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Abstract: Sea surface temperature (SST) is an important geophysical parameter that is essential for studying global climate 

change. Although sea surface temperature can currently be obtained through a variety of sensors (MODIS, AVHRR, 15 

AMSR-E, AMSR2, Windsat, in situ sensors), the temperature values obtained by different sensors come from different 

ocean depths and different observation times, so different temperature products lack consistency. In addition, different 

thermal infrared temperature products have many invalid values due to the influence of clouds, and passive microwave 

temperature products have very low resolutions. These factors greatly limit the applications of ocean temperature products in 

practice. To overcome these shortcomings, this paper first took MODIS SST products as a reference benchmark and 20 

constructed a temperature depth and observation time correction model to correct the influences of the different sampling 

depths and observation times obtained by different sensors. Then, we built a reconstructed spatial model to overcome the 

effects of clouds, rainfall and land interference that makes full use of the complementarities and advantages of SST data 

from different sensors. We applied these two models to generate a unique global 0.041° gridded monthly SST product 

covering the years 2002–2019. In this dataset, approximately 25% of the invalid pixels in the original MODIS monthly 25 

images were effectively removed, and the accuracies of these reconstructed pixels were improved by more than 0.65°C 

compared to the accuracies of the original pixels. The accuracy assessments indicate that the reconstructed dataset exhibits 

significant improvements and can be used for mesoscale ocean phenomenon analyses. The product will be of great use in 

research related to global change, disaster prevention and mitigation and is available at 

http://doi.org/10.5281/zenodo.4419804 (Cao et al., 2021). 30 

1 Introduction 

The temperature at the interface between the atmosphere and ocean, known as the sea surface temperature (SST), is an 
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important indicator of Earth's ecosystem (Hosoda and Sakaida, 2016). SSTs are widely used in atmospheric and 

oceanographic studies, such as in atmospheric simulations, climate change monitoring, and in studies of marine dynamic 

environments (Kawai and Wada, 2007; Martin et al., 2007; Peres et al., 2017; Reynolds and Smith, 1995). In addition, the 35 

oceans cover 70% of Earth's surface. A small variation in the ocean temperature exerts strong impacts on regional and even 

global climate change, energy exchange and the environment due to the unique physical characteristics of the oceans, 

including their high heat capacity (Varela et al., 2018). The rise of ocean temperatures will release huge amounts of heat, 

affect atmospheric movement, and produce many chain reactions, causing reductions in the CO2 content of seawater, the 

occurrence of extreme weather, the melting of sea ice in the polar region, and the rise of sea level, all of which will impact 40 

the survival of marine life, marine production and human life (Sakalli and Basusta, 2018). Thus, it is essential to accurately 

monitor changes in SST. 

It is difficult for traditional SST measurements based on buoys, platforms and voluntary ships to obtain large-scale and 

synchronous SST data due to the large gaps present in the data over both space and time. Compared to the traditional in situ 

SST monitoring approach, remote sensing technology has advantages in terms of large-scale and dynamic monitoring and 45 

has been used to acquire global ocean SST observation data (Li and He, 2014). Satellite SST data include infrared and 

microwave radiometer SST data. Retrievals from satellite thermal infrared sensors can provide global SSTs at high temporal 

frequencies and spatial resolutions of typically 1-4 kilometers with low uncertainty (Alerskans et al., 2020). For example, 

series sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution 

Radiometer (AVHRR) can measure global SSTs with high resolutions and high accuracies. These observations are 50 

unfortunately greatly influenced by the atmospheric environment. In cases of aerosol contamination and cloud cover, it is 

impossible to obtain effective observations, resulting in spatial discontinuities and low quality in the collected data (Guan 

and Kawamura, 2003; Hosoda et al., 2015; Liu et al., 2017b). In contrast to infrared measurements, microwave sensors are 

less affected by clouds and aerosol concentrations (Alerskans et al., 2020). Therefore, microwave sensors can observe SST 

information at all times and in all weather conditions except rain, and they also have high temporal resolutions and can 55 

quickly cover the whole surface of Earth (Wentz et al., 2000). As a result, microwave sensors play important roles in 

monitoring the temporal and spatial changes in SSTs on global and continental scales and have also been developed into 

mature remote sensing products, such as the TRMM Microwave Imager (TMI), the WindSat on-board Coriolis, and the 

Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E), which have been widely used to 

retrieve SSTs (Gentemann, 2014; Ng et al., 2009; Purdy et al., 2006). However, the spatial resolutions of passive microwave 60 

sensors are very coarse and are greatly affected by land and sea surface wind and waves, which makes it impossible to obtain 

detailed information about SSTs (Gentemann et al., 2010; Liu et al., 2017a). In addition, due to the influence of imaging 

orbit gaps, microwave-based products produce spatial gaps. Therefore, the SST information obtained by a single satellite 

remote sensor is often incomplete and limited and cannot fully meet the user's demand for a dataset with a high resolution, 

high precision and full spatiotemporal coverage. Luckily, the simultaneous availability of multiple satellite sensors provides 65 

highly complementary information, enabling the production of high-quality unified SST datasets with improved global 
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coverage (Guan and Kawamura, 2004; Shi et al., 2015; Thiebaux et al., 2003). 

Many SST fusion algorithms use multiple satellites and in situ data to take advantage of the strengths of each SST 

observation and solve the above issues; these algorithms include objective analysis (OA), optimal interpolation (OI), 

three-dimensional variational (3-D Var), and Kalman filtering (KF) (Chao et al., 2009a; Li et al., 2013; Smith and Reynolds, 70 

2003). Bretherton et al. (1976) first applied OA in a study of ocean data. OI was developed on the basis of OA, and in OI, 

background information is introduced in the analysis process. Although there is no physical constraint, the OI has a perfect 

mathematical form, which statistically takes into account the influence of the relative position changes of different 

observation points on the error covariance. The OI algorithm is simple and easy to use and has become one of the main 

methods currently used for SST fusion. For example, Reynolds and Smith (1994) used the OI method to fuse in situ data 75 

from ships, buoys and satellites to produce OISST products that are widely used. The other SST analysis data product, 

RTG-SST from the National Centers for Environment Prediction (NCEP), are also obtained by the OI method. In addition, 

based on the Modular Ocean Model (MOM), the National Science Foundation and the National Oceanic and Atmospheric 

Administration established the Simple Ocean Data Assimilation system (SODA) by the OI method (Carton et al., 2018; 

Carton and Giese, 2008). Based on the Modular Ocean Model version 4p1 (MPM4), the Australian Bureau of Meteorology 80 

established marine forecasting systems covering Australia, nearby regions and the globe through the EnOI method (Oke et 

al., 2008). However, in practice, to reduce the computational burden, the OI algorithm is usually only applied using data near 

the analysis point, and there is often a certain degree of subjectivity. Methods such as VAR and KF have been proposed to 

overcome these problems, and these methods have been widely used. For example, Zhu et al. (2006) developed a new 

3DVAR-based Ocean Variational Analysis System (OVALS), which can effectively improve estimations of temperature and 85 

salinity by assimilating various observed data. Li et al. (2008) applied a new 3D VAR data assimilation scheme to a 

retroactive real-time forecast experiment, and favorable results were obtained. In terms of operational applications, some 

institutions in Canada, the United Kingdom, the United States and China have used this method to establish ocean 

environmental forecast and analysis systems based on different oceanic general circulation models (Burnett et al., 2014; 

Chassignet et al., 2009; Han et al., 2011; Storkey et al., 2010). Huang et al. (2008) filled in the missing parts of satellite SST 90 

data with the kriging interpolation method based on the slowly changing characteristics of SSTs and then used KF to 

coordinate the variation error and interpolation error of the obtained SSTs. Finally, the interpolation and filtered SST data 

were fitted to realize SST filling. Wang et al. (2010) used the KF method to fuse the AVHRR SST and AMSR-E SST 

products to produce daily, spatially continuous SST data with a spatial resolution of approximately 2 km. However, a daily 

variation correction was not carried out before the fusion, and the model processing error was not taken into account, which 95 

brought great uncertainty to the fusion results. 

The above research has greatly improved the accuracy and spatial coverage integrity of SST products, and a variety of 

SST fusion products have been generated that have excellent accuracy in deep water regions (Dash et al., 2011). However, 

there are also important deficiencies in some SST fusion products. On the one hand, the SST observations obtained by 

different sensors are highly complementary, but there are certain differences in SST products from different sensors because 100 
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different sensors can effectively respond to water column temperatures at different times and depths (Castro et al., 2004; 

Wick et al., 2004). Despite the use of various technologies to blend multiple SST products after rigorous quality control at 

each datapoint, the differences still need to be resolved. On the other hand, although these SST products have high 

accuracies for the global ocean, some products have problems with missing pixels and relatively low accuracies near coasts 

and the edges of sea ice due to the characteristics of the remote sensing products themselves and the insufficiencies of fusion 105 

methods (Xie et al., 2008). Last, the assimilation and fusion products of multisource oceanic data can solve state estimations 

of oceanic large-scale ocean phenomena well, but some of these products cannot meet the needs of near-shore or small- and 

medium-scale phenomena. To address the above issues, we constructed a temperature depth and observation time correction 

model to eliminate the sampling depth and temporal differences among different data. Then, we proposed a reconstructed 

spatial model that filters out missing pixels and low-quality pixels from the monthly MODIS SST dataset and reconstructs 110 

them based on daily in situ SST data and daily satellite SST retrieval data from two infrared (MODIS and AVHRR) and 

three passive microwave (AMSR-E, AMSR2, Windsat) radiometers to generate a high-quality unified global SST product 

with long-term spatiotemporal continuity. The dataset that takes advantage of complementarities and advantages of SST data 

from different sensors has a 0.041° grid of monthly observations covering the years 2002–2019 and was validated and cross-  

compared with in situ observations and other SST products. The results indicate that the new reconstructed SST data is 115 

reliable and is suitable for regional or global SST studies. 

2 Data and methods 

2.1 Satellite data retrievals 

Infrared and microwave radiometers on sun-synchronous satellites are the primary technical tools used to obtain global SST, 

and collectively, these sensors provide highly complementary information with which a new SST product can be generated. 120 

The AVHRR and MODIS satellites, which cover the global ocean, were selected as sources of infrared radiometer data. To 

reduce the data gaps present in infrared data resulting from cloud and water vapor contamination, the inclusion of microwave 

radiometer data from polar-orbiting satellites are essential; in this study, ASMR-E, WindSat and AMSR2 are the main 

sources of microwave data. 

The MODIS sensor is onboard the Terra and Aqua spacecraft: the sensor has an ascending local equatorial crossing time 125 

of 13:30 in the case of the Aqua spacecraft and a 10:30 descending equatorial crossing time for the Terra spacecraft. The 

daily and monthly L3m global SST products (Day and Night) of the MODIS sensor from Terra and Aqua are available 

starting from February 2000 and July 2002, respectively, with a 0.041° spatial resolution; these datasets were mainly used to 

reconstruct high-quality SST data and are available through the website https://oceandata.sci.gsfc.nasa.gov/. The standard 

deviation obtained in a data comparison was better than 0.43°C, as determined by comparison of the SST data with 130 

coincident ferry observations (Barton and Pearce, 2006). Each pixel of these SST data is associated with a numerical quality 

level stored in SST_flags whose value ranges, in order of descending quality, from 0 to 4. Clear data of the best quality are 
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limited to the satellite zenith angles, < 55 degrees. Clear pixels at satellite angles > 55 degrees have good quality, with 

quality levels of 1. Pixels with a quality level > 1 may have very large differences between the retrieved SST and the 

reference SST due to significant cloud contamination or various other problems (https://oceancolor.gsfc.nasa.gov/atbd/sst/). 135 

Therefore, these pixels are not used for scientific research. 

The AVHRR sensor is onboard NOAA polar-orbiting satellites, has 6 bands ranging in wavelength from visible to infrared 

(one visible, two near-infrared, and three thermal infrared) and can cover the globe twice a day. The twice-daily (Day and 

Night) AVHRR 4-km SST data product is produced by the NOAA National Centers for Environmental Information and is 

available through the website https://data.nodc.noaa.gov/pathfinder/Version5.3/L3C/. The standard deviation obtained in a 140 

data comparison is approximately 0.68°C, as determined by a comparison of the AVHRR products with coincident ferry 

observations (Barton and Pearce, 2006). The data also provided a quality index for each pixel based on the evaluation test 

results stored in the pathfinder_quality_level metric, which allows the identification of cloudy pixels and/or suspicious 

observations, with the quality level 0 representing the worst quality and the quality level 7 being the best (Pisano et al., 2016). 

In our data processing method, we only considered values with quality flags 4 ~ 7. 145 

The AMSR-E sensor is onboard the Aqua satellite and is a dual-polarization microwave scanning radiometer with 6 

frequency channels in the range of 6–89 GHz. The AMSR-E instrument was in orbit for nearly 10 years but was 

discontinued in October 2011, owing to an antenna rotation problem. The AMSR2 sensor, onboard the Global Change 

Observation Mission-Water 1 (GCOM-W1) satellite, was launched in May 2012 to continue the Aqua/AMSR-E 

observations and ensure the continuity of SST data (Zabolotskikh et al., 2015). AMSR2 has the same channels as did 150 

AMSR-E, with a 7.3-GHz channel added to help alleviate radio frequency interference. However, SST information collected 

from the AMSR2 sensor was not provided until mid-2012. To ensure that there is an uninterrupted consistent long-term 

microwave SST time series that can be used to reconstruct a high-quality SST product, a WindSat polarimetric radiometer 

was used to bridge the gap between the AMSR-E and AMSR2 products. The daily L3 SST products (ascending and 

descending passes) of AMSR-E and AMSR2, available from June 2002 and July 2012, respectively, with 0.1°-grid spatial 155 

resolutions, were used to reconstruct high-quality SST data and are available through the website 

https://gportal.jaxa.jp/gpr/search/. The accuracies of AMSR-E and AMSR2 are approximately 0.75°C and 0.56°C, 

respectively, as determined by comparisons with buoy data (Sun et al., 2018). Daily WindSat SST datasets on a global 

25-km grid (ascending and descending passes) were downloaded online (http://www.remss.com/missions/windsat), and their 

accuracies are very close to that of AMSR-E, as determined by comparisons with buoy data (Banzon and Reynolds, 2013; 160 

Gentemann, 2011). 

2.2 In situ observations 

In situ observations of SST from 2002-2019 were used for the reconstruction of the new SST product and the validation of 

both the satellite-obtained SST data and the new product. The in situ observed SST data used in this study consist of SSTs 

from the Version 2.1 NOAA in situ Quality Monitor (iQuam), which includes updated observations every 12 hrs with a 2-hr 165 
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latency. The SST data from iQuam include observations from drifters, ships, tropical (T-) and coastal (C-) moorings, agro 

floats, high resolution (HR) drifters, IMOS ships, and coral reef water (CRW) buoys, and the data can be obtained from 

ftp://ftp.star.nesdis.noaa.gov/pub/sod/sst/iquam/v2.10/. Quality control of the data, including basic screening, duplicate 

removal, plausibility, platform tracks, referencing, cross-platform and SST spike checks, was performed by the NOAA 

Center for Satellite Application and Research (Xu and Ignatov, 2014). Only SSTs assigned the best quality flag (i.e., level 5) 170 

were used in this study. To ensure the independence of the data reconstruction and the accuracy verification process, all 

spatially coincident daily iQuam SSTs with temporal sampling less than or equal to 1 hr were used to reconstruct the MODIS 

SST data, while spatially coincident monthly SSTs calculated from daily SSTs were used to verify the accuracy of the 

reconstruction results (Minnett, 1991). The spatially coincident criterion restricts the maximum distance between in situ 

measurements and the center of the satellite image grid cells to within 2.3 km, which is approximately half the spatial 175 

resolution of MODIS, so that the in situ observations always fall within the MODIS SST pixels (Pisano et al., 2016). 

2.3 Ancillary data 

ERA-Interim, a climate reanalysis product produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), was discontinued on 31 August 2019 and has been superseded by the ERA5 reanalysis product produced 

by the ECMWF. The ERA5 dataset is the latest climate reanalysis product, providing hourly data on atmospheric, land 180 

and oceanic climate parameters together with estimates of uncertainty. The 10-meter wind component U, 10-meter 

wind component V, 2-meter temperature, 2-meter dewpoint temperature, sea surface temperature, relative humidity, 

cloud cover and other data from the two datasets with 0.25° spatial resolutions were used to calculate the heat, 

momentum and freshwater fluxes between the ocean and the atmosphere as well as the incoming solar radiation. These 

data can be obtained from https://apps.ecmwf.int/datasets/. 185 

2.4 SST data development 

Since MODIS SST data have a high accuracy and spatiotemporal resolution and can be used to capture mesoscale 

phenomena in the oceans, combining MODIS SSTs from Aqua and Terra is a good way to improve the spatial coverage of 

SST data. However, infrared SST data are retrieved using the infrared band, which cannot penetrate clouds, so SST data 

cannot be provided in the presence of clouds. Furthermore, infrared SST retrievals are greatly influenced by atmospheric 190 

aerosols and water vapor. Some factors related to radiometers can also contaminate SST observations, such as the viewing 

geometry, spectral response, and noise level of each sensor (Kilpatrick et al., 2015). Due to these factors, MODIS SST data 

often have problems involving low-quality or missing pixels. Statistical analysis performed during the study period indicated 

that the unusable pixels present in the monthly SST records of Terra and Aqua during both daytime and nighttime generally 

cover 23.46% and 28.06% of the global ocean, respectively. It is difficult to fill the data gaps in the MODIS SST retrievals 195 

caused by the above factors using infrared SST retrievals with data of the same quality as SST measurements collected under 
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clear sky. Therefore, we built a reconstructed spatial model that combines in situ station-based data and daily SST data from 

AVHRR, AMSR-E, AMSR-2 and WindSat to reconstruct a high-quality monthly MODIS SST dataset that takes into 

account the actual SSTs under clear-sky conditions instead of under clouds. More details are given in the following sections. 

In addition, there are certain biases present in SST products due to the use of different sensors resulting from the 200 

measurement methods, sensor band settings, and environmental influencing factors in both space and time. Thus, after 

identifying and accounting for these differences, we proposed a temperature depth and observation time correction model to 

address the influence of time phase and sampling depth of different sensors. The overall methodology is illustrated in Figure 

1. The processing effectively retains the pixels with high accuracy in the original MODIS daily and monthly data, and uses 

ocean multisource data after calibration by using the temperature depth and observation time correction model and combines 205 

the spatio-temporal information to reconstruct the low-quality and missing daily pixels, and finally replaces low-quality and 

missing pixels with the composite average pixel value in the monthly data. 

 

Figure 1. A summary flowchart for reconstructing MODIS monthly SST data 

2.4.1 Bias adjustment schemes 210 

2.4.1.1 Bias adjustment scheme for multisource remote sensing data 

To combine oceanic multisource remote sensing data into the MODIS SST product, it is necessary to assume that the 
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measured values represent the same quantities or to use some method to eliminate the differences among products. The 

ocean temperature data obtained by different sensors are different from those obtained by MODIS, and there are complex 

spatiotemporal differences among the sensors. Figures 2 and 3 represent the different distributions of the original MODIS 215 

and multisource daily SSTs in the daytime. Obviously, these multisource data cannot be directly used to reconstruct the valid 

pixels of MODIS SST data before the differences are corrected. 

 

Figure 2. Box chart with scatters of the differences in the original MODIS and multisource daily SSTs (AVHRR, WindSat, 

AMSRE, AMSR2). The boxes are determined by the 25th and 75th percentiles. The whiskers are determined by the 5th and 220 

95th percentiles. The data are plotted as scatters on the left of each box. A curve corresponding to a normal distribution is 

also displayed on top of each scatter plot. 
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Figure 3. Difference maps of the original MODIS and multisource daily SST products. Areas of missing data are blank. 

The main source of difference is mainly due to the inconsistent wavelengths or frequency ranges used by different sensors; 225 

these differences cause the sensors to obtain temperature information from different ocean depths. The sea temperature 

inversion algorithms of different sensors cause the measured temperatures to be higher/lower due to inconsistencies among 

key parameter settings, which cause the inversion results to be closer to the temperatures of the ocean surface or a given 

subsurface layer. Due to differences in the absorption of solar radiation, heat exchange with the atmosphere and levels of 

subsurface turbulent mixing (Minnett et al., 2011), near-surface temperatures are highly variable vertically, horizontally and 230 

temporally (Minnett, 2003). Infrared remote sensors retrieve sea surface skin temperatures at depths of 10-20 µm. 

Microwave remote sensors retrieve sea surface subskin temperatures at 1-1.5 mm depths. Therefore, the SSTs retrieved from 

various microwave radiometers (AMSRE, WindSat, and AMSR2) are different from the SSTs measured by the MODIS 

radiometer. Although the AVHRR sensor is an infrared remote sensor and its brightness temperatures represent the sea 

surface skin temperature, AVHRR SSTs correspond to subsurface SSTs because they are statistically regressed to coincident 235 

in situ buoy SSTs (Chao et al., 2009b; Kilpatrick et al., 2001; Pisano et al., 2016). Starting with the AVHRR Pathfinder 

Version 5.3, an average skin/subsurface temperature difference of 0.17 K, determined from Marine Atmospheric Emitted 

Radiance Interferometer (MAERI) matchups, was used to eliminate the subsurface bias so that the SSTs were more closely 

tuned to the sea surface skin temperatures (Sea Surface Temperature-Pathfinder C-ATBD). MODIS SSTs are skin SSTs. 

MODIS retrievals are based on empirical coefficients derived by regressing MODIS brightness temperatures against in situ 240 

observations from drifting and moored buoys, but the regressed SSTs are converted to skin SSTs based on at-sea 

measurements. Thus, the SSTs retrieved from the AVHRR radiometer are different from the SSTs measured by the MODIS 

radiometer. In addition, MODIS and several other sensors used in this paper have different observation times and can obtain 

measurements at several different times throughout the diurnal cycle. The relationships among these observations are, 

however, not constant because there are significant diurnal variations in sea surface temperature resulting from constant 245 

changes in the atmosphere, solar heating, wind speeds, etc. (Kilpatrick et al., 2015; Luo et al., 2019; Minnett et al., 2019; 

Wick et al., 2004). This also results in differences between MODIS observations and those of other sensors. Therefore, 

compensating for measurement depths and times is conducive to reducing the uncertainty present in the reconstruction 

results before the multisource remote sensing data are combined into the MODIS SST product. 

1) Compensating to ensure uniform effective sampling depths 250 

To solve the differences among MODIS and multisource daily SST products caused by the sampling depths, it is 

necessary to consider the differences as results of the cool skin effect and diurnal heating (Luo et al., 2020). Therefore, the 

model proposed by Fairall et al. (1996) was used to estimate the skin effect of infrared remote sensing products when 

integrating microwave remote sensing SSTs into infrared data, as shown in Eqs. 1 and 2: 

∆T = Qδ/K                                          (1) 255 

δ =
λV

𝜇∗𝑤
                                            (2) 
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where ∆T is the temperature variation (positive, representing that the surface is cooler than the bulk), Q is the net heat flux, 

K is the thermal conductivity of water, δ is the thickness of the change in temperature, λ is the empirical coefficient, V is the 

kinematic viscosity, and 𝜇∗𝑤 is the friction velocity in the water. It is difficult to obtaining λ in Eq. 2. Based on the 

observed data of the Tropical Ocean‐Global Atmosphere Coupled Ocean‐Atmosphere Response Experiment (COARE) 260 

program, Fairall et al. (1996) determined λ to be dependent on wind speed. General ocean models typically simulate the 

surface layer of 5-10 m as a uniform layer, and simulating such thin sea surface skin layers and subskin layers takes a long 

time. The General Ocean Turbulence Model (GOTM) can use a nonuniform grid and specifically encrypt the surface layer to 

quickly simulate the temperature of the sea surface skin layer and the subskin layer. The formula is as follows: 

ℎ𝑘 = 𝐷
tanh((𝑑𝑙+𝑑𝑢)

𝑘

𝑀
−𝑑𝑙)+tanh⁡(𝑑𝑙)

tanh(𝑑𝑙)+tanh⁡(𝑑𝑢)
− 1                             (3) 265 

where ℎ𝑘 represents the thickness of layer K, D represents the depth, M is the number of layers, and 𝑑𝑙 and 𝑑𝑢 show 

the zooming factors of the surface and bottom, respectively. 

From this formula, the following grids are constructed: 

• dl = du = 0 results in equidistant discretization. 

• dl > 0, du = 0 results in zooming near the bottom. 270 

• dl = 0, du > 0 results in zooming near the surface. 

• dl > 0, du > 0 results in double zooming near both the surface and the bottom. 

In addition, the GOTM can be used to simulate the hydrodynamic and thermodynamic processes of vertical mixing in 

one-dimensional water columns in natural waters and can be used for depth corrections taking into account 

atmosphere-ocean interactions and vertical turbulent mixing. Therefore, the Fairall model was integrated into the air-sea 275 

interaction module of the GOTM, and the heat and momentum flux changes of each layer in the water column were 

integrated to more accurately simulate the skin effects of the SSTs. In this section, the conversion of SSTs between 

different depths can be conducted using the model by entering the SST measurement depth and the corresponding 

meteorological parameter values present during the measurement, including the wind speed at a 10-m height, the air 

temperature at a 2-m height above the sea surface, air humidity data, and cloud cover data from the ECMWF. Figure 4 (a) 280 

and (b) show the variations in ocean temperatures at different depths and the differences between the sea surface skin 

temperatures and sea surface subskin temperatures simulated by the GOTM every half hour for a pixel with a longitude of 

32.65°N and a latitude of 43.25°E from July 1, 2002, to July 31, 2002. When the wind speed is low, the infrared-measured 

SST is 0.1~0.2℃ lower than that obtained by microwave remote sensing. When the wind speed is high, the SSTs 

measured by the two sensor types are basically the same. By deducting this difference, the SSTs obtained by microwave 285 

remote sensing can be normalized to the SSTs obtained by infrared remote sensing. 
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Figure 4. SST depth changes simulated by the GOTM every half hour for a pixel with a longitude of 32.65° and a latitude of 

43.25° in July 2002 (a is the variation in ocean temperature at different depths; b is the difference between the sea surface 

skin temperature and sea surface subskin temperature). 290 

2) Compensating to ensure uniform measurement times 

To solve the differences among the MODIS and multisource daily SST products caused by the varying measurement times, 

it is necessary to consider the diurnal variations in SST. The GOTM is based on the hydrodynamic and thermodynamic 

processes of water and comprehensively considers the effects of solar shortwave radiation, longwave radiation, latent heat, 

sensible heat and cloudiness on diurnal variations in SST. The diurnal variations caused by differences in the absorption and 295 

attenuation of solar radiation of different water types are also considered. Therefore, the GOTM can accurately simulate 

diurnal variations in SST. We use the GOTM to simulate diurnal variations in SST. The input data also come from the 

ECMWF reanalysis product and include the wind speed at a 10-m height, the air temperature at a 2-m height above the sea 

surface, air humidity data, and cloud cover data. Cloudiness is used to calculate oceanic radiant heating. Wind speed, air 

temperature and relative humidity are used as inputs in the turbulence model to estimate sensible heat, latent heat and wind 300 

stress. The exchange coefficient of the turbulence equation is obtained based on the Fairall parameter method. Figure 4 (a) 

shows the variations in ocean temperature at different half-hour increments for a pixel with a longitude of 32.65° and a 

latitude of 43.25° from July 1, 2002 to July 31, 2002. For the SSTs occurring at different times, after deducting the diurnal 

variations in temperature simulated by the GOTM, the observations can be referenced to common time. The formula is as 

follows: 305 

𝑆𝑆𝑇𝑠 =
∑ (𝑆𝑆𝑇𝑠(𝑖)+(𝑆𝑆𝑇𝑔(𝑗)−𝑆𝑆𝑇𝑔(𝑖)))
𝑁
𝑖=1

𝑁
                               (4) 
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where SSTS is the SST observed by the satellite; j is the referenced common time; i is the effective observation of other 

moments by the sensor on the same day other than moment j, of which there are a total of N; and SSTg is the SST simulated 

by the GOTM, which also corresponds to moments i and j. 

3) Bias Adjustments of different sensor products 310 

After completion of the above depth and diurnal change corrections, the different measurement times and effective 

sampling depths were compensated. However, the performances of different sensors are different, and there may be 

systematic and regional deviations, which need to be eliminated before fusion (Alerskans et al., 2020; Huang et al., 2015). 

Therefore, to correct the large-scale deviations among different sensors, we used the daily MODIS SST data to correct the 

other remotely sensed data compensated for different measurement times and effective sample depths. Figure 5 shows that 315 

the correlation coefficient of the MODIS SSTs and the other remotely sensed data reaches above 0.97, indicating that these 

data have a strong correlation with the MODIS data. Therefore, we adopt linear regression to modify the other remotely 

sensed SST data. The correction method uses linear regression of two corresponding images, and the regression coefficient is 

determined by matching the data of the MODIS sensor and the other remotely sensed data. To avoid the influence of 

individual outliers, points with standard deviations over 1°C or with a difference greater than 2°C from the corresponding 320 

MODIS datum in the matching window did not participate in the regression. 

 

Figure 5. Scatter diagrams of the MODIS SST data and ocean multisource data compensated for different measurement times 
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and effective sampling depths. 

2.4.1.2 Bias adjustment scheme for in situ observations 325 

SSTs retrieved from MODIS sensors are skin SSTs. However, the in situ SSTs from Version 2.1 NOAA iQuam are 

subsurface SSTs. For Argo floats, only the shallowest high-quality measurement is extracted and saved from each profile into 

the iQuam dataset (the same algorithms are used for other in situ platforms, such as those on ships, drifters, and moorings), 

along with its measurement depth. The closest measurement to the surface of the Argo float is at a depth of 3-8 dbar (0.15-0.2 

m for drifters and ~1 m for moorings). The differences between skin and subsurface SSTs, as described by Donlon et al. 330 

(2002), can be as large as 1.0°–2.0°C when the solar insolation is strong and the wind speed is weak. Figure 6 shows that the 

differences between the MODIS data and the eight types of in situ SSTs from iQuam can be significant under different 

weather conditions. When combining in situ SSTs into the MODIS SST product, such differences need to be accounted for. 

Therefore, in situ SSTs were first collocated and made coincident with MODIS data (within ±1 hr and ± 0.02° of latitude and 

longitude). Then, the coincident in situ SSTs were adjusted using the GOTM by entering the SST measurement depth and 335 

corresponding meteorological parameter values present during the measurement, including the wind speed at a 10-m height, 

the air temperature at a 2-m height above the sea surface, air humidity data, and cloud cover data from the ECMWF. 

 

Figure 6. Box chart with scatters representing the differences between the original MODIS data and eight types of in situ 

SST observations. 340 

2.4.2 Filtering of MODIS SST 

The monthly MODIS SST data cover the whole sea area of the world, but they contain many missing and low-quality pixels 

caused by factors such as clouds and aerosols. Figure 7 shows the frequency of nonnull pixels, including valid pixels and 
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low-quality pixels, in the monthly MODIS SST data from July 2002 to December 2019. The missing pixels are mainly 

distributed in high latitude sea areas beyond ±60 degrees of latitude. In the middle- and low-latitude sea areas within ±60 345 

degrees of latitude, the coverage rate of pixels is more than 95%, among which missing pixels are mainly distributed in 

ocean edges near land. In most areas of low and middle latitudes, the nonnull pixel coverage is as high as 100%, but it is 

difficult to detect the cold top surface of thin clouds or subpixel clouds, and the SSTs retrieved under such conditions are 

usually underestimated because the temperatures of clouds are almost always colder than the temperature of the sea surface 

(Reynolds et al., 2007). Moreover, other factors can also contaminate the observed signals and affect the data quality, such as 350 

factors related to the radiometer, including its viewing geometry, spectral response and noise level (Kilpatrick et al., 2015). 

Therefore, there are low-quality pixels present during the study period. In this study, the spatial process of the SST 

reconstruction includes the removal of low-quality pixels in low- and mid-latitude regions and the reconstruction of pixels in 

the marginal low- and mid-latitude regions and the high-latitude regions. 

The quality control information stored in the qual_sst layer is provided along with the MODIS L3m SST data, with the 355 

quality level 0 being the best quality and the quality level 4 being the worst. These values can be found in the original 

MODIS SST Netcdf files (see section 2.1 for a detailed description). The missing pixels present in these data are represented 

by the filling value -32767. Therefore, the quality control labels and the filling value were used to identify low-quality and 

missing pixels in the MODIS SST product. For monthly and daily SST data, to ensure the data quality and the number of 

effective pixels, pixels with a quality level ≤ 1 were considered to be high-quality data. 360 

 

Figure 7. Frequency of nonnull pixels, including valid pixels and low-quality pixels, in the monthly MODIS SST data during 

the study period from (a) nighttime Aqua overpasses, (b) daytime Aqua overpasses, (c) nighttime Terra overpasses, and (d) 

daytime Terra overpasses. 

2.4.3 SST data reconstruction 365 
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In the data processing, we first filtered all input monthly MODIS SST images and determined the locations of the 

low-quality and missing pixels. Then, for each invalid pixel (i.e., the low-quality and missing pixels) in the monthly images, 

we filtered the daily MODIS SST data of the respective month at the corresponding location. The high-quality pixels in the 

daily SST data were retained, and the invalid pixels in the daily data were reconstructed by combining multisource data. 

Finally, the invalid pixels present in the monthly data were replaced by the mean SST values derived from the gap-filled 370 

daily SST time series of the corresponding month. Combining the characteristics of multisource data and the availability of 

the data, we adopted different methods to reconstruct the invalid pixels present in the daily MODIS SST data for different 

regions. 

2.4.3.1 Reconstruction of invalid SST pixels in low- and mid-latitude marginal regions of the ocean 

Due to the influence of the mixed sea and land pixels in adjacent coastal areas, microwave-based sea surface temperature 375 

products have very large uncertainties in adjacent coastal areas (Xie et al., 2008). Therefore, we first used daily SST data 

from MODIS and AVHRR and corresponding in situ observations to reconstruct the pixels in these regions. In cases where 

these observations were missing, we filled these invalid pixels based on the geographically weighted regression (GWR) and 

Kalman filtering (KF) methods, fitted the SSTs obtained by the two methods and finally reconstructed the invalid pixels. A 

summary flowchart of the process is schematically illustrated in Figure 8. 380 

 

Figure 8. A summary flowchart for reconstructing invalid SST pixels in the marginal low- and mid-latitude regions 

Invalid pixels were filled with in situ or AVHRR SST data at the same location and time (priority was given to the use of 
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in situ data), and these pixels filled with in situ observations were marked. For the invalid pixels without AVHRR and in situ 

SSTs, we filled in the missing part with GWR method based on the slowly changing characteristics of SST, and then used 385 

KF to coordinate the variation error and interpolation error of SST. Finally, the interpolation and filtered SST data were 

fitted to realize the SST filling. 

1) Interpolating invalid pixels with GWR 

GWR is an effective method for estimating missing pixels, and it can quantitatively determine the contribution of adjacent 

pixels to contaminated pixels (Zhao et al., 2020). Therefore, the GWR method was used in this study to reconstruct invalid 390 

pixels. To determine the sliding window with the minimum noise and the best complement value, we simulated the size of 

the experimental pixel window several times and selected a sliding window of 5 by 5 pixels centered on the target pixel. This 

window size also avoids the reduction in execution efficiency caused by the redundancy of pixel data involved in the 

calculation and ensures the number of pixel values involved in the calculation. In theory, even in the case of thick cloud 

coverage, in situ SSTs are the most reliable records. If there are in situ SST observations, the missing or low-quality pixels 395 

are directly obtained from the in situ measurements, which are more representative of the real SSTs under cloud cover than 

under clear sky conditions. During the reconstruction of invalid pixels, the regression weight coefficient of each adjacent 

pixel was determined by the Euclidean distance between that pixel and the target pixel. Simultaneously, we assigned a 

relative multiple weight to the marked in situ data according to GWR. By selecting some marked pixels as experimental 

values, it was found that the target pixels can be estimated most accurately when Mc (Mc is the weighting coefficient of the in 400 

situ assigned pixels) was set to 3 in this paper. The weighting coefficients of adjacent pixels can be determined by the 

following formula. After the GWR model used the Euclidean distance to obtain the weights, a local linear regression 

calculation was performed for each point in the window according to the sample weights. This regression calculation can be 

expressed as Eq. 7:  

𝐷 = √(𝑥 − 𝑥𝑡)
2 + (𝑦 − 𝑦𝑡)

2                                   (5) 405 

𝑊𝑖 =

𝑀𝑐
𝐷𝑖

∑
𝑀𝑐
𝐷𝑖
+∑

𝑀𝑔

𝐷𝑗

𝑛
𝑗=1

𝑚
𝑖=1

,⁡𝑊𝑗 =

𝑀𝑔

𝐷𝑗

∑
𝑀𝑐
𝐷𝑖
+∑

𝑀𝑔

𝐷𝑗

𝑛
𝑗=1

𝑚
𝑖=1

                                 (6) 

𝑇𝑡 = ∑ 𝑊𝑖 ∙ 𝑇𝑖 + ∑ 𝑊𝑗 ∙ 𝑇𝑗
𝑛
𝑗=𝑚+1

𝑚
𝑖=1                                (7) 

where D is the distance from the adjacent pixel to the target pixel; (x, y),(⁡x𝑡, 𝑦𝑡) are the locations of the adjacent pixel and 

target pixel, respectively; i and j are the adjacent pixels used to estimate the SST of the invalid pixel; i is an adjacent pixel of 

high quality; j is a pixel assigned by the in situ measurement; 𝑊𝑖 ⁡and⁡𝑊𝑗⁡are weight multipliers; m is the number of i; n is the 410 

number of j; and Mc and Mg represent the weighting coefficients of the high-quality pixels and in situ assignment pixels, 

respectively. In this paper, Mc and Mg are set at 1 and 3, respectively.⁡𝑇𝑡  is the filled SST value of the target pixel.  

2) Using KF to coordinate the error 

For this region, on the basis of interpolation, KF can be used to coordinate the error characteristics of the SST variation 

and the error characteristics of the interpolation. Since the SST variation is relatively flat, SST is treated as a stationary 415 
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random process. Due to the slowly changing characteristics of SST and the lack of in situ data representing these pixels, we 

took into account the observed data representing the three days before and after at the location of the invalid pixel. The 

MODIS products from the Terra and Aqua satellites produced 4 SST images per day, for a total of 28 images. Considering 

the operational requirements of SST real-time retrievals and the necessary computing speed and storage capacity of the 

computer, the correlation of the error changes with each observation time was not considered in the actual operation process, 420 

and only simple random error was used to simulate the changes in the process error and observation error. By modeling the 

data, the equation of state of the system can be written as follows: 

X(t) = X(t−1) +W(t−1)                                   (8) 

where X is the daily MODIS SST without interpolation; t and t-1 are time; and W represents the process noise, which is 

considered to be Gaussian, and its covariance is represented by Qt. Taking July 2002 as an example, there were 124 MODIS 425 

data points. All data were arranged in chronological order, and the change in each pixel relative to the previous time was 

counted. Based on the statistical results of these images, the mean square deviation of the change was 1.7648. Therefore, Qt 

is 1.76482*I (I is the identity matrix). 

Consider the following measurement equation: 

Z(T) = HX(t) + V(t)                                     (9) 430 

where Z is the interpolated daily MODIS SST; H is an identity matrix; and V represents the measurement noise, which is 

also considered to be Gaussian, and its covariance is represented by Rt. Rt is determined mainly by the accuracy of Z. In this 

paper, the covariance between the interpolated daily MODIS data and the in situ data collected during the study period was 

calculated to be 0.945; then, the following formula was used to combine the input data to achieve the optimal output of the 

system. 435 

The next state estimate was calculated using the state extrapolation equations. 

X(t)
− = X(t−1)                                       (10) 

The extrapolated estimate uncertainty (variance), P(𝑋(𝑡)−),⁡is the uncertainty of the extrapolated estimate. 

P(𝑋(𝑡)−) = P(X(t−1)) + Q(t−1)                                (11) 

The KF gain,⁡K(t), was then calculated. 440 

K(t) = P(𝑋(𝑡)−)/(P(𝑋(𝑡)−) − R(t))                              (12) 

The current estimate was calculated using the state update equation. 

X(t) = X(t)
− + 𝐾(𝑡)[𝑍(𝑡)−X(t)

−]                               (13) 

The current estimate uncertainty was updated. 

𝑃𝑋(𝑡) = [1 − 𝐾(𝑡)]⁡P(𝑋(𝑡)−)                                (14) 445 

3) Fitting interpolated and filtered data 

The least square method was used to fit the interpolated and filtered data, where in the interpolation based on the WGR 

method and the filtering based on KF were represented by Tg and Tk in the following equation, respectively. 
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T′ = α𝑇𝑔 + 𝛽𝑇𝑘                                    (15) 

To determine the coefficient of fitting, we selected some pixels from the images replaced by the in situ and AVHRR SSTs 450 

and marked them as invalid pixels and then interpolated and filtered these pixels. The least square method was used to fit the 

interpolated and filtered data, and the fitting coefficient was obtained using the following formula. Then, the reconstruction 

of invalid pixels without in situ or AVHRR SST filling could be realized by using Eq. 16: 

∆T(α, β) = ∑ [𝑇𝑖 − 𝑇𝑖
′]2𝑛

𝑖=1                                (16) 

where 𝑇𝑖  is the pixel value in the image replaced by the in situ and AVHRR SSTs and n is the number of these pixels. 455 

When ΔT reaches a minimum value, the fitting coefficient can be obtained by using Eqs. 17 and 18. 

𝜕∆𝑇(𝛼,𝛽)

𝜕𝛼
= −2∑ (𝑇𝑖 − 𝛼𝑇𝑔 − 𝛽𝑇𝑘)𝑇𝑔

𝑛
𝑖=1 =0                         (17) 

𝜕∆𝑇(𝛼,𝛽)

𝜕𝛽
= −2∑ (𝑇𝑖 − 𝛼𝑇𝑔 − 𝛽𝑇𝑘)𝑇𝑘

𝑛
𝑖=1 =0                         (18) 

2.4.3.2 Reconstruction of invalid SST pixels in low- and mid-latitude inner ocean areas 

Similar to the method used to reconstruct invalid SST pixels in the marginal regions of the oceans at low and middle 460 

latitudes, pixels with invalid SST values were collocated with in situ and AVHRR data to reconstruct invalid pixels in inner 

ocean areas. The invalid pixels were filled using values from valid in situ SST or AVHRR data collected at the same location at 

the same time. The difference is that the accuracy of microwave-based data is lower in marginal sea areas but higher in the 

ocean interior. Based on the consistency of MODIS daily data and microwave daily data temperature variation trends at 

corresponding dates, in cases of missing observations, we used microwave-based data to reconstruct the invalid SST data. A 465 

summary flowchart of the process is schematically illustrated in Figure 9. 

 

Figure 9.The summary flowchart for reconstructing invalid SST pixels in low- and mid-latitude inner ocean areas 
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The temperature variation trends present in the MODIS daily data and microwave daily data on corresponding date in the 

same region are the same, so the two groups of data have the same proportional relation. Taking a grid of n pixels by n pixels as 470 

an example, a and b are considered the same regions clipped from the MODIS and microwave-based data, respectively. The 

gray and white rasters represent the effective and invalid pixels, respectively. Mkl and Rkl represent the pixel values of the 

MODIS and microwave-based data, respectively. K and L represent the pixel positions. Mij represents the value after the 

interpolation of invalid pixels. 

 475 

Figure 10.  MODIS and microwave SST data corresponding to a n×n grid 

𝑀𝑖𝑗

∑ 𝑀𝑘,𝑙+∑ 𝑀𝑘,𝑙
𝑘=𝑛,𝑗=𝑛
𝑘=𝑖+1,𝑙=𝑗+1

𝑘=𝑖−1,𝑙=𝑗−1
𝑘=1,𝑙=1

=
𝑅𝑖𝑗

∑ 𝑅𝑘,𝑙+∑ 𝑅𝑘,𝑙
𝑘=𝑛,𝑗=𝑛
𝑘=𝑖+1,𝑙=𝑗+1

𝑘=𝑖−1,𝑙=𝑗−1
𝑘=1,𝑙=1

                      (19) 

The reconstruction of invalid pixels can be achieved by using the above formula. The reconstructed pixels meet the accuracy 

of the interpolated images to a certain extent and do not damage the original SST variation trend of the interpolated image. 

After several simulations of different experimental pixel window sizes, the noise was found to be minimized when a sliding 480 

window of 6 by 6 pixels was used, and this window size was considered to have the best complement value. 

2.4.3.3 Reconstruction of invalid SST pixels in high-latitude regions of the ocean 

At high latitudes, sea ice covers a significant fraction of the global oceans (approximately 5-8%). The presence of large areas 

of mixed sea ice and open water makes it difficult to retrieve SSTs (Høyer et al., 2012; Vincent et al., 2008). In addition, 

there is persistent cloud cover in polar regions, with cloud cover occurring up to 90% of the time in summer and 50%-60% 485 

of the time in winter in the Arctic (Høyer et al., 2012). The continuous cloud cover and extended twilight period complicate 

the detection of cloud, which thus present problems for identifing clouds correctly of cloud detection algorithms. Therefore, 

it is challenging to use satellite sensors to accurately retrieve SST at high latitudes, including the Arctic Ocean. Moreover, 

because of the existence of sea ice and the difficulty of navigating in ice-filled water, the amount of field observations at the 

area is generally scarce compared to other regions (Reynolds et al., 2002). The Microwave and AVHRR SST data used in 490 

this study have limited available pixels in high latitude regions, so it is impossible to reconstruct MODIS SST data in high 

latitude regions only by relying on these data and in situ data. 
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High-latitude SSTs can be estimated based on satellite sea ice concentrations (SICs). In areas with sea ice, the SST is the 

temperature of the open water or of the water under the ice (Banzon et al., 2020). Multiple analysis (L4) products from 

GHRSST enable SST estimation near the polar region by converting SIC into SST. Due to differences in satellite source data, 495 

integration methods and methods for converting SIC to SST, the accuracy of levels 4 SST products of GHRSST-PP vary in 

many aspects. After understanding the differences among current GHRSST level 4 products and their qualities and 

availabilities in different areas, the OISST V2.1 product was selected to restore invalid pixels in the MODIS SST data in the 

high-latitude area with sea ice coverage. In the product, SICs were revised to SSTs to remove warm biases in the Arctic 

region. 500 

In areas of high latitudes, since the microwave-based SST data (used in this paper) exclude sea ice pixels, that is, SSTs are 

missing when the number of pixels with sea ice contamination exceeds a specified value, we used a combination of two 

strategies to reconstruct the missing SST data to improve the accuracy of the results. A summary flowchart of the process is 

schematically illustrated in Figure 11. 

 505 

Figure 11. The summary flowchart for reconstructing invalid SST pixels in high latitude regions of the ocean 

First, the variables l2p_flags and the sea ice fraction in the AVHRR SST data were used to identify the sea ice extent. The 
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sea ice fraction variable quantified the fraction of sea ice contamination in a given pixel (ranging from 0 to 1), and bit 2 of 

the l2p_flags variable was recorded if an input pixel recorded ice contamination. These variables can be used to identify sea 

ice pixels. Then, we used the first strategy to reconstruct invalid pixels in high latitudes without sea ice coverage. Pixels with 510 

invalid SST values in the MODIS data were collocated with in situ and AVHRR observations. Invalid pixels were filled 

using the values from the valid in situ or AVHRR data at the same location and the same time (priority was given to the use 

of in situ data). Then, for the invalid pixels without available observations, we used the method described in section 2.4.3.2 

above to fill the pixels using microwave data. Finally, considering the characteristics of the slow changes in SST and the fact 

that SST changes in the same area are interannual and its changes in the short term are usually small, the invalid pixels 515 

without any filling data were reconstructed by using the GWR method combined with spatiotemporal information. That is, 

we obtained the effective pixels of the same date in the previous year and the following year at the same position and the 

effective pixel values of the adjacent dates (within two days) in the same year. Then, the invalid pixels were replaced with 

the composite average pixel value. If the number of effective pixels was too small, then the GWR method was used to 

reconstruct the invalid pixel. 520 

In another strategy, grid cells with invalid SST values due to sea ice-covered areas were collocated with in situ and 

AVHRR SSTs. Invalid pixels were filled using values from valid in situ SST or AVHRR data collected at the same location 

and at the same time. Then, the adjusted OISST V2.1 products were used to reconstruct the invalid pixels in sea ice-covered 

areas that did not have sufficient replacement pixels. The adjustment algorithm is a linear regression algorithm that relies on 

coefficients derived from collocated, cotemporal OISST and MODIS SST observations. These data were then used to fill the 525 

missing value pixels by linear interpolation: 

𝑇𝑀 = 𝛼 × 𝑇𝑂 + 𝛽                            (20) 

where TM is the SST after interpolation (units: °C); TO is the pixel value of the OISST product; α is the correction factor of 

the OISST on the SST value from MODIS, which is the regression coefficient based on the clear sky pixels of daily MODIS 

SSTs in the corresponding two images; and β is the estimated intercept. 530 

3 Result 

MODIS has superior coverage and performance in sampling global SST and has been verified by various studies (Barton and 

Pearce, 2006). Moreover, to better assess the accuracy of the new SST product, we performed verification of the original 

MODIS data, oceanic multisource data compensated for different measurement times and effective sampling depths, and the 

new SST data in different regions. The accuracy of the data was assessed using five statistical indexes: the correlation 535 

coefficient (R2), root mean squared error (RMSE), bias, absolute bias (Abs_Bias), and scatter index (SI). The bias was 

calculated as the MODIS SST product minus the in situ SST. The scatter index, usually denoted as SI, was used to measure 

the magnitude of the bias between the SST product and the in situ observations versus the in situ observations. A smaller SI 

means a more accurate measurement. In addition, to convey information more easily and concisely, Taylor diagrams (Taylor, 
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2001) were also used to compare the accuracies of different SST products, as they provide a way to graphically summarize 540 

the relative accuracies of several products. Taylor diagrams are two-dimensional scatter plots in which discrete points give 

an indication of how well patterns match each other in terms of their correlation coefficient (R), centered RMSE (E), and 

normalized standard deviation (SDV), all at once (Castro et al., 2016). These statistics are defined as follows, where M and 

O are the simulated and observed patterns, respectively. 

𝑅 =
1

𝑁−1
∑ (

𝑚𝑖−𝑚

𝜎𝑚
)(
𝑜𝑖−𝑜

𝜎𝑜
)𝑁

𝑖=1                                     (20) 545 

SDV =
𝜎𝑚

𝜎𝑜
                                           (21) 

𝐸2 =
(𝑅𝑀𝑆𝐸2−𝑏𝑖𝑎𝑠2)

𝜎𝑜
⁡                                 (22) 

𝐸2 = 𝑆𝐷𝑉2 + 1 − 2𝑆𝐷𝑉 × 𝑅                                 (22) 

In the Taylor diagram, SDV is shown as the radial distance, and R is shown as the cosine of an azimuthal angle in the 

polar plot. The observed patterns are represented by points on the X-axis at R = 1 and SDV = 1. E is the distance from the 550 

simulated patterns to the observed patterns, and this distance can quantify how closely the simulated patterns resemble the 

observed patterns. 

3.1 Evaluation of the original product 

We conducted a comparative analysis based on the distribution of invalid pixels in different regions, as shown in Tables 1 

and 2. The Arctic Ocean was not verified because the original data had many missing pixels at high latitudes. Tables 1 and 2 555 

show the validation results of the original monthly MODIS SST values against the in situ SST measurements and the in situ 

SST measurements compensated for the effective sampling depths, respectively. Without correction of the sampling depths 

of the in situ SST measurements, the MODIS-based daytime SST measurements showed positive biases, while the 

MODIS-based nighttime SST measurements showed negative biases except over the Atlantic Ocean. With corrected 

sampling depths of the in situ SST measurements, MODIS-based nighttime SST measurements of the Atlantic Ocean also 560 

showed negative biases. In addition, MODIS-based daytime SST products are better than nighttime products, and the 

measurements over the Atlantic Ocean have the lowest accuracies. 

Table 1. Analysis of SST matching points between original monthly MODIS-TERRA/AQUA and in situ SST measurements 

from 2002 to 2019 

 Day/Night R2 Abs_bias bias RMSE SI 

Pacific Ocean 

d 0.9773 0.6693 0.2240 1.1513 0.0548 

n 0.9786 0.6807 -0.1821 1.1665 0.0532 

Atlantic Ocean 

d 0.9561 0.8279 0.2543 1.4527 0.0709 

n 0.9584 0.9634 0.0921 1.6225 0.0970 
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Indian Ocean 

d 0.9786 0.6929 0.0271 1.1606 0.0498 

n 0.9836 0.6082 -0.2009 1.2412 0.0613  

Global Ocean 

d 0.9721 0.7262 0.1900 1.2593 0.0591 

n 0.978 0.7079 -0.1434 1.2666 0.0615 

Table 2. Analysis of SST matching points between original monthly MODIS-TERRA/AQUA and in situ SST measurements 565 

adjusted by GOTM from 2002 to 2019 

 Day/Night R2 Abs_bias bias RMSE SI 

Pacific Ocean 

d 0.9850 0.5794 0.1528 0.9134 0.0437 

n 0.9880 0.5995 -0.2360 0.8925 0.0397 

Atlantic Ocean 

d 0.9776 0.6822 0.1015 0.8254 0.0503 

n 0.9821 0.7624 -0.1709 1.0686 0.0622 

Indian Ocean 

d 0.9892 0.5654 0.0150 0.8254 0.0406 

n 0.9954 0.5072 -0.2924 0.7162 0.0326 

Global Ocean 

d 0.9843 0.6097 0.1054 0.9314 0.0439 

n 0.9898 0.6031 -0.2393 0.8849 0.0414 

3.2 Evaluation of the bias adjustment 

3.2.1 Evaluation of satellite data bias adjustment 

Different sensors and satellites can obtain measurements at several different times throughout the diurnal cycle. In addition, 

microwave and infrared sensors have different effective measurement depths. Since both the AMSRE and MODIS 570 

instruments are aboard the AQUA satellite, they both pass through the equator at approximately 01:30 and 13:30. Therefore, 

to verify the depth compensation conducted by the GOTM, we used the GOTM to perform depth correction on the daily 

AMSRE data and then compared the corrected values with the corresponding MODIS daily data collected at the same time. 

Figure 12 (a) shows the validation results of the AMSRE data sampling depth compensated by the GOTM. It can be seen 

that the corrected data have better consistency, with the RMSE value being reduced from 1.137 to 0.508 and the absolute 575 

bias being reduced from 0.718 to 0.302, indicating that the GOTM can simulate the SST at different depths well and can be 

used for SST conversions between different depths. Furthermore, we compared and analyzed the nighttime products of the 

same sensor with the corresponding daytime products after a time correction to verify the time correction performed by the 

GOTM. Taking AMSRE daytime products that pass through the equator at approximately 13:30 as an example, we corrected 

the values to AMSRE nighttime products that pass through the equator at 01:30 (Figure 12 (b)). With this method, the region 580 

that experiences a temperature increase from 01:30 to 13:30 is well-corrected. Comparing the SST values before and after 

the correction with the actual SST at 01:30, there was an obvious daily temperature increase before the correction, and the 
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data after the correction had lower absolute bias and RMSE values, indicating that the GOTM can simulate the diurnal 

variation in the SST well and can be used to normalize the SSTs observed at different times. 

 585 

Figure 12. The scatter diagrams of the daily original SST data and corrected results versus their corresponding actual SST 

data from 2002 to 2019. The blue points indicate original SST pixel values. The green points represent the values in 

corrected SST data, and the statistical accuracy measures (R2, Bias, Abs_Bias, and RMSE) are also indicated. 

3.2.2 Evaluation of in situ data bias adjustment 

To validate the results of using the GOTM for the depth compensation of in situ SSTs, we selected the matchups 590 

corresponding to the effective pixels of daily MODIS SSTs from the in situ SSTs and compared and analyzed the daily 

MODIS SSTs with these matchups corrected by the GOTM. Figures 13 and 14 show the verification results of the MODIS 

SSTs against the in situ data before and after the calibration, respectively. Figure 13 reflects the change in the difference 

between all types of in situ data before and after the correction and the corresponding MODIS SST data. The SSTs from the 

MODIS sensor and in situ observations showed a large deviation without the depth compensation, and the deviation was 595 

significantly reduced after the correction. Figure 14 is based on the MODIS SST as a reference and shows the distribution of 

SSTs before and after the correction from the 8 platforms described in the normalized Taylor diagram. In Figure 14, the 

degrees of agreement are compared among the in situ data from different platforms before and after the correction with the 

MODIS data. The points representing the in situ SSTs lying near the MODIS observations (the MODIS observations are 

represented by points on the X-axis at R = 1 and SDV = 1) have relatively high R and low E values. After the depth 600 

correction, the points representing the in situ SSTs are closer to the MODIS observations, which means that compared with 

the in situ data before correction, the agreement between the two is better. Therefore, the corrected result of the GOTM is 

stable and reliable and can be used for the conversion of SSTs from in situ observations taken at different depths. 

https://doi.org/10.5194/essd-2021-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 January 2021
c© Author(s) 2021. CC BY 4.0 License.



25 

 

 

Figure 13. Marginal Histogram of the difference between in situ data before and after correction and the corresponding 605 

MODIS SST data. (The margins of the scatterplot is a histogram of the variables, indicating the distribution of data in either 

direction) 
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Figure 14. Normalized Taylor diagrams showing differences between matched SST from in situ data before and after 

correction and the corresponding MODIS SST data. 610 

3.3 Evaluation of the new product 

3.3.1 Accuracy verification of low-quality pixels 

In this study, we only restored invalid pixels, including low-quality pixels and missing pixels, in the MODIS data and first 

evaluated the improvement effect of these pixels. Figure 15 shows the validation results of the low-quality MODIS SST data 

and the reconstruction results versus the corresponding in situ observations, including the corrected and uncorrected data, 615 

showing the comparison of the accuracies of the low-quality pixels before and after the reconstruction. The validation results 

show that the reconstructed MODIS SST data are always more consistent with the in situ data, including the corrected data 

and uncorrected data, than the values before reconstruction, with RMSE values lower than 0.675 and R values higher than 

0.991. Compared with the original values, the accuracies of the corrected values are improved by more than 0.65°C. 

 620 

Figure 15. The scatter diagrams of the low-quality MODIS SST data and the reconstruction results versus their 

corresponding in situ SST data from 2002 to 2019. The blue points indicate low-quality MODIS SST pixel values. The 

orange points represent the values in reconstructed SST data, and the statistical accuracy measures (R2, Bias, Abs_Bias, and 

RMSE) are also indicated. 

3.3.2 Overall accuracy verification 625 

To fully verify the overall accuracy of the reconstructed SST products, we compared the performances of the original 

MODIS SST and the reconstructed SST products relative to the in situ dataset via Taylor diagrams. The normalized Taylor 
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diagrams showing the performances of the two products relative to the in situ data before and after the correction are 

presented in Figure 16. Compared with the original MODIS product, the reconstructed product can better represent the in 

situ observations, with the highest R value, lowest E value and SDV closest to one. Among them, the original MODIS 630 

product with the lowest consistency with both the uncorrected observations and the corrected observations by far consists of 

the Atlantic SSTs, with E=0.090 and 0.057, SDV=0.967 and 0.982, and R=0.954 and 0.9711, respectively. After 

reconstruction, the Atlantic SSTs show very good correlation, with a lower E value and SDV closer to 1 with both the 

corrected and uncorrected observations, and its accuracy is significantly improved. 

 635 

Figure 16. Normalized Taylor diagrams showing differences between matched SST from in situ data before (a) and after (b) 

correction and the corresponding SST products. 

To further understand the credibility of the reconstructed product and clarify the limitations of this method, we further 

assessed the performance in terms of the output biases in different regions. The associated validation statistics of the new 

SST dataset against the corrected in situ observations and uncorrected in situ observations are summarized in Table 3. The 640 

new dataset is in agreement with the uncorrected in situ observations with abs_bias=0.3358, RMSE=0.5767, and SI=0.0352 

on the global ocean. Among these statistics, the RMSE, SI and abs_bias of the Atlantic region are slightly larger than the 

values in the global ocean, but they are all better than those of the original MODIS SST data (see Table 1 for details), the 

correlation coefficients of this product in different regions are all greater than 0.984, and the SI is less than 0.004. The 

abs_bias of the new SST product relative to the corrected in situ observations is 0.3349°C, and the RMSE and SI are 0.4742 645 

and 0.0242, respectively. The RMSE, SI and abs_bias of the values of the Atlantic Ocean region are also slightly larger than 

those of the global values. However, they are still better than those of the original MODIS SST data (see Table 2 for details), 

the correlation coefficients of the product in the different areas are greater than 0.995, and the SI is less than 0.0032. In 
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addition, the RMSE and SI values of the edge areas and high latitude areas are slightly lower than the global values, which 

indicates that the accuracy of the data in these areas is higher. These results indicate that the reconstructed MODIS SST 650 

dataset is robust and accurate due to its high consistency with in situ observations, including corrected and uncorrected 

observations. Therefore, we believe that the accuracy of SST data can be improved by the method adopted in this paper. 

Table 3 Statistics of the validation results of new SSTs against in situ SST measurements (non- corrected/corrected) 

 In situ data R2 Abs_bias RMSE SI 

Pacific Ocean 

Non-c 0.9888 0.2977 0.5219 0.0306 

corrected 0.9960 0.3226 0.4618 0.0219 

Atlantic Ocean 

Non-c 0.9846 0.4343 0.7657 0.0391 

corrected 0.9952 0.3666 0.4864 0.0320 

Indian Ocean 

Non-c 0.9963 0.3095 0.5010 0.0238 

corrected 0.9977 0.2529 0.4080 0.0186 

Global Ocean 

Non-c 0.9906 0.3358 0.5767 0.0352 

corrected 0.9961 0.3349 0.4742 0.0242 

Arctic Ocean 

Non-c 0.9933 0.3660 0.5161 0.0298 

corrected 0.9971 0.3122 0.4738 0.0243 

marginal regions  

Non-c 0.9941 0.3360 0.5049 0.0269 

corrected 0.9983 0.3342 0.467 0.0219 

To investigate the performance of the reconstructed product relative to the other products, a comparison between the 

OISST product and the reconstructed data in this study was conducted during 2002-2019. OISST Version 2.1 is an analysis 655 

product constructed by combining observations from different platforms on a regular global grid, such as AVHRR data from 

NOAA satellites, ships, Argo float and drift floats, with a spatial grid size of 0.25°. For the OISST images, we averaged the 

daily SST data corresponding to each month and obtained monthly SST images. Then, the dataset was validated against the 

corresponding in situ observations, including the uncorrected and corrected in situ SSTs, as shown in Figure 17 (a). The 

RMSE values of OISST against the uncorrected and corrected in situ observations in the global ocean were 0.602°C and 660 

0.495°C, respectively. Those of the reconstructed SSTs against the uncorrected and corrected in situ observations in the 

global ocean were 0.577°C and 0.474°C, respectively. Compared to these, the overall accuracy of the reconstructed data is 

better. In addition, we also performed an intercomparison with the 2° Extended Reconstructed Sea Surface Temperature 

(ERSST) product, which is a global monthly SST dataset derived from the International Comprehensive Ocean–Atmosphere 

Dataset (ICOADS) that uses statistical methods to enhance spatial completeness. Figure 17 (b) reflects the monthly average 665 

SST changes in different oceans from the ERSST product and the reconstructed products over the 2002-2019 period, 

indicating a reasonable consistency between the two. Based on the accuracy assessment and data intercomparison results, it 

can be seen that the reconstructed MODIS products of 2002-2019 are reliable with high accuracies and that the reconstructed 
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models we designed are effective. 

 670 

Figure 17. Validation statistics of the reconstructed product and other SST products during 2002–2019. (a): intercomparison 

with OISST, A and C represent the results of OISST and new SSTs against uncorrected in situ SST measurements, 

respectively. B and D represent the results of OISST and new SSTs against corrected in situ SST measurements, respectively. 

(b) intercomparison with ERSST, black and blue are monthly mean SST changes of ERSST and new SSTs in different ocean 

from 2002 to 2019. 675 

4 Discussion 

SST dataset with high accuracy, spatial completeness and fine resolution has important research and application value in the 

research of global change, disaster prevention and mitigation, and economics. The complementary information of the SST 

data derived from multiple satellite sensors in spatial completeness and accuracy makes it possible to generate the improved 

global coverage, high- quality unified SST data set by integrating the multiple SST products.  680 

There are many differences in terms of effective sampling depths and measurement times of SST products derived from 

various instruments, which will lead to complicated temporal and spatial differences in SST of different products (Castro et 

al., 2004; Minnett et al., 2011; Wick et al., 2004). Therefore, the diurnal variations of SST at different surface depths must 

also be considered in the merging of multi-source data. The GOTM model simulates the hydrodynamic and thermodynamic 

processes of vertical mixing of one-dimensional water columns in natural waters, and comprehensively considers the effects 685 

of solar short-wave radiation, long-wave radiation, latent heat, sensible heat and cloudiness on the diurnal variations of SST, 

which can more accurately simulate the diurnal variations of SST than traditional empirical regression models that only 

consider the main factors of diurnal variations (such as wind speed, solar radiation, etc.). In addition, it has a high vertical 
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resolution and can be encrypted on the surface layer to simulate the difference between the skin layer and the sub-skin layer, 

so as to achieve the uniformity of temperature at different observation depths. Therefore, the GOTM simulation method was 690 

used to unify the temporal and spatial reference of SST at different depths and different times for each pixel of the image, 

and the accuracies of each sensor and in situ observations are improved by 0.3-0.8℃. However, there are still certain errors, 

which are not only related to the characteristics of different sensors, retrieval algorithms, etc., but also to the accuracy of the 

GOTM model simulation. The simulation accuracy of GOTM largely depends on the input meteorological parameters. The 

wind speed, sea temperature, relative humidity, cloud cover and other data used in this paper come from ECMWF reanalysis 695 

and forecast data. The spatial resolutions of these data are relatively low, and the temporal resolutions are 3-6 hours, which 

are obviously insufficient for the rapidly changing volume such as wind speed and cloud cover. If the meteorological 

parameters with higher accuracy and resolution are available, the simulation accuracy is expected to be improved. In addition, 

when correcting the in situ observations from the iQuam, not every in situ observations from iQuam record the depth at the 

time of measurement. For example, the actual depth measured by the drift buoy is not fixed at 0.2m, which will fluctuate due 700 

to the action of waves and so on. Therefore, there will be a certain deviation in the correction to the skin layer, and these 

factors will ultimately affect the accuracy of the reconstructed product. 

In addition, the SST data in the grid form represent the average temperature in the grid area, while the in situ observations 

represent just the temperature near the locations of the station. Although this study uses the average value of the high-quality 

observations that fall in the grid area with temporal sampling less than or equal to 1 h as the matched data of the grid, it is 705 

still limited by the number of measured data within the grid. Especially in the high latitude areas where the measured points 

are sparse, the uncertainties associated with such matches could potentially bias the reconstruction and validation results. 

Therefore, more meteorological observation stations will be need to help improve the accuracy of the product. The 

acquisition and integration of rasterized SST is a complex problem, and the reconstruction models proposed in this research 

is just the beginning, which needs to be improved and developed continuously. How to better solve the time phase and 710 

sampling depth problems of satellite remote sensing data, and to introduce multiple types of data sources into the model is a 

way to improve the product accuracy, which needs further in-depth research in the future. 

5 Data availability 

The Reconstructed MODIS SST products at 0.041° resolution from 2002 to 2019 are freely available to the public in the 

img format at http://doi.org/10.5281/zenodo.4419804 (Cao et al., 2021), which are distributed under a Creative Commons 715 

Attribution 4.0 License.  

6 Conclusions 
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This study presents a new SST product with full spatiotemporal coverage based on multisource data after calibration by 

using a temperature depth and observation time correction model. The product, generated by inputting infrared-based, 

microwave-based and in situ SST data into the reconstruction spatial model, has a monthly temporal interval and a 0.041° 720 

spatial interval. This dataset effectively removed approximately 25% of the missing pixels or low-quality SST pixels from 

original MODIS monthly images. Detailed comparisons and analyses with the in situ observations (including uncorrected in 

situ data and corrected in situ data) and OISST and ERSST products illustrate the reliability and accuracy of the 

reconstructed product. This dataset effectively addresses the issues of inconsistent observation times and sampling depths of 

multisource data and compensates for the insufficiency of reconstructing actual SST pixels under clear-sky conditions rather 725 

than under clouds in some studies with very limited information, achieving good temporal and spatial coverages; thus, this 

product can be used for mesoscale ocean phenomenon analyses. It will be of great use in research related to global change, 

disaster prevention and mitigation, and economic research. Moreover, the reconstruction strategy used in this study can be 

extended to the reconstruction of temporal and spatial gap-free fields of other multisource and multitemporal satellite data, 

providing technical support for the generation of satellite reconstruction SST series products with a unified spatiotemporal 730 

reference for any temporal and spatial intervals. 

Author contributions. MC and KM designed the research and developed the methodology; MC wrote the manuscript; and 

KM, YY and all other authors revised the manuscript.  

Competing interests. The authors declare no conflicts of interest. 

Acknowledgments. The authors would also like to thank the National Aeronautics and Space Administration (NASA), the 735 

NOAA National Centers for Environmental Information, the Naval Research Laboratory (NRL) Remote Sensing Division 

and the Naval Center for Space Technology, and other agencies for their support by providing the SST product. We also 

thank the ECMWF for providing the climate reanalysis data. This work was supported by the National Key Project of China 

(Nos. 2018YFC1506602, 2018YFC1506502), Fundamental Research Funds for Central Non-profit Scientific Institution 

(Grant No. 1610132020014), and Open Fund of State Key Laboratory of Remote Sensing Science (Grant No. 740 

OFSLRSS201910). 

References  

Alerskans, E., Høyer, J. L., Gentemann, C. L., Pedersen, L. T., Nielsen-Englyst, P., and Donlon, C.: Construction of a 

climate data record of sea surface temperature from passive microwave measurements, Remote Sensing of Environment, 

236, 11485, https://doi.org/10.1016/j.rse.2019.111485, 2020. 745 

Banzon, V., Smith, T. M., Steele, M., Huang, B., and Zhang, H.-M.: Improved Estimation of Proxy Sea Surface Temperature 

in the Arctic, Journal of Atmospheric and Oceanic Technology, 37, 341-349, https://doi.org/10.1175/jtech-d-19-0177.1, 

2020. 

https://doi.org/10.5194/essd-2021-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 January 2021
c© Author(s) 2021. CC BY 4.0 License.



32 

 

Banzon, V. F., and Reynolds, R. W.: Use of WindSat to Extend a Microwave-Based Daily Optimum Interpolation Sea 

Surface Temperature Time Series, Journal of Climate, 26, 2557-2562, https://doi.org/10.1175/jcli-d-12-00628.1, 2013. 750 

Barton, I., and Pearce, A.: Validation of GLI and other satellite-derived sea surface temperatures using data from the 

Rottnest Island ferry, Western Australia, Journal of Oceanography, 62, 303-310, 

https://doi.org/10.1007/s10872-006-0055-5, 2006. 

Bretherton, F. P., Davis, R. E., and Fandry, C. B.: A technique for objective analysis and design of oceanographic 

experiments applied to MODE-73, Deep Sea Research and Oceanographic Abstracts, 23, 559-582, 755 

https://doi.org/https://doi.org/10.1016/0011-7471(76)90001-2, 1976. 

Burnett, W., Harper, S., Preller, R., Jacobs, G., and LaCroix, K.: Overview of Operational Ocean Forecasting in the US 

Navy Past, Present, and Future, Oceanography, 27, 24-31, https://doi.org/10.5670/oceanog.2014.65, 2014. 

Cao, M., Mao, K., Yan, Y., Shi, J., Wang, H., Xu, T., Fang, S., and Yuan, Z.: A New Global Gridded Sea Surface 

Temperature Data Product Based on Multisource Data (Version 1.0) [Dataset], Zenodo, 760 

http://doi.org/10.5281/zenodo.4419804, 2021. 

Carton, J. A., and Giese, B. S.: A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA), Monthly 

Weather Review, 136, 2999-3017, https://doi.org/10.1175/2007mwr1978.1, 2008. 

Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate Reanalysis, Journal of Climate, 31, 6967-6983, 

https://doi.org/10.1175/JCLI-D-18-0149.1, 2018. 765 

Castro, S. L., Emery, W. J., and Wick, G. A.: Skin and bulk sea surface temperature estimates from passive microwave and 

thermal infrared satellite imagery and their relationships to atmospheric forcing, Gayana (Concepción), 68, 96-101, 

https://doi.org/10.4067/S0717-65382004000200018 2004. 

Castro, S. L., Wick, G. A., and Steele, M.: Validation of satellite sea surface temperature analyses in the Beaufort Sea using 

UpTempO buoys, Remote Sensing of Environment, 187, 458-475, 770 

https://doi.org/https://doi.org/10.1016/j.rse.2016.10.035, 2016. 

Chao, Y., Li, Z., Farrara, J., McWilliams, J. C., Bellingham, J., Capet, X., Chavez, F., Choi, J.-K., Davis, R., Doyle, J., 

Fratantoni, D. M., Li, P., Marchesiello, P., Moline, M. A., Paduan, J., and Ramp, S.: Development, implementation and 

evaluation of a data-assimilative ocean forecasting system off the central California coast, Deep Sea Research Part II: 

Topical Studies in Oceanography, 56, 100-126, https://doi.org/https://doi.org/10.1016/j.dsr2.2008.08.011, 2009a. 775 

Chao, Y., Li, Z., Farrara, J. D., and Hung, P.: Blending Sea Surface Temperatures from Multiple Satellites and In Situ 

Observations for Coastal Oceans, Journal of Atmospheric and Oceanic Technology, 26, 1415-1426, 

https://doi.org/10.1175/2009jtecho592.1, 2009b. 

Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J. A., Halliwell, G. R., Bleck, R., Baraille, R., 

Wallcraft, A. J., Lozano, C., Tolman, H. L., Srinivasan, A., Hankin, S., Cornillon, P., Weisberg, R., Barth, A., He, R., 780 

Werner, F., and Wilkin, J.: US GODAE Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM), 

Oceanography, 22, 64-75, https://doi.org/10.5670/oceanog.2009.39, 2009. 

https://doi.org/10.5194/essd-2021-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 January 2021
c© Author(s) 2021. CC BY 4.0 License.



33 

 

Dash, P., Ignatov, A., Martin, M., Donlon, C., Brasnett, B., Reynolds, R., Banzon, V., Helen, B., Cayula, J.-F., Chao, Y., 

Grumbine, R., Maturi, E., Harris, A., Mittaz, J., Sapper, J., Chin, T., Vazquez, J., Armstrong, E., Gentemann, C., and 

Poulter, D.: Group for High Resolution SST (GHRSST) Analysis Fields Inter Comparisons: Part2. Near real-time 785 

web-based Level 4 SST Quality Monitor (L4-SQUAM), Deep Sea Research Part II Topical Studies in Oceanography, 7, 

31-43, 2011. 

Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. J., Ward, B., and Murray, M. J.: Toward Improved 

Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research, Journal of Climate, 15, 

353-369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002. 790 

Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., and Young, G. S.: Cool-skin and warm-layer effects 

on sea surface temperature, Journal of Geophysical Research-Oceans, 101, 1295-1308, https://doi.org/10.1029/95jc03190, 

1996. 

Gentemann, C. L., Meissner, T., and Wentz, F. J.: Accuracy of Satellite Sea Surface Temperatures at 7 and 11 GHz, Ieee 

Transactions on Geoscience and Remote Sensing, 48, 1009-1018, https://doi.org/10.1109/tgrs.2009.2030322, 2010. 795 

Gentemann, C. L.: Microwave sea surface temperatures for climate, 

https://doi.org/http://www.wcrp-climate.org/conference2011/posters/C14/C14_Gentemann_T45B.pdf, 2011. 

Gentemann, C. L.: Three way validation of MODIS and AMSR-E sea surface temperatures, Journal of Geophysical 

Research-Oceans, 119, 2583-2598, https://doi.org/10.1002/2013jc009716, 2014. 

Guan, L., and Kawamura, H.: SST Availabilities of Satellite Infrared and Microwave Measurements, Journal of 800 

Oceanography, 59, 201-209, https://doi.org/10.1023/A:1025543305658, 2003. 

Guan, L., and Kawamura, H.: Merging satellite infrared and microwave SSTs: Methodology and evaluation of the new SST, 

Journal of Oceanography, 60, 905-912, https://doi.org/10.1007/s10872-004-5782-x, 2004. 

Han, G., Li, W., Zhang, X., Li, D., He, Z., Wang, X., Wu, X., Yu, T., and Ma, J.: A regional ocean reanalysis system for 

coastal waters of China and adjacent seas, Advances in Atmospheric Sciences, 28, 682, 805 

https://doi.org/10.1007/s00376-010-9184-2, 2011. 

Hosoda, K., Kawamura, H., and Sakaida, F.: Improvement of New Generation Sea Surface Temperature for Open ocean 

(NGSST-O): a new sub-sampling method of blending microwave observations, Journal of Oceanography, 71, 205-220, 

https://doi.org/10.1007/s10872-015-0272-x, 2015. 

Hosoda, K., and Sakaida, F.: Global Daily High-Resolution Satellite-Based Foundation Sea Surface Temperature Dataset: 810 

Development and Validation against Two Definitions of Foundation SST, Remote Sensing, 8, 962, 

https://doi.org/10.3390/rs8110962, 2016. 

Høyer, J. L., Karagali, I., Dybkjær, G., and Tonboe, R.: Multi sensor validation and error characteristics of Arctic satellite 

sea surface temperature observations, Remote Sensing of Environment, 121, 335-346, 

https://doi.org/https://doi.org/10.1016/j.rse.2012.01.013, 2012. 815 

Huang, B., Wang, W., Liu, C., Banzon, V., Zhang, H., and Lawrimore, J.: Bias Adjustment of AVHRR SST and Its Impacts 

https://doi.org/10.5194/essd-2021-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 January 2021
c© Author(s) 2021. CC BY 4.0 License.



34 

 

on Two SST Analyses, Journal of Atmospheric and Oceanic Technology, 32, 372-387, 

https://doi.org/10.1175/jtech-d-14-00121.1, 2015. 

Huang, S., Cheng, L., and Sheng, Z.: A method of making up the satellite retrieval data of sea surface temperature, Scientia 

Meteorologica Snica, 28, 237-243, https://doi.org/10.3969/j.issn.1009-0827.2008.03.001, 2008. 820 

Kawai, Y., and Wada, A.: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review, 

Journal of Oceanography, 63, 721-744, https://doi.org/10.1007/s10872-007-0063-0, 2007. 

Kilpatrick, K. A., Podesta, G. P., and Evans, R.: Overview of the NOAA/NASA advanced very high resolution radiometer 

Pathfinder algorithm for sea surface temperature and associated matchup database, Journal of Geophysical 

Research-Oceans, 106, 9179-9197, https://doi.org/10.1029/1999jc000065, 2001. 825 

Kilpatrick, K. A., Podestá, G., Walsh, S., Williams, E., Halliwell, V., Szczodrak, M., Brown, O. B., Minnett, P. J., and Evans, 

R.: A decade of sea surface temperature from MODIS, Remote Sensing of Environment, 165, 27-41, 

https://doi.org/https://doi.org/10.1016/j.rse.2015.04.023, 2015. 

Li, A., Bo, Y., Zhu, Y., Guo, P., Bi, J., and He, Y.: Blending multi-resolution satellite sea surface temperature (SST) 

products using Bayesian maximum entropy method, Remote Sensing of Environment, 135, 52-63, 830 

https://doi.org/10.1016/j.rse.2013.03.021, 2013. 

Li, W., Xie, Y., He, Z., Han, G., Liu, K., Ma, J., and Li, D.: Application of the Multigrid Data Assimilation Scheme to the 

China Seas' Temperature Forecast, Journal of Atmospheric and Oceanic Technology, 25, 2106-2116, 

https://doi.org/10.1175/2008jtecho510.1, 2008. 

Li, Y., and He, R.: Spatial and temporal variability of SST and ocean color in the Gulf of Maine based on cloud-free SST 835 

and chlorophyll reconstructions in 2003–2012, Remote Sensing of Environment, 144, 98-108, 

https://doi.org/https://doi.org/10.1016/j.rse.2014.01.019, 2014. 

Liu, M., Guan, L., Zhao, W., and Chen, G.: Evaluation of Sea Surface Temperature From the HY-2 Scanning Microwave 

Radiometer, IEEE Transactions on Geoscience and Remote Sensing, 55, 1372-1380, 

https://doi.org/10.1109/TGRS.2016.2623641, 2017a. 840 

Liu, Y., Chin, T. M., and Minnett, P. J.: Sampling errors in satellite-derived infrared sea-surface temperatures. Part II: 

Sensitivity and parameterization, Remote Sensing of Environment, 198, 297-309, 

https://doi.org/10.1016/j.rse.2017.06.011, 2017b. 

Luo, B., Minnett, P. J., Gentemann, C., and Szczodrak, G.: Improving satellite retrieved night-time infrared sea surface 

temperatures in aerosol contaminated regions, Remote Sensing of Environment, 223, 8-20, 845 

https://doi.org/https://doi.org/10.1016/j.rse.2019.01.009, 2019. 

Luo, B., Minnett, P. J., Szczodrak, M., Kilpatrick, K., and Izaguirre, M.: Validation of Sentinel-3A SLSTR derived 

Sea-Surface Skin Temperatures with those of the shipborne M-AERI, Remote Sensing of Environment, 244, 111826, 

https://doi.org/https://doi.org/10.1016/j.rse.2020.111826, 2020. 

Martin, A. J., Hines, A., and Bell, M. J.: Data assimilation in the FOAM operational short-range ocean forecasting system: A 850 

https://doi.org/10.5194/essd-2021-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 January 2021
c© Author(s) 2021. CC BY 4.0 License.



35 

 

description of the scheme and its impact, Quarterly Journal of the Royal Meteorological Society, 133, 981-995, 

https://doi.org/10.1002/qj.74, 2007. 

Minnett, P. J.: Consequences of sea surface temperature variability on the validation and applications of satellite 

measurements, Journal of Geophysical Research: Oceans, 96, 18475-18489, https://doi.org/10.1029/91JC01816, 1991. 

Minnett, P. J.: Radiometric measurements of the sea-surface skin temperature: the competing roles of the diurnal thermocline 855 

and the cool skin, International Journal of Remote Sensing, 24, 5033-5047, 

https://doi.org/10.1080/0143116031000095880, 2003. 

Minnett, P. J., Smith, M., and Ward, B.: Measurements of the oceanic thermal skin effect, Deep Sea Research Part II: 

Topical Studies in Oceanography, 58, 861-868, https://doi.org/https://doi.org/10.1016/j.dsr2.2010.10.024, 2011. 

Minnett, P. J., Alvera-Azcárate, A., Chin, T. M., Corlett, G. K., Gentemann, C. L., Karagali, I., Li, X., Marsouin, A., Marullo, 860 

S., Maturi, E., Santoleri, R., Saux Picart, S., Steele, M., and Vazquez-Cuervo, J.: Half a century of satellite remote 

sensing of sea-surface temperature, Remote Sensing of Environment, 233, 111366, 

https://doi.org/https://doi.org/10.1016/j.rse.2019.111366, 2019. 

Ng, H. G., MatJafri, M. Z., Abdullah, K., and Othman, N.: Merging Infrared and Microwave SST data at South China Sea, 

Proceedings of the 6th International Conference on Computer Graphics, Imaging and Visualization (CGIV 2009), Tianjin, 865 

China, 11-14 August 2009, 530-535, 2009. 

Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The Bluelink ocean data assimilation system (BODAS), 

Ocean Modelling, 21, 46-70, https://doi.org/https://doi.org/10.1016/j.ocemod.2007.11.002, 2008. 

Peres, L. F., Franca, G. B., Paes, R. C. O. V., Sousa, R. C., and Oliveira, A. N.: Analyses of the Positive Bias of Remotely 

Sensed SST Retrievals in the Coastal Waters of Rio de Janeiro, IEEE Transactions on Geoscience and Remote Sensing, 870 

55, 6344-6353, https://doi.org/10.1109/tgrs.2017.2726344, 2017. 

Pisano, A., Buongiorno Nardelli, B., Tronconi, C., and Santoleri, R.: The new Mediterranean optimally interpolated 

pathfinder AVHRR SST Dataset (1982–2012), Remote Sensing of Environment, 176, 107-116, 

https://doi.org/https://doi.org/10.1016/j.rse.2016.01.019, 2016. 

Purdy, W. E., Gaiser, P. W., Poe, G. A., Uliana, E. A., Eissner, T., and Wentz, F. J.: Geolocation and pointing accuracy 875 

analysis for the WindSat sensor, IEEE Transactions on Geoscience and Remote Sensing, 44, 496-505, 

https://doi.org/10.1109/tgrs.2005.858415, 2006. 

Reynolds, R. W., and Smith, T. M.: Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation, 

Journal of Climate, 7, 929-948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2, 1994. 

Reynolds, R. W., and Smith, T. M.: A High-Resolution Global Sea Surface Temperature Climatology, Journal of Climate, 8, 880 

1571-1583, https://doi.org/10.1175/1520-0442(1995)008<1571:Ahrgss>2.0.Co;2, 1995. 

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W. Q.: An improved in situ and satellite SST 

analysis for climate, Journal of Climate, 15, 1609-1625, 

https://doi.org/10.1175/1520-0442(2002)015<1609:Aiisas>2.0.Co;2, 2002. 

https://doi.org/10.5194/essd-2021-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 January 2021
c© Author(s) 2021. CC BY 4.0 License.



36 

 

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily High-Resolution-Blended 885 

Analyses for Sea Surface Temperature, Journal of Climate, 20, 5473-5496, https://doi.org/10.1175/2007JCLI1824.1, 

2007. 

Sakalli, A., and Basusta, N.: Sea surface temperature change in the Black Sea under climate change: A simulation of the sea 

surface temperature up to 2100, International Journal of Climatology, 38, 4687-4698, https://doi.org/10.1002/joc.5688, 

2018. 890 

Shi, Y., Zhou, X., Yang, X., Shi, L., and Ma, S.: Merging Satellite Ocean Color Data With Bayesian Maximum Entropy 

Method, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3294-3304, 

https://doi.org/10.1109/JSTARS.2015.2425691, 2015. 

Smith, T. M., and Reynolds, R. W.: Extended reconstruction of global sea surface temperatures based on COADS data 

(1854-1997), Journal of Climate, 16, 1495-1510, https://doi.org/10.1175/1520-0442-16.10.1495, 2003. 895 

Storkey, D., Blockley, E. W., Furner, R., Guiavarc’h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P., and 

Siddorn, J. R.: Forecasting the ocean state using NEMO:The new FOAM system, Journal of Operational Oceanography, 

3, 3-15, https://doi.org/10.1080/1755876X.2010.11020109, 2010. 

Sun, W., Wang, J., Zhang, J., Ma, Y., Meng, J., Yang, L., and Miao, J.: A new global gridded sea surface temperature 

product constructed from infrared and microwave radiometer data using the optimum interpolation method, Acta 900 

Oceanologica Sinica, 37, 41-49, https://doi.org/10.1007/s13131-018-1206-4, 2018. 

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical 

Research-Atmospheres, 106, 7183-7192, https://doi.org/10.1029/2000jd900719, 2001. 

Thiebaux, J., Rogers, E., Wang, W. Q., and Katz, B.: A new high-resolution blended real-time global sea surface temperature 

analysis, Bulletin of the American Meteorological Society, 84, 645-656, https://doi.org/10.1175/bams-84-5-645, 2003. 905 

Varela, R., Costoya, X., Enriquez, C., Santos, F., and Gomez-Gesteira, M.: Differences in coastal and oceanic SST trends 

north of Yucatan Peninsula, Journal of Marine Systems, 182, 46-55, https://doi.org/10.1016/j.jmarsys.2018.03.006, 2018. 

Vincent, R. F., Marsden, R. F., Minnett, P. J., Creber, K. A. M., and Buckley, J. R.: Arctic waters and marginal ice zones: A 

composite Arctic sea surface temperature algorithm using satellite thermal data, Journal of Geophysical Research-Oceans, 

113, https://doi.org/10.1029/2007jc004353, 2008. 910 

Wang, Y., Guan, L., and Qu, L.: Merging Sea Surface Temperature Observed by Satellite Infrared and Microwave 

Radiometers Using Kalma, Periodical of Ocean University of China, 40, 126-130, https://doi.org/10.16441/ 

j.cnki.hdxb.2010.12.019, 2010. 

Wentz, F. J., Gentemann, C., Smith, D., and Chelton, D.: Satellite measurements of sea surface temperature through clouds, 

Science, 288, 847-850, https://doi.org/10.1126/science.288.5467.847, 2000. 915 

Wick, G. A., Jackson, D. L., and Castro, S. L.: Production of an enhanced blended infrared and microwave sea surface 

temperature product, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, 

AK, USA, 20-24 September 2004, 2004. 

https://doi.org/10.5194/essd-2021-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 January 2021
c© Author(s) 2021. CC BY 4.0 License.



37 

 

Xie, J., Zhu, J., and Li, Y.: Assessment and inter-comparison of five high-resolution sea surface temperature products in the 

shelf and coastal seas around China, Continental Shelf Research, 28, 1286-1293, 920 

https://doi.org/https://doi.org/10.1016/j.csr.2008.02.020, 2008. 

Xu, F., and Ignatov, A.: In situ SST Quality Monitor (iQuam), Journal of Atmospheric and Oceanic Technology, 31, 

164-180, https://doi.org/10.1175/JTECH-D-13-00121.1, 2014. 

Zabolotskikh, E. V., Mitnik, L. M., Reul, N., and Chapron, B.: New Possibilities for Geophysical Parameter Retrievals 

Opened by GCOM-W1 AMSR2, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 925 

4248-4261, https://doi.org/10.1109/JSTARS.2015.2416514, 2015. 

Zhao, B., Mao, K., Cai, Y., Shi, J., Li, Z., Qin, Z., Meng, X., Shen, X., and Guo, Z.: A combined Terra and Aqua MODIS 

land surface temperature and meteorological station data product for China from 2003 to 2017, Earth System Science 

Data, 12, 2555-2577, https://doi.org/10.5194/essd-12-2555-2020, 2020. 

Zhu, J., Zhou, G., Yan, C., Fu, W., and You, X.: A three-dimensional variational ocean data assimilation system: Scheme 930 

and preliminary results, Science in China Series D: Earth Sciences, 49, 1212-1222, 

https://doi.org/10.1007/s11430-006-1212-9, 2006. 

https://doi.org/10.5194/essd-2021-6

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 January 2021
c© Author(s) 2021. CC BY 4.0 License.


