanic rocks 

- 

mt fraction of the catchment area 

associated with metamorphic 

- 

ss fraction of the catchment area 

associated with siliciclastic 

sedimentary rocks 

- 

pi fraction of the catchment area 

associated with intermediate 

plutonic rocks 

- 

va fraction of the catchment area 

associated with acid volcanic 

rocks 

- 

wb fraction of the catchment area 

associated with water bodies 

- 
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pb fraction of the catchment area 

associated with basic plutonic 

rocks 

- 

vb fraction of the catchment area 

associated with basic volcanic 

rocks 

- 

nd fraction of the catchment area 

associated with no data 

- 

py fraction of the catchment area 

associated with pyroclastic 

- 

ev fraction of the catchment area 

associated with evaporites 

- 

Land cover 

characteristics 

lai_max maximum monthly mean of the 

leaf area index (based on 12 

monthly means) 

- (Myneni, Knyazikhin et al. 2015) 

lai_diff difference between the maximum 

and minimum monthly mean of 

the leaf area index (based on 12 

monthly means) 

- 

ndvi_mean mean normalized difference 

vegetation index (NDVI) 

- (Didan 2015) 

root_depth_50 root depth (percentiles=50% 

extracted from a root depth 

distribution based on IGBP land 

cover) 

m Eq. 2 and Table 2 in (Zeng 2001) 

root_depth_99 root depth (percentiles=99% 

extracted from a root depth 

distribution based on IGBP land 

cover) 

m 

evergreen 

needleleaf tree 

catchment area fraction covered 

by evergreen needleleaf tree 

- (Sulla-Menashe and Friedl 2018) 

evergreen 

broadleaf tree 

catchment area fraction covered 

by evergreen broadleaf tree 

- 
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deciduous 

needleleaf tree 

catchment area fraction covered 

by deciduous needleleaf forests 

- 

deciduous 

broadleaf tree 

catchment area fraction covered 

by deciduous broadleaf tree 

- 

mixed forest catchment area fraction covered 

by mixed forest 

- 

closed shrubland catchment area fraction covered 

by closed shrubland 

- 

open shrubland catchment area fraction covered 

by open shrubland 

- 

woody savanna catchment area fraction covered 

by woody savanna 

- 

savanna catchment area fraction covered 

by savanna 

- 

grassland catchment area fraction covered 

by grassland 

- 

permanent 

wetland 

catchment area fraction covered 

by permanent wetland 

- 

cropland catchment area fraction covered 

by cropland 

- 

urban and built-up 

land 

catchment area fraction covered 

by urban and built-up land 

- 

cropland/natural 

vegetation 

catchment area fraction covered 

by cropland/natural vegetation 

- 

snow and ice catchment area fraction covered 

by snow and ice 

- 

barren catchment area fraction covered 

by barren 

- 

water bodies catchment area fraction covered 

by water bodies 

- 

Topography, 

location, and 

basin_id drainage basin identifiers - (Masutomi, Inui et al. 2009) 

pop population people 
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Human 

intervention pop_dnsty  population density 

people 

km-2  

lat mean latitude  °N 

lon mean longitude °E 

elev mean elevation M 

area catchment area km2 

slope mean slope 

m km-

1 

(Horn 1981) 

length  The length of the mainstream 

measured from the basin outlet to 

the remotest point on the basin 

boundary. The mainstream is 

identified by starting from the 

basin outlet and moving up the 

catchment. 

kmKm (Subramanya 2013) 

form factor catchment area / (catchment 

length)2 

- 

shape factor (catchment length)2 / catchment 

area 

- 

compactness 

coefficient 

perimeter of the catchment / 

perimeter of the circle whose area 

is that of the basin 

- 

circulatory ratio catchment area / area of circle of 

catchment perimeter 

- 

elongation ratio diameter of circle whose area is 

basin area / catchment length 

- 

Soil  pdep soil profile depth cm (Shangguan, Dai et al. 2013) 

clay percentage of clay content of the 

soil material 

% 

sand percentage of sand content of the 

soil material 

% 

por porosity cm3 

cm-3 
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silt percentage of silt content of the 

soil material 

% 

grav rock fragment content % 

som soil organic carbon content % 

log_k_s4F4 log-10 transformation of saturated 

hydraulic conductivity 

cm d-1 (Dai, Xin et al. 2019) 

theta_s4 saturated water content cm3 

cm-3 

tksatu4 thermal conductivity of unfrozen 

saturated soils 

W m-1 

K-1 

bldfie4 bulk density kg m-3 (Hengl, Mendes de Jesus et al. 

2017) cecsol4 cation-exchange capacity cmol+ 

kg-1 

orcdrc4 organic carbon content g kg-1 

phihox4 pH in H2O 10-1 

bdticm depth to bedrock cm 

 

3 ClimateClimatic indices 

Meteorological raw Raw meteorological data wasis provided by the China Meteorological Data Network3Network, released 

as the SURF_CLI_CHN_MUL_DAY (V3.0) dataset5, which provides complete variable types and the longest period (1951-270 

20182020) of meteorological time series ofin China. The SURF_CLI_CHN_MUL_DAY product includes site observations of 

pressure, temperature, relative humidity, precipitation, evaporation, wind speed, sunshine duration, and ground surface 

temperature. The summary is presented in Table 4. (Table 4). The Inverse distance weighting method is used for interpolating 

the site observations. Climate indices are then obtained by taking the average of the catchment-scale extraction from the 

interpolated raster. To ensure data quality, we choseuse the latter 2931-year record (from 1990 to 20182020) to construct the 275 

dataset since sites’ distribution was sparse in the early days (Fig. 2). We computed more climatic characteristics compared 

with other datasets (Table 2). These characteristics have critical potential effects on thevariables are useful in hydrological 

processesmodelling; for example, wind speed can affect actual evapotranspiration. To be consistent with the CAMELS (Addor, 

Newman et al. 2017), we also determined all climatic attributes (Woods 2009) provided in the CAMELS dataset. TheAs a 

 
4 The data source contains multi-layer soil data, soil characteristics for all layers are determined. 
5 SURF_CLI_CHN_MUL_DAY is freely available for global researchers.  
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result, the proposed dataset provides more meteorological variables and longer time series (1990-20182020) than CAMELS 280 

and CAMELS-CL. A summary of the computed Climatederived climate indices is presented in Table 3. The national 

distributiondistributions of meteorological attributes of catchments isthe climate indicators are shown in Fig. 3.Fig. 3. 

 

  

(a) (b) (c) 
Figure 2. Overview of changes: Changes in the number and distribution of meteorological stations in China. (a) The number of 
meteorological stations varies with the year. There were only 119 stations in 1951. This number increased rapidly from 1951 to the 
early 1960s, and the number of stations remained stable after 2000. (b) Distribution map of China’s meteorological stations in 1951. 285 
(c) Distribution map of China’s meteorological stations in 2000To ensure the data quality, we used the latter 31-year records (from 
1990 to 2020) to construct the dataset. 
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(a) (b) (c)I 

   

(d) (e)I (f) 
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(g) (h) (i) 

   

(j) (k) (l) 
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(m) (n) (o) 

   
(p) (q) (r) 

Figure 3. Maps: Distributions of climatic indices over contiguous China. The histograms and bar plots indicate All basins are plotted 
in the numbersame size. When extreme values of catchments (out of 4875) in each bin or categorya variable affect visualization 
(cause most areas to have the same colour), the log values are used for visualization. 290 

The instruments for measuring potential evaporation were updated from 2000 to 2005. Early observations can be multiplied 

by a correction coefficient to approximate the new tools. However, the coefficient varies across stations making the approach 

infeasible. To complement this, we calculated potential evapotranspiration (PET) based on a modified Penman’s Equation (see 

Appendix A) and other observed meteorological variables, providing a series of consistent evapotranspiration 

estimationpotential evaporation estimations for reference. 295 

 

The average daily precipitation in contiguous China is highest in the southeast and lowest in the northwest. It is also higher in 

the coastal areas than in the interior land. Ground surface pressure is positively correlated with elevation, the highest in the 

Qinghai-Tibet Plateau and the lowest in the Southeast Plain. The average relative humidity is generally positively correlated 
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with precipitation; they are also higher in some forested areas, such as the Taihang Mountains and Daxingan Mountains. The 300 

Qinghai-Tibet Plateau has the lowest average temperature, and the southern coastal area has the highest. A distinctive feature 

of the distribution of wind speed is the high wind speed in mountainous areas. The highest wind speed occurs in the southeast 

coastal area (> 6 meters per second). Refer to Section 8 for a detailed description of the proposed catchment-scale 

meteorological time series dataset of contiguous China. 

4 Geology 305 

To describe the lithological characteristics of each catchment, we used the same two global datasets as CAMELS, Global 

Lithological Map (GLiMGliM) (Hartmann and Moosdorf 2012) and GLobal HYdrogeologyGlobal Hydrogeology MaPS 

(GLHYMPS) (Gleeson, Moosdorf et al. 2014). Figure 4 presents the resultsdistributions of the geological types. 

 

GLiM provides a high resolution global lithological map assembled from existing regional geological maps; it has been widely 310 

used for constructing datasets (e.g. SoilGrids250m (Hengl, Mendes de Jesus et al. 2017)). However, the data quality of GLiM 

can vary in different spatial locations depending on the quality of the original regional geological maps. GLiM consists of 

three levels, the first level contains 16 lithological classes, and the additional two levels describe more specific lithological 

characteristics. The GLiM is represented by 1,235,400 polygons; the polygons are converted to raster format for the basin-

scale lithological type statistics. For contiguousFor China, the compiled regional data sources (China 1991, Xinjiang 1992, 315 

Survey 2001) have slightly lower resolutions than the GLiM target resolution (1:1 000 000). However, for a basin-scale study 

with a mean basin area of over 2000 km2, the classification accuracy should satisfy most applications. 

   
(a) (b) (c) 
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(a) (b) (c) 

  

 

(a) (b)  

Figure 4. Maps of geological characteristics over contiguous China. The histograms indicate the number of catchments (out of 4875) 
in each bin. 

Compared to CAMELS and CAMELS-CL, one design consideration of the proposed dataset is that it should be more prepared 320 

for the data-driven research, such that we aim to generate as many types of catchment-scale data as possible since advanced 

data-driven methods can learn the representation of inputs automatically. To this end, we determined and recorded Different 

from CAMELS and CAMELS-CL, we determined each lithological class’s contribution to the catchment instead of recoding 

just the first and second most frequent classes. The GLiM is represented by 1,235,400 polygons; the polygons are converted 

to raster format for the basin-scale lithological type statistics.  325 

 

   

(a) (b) (c) 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 



25 
 

   

(m) (n) (o) 

Figure 4: Distributions of geological characteristics over China. For lithologies, the plot size is scaled by the lithology proportion. 

GLobal HYdrogeology MaPS (GLHYMPS) provides a global estimation of subsurface permeability and porosity, two critical 

characteristics for the soils’ hydrological classification. Porosity and permeability influence an area’s infiltration capacity. Soil 

with high porosity is likely to contain s amounts of water, and high permeable soil transmits water relatively quickly. Based 330 

on the high-resolution map of GLiM, which can differentiate fine and coarse-grained sediments and sedimentary rocks, 

GLHYMPS determined subsurface permeability depending on the different permeabilities of rock types. For the proposed 

dataset, we calculated the catchment arithmetic mean for porosity. Followed (Gleeson, Smith et al. 2011), the logarithmic scale 

geometric mean is used for representing subsurface permeability. The summary of geological characteristics is present in Table 

3. 335 

 

Porosity and permeability have similar distributions as geological classes. These two characteristics are highly dependent on 

rock properties, unconsolidated sediments, mixed sedimentary rocks, siliciclastic sedimentary rocks, carbonate sedimentary 

rocks, and acid plutonic rocks are the five most common geological classes in contiguous China. Unconsolidated sediment is 

the most common rock type in contiguous China, dominating 31.9% of catchments; it extends from Xinjiang to the inland of 340 

the northeast and the coastal area surrounding the Bohai Sea, due to the high proportion of unconsolidated sediments present 

in the rock, these areas typically have high permeability and medium porosity. Mixed sedimentary rocks are the second most 

common rock type in contiguous China, accounting for 20.3% of catchments, it dominated the southern Qinghai-Tibet Plateau, 

western Yunnan-Guizhou Plateau, and northern Inner Mongolia. These areas typically have high porosity and low 

permeability. Siliciclastic sedimentary rocks dominate 17.7% of basins, mainly distributed in the northern part of the Qinghai-345 

Tibet Plateau and the junction of the Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau; there are also some distributions 

in the eastern inland. These areas have low subsurface permeability and high subsurface porosity. Amongst all catchments, 

9.8% of catchments are dominated by carbonate sedimentary rocks. Carbonate sedimentary rocks are mainly located in eastern 

Yunnan and northern Qinghai-Tibet Plateau. Acid plutonic rocks are typically distributed in the mountains surrounding the 

inland northeast, namely the Daxinganling Mountain and the hills in southern Guangdong and southwestern Guangxi. They 350 

are also distributed along the Brahmiputra river in the south part of the Qinghai-Tibet Plateau. The distribution of Acid plutonic 
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rocks is relatively scattered; there are many isolated Acid plutonic rocks distributions in different locations of contiguous 

China, accompanied by medium permeability and high porosity.  

 

In summary, theThe types of rocks in contiguous China are dominated by unconsolidated sediments and mixed sedimentary 355 

rocks. In 33.86% of the catchments, the dominant rock types occupy less than 50% of the catchment areas, and only 16.8% of 

basins are having a dominant rock type with an area fraction greater than 90%. Amongst 48754911 basins, 9.4% of basins 

have prevalent rock types wholly occupying the area. 

5 Landcover 

   

(a) (b) (c) 



27 
 

   

(d) (e) (f) 

 

  

(g) (h) (i) 
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(j) (k) (l) 
Figure 5. Maps: Distributions of land cover characteristics over contiguous China. The histograms indicateFor land cover types, the 360 
numberplot size is scaled by the size of catchments (out of 4875) in each bin. the land cover proportion. 

We selected two indicators to characterize vegetation density and growth on the surface: Normalized difference vegetation 

index (NDVI) and Leaf area index (LAI). NDVI is an indicator with a valid range of -0.2 to 1, assessing whether the area being 

observed contains live green vegetation or the plants’ health. However, NDVI is just a qualitative measurement of the 

vegetation density; it cannot provide a quantitative estimate of the vegetation density in the area. Moreover, NDVI often 365 

provides inaccurate vegetation density measurements, and only long-term measurement and comparison can ensure its 

accuracy. NDVI alone is not enough to estimate the state of plants in an area. Therefore, we have selected another indicator, 

LAI, to supplement the deficiencies of NDVI.  

 

LAI is defined as the total needle surface area per unit ground area and half of the entire needle surface area per unit ground 370 

surface area. It is a quantifiable value. It is functionally related to many hydrological processes like water interception (van 

Wijk and Williams 2005). (Buermann, Dong et al. 2001) verifies the validity of LAI used to characterize vegetation growth. 

The data sources used are The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (Didan 

2015) for NDVI and Moderate Resolution Imaging Spectroradiometer (MODIS) (Myneni, Knyazikhin et al. 2015) for LAI. 

Followed (Addor, Newman et al. 2017), we determined maximum monthly LAI as an indicator characterising vegetation 375 

interception capacity and the maximum evaporative capacity and the difference between the maximum and minimum monthly 

LAI representing LAI’s temporal variations.  

 

Land cover classification refers to segmenting the ground into different categories based on remote sensing images. The Terra 

and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type provides different results 380 

depending on the classification system used. Annual International Geosphere-Biosphere Programme (IGBP) classification is 

used for building the dataset, which is derived by the c4.5 decision tree algorithm. The IGBP classification system was 

formulated by the IGBP Land Cover Working Group in 1995, resulting in 17 categories of land cover types (Belward, Estes 

et al. 1999). (Friedl, Sulla-Menashe et al. 2010) compared the IGBP data of MODIS with other reference datasetFriedl, Sulla-

Menashe et al. (2010) compared the IGBP data of MODIS with other reference datasets and concluded that the MODIS 385 
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classification of IGBP has an accuracy of 75%. We determined the fraction of each land cover class for each basin based on 

the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (Sulla-Menashe 

and Friedl 2018), which differentiates our dataset from CAMELS and CAMELS-CL (only calculated the proportion of the 

dominant types). 

 390 

Followed (Addor, Newman et al. 2017), we also computed the average rooting depth (50% and 90%) for each catchment based 

on the IGBP classification using a two-parameter method (Zeng 2001). The root depth distribution of vegetation affects the 

ground’s water holding capacity and the topsoil layer’s annual evapotranspiration (Desborough 1997). Many models use root 

depth as an essential parameter to characterize soil moisture absorption capacity. (Zeng 2001) developed a two-parameter 

asymptotic equation for estimating root depth distribution; the root depth distribution is global, derived based on the IGBP 395 

classification avoiding the problem of significantly different root distributions in various research. Figure 5(g) shows root 

depth distributions of different vegetation types, based on (Zeng 2001)‘s method.. The 90% root depth is usually considered 

to be “rooting depth”, among the 17 categories of IGBP, cropland has the smallest rooting depth, and open shrubland has the 

largest.  The 90% root depth of all vegetation is less than 2 meters. The national distribution of catchments soil characteristics 

is shown in Fig. 5. 400 

6 Location and topography 

The catchments’ boundary files are obtained from the global drainage basin dataset (Masutomi, Inui et al. 2009). The 

PDBDGDBD dataset was derived from digital elevation models (DEMs) with a high-resolution (100m-1km), and the errors 

were corrected by either automatic methods or manually. Additionally, PDBDGDBD also provides population and population 

density estimates for catchments, and these two indicators are also included in our dataset as a measure of human intervention. 405 

Global RunoffStreamflow Data Centre (Center 2005) discharge gauging stations were used for referencing the derived basins. 

In contiguous China, PDBDGDBD has  a high average match area rate (AMAR) and good geographic agreement with existing 

global drainage basin data in China. Based on the high-quality dataset, precise geographic and topographic information can be 

derived. See Fig. 6 for a summary. 

 410 

The topography attributes of each catchment are determined based on the ASTGTM product retrieved from 

https://lpdaac.usgs.gov, maintained by the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) at 

the USGS Earth Resources Observation and Science (EROS) Center. 

 

https://lpdaac.usgs.gov/
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(a) (b) (c) 

   

(d) (e) (f) 
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(g) (h)  
Figure 6. MapsDistributions of topographic characteristics over contiguous China. The histograms indicate the number of 415 
catchments (out of 4875) in each bin. 

The CAMELS dataset just provides two parameters (two area estimates) for describing the catchment shape; however, the. 

The physical characteristics of a catchment can affect the runoffstreamflow volume and the runoffstreamflow hydrograph of 

the catchment under a storm. To provide a complete description of the catchment shape, we computed several geometrical 

parameters of the catchment related to the runoffstreamflow process, (Fig. 6), including catchment form factor, shape factor, 420 

compactness coefficient, circulatory ratio and the elongation ratio (Subramanya 2013). A summary of the location and 

topography attributes can be found in Table 3. 

7 Soil 

The proposed dataset has a total of 54 soil attributes (Table 3) derived from (Hengl, Mendes de Jesus et al. 2017), (Dai, Xin et 

al. 2019) and (Shangguan, Dai et al. 2013). The summary result is shown in Fig. 7. Five categories of soil characteristics (pH 425 

in H2O, organic carbon content, depth to bedrock, cation-exchange capacity, and bulk density) are determined from SoilGrids. 

SoilGrids (Hengl, Mendes de Jesus et al. 2017) provides global predictions for soil properties including organic carbon, bulk 

density, cation exchange capacity (CEC), pH, soil texture fractions and coarse fragments by fusing multiple data sources 

including MODIS land products, SRTM DEM, climatic images and global landform and lithology maps at the 250m resolution. 

(Fig. 7). SoilGrids made predictions based on machine learning algorithms and many covariatescovariates’ layers primarily 430 

derived from remote sensing data. SoilGrids has soil characteristics for several soil depths.  
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(d) (e) (f) 
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(g) (h) (i) 

   

(j) (k) (l) 
Figure 7. Maps: Distributions of soil characteristics over contiguous China. The histograms indicate the number of catchments (out 
of 4875) in each bin. 
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UnlikeDifferent from CAMELS, whose reported results are obtained by a linear weighted combination of the different soil 435 

layers, and CAMELS-BR, whose products are soil characteristics at a depth of 30cm. We computed soil characteristics at all 

soil layers provided by SoilGrids such that advanced models can learn directly from the raw inputsSoilGrids250m. 

 

To be consistent with CAMELS, we alsoWe determined saturated water content and saturated hydraulic conductivity (Dai, 

Xin et al. 2019). We also introduced thermal conductivity of unfrozen saturated soils (Dai, Xin et al. 2019). (Dai, Xin et al. 440 

2019)Based on the same dataset, we also introduced the thermal conductivity of unfrozen saturated soils.  Dai, Xin et al. (2019) 

provides a global estimation of soil hydraulic and thermal parameters using multiple Pedotransfer Functions (PTFs) based on 

SoilGrids.the SoilGrids250m dataset. Based on the SoilGridsSoilGrids250m and GSDE (Shangguan, Dai et al. 2014) datasets, 

(Dai, Xin et al. 2019) produced six soil layers with a spatial resolutionDai, Xin et al. (2019) produced six soil layers with a 

spatial resolution of 30×30 arc-second. The vertical resolution of (Dai, Xin et al. 2019) is the same as the 445 

SoilGridsSoilGrids250m, with six intervals of  0–0.05 m, 0.05–0.15 m, 0.15–0.30 m, 0.30–0.60 m, 0.60–1.00 m, and 1.00–

2.00 m. Same as the methods applied to SoilGrids, we determinedWe determine and recordsrecord catchment soil 

characteristics for all these layers. 

 

To provide even more complete description of the soil In addition, we determined seven more soil characteristics (Shangguan, 450 

Dai et al. 2013) including soil profile depth, porosity, clay/silt/sand content, rock fragment, and soil organic carbon content. 

(Shangguan, Dai et al. 2013) Shangguan, Dai et al. (2013) provides physical and chemical attributes of soils derived from 8979 

soil profiles at 30×30 arc-second resolution, the polygon linkage method was used to derive the spatial distribution of soil 

properties. The profile attribute database and soil map are linked under a framework avoiding uncertainty in taxon referencing.  

 455 

Depth to bedrock controls many physical and chemical processes in soil. The distribution of depth to bedrock in contiguous 

China is characterised by (i) low in the mountainous areas, such as Yunnan province and Chongqing City; (ii) high in barren 

areas, e.g. North and Northwest China. The introduced soil pH value is crucial since it influences many other physical and 

chemical soil characteristics. The spatial variability of soil pH in contiguous China is characterised by (i) soils in southern 

contiguous China are acid to strongly acid; (ii) soils in northern China are natural or alkaline; (iii) soils in north-460 

easternnortheastern forested areas are also acid (pH < 7.2). Cation exchange capacity can be seen as a measure of soil fertility 

since it measures how much nutrient the soil can store such that it influences the growth of the vegetationsvegetation. Cation 

exchange capacity is positively correlated with soil organic matter content and clay content, which Cation exchange capacity 

is generally low in sandy and silty soils. The spatial variability of Cation exchange capacity in contiguous China is 

characterised by (i) high in peat and forested areas in Qinghai-Tibet Plateau, central and northeast China (ii) The Cation 465 

exchange capacity in the desert area such as the northwest is extremely low. Soil hydraulic and thermal properties are greatly 

affected by soil organic matter (SOM). Soil organic matter has a similar distribution to the cation exchange capacity: high in 

the peat and forested areas such as northeast China and low in the north and northwest.  
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8 Meteorological time series 

Table 4: Summary table of catchment meteorological time series available in the proposed dataset 470 

Variable Description Unit 

prs catchment daily averaged ground pressure hPa 

tem catchment daily averaged temperature at 2 m above ground °C 

rhu catchment daily averaged relative humidity - 

pre catchment daily averaged precipitation mm d-1 

evp catchment daily averaged evaporation measured by ground instruments mm d-1 

win catchment daily averaged wind speed at 2 m above ground m s-1 

ssd catchment daily averaged sunshine duration h d-1 

gst  catchment daily averaged ground surface temperature °C 

pet catchment daily averaged potential evapotranspiration determined by Penman’s equation (see 

Appendix A) 

mm d-1 

 

There have been many studies based on SURF_CLI_CHN_MUL_DAY in China (Liu, Xu et al. 2004, Xu, Gao et al. 2009, 

Huang, Han et al. 2016, Liu, Zheng et al. 2017), such as trend analysis of the pan evaporation (Liu, Yang et al. 2010). Still, 

there has not yet been a large-scale basin-oriented meteorological time series dataset in contiguous China. Researchers still 

need to do repeated works to extract historical meteorological data from the SURF_CLI_CHN_MUL_DAY dataset for the 475 

research. For the first time, we release a catchment- scale meteorological time series dataset. We will alsoThe open-source 

thesourced code for researchers tocan generate any catchment’s meteorological time series within contiguous China. The basin-

oriented dataset provides meteorological time series for 48754911 basins from 1990 to 20182020 based on the China 

Meteorological Data Network. Meteorological time series includes pressure, temperature, relative humidity, precipitation, 

evaporation, wind speed, sunshine duration, ground surface temperature and potential evapotranspiration (see (Table 4 for a 480 

summary).).  

 

The meteorological time series data from 1951 to 2010 is derived based on the "1951-2010 China National Ground Station 

Data Corrected Monthly Data File Basic Data Collection" data construction project. Other data include monthly reported data 

to the National Meteorological Information Centre by the provinces, and hourly and daily data uploaded by automatic ground 485 

stations in real-time. The SURF_CLI_CHN_MUL_DAY dataset is quality controlled, the quality and completeness of each 

variable are significantly improved compared to the previous similar products. MDuring the development of the dataset, 

missing data were filled by interpolating its nearest stations. 
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Figure 2 presents the variation of the distributionnumber of the observation sites. The start date of the recording is 1951, but 490 

because the early site distribution is sparse, we only used records from 1990 to 20182020 to construct the dataset to ensure the 

data quality. The interpolation method used is the Inverse distance weighting since it shows better performance than other 

comparators. Catchment-scale raster is extracted from the interpolated national raster using the open-source rasterio6 package. 

For all variables, we take the arithmetic mean on the extracted catchment raster as the catchment mean. Potentialinterpolation 

methods. In addition, potential evapotranspiration (PET) is estimated based on Penman’s Equation (Appendix A) and other 495 

catchment meteorological variables. 

9 Normal Camels YR – Normalized Catchment attributes and meteorology for Yellow River basin 

Apart from the dataset providing the catchment attributes and meteorological forcing for contiguous China, we also offer a 

self-contained dataset covering the Yellow River basin with normalized streamflow measurements. The streamflow data are 

normalized to have zero mean and a standard deviation of 1 for each basin. The Normal-Camels-YR dataset is designed to 500 

support machine learning and deep learning research related to hydrology. In particular, fifty-four watersheds are less affected 

by human activities (selection is based on the Global Reservoirs and Dam databases (GRanD) (Lehner, Liermann et al. 2011) 

which provides the locations of reservoirs and dams globally), which makes them suitable for rainfall-runoff modelling 

research. For most machine learning and deep learning algorithms, data normalization will not affect model performance (e.g., 

neural network-based and tree-based algorithms). Besides, other research, such as trend analysis, can also be carried out. The 505 

Normal-Camels-YR dataset is self-contained to fully describe the Yellow River basin and is particularly helpful for the 

hydrology research of the Yellow River. 

 

During the dataset development, basins with too few observations are removed, resulting in discontinuous basin identifiers. 

Normal-Camels-YR covers 102 gauges in the Yellow River basin, providing basin boundary shapefiles, static attributes and 510 

normalized streamflow measurements for each basin. The covered basins have areas ranging from 134 to 804,421 square 

kilometres. The time resolution of streamflow measurements is seven days, and the mean length of records of the streamflow 

measurements is 684, which means the mean period of the streamflow measurements for each basin is over 13 years. 

Meteorological variables included in Normal-Camels-YR is slightly different; it introduced daily maximum and minimum for 

some variables (Table 5).  515 

 

 
6 https://github.com/mapbox/rasterio   
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9 HydroMLYR: Hydrology dataset for Machine Learning in YRB 

In addition to the basin-wise static attributes provided in CCAM, we propose HydroMLYR, a hydrology dataset for machine 

learning research in the YRB (Fig. 1). HydroMLYR includes standardized streamflow measurements for 102 basins. The 

streamflow data is seven-day averaged and standardized basin-wise to have zero mean and a standard deviation of 1 (Fig. 8). 520 

The HydroMLYR dataset is proposed to support machine learning or deep learning hydrology research (e.g., neural network-

based and tree-based algorithms). It can be used in two cases: (1) to develop machine learning models on the YRB or (2) when 

it is desirable to verify the generalization ability of a machine learning model on YRB.  

 
Figure 8: Examples of standardized runoff 525 

The dataset provides 40 natural basins in the dataset which are not affected by reservoirs and dams. The selection is based on 

a newer version7 of the Global Reservoirs and Dam databases (Lehner, Liermann et al. 2011) which provides the locations of 

reservoirs and dams globally. HydroMLYR covers 102 basins in the YRB, including basin boundary shapefiles, static 

attributes, and standardized streamflow measurements for each basin. The covered basins have areas ranging from 134 to 

804,421 square kilometres. Therefore, modelling on a large scale of the YRB is also possible. Meteorological records in 530 

HydroMLYR introduced daily maximum and minimum for some forcing variables (Table 5).  

The original streamflow observations are not continuous. The average record length is 11.3 years. Although the development 

of machine learning models does not necessarily require the data to be continuous, we separately provide continuous 

streamflow observations with an average record length of 8.3 years. 
Table 5: Meteorological variables provided in Normal-Camels-YR, the time series length is 22 years (1999-2020)HydroMLYR 535 

Attribute name Description Unit 

evp catchment daily averaged evaporation (observations) 0.1 mm d-1 

gst_mean catchment daily averaged ground surface temperature 0.1 °C 

 
7 http://globaldamwatch.org/data/#core_global  

http://globaldamwatch.org/data/#core_global
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gst_min catchment daily minimum ground surface temperature 0.1 °C 

gst_max catchment daily maximum ground surface temperature 0.1 °C 

pre catchment daily averaged precipitation 0.1 mm d-1 

prs_mean catchment daily averaged ground surface pressure 0.1 hPa 

prs_max catchment daily maximum ground surface pressure 0.1 hPa 

prs_min catchment daily minimum ground surface pressure 0.1 hPa 

rhu catchment daily averaged relative humidity - 

ssd catchment daily averaged sunshine duration 0.1 h 

tem_mean catchment daily averaged temperature 0.1 °C 

tem_min catchment daily minimum temperature 0.1 °C 

tem_max catchment daily maximum temperature 0.1 °C 

win_max catchment daily maximum wind speed 0.1 m s-1 

win_mean catchment daily averaged wind speed 0.1 m s-1 

 

10 Data and code availability and software packages used. 

The proposed dataset is freely available at http://doi.org/10.5281/zenodo.47040175137288. The files provided are (i) several 

separate files containing 120+ catchments attributes, (ii) the daily meteorological time series in a zip file, (iii) the catchment 

boundaries used to compute the attributes and extract the time series, (iv) the Normal-Camels-YRHydroMLYR dataset, (v) an 540 

attribute description file and (v) a readme file. The code used to generate the dataset is mainly based on several publicly 

available packages: rasterio, gdal 8 , pyshp 9, geopandas 10, fiona 11, and xarray 12. Complement code for generating any 

watershed’s dataset will be released soon. 

11 Conclusion 

The CCAM dataset proposed in this paper provides a novel dataset for hydrological research in contiguous China. In the study 545 

China.area, there is no catchment attributes dataset has been proposed before, either a catchment-scale time series 

 
8 https://github.com/OSGeo/gdal  
9 https://github.com/GeospatialPython/pyshp  
10 https://github.com/geopandas/geopandas  
11 https://github.com/Toblerity/Fiona   
12 https://github.com/pydata/xarray  
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meteorological dataset. All catchmentsbasins delaminated from the DEM are studied, covering contiguousentire China. The 

dataset includes daily meteorological forcing time-series data including precipitation, temperature, potential 

evapotranspiration, wind, ground surface temperature, pressure, humidity, sunshine duration and derived potential 

evapotranspiration of 48754911 catchments. The proposed time series dataset is derived based on the quality-controlled site 550 

observation dataset, SURF_CLI_CHN_MUL_DAY. We will also release the complement code for generating any shapefile’s 

meteorological time series within contiguous China based on the SURF_CLI_CHN_MUL_DAY dataset (freely available for 

Chinese researchers). The dataset has longer time series (from 1990 to 2018) and more meteorological variables than the 

previously proposed datasets. The dataset also dataset. CCAM includes 120+ catchment attributes, including soil, land cover, 

geology, climate indices and topography for each catchment.  We produced a series of maps depicting the catchment attributes 555 

distributions in contiguous China. These maps present regional changes of various features; we also describeestimate the 

relationships between them. The integration of based on Kendall’s correlation. Integrating multiple data sources into one 

dataset at a catchment- scale dramatically simplifies the data compilation process in research. Based on the dataset, weCCAM 

can help test hypotheses and formulate valid conclusions under various conditions, not just limited to a few specific locations. 

Together with the Normal-Camels-YR dataset, the proposed dataset can and help explore how different basin characteristics 560 

influence hydrological behaviours, learn the migration of hydrological behaviours between different basins, and to develop 

general frameworks for large-scale model evaluation and benchmarking in China. A limitation of the study is the lack of 

estimation of the uncertainty of the meteorological time series. An alternative is to evaluate the uncertainty of the basin-wise 

meteorological data based on multiple independent data sources, but there are few data that provide as many data types as 

SURF_CLI_CHN_MUL_DAY. Hence, it poses a challenge for evaluating the uncertainty of these eight meteorological 565 

variables, which is left for future studies. 

Appendix A: Modified Penman’s equation 

Penman’s equation (Subramanya 2013), incorporating some modifications to the original formula, is: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐴𝐴𝐻𝐻𝑛𝑛 + 𝐸𝐸𝑎𝑎γ
𝐴𝐴 + γ

 

where 𝑃𝑃𝑃𝑃𝑃𝑃 is the daily potential evapotranspiration in mm per day; 𝐴𝐴 is the slope of the saturation vapour pressure (𝑒𝑒𝑤𝑤) vs 570 

temperature (𝑡𝑡) curve at the mean air temperature, in mm of mercury per Celsius; 𝐻𝐻𝐻𝐻 is the net radiation in mm of evaporable 

water per day; 𝐸𝐸𝑎𝑎 is a parameter including wind speed and saturation deficit; γ is the psychrometric constant = 0.49 mm of 

mercury per Celsius. 

 

The relationship between 𝑒𝑒𝑤𝑤 and 𝑡𝑡 is defined as: 575 

𝑒𝑒𝑤𝑤 = 4.584 exp �
17.27𝑡𝑡

237.3 + 𝑡𝑡
� 

The following equation estimates the net radiation: 
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𝐻𝐻𝑛𝑛 = 𝐻𝐻𝑎𝑎(1 − 𝑟𝑟) �𝑎𝑎 + 𝑏𝑏
𝑛𝑛
𝑁𝑁�

− σ𝑇𝑇𝑎𝑎4�0.56 − 0.092�𝑒𝑒𝑎𝑎� �0.10 + 0.90
𝑛𝑛
𝑁𝑁�

 

where 𝐻𝐻𝑎𝑎 is the incident solar radiation outside the atmosphere on a horizontal surface, expressed in mm of evaporable water 

per day (a function of the latitude and period of the year as indicated in Table A1); 𝑎𝑎 is a constant depending upon the latitude 580 

ϕ and is given by 𝑎𝑎 =  0.29 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙; 𝑏𝑏 is a constant = 0.52; 𝑛𝑛 is the sunshine duration in hours; 𝑁𝑁 is the maximum possible 

hours of bright sunshine (a function of latitude, see Table A2); 𝑟𝑟 is the reflection coefficient; σ is the Stefan-Boltzman constant 

= 2.01 × 10−9 mm/day; 𝑇𝑇𝑎𝑎 is the mean air temperature in degrees kelvin; 𝑒𝑒𝑎𝑎 is the actual mean vapour pressure in the air in 

mm of mercury. 

 585 
Table A1.: Mean Monthly Solar Radiation, 𝑯𝑯𝒂𝒂 in mm of Evaporable Water/Day 

North latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0° 14.5 15.0 15.2 14.7 13.9 13.4 13.5 14.2 14.9 15.0 14.6 14.3 

10° 12.8 13.9 14.8 15.2 15.0 14.8 14.8 15.0 14.9 14.1 13.1 12.4 

20° 10.8 12.3 13.9 15.2 15.7 15.8 15.7 15.3 14.4 12.9 11.2 10.3 

30° 8.5 10.5 12.7 14.8 16.0 16.5 16.2 15.3 13.5 11.3 9.1 7.9 

40° 6.0 8.3 11.0 13.9 15.9 16.7 16.3 14.8 12.2 9.3 6.7 5.4 

50° 3.6 5.9 9.1 12.7 15.4 16.7 16.1 13.9 10.5 7.1 4.3 3.0 

 

The parameter 𝐸𝐸𝑎𝑎 is estimated as: 

𝐸𝐸𝑎𝑎 = 0.35 �1 +
𝑢𝑢2

160�
(𝑒𝑒𝑤𝑤 − 𝑒𝑒𝑎𝑎) 

where 𝑢𝑢2 is the wind speed at 2𝑚𝑚 above ground in km/day; 𝑒𝑒𝑤𝑤 is the saturation vapour pressure at mean air temperature in 590 

mm of mercury; 𝑒𝑒𝑎𝑎 is the actual vapour pressure. 

 

Table A2.: Mean Monthly Values of Possible Sunshine Hours, 𝑵𝑵 

North latitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0° 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 

10° 11.6 11.8 12.1 12.4 12.6 12.7 12.6 12.4 12.9 11.9 11.7 11.5 

20° 11.1 11.5 12.0 12.6 13.1 13.3 13.2 12.8 12.3 11.7 11.2 10.9 

30° 10.4 11.1 12.0 12.9 13.7 14.1 13.9 13.2 12.4 11.5 10.6 10.2 

40° 9.6 10.7 11.9 13.2 14.4 15.0 14.7 13.8 12.5 11.2 10.0 9.4 

50° 8.6 10.1 11.8 13.8 15.4 16.4 16.0 14.5 12.7 10.8 9.1 8.1 
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Appendix B: Correlation analysis of catchment attributes 

To explore the potential connections between various types of watershed attributes, we did correlation analysis using the 595 

Kendall rank correlation coefficient (Kendall 1938). Kendall rank correlation coefficient is a measure of rank correlation: the 

similarity of the sort order of the two sets of data. Kendall correlation will be high if the orderings of the observations of two 

variables are similar. Kendall correlation avoids the assumption of linear relationship and that the distribution should be normal 

and continuous (e.g., Pearson correlation coefficient; the results can be found in). When the relationship is not exactly linear, 

using Pearson correlation will miss out on information that Kendall could capture. Table B1, which shows the top five most 600 

relevant attributes for each attribute, and the Fig. S1, the correlation matrix.. The analysis result shows that the correlations 

between variables are consistentin line with general understanding, justifying the rationality of the dataset, to name a few: 

(1) Subsurface permeability and porosity are highlymost correlated with geological attributes. 

(2) LAI and NDVI have a high positive correlation (0.866). 

(3)(2) Root depth isare most positively correlated with each other but most negatively correlated with the fraction of barren 605 

land cover types. 

(3) Urban and built ups are most positively correlated with population density. 

(4) In China, the savanna is mainly distributed in the southern coastal areas, resulting in that it is most positively correlated 

with average rainfall (0.604).mean precipitation. 

(5) Sand is most positively correlated with the saturated hydraulic conductivity (0.86) while the clay is strongly negatively 610 

correlated (-0.763), and catchments with a lot of rainfall are less likely to have soil with high hydraulic conductivity (-

0.647).. 

(6) High altitude catchments tend to have lower saturated water content (-0.705). 
Table B1.: The top five most relevant characteristics for each attribute (different soil layers for the same attribute are excluded, 
e.g.., phihox_sl2 is not included in the top five most relevant attributes of phihox_sl1 though they are highly correlated) 615 

Attribute  1st 2nd 3rd 4th 5th 

high_prec_fre

q 

low_prec_durroot_de

pth_50(-0.58196) 

root_depth_50(-

grassland(0.438175) 
root_depth_99(-

0.436171) 

barren(-

som(0.39136) 
pet_meantksatu_l1(-

0.261133) 

high_prec_du

r 

elev(theta_s_l6(-

0.544277) 

theta_s_l6l5(-

0.503234) 

p_seasonality(prs

_mean (-0.49233) 

theta_s_l5(-

elev(0.458211) 
rhu_meantheta_s_l4

(-0.431201) 

low_prec_fre

q 

pre_mean(-

0.881766) 

ssd_meanaridity(0.84

1745) 

phihox_sl7ssd_mea

n(0.825652) 

phihox_sl6(rhu_mea

n(-0.818627) 

phihox_sl5sl7(0.81

4588) 

low_prec_dur 
barrenaridity(0.7287

8) 

rhupre_mean(-

0.723768) 

evpssd_mean(0.72

1731) 

ndvirhu_mean(-

0.684709) 

phihox_sl7root_d

epth_99(0.66579) 
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frac_snow_da

ily 

temgst_mean(-

0.951802) 

gsttem_mean(-

0.949792) 

ssd_meanlat(0.7775

75) 

pre_meanevergreen

_broadleaf_tree(-

0.762512) 

n_min(pre_mean(-

0.703436) 

prs_meanp_sea

sonality 

pre_mean(elev(-

0.901678) 

rhu_meanlon(0.76555

2) 

ssdrhu_mean(-

(0.764432) 

low_prec_freq(-

0.712)urban_and_b

uilt-

up_land(0.427) 

frac_snow_dailybarre

n(-0.68341) 

petpre_mean 
cecsol_sl2aridity(-

0.66913) 

cecsol_sl1low_prec_

dur(-0.634768) 

cecsol_sl3low_prec

_freq(-0.628766) 

gstssd_mean((-

0.622723) 

bldfie_sl1rhu_mean

(0.608712) 

preevp_mean 
p_seasonalityaridity(0

.901643) 

low_prec_freqndvi_m

ean(-0.881632) 

ssdrhu_mean(-

0.858617) 

rhussd_mean(0.832

598) 

phihox_sl7lai_dif(-

0.819593) 

temgst_mean 
gsttem_mean(0.9929

24) 

frac_snow_daily(-

0.951802) 

pre_mean(lat(-

0.747512) 

ssd_mean(-

0.709)evergreen_br

oadleaf_tree(0.50

7) 

pet_meanp_seaso

nality(0.681442) 

prsrhu_mean 
elevaridity(-

0.889751) 

e_max(ssd_mean(-

0.707746) 

lonpre_mean(0.70

7712) 

e_min(low_prec_d

ur(-0.707709) 

rhu_mean(low_prec

_freq(-0.603627) 

rhupet_mean 
ssd_meancecsol_sl2(

-0.887451) 

pregst_mean(0.8324

42) 

evp_meancecsol_sl

3(-0.823441) 

ndvi_mean(cecsol_s

l1(-0.813422) 

low_prec_freqcecsol

_sl4(-0.80342) 

evpssd_mean 
ndvi_mean(-

aridity(0.845753) 
rhu_mean(-

0.823746) 

ssd_meanlow_prec

_dur(0.756731) 

e_minpre_mean(-

0.731723) 

lon(-

low_prec_freq(0.7

3652) 

win_mean 
ssd_mean(0.581426

) 

frac_snow_daily(wood

y_savanna(-

0.571393) 

tem_mean(-

0.52379) 

gst_mean(-

0.507377) 

low_prec_freq(mixed

_forest(-0.477363) 

ssdtem_mean 
rhugst_mean(-

(0.887924) 

pre_meanfrac_snow_

daily(-0.858792) 

low_prec_freqeverg

reen_broadleaf_t

ree(0.841493) 

frac_snow_dailypop_

dnsty(0.777475) 

p_seasonalitylat(-

0.764474) 

p_seasonality
gst_mean 

temrhu_mean((-

0.992421) 

frac_snow_dailytem_

mean(-0.949397) 

pregst_mean((-

0.743393) 

n_min(-

ssd_mean(0.69339

3) 

lat(-

low_prec_dur(0.69

3375) 

ariditygeol_pe

rmeability 

sspre_mean(-

0.408913) 

sm(-

low_prec_dur(0.403

78) 

sussd_mean(0.399

753) 

sc(rhu_mean(-

0.323751) 

bdticmlow_prec_fr

eq(0.24745) 
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slopegeol_por

osity 
su(lat(-0.627374) 

pabdticm(-

0.575348) 

phihox_sl1(win_me

an(-0.46341) 

phihox_sl3mixed_fo

rest(0.454341) 

phihox_sl4evergree

n_needleleaf_tree(

0.453327) 

iglon 
snow and ice(elev(-

0.471585) 

tksatu_l5prs_mean(0.

324552) 

tksatu_l3(evp_mea

n(-0.3185) 

tksatu_l4(barren(-

0.306482) 

tksatu_l2ndvi_mean

(0.27547) 

elevpa 
geol_porosityprs_mea

n(-0.575678) 

phihox_sl1lon(-

0.314585) 

phihox_sl3urban_a

nd_built-

up_land(-

0.302485) 

phihox_sl2pop_dnst

y(-0.301481) 

phihox_sl4cropland(

-0.297456) 

sclat 

geol_porosity(-

frac_snow_daily(0.

362575) 

geol_permeability(0.323

)evergreen_broadle

af_tree(-0.548) 

n_maxgst_mean(-

0.317512) 

lattem_mean(-

0.317474) 

n_min(-

low_prec_freq(0.3

16437) 

supop 

geol_porosityurban_a

nd_built-

up_land(0.627618) 

bdticmcropland(0.59

9519) 

cropland(aridity(-

0.468511) 

phihox_sl1pre_mea

n(0.44505) 

phihox_sl4rhu_mea

n(0.439492) 

pop_dnstysm 

geol_permeability(-

0.403)urban_and_bu

ilt-up_land(0.639) 
suaridity(-0.385538) 

cropland(-

(0.268533) 

bdticm(-

pre_mean(0.23353

3) 

e_maxssd_mean(-

0.228521) 

lengthvi 
deciduous broadleaf 

treearea(0.214684) 
geol_porosityform_fa

ctor(-0.18398) 

lai_maxshape_fact

or(0.165398) 

lai_dif(elongation_r

atio(-0.159398) 

e_maxcompactness

_coefficient(0.157

363) 

areamt 
geol_porosity(-

length(0.412684) 
evergreen needleleaf 

treepop(0.32723) 
orcdrc_sl3pa(0.265

194) 

orcdrc_sl4(circulato

ry_ratio(-

0.258187) 

bldfie_sl5(-

0.254)compactness

_coefficient(0.187

) 

ssform_factor 

geol_permeability(-

0.408)elongation_rat

io(1.0) 

su(-shape_factor(-

1.0.287) 

sm(-

circulatory_ratio(

0.206435) 

geol_porosity(0.2)co

mpactness_coeffic

ient(-0.435) 

tksatu_l6length(-

0.156398) 

pishape_factor 

deciduous broadleaf 

tree(0.299)elongation

_ratio(-1.0) 

geol_porosity(-

0.208)form_factor(-

1.0) 

e_max(circulatory

_ratio(-0.161435) 

loncompactness_c

oefficient(0.16143

5) 

e_minlength(0.1639

8) 

vacompactnes

s_coefficient 

geol_porosity(-

0.218)circulatory_ra

tio(-1.0) 

high_prec_dur(elongat

ion_ratio(-

0.191435) 

tem_mean(-

shape_factor(0.16

7435) 

gst_meanform_fact

or(-0.16435) 

su(-

length(0.16363) 
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circulatory_ra

tiowb 

water 

bodies(0.674)compact

ness_coefficient(-

1.0) 

permanent 

wetlandelongation_r

atio(0.379435) 

shape_factorroot

_depth_50(-

0.164435) 

theta_s_l3form_fact

or(0.148435) 

theta_s_l4(length(-

0.147363) 

pbelongation_

ratio 

theta_s_l6(-

shape_factor(-

1.0.137) 

theta_s_l5(-

form_factor(1.0.133

) 

elev(m)(circulatory

_ratio(0.124435) 

theta_s_l4compactn

ess_coefficient(-

0.114435) 

prs_meanlength(-

0.102398) 

lai_difvb 
cecsol_sl2ndvi_mean

(0.222808) 

cecsol_sl3(barren(-

0.213642) 

cecsol_sl1(aridity(-

0.212638) 

cecsol_sl4pre_mean

(0.211609) 

cecsol_sl5woody_sa

vanna(0.208607) 

ndlai_max 

snow and 

icendvi_mean(0.206

779) 

theta_s_l2barren(-

0.154614) 

theta_s_l3aridity(-

0.151613) 

theta_s_l1(-

woody_savanna(0

.144612) 

tksatu_l4(phihox_sl

2(-0.136602) 

ndvi_meanpy 
phihox_sl1(-

lai_dif(0.214808) 
phihox_sl2(-

lai_max(0.207779) 
phihox_sl3barren(-

0.207677) 

phihox_sl4evp_mea

n(-0.205632) 

phihox_sl5aridity(-

0.202607) 

root_depth_5

0ev 

tksatu_l3(grassland(-

0.07485) 

tksatu_l4pet_mean(0.

066232) 
barren(0.064212) 

high_prec_freq(-

tksatu_l2(0.061196

) 

pdep(-

tksatu_l1(0.061176

) 

root_depth_9

9lai_dif 

ndvi_mean(grassland

(-0.866339) 

phihox_sl4(-

barren(0.809337) 
phihox_sl2cropland

(-0.807336) 

phihox_sl5pdep(-

0.807284) 

phihox_sl6lon(-

0.807283) 

lai_maxevergre

en_needleleaf

_tree 

ndvi_meanmixed_for

est(0.856572) 

phihox_sl4(-

woody_savanna(0.8

15481) 

phihox_sl5sl7(-

0.814416) 

phihox_sl6(-

0.814411) 

phihox_sl2sl5(-

0.813409) 

ndvi_meaneverg

reen_broadlea

f_tree 

lai_dif(lat(-0.866548) 
lai_max(phihox_sl7(-

0.856538) 

evp_meanphihox_s

l6(-0.845529) 

rhu_mean(phihox_sl

5(-0.813522) 

barren(-

pre_mean(0.77251

2) 

root_depth_50de

ciduous_needl

eleaf_tree 

barrencecsol_sl1(0.8

56274) 

low_prec_dur(bldfie_s

l1(-0.626274) 

grassland(-

cecsol_sl2(0.5372

72) 

orcdrc_sl2(ndvi_

mean(-0.51327) 

evp_meancecsol_sl

3(0.497262) 

root_depth_99de

ciduous_broa

dleaf_tree 

barrenmixed_forest(

0.897604) 

low_prec_durwoody_

savanna(0.66568) 

ndvi_mean(-

(0.628524) 

evp_meanlai_max(0

.6045) 

rhu_mean(-

lai_dif(0.486497) 

evergreen 

needleleaf 
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sl4(-0.433628) 
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0.149)urban_and_

built-

up_land(0.347) 
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(0.147343) 

evp_meanpop(0.139
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pi(0.192295) 
root_depth_99(-
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tpa(0.786246) 
elongation_ratio(-
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95) 

circulatory_ratiovi(0.6

51203) 

shape_factor(-

mt(0.566199) 
lengthgeol_porosit

y(-0.451183) 

compactness_coefficie

nt(-0.421)va(0.172) 

elev(m)va 
prs_mean(-

pa(0.889271) 
e_mingeol_porosity(

-0.753219) 
lon(-vb(0.75221) 
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8) 



48 
 

tksatu_l1l4 

snow and 

icebldfie_sl2(0.5033

98) 
siltsom(-0.465397) 

som(-

bldfie_sl1(0.3663

88) 

sandbldfie_sl3(0.36

2384) 

log_k_s_l5bldfie_sl

4(0.327358) 

tksatu_l2l5 

snow and 

icebldfie_sl3(0.5063

86) 

silt(-

bldfie_sl2(0.49376) 
sand(som(-

0.406369) 

som(-

bldfie_sl4(0.36536

4) 

log_k_s_l5bldfie_sl

1(0.364358) 

tksatu_l3l6 

snow and 

icebldfie_sl3(0.5613
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icesand(0.449682) 
bdticm(clay(-
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pre_meansand(-
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0.773585) 
clay(-pdep(0.714377) 
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rhu_mean(elev(-

0.407412) 

clayprs_mean(0.40

1349) 
pdeplon(0.4328) 
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e_min(sand(-
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0.818627) 

lai_max(-0.814595) 
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0.824621) 

lai_maxorcdrc_sl4(-
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0.7986) 

low_prec_freq(orcdr

c_sl2(-0.78597) 
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0.803702) 

orcdrc_sl5(-
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_sl5 

orcdrc_sl2bldfie_sl1(

-0.917445) 

orcdrc_sl3bldfie_sl2(

-0.876429) 

cecsol_sl1(-

orcdrc_sl2(0.874

12) 

orcdrc_sl4(-

sl3(0.809393) 

sompet_mean(-

0.808392) 

cecsol_sl1sl4 
bldfie_sl1(-

0.891472) 

bldfie_sl2(-

0.87459) 

orcdrc_sl2(0.8544

47) 

bldfieorcdrc_sl3(-

(0.79543) 

orcdrc_sl3sl5(0.781

424) 

cecsol_sl2sl3 
bldfie_sl1(-

0.828532) 

orcdrcbldfie_sl2((-

0.82252) 

bldfieorcdrc_sl2(-

(0.798508) 

orcdrc_sl7sl3(0.758

49) 

orcdrc_sl3sl4(0.746

478) 

cecsol_sl5sl7 
bldfie_sl1(-

0.681413) 

orcdrcbldfie_sl2((-

0.664396) 

orcdrc_sl7sl2(0.64

938) 

bldfie_sl2pet_mean(

-0.645374) 

orcdrc_sl6sl3(0.636

362) 

cecsol_sl4sl6 
bldfie_sl1(-

0.72409) 

orcdrcbldfie_sl2((-

0.717393) 

orcdrc_sl7sl2(0.69

3378) 

bldfie_sl2pet_mean(

-0.692373) 

orcdrc_sl6sl3(0.679

36) 
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cecsol_sl3bdtic

m 

bldfie_sl1(-

su(0.78452) 
orcdrc_sl2(woody_sa

vanna(-0.776412) 

bldfie_sl2(-

low_prec_freq(0.

76382) 

orcdrcphihox_sl7(0

.735378) 

orcdrc_sl3(mixed_f

orest(-0.733374) 

cecsol_sl7pdep 

bldfie_sl1(-

theta_s_l4(0.661463

) 

orcdrc_sl7(elev(-

0.654436) 

orcdrc_sl2(grav(-

0.642424) 

orcdrc_sl6theta_s_l

3(0.6442) 

orcdrc_sl5lon(0.6194

) 

cecsol_sl6por 
bldfie_sl1(-

som(0.648363) 
orcdrc_sl2(bldfie_sl1

(-0.637335) 

orcdrc_sl7(phihox_

sl1(-0.632329) 

orcdrc_sl6(phihox_s

l3(-0.62328) 

bldfiephihox_sl2(-

0.61328) 

claybdticm su(sand(-0.59967) 
low_prec_freq(log_k_

s_l4(-0.463603) 

log_k_s_l6(l3(-

0.439592) 

phihox_sl2(log_k_s

_l1(-0.43759) 

phihox_sl7(log_k_s

_l2(-0.436578) 

sandpdep 

elev(-

log_k_s_l1(0.66271

) 

thetalog_k_s_l4l2(0.

571709) 

e_minlog_k_s_l3(

0.566682) 
lon(clay(-0.56567) 

e_maxlog_k_s_l4(0

.564612) 

siltpor silt(sand(-0.573) 
log_k_s_l1(-

clay(0.366436) 

tksatulog_k_s_l2(-

0.317433) 

som(log_k_s_l3(-

0.3144) 

tksatu_l1log_k_s_l4

(-0.309316) 

claygrav 
pre_mean(theta_s_l2(

-0.763585) 

log_ktheta_s_l4l1(-

0.752582) 

log_ktheta_s_l1l3(

-0.733522) 

log_ktheta_s_l2l4(-

0.729515) 

log_ktheta_s_l3l5(-

0.728433) 

sandsom 
log_k_s_l2(bldfie_sl2

(-0.86651) 

log_k_s_l3(bldfie_sl3

(-0.859633) 

log_k_s_l1(bldfie_s

l1(-0.858606) 

log_k_s_l4orcdrc_sl

2(0.82599) 

log_k_s_l5orcdrc_sl

3(0.773576) 

silthigh_prec_f

req 

por(root_depth_50(-

0.573196) 

sand(-

grassland(0.558175) 

log_k_s_l3root_de

pth_99(-

0.557171) 

log_k_s_l2(-

som(0.547136) 
log_k_stksatu_l1(-

0.545133) 

high_prec_du

rgrav 

theta_s_l2l6(-

0.713277) 

theta_s_l1l5(-

0.705234) 

theta_s_l4(-

p_seasonality(0.6

63233) 

theta_s_l3(-

elev(0.662211) 
theta_s_l5l4(-

0.584201) 

low_prec_fre

qsom 

bldfie_sl2pre_mean(-

0.808766) 

bldfie_sl3(-

aridity(0.787745) 

bldfie_sl1(-

ssd_mean(0.7596

52) 

bldfie_sl4rhu_mean

(-0.747627) 

orcdrc_sl2phihox_sl

7(0.74588) 
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Appendix C: Data sources and data processing 

The program to generate the data set is mainly written in Python. The rasterio13 library is used to extract from the raster for 

the given basin boundary, reproject and merge rasters; The shapely14 library is used to calculate the geometry; The pyproj15 

library is used for coordinate system conversions; The richdem16 library is used to calculate slope; The netCDF417 and xarray18 

library is used to read the netCDF files; The pyshp19 library is used to handle shapefiles; The gdal20 command-line programs 620 

are used for data format conversions; The Python multiprocessing21 library is used for multi-threaded data processing such as 

the calculation of meteorological time series; The interpolation program is written based on SciPy and NumPy. In addition, 

the calculation of the catchment boundary uses ArcPy 22 . However, ArcPy is not open sourced. The 

SURF_CLI_CHN_MUL_DAY dataset can be downloaded from 

https://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html. It is freely available to global researchers 625 

but registration is required. The GDBD dataset can be downloaded at https://www.cger.nies.go.jp/db/gdbd/gdbd_index_e.html. 

ASTER GDEM dataset can be downloaded at: https://asterweb.jpl.nasa.gov/gdem.asp. GLHYMPS dataset can be downloaded 

at: https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO; MODIS MCD12Q1 can be 

obtained from: https://lpdaac.usgs.gov/products/mcd12q1v006/; MODIS MCD15A3 can be obtained from: 

https://lpdaac.usgs.gov/products/mcd15a3hv006/; Soil hydraulic and thermal properties can  be downloaded after registration: 630 

http://globalchange.bnu.edu.cn/research/soil5.jsp; Soil properties data can be downloaded after registration: 

http://globalchange.bnu.edu.cn/research/soil2; SoilGrids250m data download links: 

https://files.isric.org/soilgrids/former/2017-03-10/data/ with a list of descriptions: 

https://github.com/ISRICWorldSoil/SoilGrids250m/blob/master/grids/models/META_GEOTIFF_1B.csv.   

Appendix D: Basin boundaries 635 

This section briefly introduces how the basin boundaries are derived. The basin boundaries data used in this research are 

obtained from the GBDB (Masutomi, Inui et al. 2009) dataset. The GDBD dataset first distinguishing sinks caused by DEM 

 
13 https://rasterio.readthedocs.io/en/latest/  
14 https://shapely.readthedocs.io/en/stable/manual.html  
15 https://pyproj4.github.io/pyproj/stable/  
16 https://richdem.readthedocs.io/en/latest/  
17 https://unidata.github.io/netcdf4-python/  
18 http://xarray.pydata.org/en/stable/  
19 https://pypi.org/project/pyshp/  
20 https://gdal.org/api/python.html  
21 https://docs.python.org/3/library/multiprocessing.html  
22 https://pro.arcgis.com/zh-cn/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm  

https://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html
https://www.cger.nies.go.jp/db/gdbd/gdbd_index_e.html
https://asterweb.jpl.nasa.gov/gdem.asp
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
http://globalchange.bnu.edu.cn/research/soil5.jsp
http://globalchange.bnu.edu.cn/research/soil2
https://files.isric.org/soilgrids/former/2017-03-10/data/
https://github.com/ISRICWorldSoil/SoilGrids250m/blob/master/grids/models/META_GEOTIFF_1B.csv
https://rasterio.readthedocs.io/en/latest/
https://shapely.readthedocs.io/en/stable/manual.html
https://pyproj4.github.io/pyproj/stable/
https://richdem.readthedocs.io/en/latest/
https://unidata.github.io/netcdf4-python/
http://xarray.pydata.org/en/stable/
https://pypi.org/project/pyshp/
https://gdal.org/api/python.html
https://docs.python.org/3/library/multiprocessing.html
https://pro.arcgis.com/zh-cn/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm
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errors, then the stream burning (Maidment 1996), and ridge fencing methods are used to modify the seeded DEM, then basin 

boundaries are produced with standardized procedures (Jenson, Domingue et al. 1988, Maidment and Morehouse 2002). Then 

the gauging station data from the GRDC (Center 2005) dataset is used to calibrate the derived basin boundaries. The derived 640 

basin areas were compared with the observed basin areas, and they showed a high degree of consistency with the observed 

basin data. 

Appendix E: Guidelines for generating basin attributes for any basin 

The published code23 supports the automation of the calculation of the attributes for any given river basin and the generation 

of statistics files. In general, the user only needs to prepare the source data and ensure that the code environment is installed 645 

correctly, and then the user can run the code to calculate all attributes for the given river basin. The following describes the 

steps to generate data for any given watershed. 

 

Prepare source data 

In this step, the user needs to download the source data and place it in the corresponding location (Table D1). The code supports 650 

the calculation of meteorological time series based on the SURF_CLI_CHN_MUL_DAY data set. If the basin the user need 

to calculate is not in China, then the user needs to format the collected meteorological time series into the same format as the 

time series generated by the code. A sample file is available in the GitHub library. 

 
Table D1: Instructions for preparing data sources 655 

Data 

source 

Download link Example Note 

ASTER 

GDEM 

https://search.earthdata.nasa.gov/

search/ 

https://www.jspacesystems.or.jp/

ersdac/GDEM/E/ 

./data/dems/ *.tif  

GLHYMP

S 

https://dataverse.scholarsportal.in

fo/dataset.xhtml?persistentId=doi

:10.5683/SP2/DLGXYO (using 

source data requires merging 

multiple small pieces to a single 

TIFF) 

./data/processed_permeability

.tif 

./data/processed_porosity.tif 

 

 
23 https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset  

https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
https://www.jspacesystems.or.jp/ersdac/GDEM/E/
https://www.jspacesystems.or.jp/ersdac/GDEM/E/
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset
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https://1drv.ms/u/s!AqzR0fLyn9

KKspF6HAAuXU9Twkkz1Q?e=

QCPFAm (our processed file) 

https://1drv.ms/u/s!AqzR0fLyn9

KKspF70EPmDubS5V2qTQ?e=

Rbybwa (our processed file) 

GLiM https://csdms.colorado.edu/wiki/

Data:GLiM  

https://1drv.ms/u/s!AqzR0fLyn9

KKspF5Vktb-

zlmd_Ctxg?e=G6fOuh (our 

processed file) 

./data/processed_glim.py  

MCD12Q1 https://lpdaac.usgs.gov/products/

mcd12q1v006/  

https://1drv.ms/u/s!AqzR0fLyn9

KKspF4xxbe0xM7qJNzkA?e=vy

FcFj (our processed file) 

./data/processed_igbp.tif  

MCD15A3 https://lpdaac.usgs.gov/products/

mcd15a3hv006/  

./data/MCD15A3/ 

MCD15A3H.A2002185.h22v

04.006.2015149102803.hdf 

 

MOD13Q1 https://lpdaac.usgs.gov/products/

mod13q1v006/  

./data/MOD13Q1/MOD13Q1

.A2002186.h22v04.006.2015

149102803.hdf 

 

Soil http://globalchange.bnu.edu.cn/re

search/soil5.jsp  

./data/soil_souce_data/binary/

log_k_s_l1 

 

Soil https://files.isric.org/soilgrids/for

mer/2017-03-10/data/  

./data/soil_souce_data/tif/BD

TICM_M_250m_ll.tif 

Description: 

https://github.com/ISRICWorldSoil/S

oilGrids250m/blob/master/grids/mode

ls/META_GEOTIFF_1B.csv 

Soil http://globalchange.bnu.edu.cn/re

search/soil2  

./data/soil_souce_data/tif/SA.

nc 

 

https://1drv.ms/u/s!AqzR0fLyn9KKspF6HAAuXU9Twkkz1Q?e=QCPFAm
https://1drv.ms/u/s!AqzR0fLyn9KKspF6HAAuXU9Twkkz1Q?e=QCPFAm
https://1drv.ms/u/s!AqzR0fLyn9KKspF6HAAuXU9Twkkz1Q?e=QCPFAm
https://1drv.ms/u/s!AqzR0fLyn9KKspF70EPmDubS5V2qTQ?e=Rbybwa
https://1drv.ms/u/s!AqzR0fLyn9KKspF70EPmDubS5V2qTQ?e=Rbybwa
https://1drv.ms/u/s!AqzR0fLyn9KKspF70EPmDubS5V2qTQ?e=Rbybwa
https://csdms.colorado.edu/wiki/Data:GLiM
https://csdms.colorado.edu/wiki/Data:GLiM
https://1drv.ms/u/s!AqzR0fLyn9KKspF5Vktb-zlmd_Ctxg?e=G6fOuh
https://1drv.ms/u/s!AqzR0fLyn9KKspF5Vktb-zlmd_Ctxg?e=G6fOuh
https://1drv.ms/u/s!AqzR0fLyn9KKspF5Vktb-zlmd_Ctxg?e=G6fOuh
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://1drv.ms/u/s!AqzR0fLyn9KKspF4xxbe0xM7qJNzkA?e=vyFcFj
https://1drv.ms/u/s!AqzR0fLyn9KKspF4xxbe0xM7qJNzkA?e=vyFcFj
https://1drv.ms/u/s!AqzR0fLyn9KKspF4xxbe0xM7qJNzkA?e=vyFcFj
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mod13q1v006/
https://lpdaac.usgs.gov/products/mod13q1v006/
http://globalchange.bnu.edu.cn/research/soil5.jsp
http://globalchange.bnu.edu.cn/research/soil5.jsp
https://files.isric.org/soilgrids/former/2017-03-10/data/
https://files.isric.org/soilgrids/former/2017-03-10/data/
http://globalchange.bnu.edu.cn/research/soil2
http://globalchange.bnu.edu.cn/research/soil2
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SURF_CLI

_CHN_M

UL_DAY 

https://data.cma.cn/data/cdcdetail

/dataCode/SURF_CLI_CHN_M

UL_DAY.html  

./data/SURF_CLI_CHN_MU

L_DAY/Data/EVP/SURF_C

LI_CHN_MUL_DAY-EVP-

13240-195101.TXT 

If basin boundary is outside China, 

format and place the collected time 

series data in 

./output/catchment_meteorological 

Root depth https://github.com/haozhen315/C

CAM-China-Catchment-

Attributes-and-Meteorology-

dataset/blob/main/data/root_dept

h_calculated.txt  

./data/root_depth_calculated.t

xt 

Calculated root depth of each land type 

according to (Zeng 2001). 

GLiM 

name 

mapping 

https://github.com/haozhen315/C

CAM-China-Catchment-

Attributes-and-Meteorology-

dataset/blob/main/data/glim_nam

e_short_long.txt  

https://github.com/haozhen315/C

CAM-China-Catchment-

Attributes-and-Meteorology-

dataset/blob/main/data/glim_cate

_number_mapping.csv  

./data/glim_cate_number_ma

pping.csv 

./data/glim_name_short_long.

txt 

These files are used for name 

conversions in the program. 

GDBD https://www.cger.nies.go.jp/db/g

dbd/gdbd_index_e.html 

./data/river_network/as_strea

ms_wgs.shp 

River network shapefiles are used to 

determine river basin shape factors. 

The source data need to be reprojected 

to EPSG:4326 (using ArcMap or 

QGIS) to successfully run the code. 

Note that files in different regions have 

different names. 

 

Run the code 

When all the data is ready, the user can run the code calculate_all_attributes.py to calculate all attributes or run separate scripts 

(e.g., soil.py) to calculate indicators for specific categories. The result will appear in the output folder.  

https://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html
https://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html
https://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY.html
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/root_depth_calculated.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_name_short_long.txt
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
https://github.com/haozhen315/CCAM-China-Catchment-Attributes-and-Meteorology-dataset/blob/main/data/glim_cate_number_mapping.csv
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