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Abstract: Sea surface temperature (SST) is an important geophysical parameter that is essential for studying global climate 

change. Although sea surface temperature can currently be obtained through a variety of sensors (MODIS, AVHRR, AMSR-15 

E, AMSR2, Windsat, in situ sensors), the temperature values obtained by different sensors come from different ocean depths 

and different observation times, so different temperature products lack consistency. In addition, different thermal infrared 

temperature products have many invalid values due to the influence of clouds, and passive microwave temperature products 

have very low resolutions. These factors greatly limit the applications of ocean temperature products in practice. To overcome 

these shortcomings, this paper first took MODIS SST products as a reference benchmark and constructed a temperature depth 20 

and observation time correction model to correct the influences of the different sampling depths and observation times obtained 

by different sensors. Then, we built a reconstructed spatial model to overcome the effects of clouds, rainfall and land 

interference that makes full use of the complementarities and advantages of SST data from different sensors. We applied these 

two models to generate a unique global 0.041° gridded monthly SST product covering the years 2002–2019. In this dataset, 

approximately 25% of the invalid pixels in the original MODIS monthly images were effectively removed, and the accuracies 25 

of these reconstructed pixels were improved by more than 0.65°C compared to the accuracies of the original pixels. The 

accuracy assessments indicate that the reconstructed dataset exhibits significant improvements and can be used for mesoscale 

ocean phenomenon analyses. The product will be of great use in research related to global change, disaster prevention and 

mitigation and is available at http://doi.org/10.5281/zenodo.4419804 (Cao et al., 2021). 

1 Introduction 30 

The temperature at the interface between the atmosphere and ocean, known as the sea surface temperature (SST), is  an 

important indicator of Earth's ecosystem (Hosoda and Sakaida, 2016). SSTs are widely used in atmospheric and oceanographic 
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studies, such as in atmospheric simulations, climate change monitoring, and in studies of marine dynamic environments (Kawai 

and Wada, 2007; Martin et al., 2007; Peres et al., 2017; Reynolds and Smith, 1995). In addition, the oceans cover 70% of 

Earth's surface. A small variation in the ocean temperature exerts strong impacts on regional and even global climate change,  35 

energy exchange and the environment due to the unique physical characteristics of the oceans, including their high heat 

capacity (Varela et al., 2018). The rise of ocean temperatures will release huge amounts of heat, affect atmospheric movement, 

and produce many chain reactions, causing reductions in the CO2 content of seawater, the occurrence of extreme weather, the 

melting of sea ice in the polar region, and the rise of sea level, all of which will impact the survival of marine life, marine 

production and human life (Sakalli and Basusta, 2018). Thus, it is essential to accurately monitor changes in SST. 40 

It is difficult for traditional SST measurements based on buoys, platforms and voluntary ships to obtain large-scale and 

synchronous SST data due to the large gaps present in the data over both space and time. Compared to the traditional in situ 

SST monitoring approach, remote sensing technology has advantages in terms of large-scale and dynamic monitoring and has 

been used to acquire global ocean SST observation data (Li and He, 2014). Satellite SST data include thermal infrared and 

microwave radiometer SST data. Retrievals from satellite thermal infrared sensors can provide global SSTs at high temporal 45 

frequencies and spatial resolutions of typically 1-4 kilometers with low uncertainty (Alerskans et al., 2020). For example, 

series sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution 

Radiometer (AVHRR) can measure global SSTs with high resolutions and high accuracies. These observations are 

unfortunately greatly influenced by the atmospheric environment. In cases of aerosol contamination and cloud cover, it is 

impossible to obtain effective observations, resulting in spatial discontinuities and low quality in the collected data (Guan and 50 

Kawamura, 2003; Hosoda et al., 2015; Liu et al., 2017b). In contrast to thermal infrared measurements, microwave sensors are 

less affected by clouds and aerosol concentrations (Alerskans et al., 2020). Therefore, microwave sensors can observe SST 

information at all times and in all weather conditions except rain, and they also have high temporal resolutions and can quickly 

cover the whole surface of Earth (Wentz et al., 2000). As a result, microwave sensors play important roles in monitoring the 

temporal and spatial changes in SSTs on global and continental scales and have also been developed into mature remote sensing  55 

products, such as the TRMM Microwave Imager (TMI), the WindSat on-board Coriolis, and the Advanced Microwave 

Scanning Radiometer for Earth Observation System (AMSR-E), which have been widely used to retrieve SSTs (Gentemann, 

2014; Ng et al., 2009; Purdy et al., 2006). However, the spatial resolutions of passive microwave sensors are very coarse and 

are greatly affected by land and sea surface wind and waves, which makes it impossible to obtain detailed information about 

SSTs (Gentemann et al., 2010; Liu et al., 2017a). In addition, due to the influence of imaging orbit gaps, microwave-based 60 

products produce spatial gaps. Therefore, the SST information obtained by a single satellite remote sensor is often incomplete 

and limited and cannot fully meet the user's demand for a dataset with a high resolution, high precision and full spatiotemporal 

coverage. LuckilyFortunately, the simultaneous availability of multiple satellite sensors provides highly complementary 

information, enabling the production of high-quality unified SST datasets with improved global coverage (Guan and 

Kawamura, 2004; Shi et al., 2015; Thiebaux et al., 2003). 65 

Many SST fusion algorithms use multiple satellites and in situ data to take advantage of the strengths of each SST 
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observation and solve the above issues; these algorithms include objective analysis (OA), optimal interpolation (OI), three-

dimensional variational (3-D Var), and Kalman filtering (KF) (Chao et al., 2009a; Li et al., 2013; Smith and Reynolds, 2003). 

Bretherton et al. (1976) first applied OA in a study of ocean data. OI was developed on the basis of OA, and in OI, background 

information is introduced in the analysis process. Although there is no physical constraint, the OI has a perfect mathematical 70 

form, which statistically takes into account the influence of the relative position changes of different observation points on the 

error covariance. The OI algorithm is simple and easy to use and has become one of the main methods currently used for SST 

fusion. For example, Reynolds and Smith (1994) used the OI method to fuse in situ data from ships, buoys and satellites to 

produce OISST products that are widely used. The other SST analysis data product, RTG-SST from the National Centers for 

Environment Prediction (NCEP), are also obtained by the OI method. In addition, based on the Modular Ocean Model (MOM), 75 

the National Science Foundation and the National Oceanic and Atmospheric Administration established the Simple Ocean 

Data Assimilation system (SODA) by the OI method (Carton et al., 2018; Carton and Giese, 2008). Based on the Modular 

Ocean Model version 4p1 (MPM4), the Australian Bureau of Meteorology established marine forecasting systems covering 

Australia, nearby regions and the globe through the EnOI method (Oke et al., 2008). However, in practice, to reduce the 

computational burden, the OI algorithm is usually only applied using data near the analysis point, and there is often a certain 80 

degree of subjectivity. Methods such as VAR and KF have been proposed to overcome these problems, and these methods 

have been widely used. For example, Zhu et al. (2006) developed a new 3DVAR-based Ocean Variational Analysis System 

(OVALS), which can effectively improve estimations of temperature and salinity by assimilating various observed data. Li et 

al. (2008) applied a new 3D VAR data assimilation scheme to a retroactive real-time forecast experiment, and favorable results 

were obtained. In terms of operational applications, some institutions in Canada, the United Kingdom, the United States and 85 

China have used this method to establish ocean environmental forecast and analysis systems based on different oceanic general 

circulation models (Burnett et al., 2014; Chassignet et al., 2009; Han et al., 2011; Storkey et al., 2010). Huang et al. (2008) 

filled in the missing parts of satellite SST data with the kriging interpolation method based on the slowly changing 

characteristics of SSTs and then used KF to coordinate the variation error and interpolation error of the obtained SSTs. Finally, 

the interpolation and filtered SST data were fitted to realize SST filling. Wang et al. (2010) used the KF method to fuse the 90 

AVHRR SST and AMSR-E SST products to produce daily, spatially continuous SST data with a spatial resolution of 

approximately 2 km. However, a daily variation correction was not carried out before the fusion, and the model processing 

error was not taken into account, which brought great uncertainty to the fusion results. 

The above research has greatly improvedAlthough many studies have tried to improve the accuracy and spatial coverage 

integrity of SST products, and a variety of SSTespecially the sea temperature fusion products have been generated that have 95 

excellent accuracy in deep water regions ocean areas have high accuracy (Dash et al., 2011). However, there are also important 

deficiencies in), some SST fusionocean surface (skin) temperature products. On the one hand, the SST observations obtained 

by different sensors are highly complementary, but there are certain differences in SST products from different sensors because 

different sensors can effectively respond to water column temperatures  still exist some deficiencies. Different methods can 

be used to obtain ocean surface temperature, but they actually represent temperature information at different times andocean 100 
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depths, and the observation time is also inconsistent (Castro et al., 2004; Wick et al., 2004). DespiteThe sea temperature 

observed by traditional sites is deeper than the use of various technologies to blend multiple SST products after rigorous quality 

control at each datapoint,temperature observed by remote sensing. Even if they are all the differences still need to be resolved. 

Ontemperatures retrieved from remote sensing, the other hand, although these SST products have high accuracies 

fortemperatures retrieved from thermal infrared and microwave are from different ocean depths. The sea temperature observed 105 

by thermal infrared is the global oceanskin temperature, and the sea temperature observed by microwave is a bit deeper than 

the depth observed by thermal infrared. The sea surface temperature obtained by the assimilation model should also be different. 

In addition, some products have problems with missing pixels and relatively low accuracies near coasts and the edges of sea 

ice due to the characteristics of the remote sensing products themselves and the insufficiencies of fusion methods (Xie et al ., 

2008). Last, theSome assimilation and fusion products (E.g. ERA5, ECMWF Re-Analysis) of multisource oceanic data can 110 

solve state estimations of oceanic large-scale ocean phenomena well, (Hersbach et al., 2020), but some of these products cannot 

meet the needs of near-shore or small- and medium-scale phenomena. To address the above issues 

In order to obtain a long-term series of global major meteorological disaster remote sensing data sets with high spatio-

temporal and consistency based on the current global multi-source remote sensing data and ground observation site data, we 

constructed a temperature depth and observation time correction model to eliminate the sampling depth and temporal 115 

differences among different data. Then, we proposed, and built a reconstructed spatial model that filters out missing pixels and 

low-quality pixels from the monthly MODIS SST dataset and reconstructs them based on daily in situ SST data and daily 

satellite SST retrieval data from two infrared (MODIS and AVHRR) and three passive microwave (AMSR-E, AMSR2, 

Windsat) radiometers to generate a high-quality unified global SST product with long-term (2002–2019) spatiotemporal 

continuity. The dataset that takes advantage of complementarities and advantages of SST data from different sensors has a 120 

0.041° grid of monthly observations covering the years 2002–2019 and was validatedvalidation and cross-  

comparedcomparisons with in situ observations and other SST products. The results indicate were made to prove that the new 

reconstructed SST datadataset is reliable and is suitable for regional or global SST studies. 

2 Data and methodssources 

2.1 Satellite data retrievals 125 

InfraredThermal infrared and microwave radiometers on sun-synchronous satellites are the primary technical tools used to 

obtain global SST, and collectively, these sensors provide highly complementary information with which a new SST product 

can be generated. The AVHRR and MODIS satellitessensors, which cover the global ocean, were selected as sources of thermal 

infrared radiometer data. To reduce the data gaps present in thermal infrared data resulting from cloud and water vapor 

contamination, the inclusion of microwave radiometer data from polar-orbiting satellites are essential; in this study, ASMR-E, 130 

WindSat and AMSR2 are the main sources of microwave data. 

The MODIS sensor is onboard the Terra and Aqua spacecraft: the sensor has an ascending local equatorial crossing time of 
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13:30 in the case of the Aqua spacecraft and a 10:30 descending equatorial crossing time for the Terra spacecraft.  The daily 

and monthly L3m global SST products (Day and Night) of the MODIS sensor from Terra and Aqua are available starting from 

February 2000 and July 2002, respectively, with a 0.041° spatial resolution; these datasets were mainly used to reconstruct 135 

high-quality SST data and are available through the website https://oceandata.sci.gsfc.nasa.gov/. The standard deviation 

obtained in a data comparison was better than 0.43°C, as determined by comparison of the SST data with coincident ferry 

observations (Barton and Pearce, 2006). Each pixel of these SST data is associated with a numerical quality level stored in 

SST_flags whose value ranges, in order of descending quality, from 0 to 4. Clear data of the best quality are limited to the 

satellite zenith angles, < 55 degrees. Clear pixels at satellite angles > 55 degrees have good quality, with quality levels of 1. 140 

Pixels with a quality level > 1 may have very large differences between the retrieved SST and the reference SST due to 

significant cloud contamination or various other problems (https://oceancolor.gsfc.nasa.gov/atbd/sst/). Therefore, these pixels 

are not used for scientific research. 

The AVHRR sensor is onboard NOAA polar-orbiting satellites, has 6 bands ranging in wavelength from visible to infrared 

(one visible, two near-infrared, and three thermal infrared) and can cover the globe twice a day. The twice-daily (Day and 145 

Night) AVHRR 4-km SST data product is produced by the NOAA National Centers for Environmental Information and is 

available through the website https://data.nodc.noaa.gov/pathfinder/Version5.3/L3C/. The standard deviation obtained in a 

data comparison is approximately 0.68°C, as determined by a comparison of the AVHRR products with coincident ferry 

observations (Barton and Pearce, 2006). The data also provided a quality index for each pixel based on the evaluation test 

results stored in the pathfinder_quality_level metric, which allows the identification of cloudy pixels and/or suspicious 150 

observations, with the quality level 0 representing the worst quality and the quality level 7 being the best (Pisano et al., 2016). 

In our data processing method, we only considered values with quality flags 4 ~ 7. 

The AMSR-E sensor is onboard the Aqua satellite and is a dual-polarization microwave scanning radiometer with 6 

frequency channels in the range of 6–89 GHz. The AMSR-E instrument was in orbit for nearly 10 years but was discontinued 

in October 2011, owing to an antenna rotation problem. The AMSR2 sensor, onboard the Global Change Observation Mission-155 

Water 1 (GCOM-W1) satellite, was launched in May 2012 to continue the Aqua/AMSR-E observations and ensure the 

continuity of SST data (Zabolotskikh et al., 2015). AMSR2 has the same channels as did AMSR-E, with a 7.3-GHz channel 

added to help alleviate radio frequency interference. However, SST information collected from the AMSR2 sensor was not 

provided until mid-2012. To ensure that there is an uninterrupted consistent long-term microwave SST time series that can be 

used to reconstruct a high-quality SST product, a WindSat polarimetric radiometer was used to bridge the gap between the 160 

AMSR-E and AMSR2 products. The daily L3 SST products (ascending and descending passes) of AMSR-E and AMSR2, 

available from June 2002 and July 2012, respectively, with 0.1°-grid spatial resolutions, were used to reconstruct high-quality 

SST data and are available through the website https://gportal.jaxa.jp/gpr/search/. The accuracies of AMSR-E and AMSR2 are 

approximately 0.75°C and 0.56°C, respectively, as determined by comparisons with buoy data (Sun et al., 2018).  Daily 

WindSat SST datasets on a global 25-km grid (ascending and descending passes) were downloaded online 165 

(http://www.remss.com/missions/windsat), and their accuracies are very close to that of AMSR-E, as determined by 
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comparisons with buoy data (Banzon and Reynolds, 2013; Gentemann, 2011). 

2.2 In situ observations 

In situ observations of SST from 2002-2019 were used for the reconstruction of the new SST product and the validation of 

both the satellite-obtained SST data and the new product. The in situ observed SST data used in this study consist of SSTs 170 

from the Version 2.1 NOAA in situ Quality Monitor (iQuam), which includes updated observations every 12 hrs with a 2-hr 

latency. The SST data from iQuam include observations from drifters, ships, tropical (T-) and coastal (C-) moorings, agro 

floats, high resolution (HR) drifters, IMOS ships, and coral reef water (CRW) buoys, and the data can be obtained from 

ftp://ftp.star.nesdis.noaa.gov/pub/sod/sst/iquam/v2.10/. Quality control of the data, including basic screening, duplicate 

removal, plausibility, platform tracks, referencing, cross-platform and SST spike checks, was performed by the NOAA Center 175 

for Satellite Application and Research (Xu and Ignatov, 2014). Only SSTs assigned the best quality flag (i.e., level 5) were 

used in this study. To ensure the independence of the data reconstruction and the accuracy verification process, the data 

obtained from all spatially coincident daily iQuam SSTs with temporal sampling less than or equal toin situ observations of 

SST were randomly divided into two completely independent subsets by the jackknife method (Benali et al., 2012). Subset  1 

hraccounts for 80 % of the total number of in situ observations, which were used to reconstruct the MODIS SST data, while 180 

spatially coincident monthly SSTs calculated from daily SSTs. Subset 2 accounts for 20 % of the total number of in situ 

observations, which were used to verify the accuracy of the reconstruction results (Minnett, 1991).. The spatially coincident 

criterion restricts the maximum distance between in situ measurements and the center of the satellite image grid cells to within 

2.3 km, which is approximately half the spatial resolution of MODIS, so that the in situ observations always fall within the 

MODIS SST pixels (Minnett, 1991; Pisano et al., 2016). 185 

2.3 Ancillary data 

ERA-Interim, a climate reanalysis product produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), was discontinued on 31 August 2019 and has been superseded by the ERA5 reanalysis product produced by 

the ECMWF. The ERA5 dataset is the latest climate reanalysis product, providing hourly data on atmospheric, land and 

oceanic climate parameters together with estimates of uncertainty. The 10-meter wind component U, 10-meter wind 190 

component V, 2-meter temperature, 2-meter dewpoint temperature, sea surface temperature, relative humidity, cloud 

cover and other data from the two datasets with 0.25° spatial resolutions were used to calculate the heat, momentum and 

freshwater fluxes between the ocean and the atmosphere as well as the incoming solar radiation. These data can be 

obtained from https://apps.ecmwf.int/datasets/. 

2.4 SST data development 195 

ftp://ftp.star.nesdis.noaa.gov/pub/sod/sst/iquam/v2.10/
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3 Methodology 

Since MODIS SST data have a high accuracy and spatiotemporal resolution andwhich can be used to capture mesoscale 

phenomena in the oceans, combiningcombination of MODIS SSTs from Aqua and Terra is a good way to improve the spatial 

coverage of SST data. However, infrared SST data are retrieved using the thermal infrared band,bands which cannot 

penetrateare influenced much by clouds, so SST data cannot be provided when it has clouds in the presence of clouds. 200 

Furthermore, infrared sky, and SST retrievals are greatlyalso influenced by atmospheric aerosols and water vapor.. Some other 

factors related to radiometers can also contaminate SST observations, such as the viewing geometry, spectral response, and 

noise level of each sensor (Kilpatrick et al., 2015). Due to these factorseffects, MODIS SST data often have problems involving 

low-quality or missing pixels. Statistical analysis performed during the study period indicated that the unusablemissing pixels 

present in the monthly SST records of Terra and Aqua during both daytime and nighttime generally cover 23.46% and 28.06% 205 

of the global ocean, respectively. It is difficult to fill the data gaps in the MODIS SST retrievals caused by the above factors 

using infrared SST retrievals with data of the same quality as SST measurements collected under clear sky. ThereforeIn order 

to overcome these defects, we built a reconstructed spatial model that combines in situ station-based data and daily SST data 

from AVHRR, AMSR-E, AMSR-2 and WindSat to reconstruct a high-quality monthly MODIS SST dataset that takes into 

account the actual SSTs under clear-sky conditions instead of under clouds. generate high quality MODIS SST monthly data 210 

set. Although the temperatures retrieved by different sensors are all ocean surface temperatures, they actually represent 

temperature information at different ocean depths which are caused by different frequencies of different sensor settings and 

inconsistent algorithms. The sea temperature observed by thermal infrared is the skin temperature, and the sea temperature 

observed by microwave is a bit deeper than the depth observed by thermal infrared. In addition, the observation time of 

different observation methods may be inconsistent. ThereforeMore details are given in the following sections. In addition, 215 

there are certain biases present in SST products due to the use of different sensors resulting from the measurement methods, 

sensor band settings, and environmental influencing factors in both space and time. Thus, after identifying and accounting for 

these differences, we proposed a temperature depth and observation time correction model to address the influence of time 

phase and sampling depth of different sensors. More details are given in the following sections. The overall methodology is 

illustrated in Figure 1. TheThis processing effectively retains the high-precision pixels with high accuracy in the original 220 

MODIS daily and monthly data, and usescombines the calibrated ocean multisourcemulti-source data after calibration by using 

the temperature depth and observation time correction model and combines thewith spatio-temporal information to reconstruct 

the low-quality and missing daily pixels, and finally replaces the low-quality and missing pixels with the composite average 

pixel value in the monthly data. 
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 225 

Figure 1. A summary flowchart for reconstructing MODIS monthly SST data 

2.43.1 Bias adjustment schemesby constructing temperature depth and observation time correction model 

2.43.1.1 Bias adjustment scheme for multisource remote sensing data 

To combine oceanic multisource remote sensing data into the MODIS SST product, it is necessary to assume that the measured 

values represent the same quantities or to use some method to eliminate the differences among products. The ocean temperature 230 

data obtained by different sensors are different from those obtained by MODIS, and there are complex spatiotemporal 

differences among the sensors.. Figures 2 and 3 represent the differentdifference distributions of the original MODIS and 

multisource daily SSTs in the daytime. Obviously, these multisource data cannot be directly used to reconstruct the valid pixels 

of MODIS SST data before the differences are corrected. 
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 235 

Figure 2. Box chart with scatters of the differences in the original MODIS and multisource daily SSTs (AVHRR, WindSat, 

AMSRE, AMSR2). The boxes are determined by the 25th and 75th percentiles. The whiskers are determined by the 5th and 

95th percentiles. The data are plotted as scatters on the left of each box. A curve corresponding to a normal distribution is also 

displayed on top of each scatter plot. 

 240 

Figure 3. Difference maps of the original MODIS and multisource daily SST products. Areas of missing data are blank. 

The main source of the difference is mainly due to the inconsistent wavelengthswavelength or frequency rangesrange used 

by different sensors; these differences cause the sensors to obtain , which leads to the temperature information measured by 

the sensors from different ocean depths. The sea temperature inversion algorithms of different sensors cause the measured 

temperatures to be higher/lower due to inconsistencies among key parameter settings, which cause the inversion results to be 245 
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closer to the temperatures of the ocean surface or a given subsurface layer. Due to differences in the absorption of solar 

radiation, heat exchange with the atmosphere and levels of subsurface turbulent mixing (Minnett et al., 2011), near-surface 

temperatures are highly variable vertically, horizontally and temporally (Minnett, 2003). Infraredthermal infrared remote 

sensors retrieve sensor measures the sea surface skin temperaturestemperature at depthsa depth of 10-20 µm. Microwave, 

while the microwave remote sensorssensor can retrieve the sea surface subskin temperaturessubcutaneous temperature at a 250 

depth of 1-1.5 mm depths.(Minnett, 2003; Minnett et al., 2011). Therefore, the SSTs retrieved from various microwave 

radiometers (AMSRE, WindSat, and AMSR2) are different from the SSTs measured by the MODIS radiometer.  AlthoughIn 

addition, due to the difference of the inversion algorithm parameters, the sea temperature retrieved from the same type of 

sensor may also be different. For example, although the AVHRR sensor is an infrared remote sensor and its brightness 

temperatures represent the sea surface skin temperature, AVHRR SSTs correspond to subsurface SSTs because they are 255 

statistically regressed to coincident in situ buoy SSTs (Chao et al., 2009b; Kilpatrick et al., 2001; Pisano et al., 2016). Starting 

with the AVHRR Pathfinder Version 5.3, an average skin/subsurface temperature difference of 0.17 K, determined from 

Marine Atmospheric Emitted Radiance Interferometer (MAERI) matchups, was used to eliminate the subsurface bias so that 

the SSTs were more closely tuned to the sea surface skin temperatures (Sea Surface Temperature-Pathfinder C-ATBD). 

MODIS SSTs are skin SSTs. MODIS retrievals are based on empirical coefficients derived by regressing MODIS brightness 260 

temperatures against in situ observations from drifting and moored buoys, but the regressed SSTs are converted to skin SSTs 

based on at-sea measurements. Thus, the SSTs retrieved from the AVHRR radiometer are different from the SSTs measured 

by the MODIS radiometer. In addition, MODIS and several other sensors used in this paper have different observation times 

and can obtain measurements at several different times throughout the diurnal cycle. The relationships among these 

observations are, however, not constant because there are significant diurnal variations in sea surface temperature resulting 265 

from constant changes in the atmosphere, solar heating, wind speeds, etc. (Kilpatrick et al., 2015; Luo et al., 2019; Minnett et 

al., 2019; Wick et al., 2004). This also results in differences between MODIS observations and those of other sensors. Therefore, 

compensating for measurement depths and times is conducive to reducing the uncertainty present in the reconstruction results 

before the multisource remote sensing data are combined into the MODIS SST product. 

1) Compensating to ensure uniform effective sampling depths  270 

To solve the differences among MODIS and multisource daily SST products caused by the sampling depths, it is necessary 

to consider the differences as results of the cool skin effect and diurnal heating (Luo et al., 2020). Therefore, the model 

proposed by Fairall et al. (1996) was used to estimate the skin effect of infrared remote sensing products when integrating 

microwave remote sensing SSTs into infrared data, as shown in Eqs. 1 and 2: 

∆T = Qδ/K                                          (12020). The General Ocean Turbulence Model (GOTM) 275 

can model the SST signal at different depths by simulating the hydrodynamic and thermodynamic processes of vertical 

mixing in one-dimensional water columns in natural waters, which has been successfully used to model the near-surface 

variability of ocean temperature (Karagali et al., 2017; Pimentel et al., 2018). ) 
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δ =
λV

𝜇∗𝑤
                                            (2) 

where ∆T is the temperature variation (positive, representing that the surface is cooler than the bulk), Q is the net heat flux, 280 

K is the thermal conductivity of water, δ is the thickness of the change in temperature, λ is the empirical coefficient,  V is the 

kinematic viscosity, and 𝜇∗𝑤 is the friction velocity in the water. It is difficult to obtaining λ in Eq. 2. Based on the observed 

data of the Tropical Ocean‐Global Atmosphere Coupled Ocean‐Atmosphere Response Experiment (COARE) program, Fairall 

et al. (1996) determined λ to be dependent on wind speed. General ocean models typically simulate the surface layer of 5-10 

m as a uniform layer, and simulating such thin sea surface skin layers and subskin layers takes a long time. The General Ocean 285 

Turbulence Model (GOTM) can use a nonuniformnon-uniform grid and specifically encrypt the surface layer to quickly 

simulate the temperature of the sea surface skin layer and the subskin layer. The formula is as follows:For example, the top 

50m of the water column is resolved by using 50 vertical layers, which have higher resolution near the surface and gradually 

decrease with depth. The thickness of the first layer at the top of the water column is about 20um, and the thickness of each 

layer can be calculated according to equation 1. 290 

ℎ𝑘 = 𝐷
tanh((𝑑𝑙+𝑑𝑢)

𝑘

𝑀
−𝑑𝑙)+tanh(𝑑𝑙)

tanh(𝑑𝑙)+tanh(𝑑𝑢)
− 1                             (31) 

where ℎ𝑘 represents the thickness of layer K,. D represents the depth,. M is the number of layers, and 𝑑𝑙 and 𝑑𝑢 show 

the zooming factors of the surface and bottom, respectively. 

From this formula, the following grids are constructed: 

• dl = du = 0 results in equidistant discretization. 295 

• dl > 0, du = 0 results in zooming near the bottom. 

• dl = 0, du > 0 results in zooming near the surface. 

• dl > 0, du > 0 results in double zooming near both the surface and the bottom. 

In addition,Furthermore, Considering the GOTM can be used to simulate the hydrodynamic and thermodynamic 

processescool skin effect that usually occurs in a molecular sublayer of vertical mixing in one-dimensional water columns in 300 

natural waters and can be used the air-sea interface, a physical model for depth corrections taking into account atmosphere-

ocean interactions and vertical turbulent mixing. Therefore, the Fairall modelskin (as shown in Eqs. 2 and 3) widely used to 

estimate the cold skin effect was integrated into the air-sea interaction module of the GOTM, and the (Fairall et al., 1996; 

Saunders, 1967). The heat and momentum flux changes of each layer in the water column were integrated to more accurately 

simulate the skin effects of the SSTs. 305 

∆T = Qδ/K                                          (2) 

δ =
λV

𝜇∗𝑤
                                            (3) 

where ∆T is the temperature variation (positive, representing that the surface is cooler than the bulk). Q is the net heat flux. K 

is the thermal conductivity of water. δ is the thickness of the change in temperature. λ is the empirical coefficient. V is the 

Formatted: Indent: First line:  1 ch



 

12 

 

kinematic viscosity, and 𝜇∗𝑤 is the friction velocity in the water. It is difficult to obtaining λ in Eq. 2. Based on the observed 310 

data of the Tropical Ocean‐Global Atmosphere Coupled Ocean‐Atmosphere Response Experiment (COARE) program, Fairall 

et al. (1996) determined λ to be dependent on wind speed.   

In this section, the conversion of SSTs between different depths can be conducted using the model by entering the SST 

measurement depth and the corresponding meteorological parameter values present during the measurement, including the 

wind speed at a 10-m height, the air temperature at a 2-m height above the sea surface, air humidity data, and cloud cover 315 

data from the ECMWF. Figure 4 (a) and (b) show the variations in ocean temperatures at different depths and the differences 

between the sea surface skin temperatures and sea surface subskin temperatures simulated by the GOTM every half hour 

for a pixel with a longitude of 32.65°N and a latitude of 43.25°E from July 1, 2002, to July 31, 2002. When the wind speed 

is low, the infrared-measured SST is 0.1~0.2℃ lower than that obtained by microwave remote sensing. When the wind 

speed is high, the SSTs measured by the two sensor types are basically the same. By deducting this difference, the SSTs 320 

obtained by microwave remote sensing can be normalized to the SSTs obtained by infrared remote sensing. 

 

Figure 4. SST depth changes simulated by the GOTM every half hour for a pixel with a longitude of 32.65° and a latitude of 

43.25° in July 2002 (a is the variation in ocean temperature at different depths; b is the difference between the sea surface skin 

temperature and sea surface subskin temperature). 325 

2) Compensating to ensure uniform measurement times 

To solve the differences among the MODIS and multisource daily SST products caused by the varying measurement times, 

it is necessary to consider the diurnal variations in SST. The GOTM is based on the hydrodynamic and thermodynamic 

processes of water and comprehensively considers the effects of solar shortwave radiation, longwave radiation, latent heat, 

sensible heat and cloudiness on diurnal variations in SST. The diurnal variations caused by differences in the absorption and 330 
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attenuation of solar radiation of different water types are also considered. Therefore, the GOTM can accurately simulate diurnal 

variations in SST. We use the GOTM to simulate diurnal variations in SST. The input data also come from the ECMWF 

reanalysis product and include the wind speed at a 10-m height, the air temperature at a 2-m height above the sea surface, air 

humidity data, and cloud cover data. Cloudiness is used to calculate oceanic radiant heating. Wind speed, air temperature and 

relative humidity are used as inputs in the turbulence model to estimate sensible heat, latent heat and wind stress. The exchange 335 

coefficient of the turbulence equation is obtained based on the Fairall parameter method. Figure 4 (a) shows the variations in 

ocean temperature at different half-hour increments for a pixel with a longitude of 32.65° and a latitude of 43.25° from July 1, 

2002 to July 31, 2002. For the SSTs occurringobtaining at different times, after deducting the diurnal variations in temperature 

simulated by the GOTM, the observations can be referenced to common time. The formula is as follows:. 

𝑆𝑆𝑇𝑠 =
∑ (𝑆𝑆𝑇𝑠(𝑖)+(𝑆𝑆𝑇𝑔(𝑗)−𝑆𝑆𝑇𝑔(𝑖)))
𝑁
𝑖=1

𝑁
                               (4) 340 

where SSTS is the SST observed by the satellite;. j is the referenced common time;. i is the effective observation of other 

moments by the sensor on the same day other than moment j, of which there are a total of N;, and SSTg is the SST simulated 

by the GOTM, which also corresponds to moments i and j. 

3) Bias Adjustments of different sensor products 

In order to ensure that the corrections of depth and time are effective for each pixel, we calculated the difference range of 345 

high quality pixels for different SST data. Then, we manually checked the correction results of each invalid pixel, and 

determined the outliers according to the statistical difference range and other satellite SST data. Finally, these outliers were 

adjusted based on mathematical statistics. For example, to determine the temperature difference (Δt) between the skin surface 

temperature and sub-skin surface temperature of the pixel i of the MODIS data, we first calculated the high quality value of 

pixel of MODIS data and the microwave data at the corresponding time during the study period. Then we extracted the data 350 

of wind speed, cloud cover, humidity and other environmental factor corresponding to these values. Further, based on these 

environmental factors, we determined the SSTs corresponding to the environmental conditions at the moment when the outlier 

of pixel i appeared. Lastly, the average value of the difference between these high quality SSTs was Δt. After completion of 

the above depth and diurnal change corrections, the different measurement times and effective sampling depths were 

compensatedcorrected. However, the performances of different sensors are different, and there may be systematic and regional 355 

deviations, which need to be eliminated before fusion (Alerskans et al., 2020; Huang et al., 2015). Therefore, to correct the 

large-scale deviations among different sensors, we used the daily MODIS SST data to correct the other remotely sensed data 

compensated for different measurement times and effective sample depths. Figure 5 shows that the correlation coefficient of 

the MODIS SSTsSST data and the other remotely sensed data reaches above 0.97, indicating that these data have a strong 

correlation with the MODIS data. Therefore, we adopt linear regression to modify the other remotely sensed SST data. The 360 

correction method uses linear regression of two corresponding images, and the regression coefficient is determined by 

matching the data of the MODIS sensor and the other remotely sensed data. To avoid the influence of individual outliers, 

points with standard deviations over 1°C or with a difference greater than 2°C from the corresponding MODIS datum in the 



 

14 

 

matching window did not participate in the regression. 

 365 

Figure 5. Scatter diagrams of the MODIS SST data and ocean multisource data compensated for different measurement times 

and effective sampling depths. 

2.43.1.2 Bias adjustment scheme for in situ observations 

SSTs retrieved from MODIS sensors are skin SSTs. However, the in situ SSTs from Version 2.1 NOAA iQuam are subsurface 

SSTs. For Argo floats, only the shallowest high-quality measurement is extracted and saved from each profile into the iQuam 370 

dataset (the same algorithms are used for other in situ platforms, such as those on ships, drifters, and moorings), along with its 

measurement depth. The closest measurement to the surface of the Argo float is at a depth of 3-8 dbar (0.15-0.2 m for drifters 

and ~1 m for moorings). The differences between skin and subsurface SSTs, as described by Donlon et al. (2002), can be as 

large as 1.0°–2.0°C when the solar insolation is strong and the wind speed is weak. Figure 6 shows that the differences between 

the MODIS data and the eight types of in situ SSTs from iQuam can be significant under different weather conditions. When 375 

combining in situ SSTs into the MODIS SST product, such differences need to be accounted for. Therefore, in situ SSTs were 

first collocated and made coincident with MODIS data (within ±1 hr and ± 0.02° of latitude and longitude). Then, the coincident 

in situ SSTs were adjusted using the GOTMtemperature depth and observation time correction model by entering the SST 

measurement depth and corresponding meteorological parameter values present during the measurement, including the wind 
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speed at a 10-m height, the air temperature at a 2-m height above the sea surface, air humidity data, and cloud cover data from 380 

the ECMWF. 

 

 

Figure 6. Box chart with scatters representing the differences between the original MODIS data and eight types of in situ SST 

observations. 385 

2.43.2 Filtering of MODIS SST 

The monthly MODIS SST data cover the whole sea area of the world, but they contain many missing and low-quality pixels 

caused by factors such as clouds and aerosols. Figure 7 shows the frequency of nonnullnon-null pixels, including valid pixels 
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and low-quality pixels, in the monthly MODIS SST data from July 2002 to December 2019. The missing pixels are mainly 

distributed in high latitude sea areas beyond ±60 degrees of latitude. In the middle- and low-latitude sea areas within ±60 390 

degrees of latitude, the coverage rate of pixels is more than 95%, among which%. There are many missing pixels are mainly 

distributed off the Peru coast, exactly in ocean edges near land.the ENSO signal region, due to the widespread low clouds over 

the eastern South Pacific off the coasts of Chile and Peru (Satyamurty and Rosa, 2020). In addition, there is a lower frequency 

of non-null pixels in the Inter-Tropical convergence zone (ITCZ) region and other tropical oceanic areas west of the continents 

due to the cloud cover in these areas (Ackerman et al., 2008; McCoy et al., 2017). In most areas of low and middle latitudes, 395 

the nonnullnon-null pixel coverage is as high as 100%, but it is difficult to detect the cold top surface of thin clouds or subpixel 

clouds, and the SSTs retrieved under such conditions are usually underestimated because the temperatures of clouds are almost 

always colder than the temperature of the sea surface (Reynolds et al., 2007). Moreover, other factors can also contaminate the 

observed signals and affect the data quality, such as factors related to the radiometer, including its viewing geometry, spectral 

response and noise level (Kilpatrick et al., 2015). Therefore, there are many low-quality pixels presentamong non-null pixels 400 

in the low and middle latitudes during the study period. In this study, the spatial process of the SST reconstruction includes 

the removal of low-quality pixels in low- and mid-latitude regions and the reconstruction of low-quality and missing pixels in 

the marginal low- and mid-latitude regions and the high-latitude regions. 

The quality control information stored in the qual_sst layer is provided along with the MODIS L3m SST data, with the 

quality level 0 being the best quality and the quality level 4 being the worst. These values can be found in the original MODIS 405 

SST Netcdf files (see section 2.1 for a detailed description). The missing pixels present in these data are represented by the 

filling value -32767. Therefore, the quality control labels and the filling value were used to identify low-quality and missing 

pixels in the MODIS SST product. For monthly and daily SST data, to ensure the data quality and the number of effective 

pixels, pixels with a quality level ≤ 1 were considered to be high-quality data. 

 410 
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Figure 7. Frequency of nonnullnon-null pixels, including valid pixels and low-quality pixels, in the monthly MODIS SST data 

during the study period from (a) nighttime Aqua overpasses, (b) daytime Aqua overpasses, (c) nighttime Terra overpasses, and 

(d) daytime Terra overpasses. 

2.43.3 SST data reconstruction 415 

In the data processing, we first filtered all input monthly MODIS SST images and determined the locations of the low-quality 

and missing pixels. Then, for each invalid pixel (i.e., the low-quality and missing pixels) in the monthly images, we filtered 

the daily MODIS SST data of the respective month at the corresponding location. The high-quality pixels in the daily SST 

data were retained, and the invalid pixels in the daily data were reconstructed by combining multisource data. Finally,  the 

invalid pixels present in the monthly data were replaced by the mean SST values derived from the gap-filled daily SST time 420 

series of the corresponding month. Combining the characteristics of multisource data and the availability of the data, we 

adopted different methods to reconstruct the invalid pixels present in the daily MODIS SST data for different regions. 

2.43.3.1 Reconstruction of invalid SST pixels in low- and mid-latitude marginal regions of the ocean 

Due to the influence of the mixed sea and land pixels in adjacent coastal areas, microwave-based sea surface temperature 

products obtained from passive microwave remote sensing have very large uncertainties in these areas (Xie et al., 2008), which 425 

result in more invalid or low-quality pixel values in adjacent coastal areas (Xie et al., 2008).. Therefore, weinvalid pixels in 

these regions were first used daily filled with in situ or AVHRR SST data from MODIS, and AVHRR and correspondingthese 

pixels filled with in situ observations to reconstruct the pixels in these regions. Inwere marked. Then, in cases where these 

observations were missing, we filled these invalid pixels based on the geographically weighted regression (GWR) and Kalman 

filtering (KF) methods, fitted the SSTs obtained by the two methods and finally reconstructed the invalid pixels. A summary 430 
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flowchart of the process is schematically illustrated in Figure 8. 

 

Figure 8. A summary flowchart for reconstructing invalid SST pixels in the marginal low- and mid-latitude marginal regions 

of the ocean 

Invalid pixels were filled with in situ or AVHRR SST data at the same location and time (priority was given to the use of in 435 

situ data), and these pixels filled with in situ observations were marked. For the invalid pixels without AVHRR and in situ 

SSTs, we filled in the missing part with GWR method based on the slowly changing characteristics of SST, and then used KF 

to coordinate the variation error and interpolation error of SST. Finally, the interpolation and filtered SST data were fitted to 

realize the SST filling. 

2)1) Interpolating invalid pixels with GWR 440 

GWR is an effective method for estimating missing pixels, and itwhich can quantitatively determine the contribution of 

adjacent pixels to contaminated pixels (Zhao et al., 2020). This method assumes that the spatially adjacent pixels with similar 

meteorological conditions have similar temperature values. Therefore, after determining the pixels, the GWR method was used 

in this study to reconstruct invalid pixels. To determine the sliding window with the minimum noise and the best complement 

value, we simulated the size of the experimental pixel window severalmany times and selected a sliding window of 15 by 15 445 

pixels centered on the target pixel. This window size also avoids the reduction in execution efficiency caused by the redundancy 

of pixel data involved in the calculation and ensures the number of pixel values involved in the calculation. In theory, even in 

the case of thick cloud coverage, in situ SSTs are the most reliable records. If there are in situ SST observations, the missing 

or low-quality pixels are directly obtained from the in situ measurements, which are more representative of the real SSTs under 

cloud cover than under clear sky conditions. During the reconstruction of invalid pixels, the regression weight coefficient of 450 
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each adjacent pixel was determined by the Euclidean distance between that pixel and the target pixel. 

SimultaneouslySimultaneously, considering that the available pixels obtained from in situ observations are more representative 

of the real SST under the cloud cover, we assigned a relative multiple weight to the marked in situ data according to GWR. 

By selecting some marked pixels as experimental values, it was found that the target pixels can be estimated most accurately 

when Mc (McMg (Mg is the weighting coefficient of the in situ assigned pixels) was set to 3 in this paper. The weighting 455 

coefficients of adjacent pixels can be determined by the following formula. After the GWR model used the Euclidean distance 

to obtain the weights,Eqs. 5 and 6. Then a local linear regression calculation was performed for each point in the window 

according to the sample weights. This regression calculation can be expressed as Eq. 7:.  

𝐷 = √(𝑥 − 𝑥𝑡)
2 + (𝑦 − 𝑦𝑡)

2                                   (5) 

𝑊𝑖 =

𝑀𝑐
𝐷𝑖

∑
𝑀𝑐
𝐷𝑖
+∑

𝑀𝑔

𝐷𝑗

𝑛
𝑗=1

𝑚
𝑖=1

,𝑊𝑗 =

𝑀𝑔

𝐷𝑗

∑
𝑀𝑐
𝐷𝑖
+∑

𝑀𝑔

𝐷𝑗

𝑛
𝑗=1

𝑚
𝑖=1

                                 (6) 460 

𝑇𝑡 = ∑ 𝑊𝑖 ∙ 𝑇𝑖 + ∑ 𝑊𝑗 ∙ 𝑇𝑗
𝑛
𝑗=𝑚+1

𝑚
𝑖=1                                (7) 

where D is the distance from the adjacent pixel to the target pixel;. (x, y),(), (x𝑡, 𝑦𝑡) are the locations of the adjacent pixel 

and target pixel, respectively;. i and j are the adjacent pixels used to estimate the SST of the invalid pixel;. i is an adjacent 

pixel of high quality;. j is a pixel assigned by the in situ measurement;. 𝑊𝑖 and𝑊𝑗 are weight multipliers;. m is the number of 

i;. n is the number of j;, and Mc and Mg represent the weighting coefficients of the high-quality pixels and in situ assignment 465 

pixels, respectively. In this paper, Mc and Mg are set at 1 and 3, respectively.𝑇𝑡  is the filled SST value of the target pixel.  

3)2) Using KF to coordinate the error 

For this region, on the basis of interpolation, KF can be used to coordinate the error characteristics of the SST variation and 

the error characteristics of the interpolation. Since the SST variation is relatively flat, SST is treated as a stationary random 

process. Due to the slowly changing characteristics of SST and the lack of in situ dataeffective temperature values representing 470 

these pixels, we took into account the observedSST data representing the three days before and afteradjacent time at the 

location of the invalid pixel. The MODIS products from the Terra and Aqua satellites produced 4 SST images per day, for a 

total of 28 images. Considering the operational requirements of SST real-time retrievals and the necessary computing speed 

and storage capacity of the computer, the correlation of the error changes with each observation time was not considered in 

the actual operation process, and only simple random error was used to simulate the changes in the process error and 475 

observationmeasurement error. By modeling the data, the equation of state of the system can be written as follows:. 

X(t) = X(t−1) +W(t−1)𝐗𝐭 = ∅𝐗𝒕−𝟏 +𝐖𝐭−𝟏                                     (8) 

where XXt is state to be estimated at time instant t. Xt-1 is the daily MODIS SST without interpolation;state vector of the 

process at time t. ∅is the state transition matrix of the process from the state at t-1 to the state at t, which is assumed stationary 

over time, and tWt-1 are time; and W represents the process noise, which is considered to be Gaussian, and its covariance is 480 

represented by Qt. Taking Q. We take the KF of 124 MODIS SST images in July 2002 as an example, there were 124 MODIS 

data points.. All data were arranged in chronological order, and the change of the SST in each pixel relative to the SST of the 
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previous time was counted. Based on the statistical results of these images, the mean square deviation of the change covariance 

was 1.7648. Therefore, Qt is 1.76482*3.115* I (I is the identity matrix). 

 Consider the following measurement equation:. 485 

Z(T) = HX(t) + V(t)𝐙𝐭 = 𝐇𝐗𝐭 + 𝐕𝐭                                      (9) 

where Z is the interpolated daily MODIS SST; H is an identity matrix; and VZt is the measurement of X at time instant t. H is 

the noiseless connection between the state vector and the measurement vector, which is assumed stationary over time. Vt 

represents the measurement noise, which is also considered to be Gaussian, and its covariance is represented by Rt. Rt is 

determined mainlyR. R can be obtained by the accuracy of Z. In this paper, the covariance between the interpolated daily 490 

MODIScomparing the measurement data with the verification data and the in situ data collected during the study period was 

calculated to be 0.945; then(Xu and Cheng, 2021). Then, the following KF formula was used to combine the input data to 

achieve the optimal output of the system. 

The , which operates in a prediction–update. The prediction equations are responsible for projecting forward (in time) the 

current state and error covariance estimates to obtain the a priori estimates for the next state time step. The update equations 495 

are responsible for the feedback, i.e. for incorporating a new measurement into the a priori estimate was calculated using the 

state extrapolation equations. 

X(t)
− = X(t−1)                                       (10) 

The extrapolatedto obtain an improved a posteriori estimate uncertainty (variance), P(𝑋(𝑡)−),is the uncertainty of the 

extrapolated estimate. 500 

P(𝑋(𝑡)−) = P(X(t−1)) + Q(t−1)                                (. Prediction equations are as Eqs. 10 and 11). 

The KF gain,K(t), was then calculated. 

K(t) = P(𝑋(𝑡)−)/(P(𝑋(𝑡)−) − R(t))                              (12) 

The current estimate was calculated using the state update equation. 

X(t) = X(t)
− + 𝐾(𝑡)[𝑍(𝑡)−X(t)

−]                               (13) 505 

The current estimate uncertainty was updated. 

𝑃𝑋(𝑡) = [1Xt
− = ∅Xt−1                                       (10) 

Pt
− = ∅Pt−1∅

𝑇 + Q                                    (11) 

Update Equations are as Eqs. 12, 13, and14. 

Kt = Pt
−𝐻𝑇[𝐻Pt

−𝐻𝑇 + R]−1                               (12) 510 

Xt = Xt
− + 𝐾𝑡[𝑍𝑡 − 𝐻Xt

−]                                (13) 

𝑃𝑡 = [𝐼 − 𝐾(𝑡)]P(𝑋(𝑡)−)𝐾𝑡𝐻]Pt
−

                                    (14) 

where X, ∅, H, Q and R can be obtained according to the explanation of equations 8 and 9. K is the Kalman gain. P is the 

error covariance matrix.  

4)3) Fitting interpolated and filtered data 515 
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The least square method was used to fitTo more accurately reconstruct the interpolated and filtered data, where in the 

interpolation based on the WGR method and the filtering based on KF were represented by Tg and Tk in the following equation, 

respectively. 

T′ = α𝑇𝑔 + 𝛽𝑇𝑘                                    (15) 

To determine the coefficient ofpixels that lack valid observations, a data fitting, we selected some pixels from the images 520 

replaced by the in situ and AVHRR SSTs and marked them as invalid pixels and then interpolated and filtered these pixels. 

The least square method was used to fit shown in Eq. 15 was performed for the interpolated and filtered data, andwhich are 

the fitting coefficient wasSSTs obtained using the following formula. Thenbased on the GWR and the KF methods, 

respectively. Finally, the reconstruction of invalid pixels without in situ or AVHRR SST filling could be realized by using Eq. 

16:the data fitting. 525 

T′ = α𝑇𝑔 + 𝛽𝑇𝑘                                    (15) 

where T′is the reconstructed SST. 𝑇𝑔 and 𝑇𝑘 are the SSTs obtained based on the GWR and the KF methods, respectively. 

To determine the best fitting parameters of α and 𝛽, we selected some valid pixels from each image and then interpolated 

and filtered these pixels. The Eq. 15 was used to fit the interpolated and filtered results, and the fitting coefficients of each SST 

image was obtained using the least squares method. 530 

∆T(α, β) = ∑ [𝑇𝑖 − 𝑇𝑖
′]2𝑛

𝑖=1                                (16) 

where 𝑇𝑖  is the valid pixel value in the image replaced by the in situ and AVHRR SSTs and n is the number of these pixels. 

When ΔT reaches a minimum value, the fitting coefficient can be obtained by using Eqs. 17 and 18. 

𝜕∆𝑇(𝛼,𝛽)

𝜕𝛼
= −2∑ (𝑇𝑖 − 𝛼𝑇𝑔 − 𝛽𝑇𝑘)𝑇𝑔

𝑛
𝑖=1 =0                         (17) 

𝜕∆𝑇(𝛼,𝛽)

𝜕𝛽
= −2∑ (𝑇𝑖 − 𝛼𝑇𝑔 − 𝛽𝑇𝑘)𝑇𝑘

𝑛
𝑖=1 =0                         (18) 535 

2.43.3.2 Reconstruction of invalid SST pixels in low- and mid-latitude inner ocean areas 

Similar to the method used to reconstruct invalid SST pixels in the marginal regions of the oceans at low and middle latitudes, 

pixels with invalid SST values were collocatedreconstructed through collocating with in situ and AVHRR data to reconstruct 

invalid pixels in inner ocean areas. The invalid pixels were filled using values from valid in situ SST or AVHRR data collected 

at the same location at the same time. The difference is that the accuracy of microwave-based data is lower in marginal sea 540 

areas but higher in the ocean interior. Based on the consistency of MODIS daily data and microwave daily data temperature 

variation trends at corresponding dates, in cases of missing observations, we used microwave-basedIn cases of missing in situ 

SST or AVHRR data, the SST retrieved from passive microwave data to reconstruct the invalid SST data. A summary flowchart 

of the process is schematically illustrated in Figure 9. 
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 545 

Figure 9. The summary flowchart for reconstructing invalid SST pixels in low- and mid-latitude inner ocean areas 

The temperature variation trends present in the MODIS daily data and microwave daily data on corresponding date in the 

same region are the same, so the two groups of data have the same proportional relation. Taking a grid of n pixels by n pixels 

as an example, a and b are considered the same regions clipped from the MODIS and microwave-based data, respectively. The 

gray and white rasters represent the effective and invalid pixels, respectively. Mkl and Rkl represent the pixel values of the 550 

MODIS and microwave-based data, respectively. K and L represent the pixel positions. M ij represents the value after the 

interpolation of invalid pixels. 

 

Figure 10.  MODIS and microwave SST data corresponding to a n×n grid 
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                      (19) 555 

The reconstruction of invalid pixels can be achieved by using the above formula. The reconstructed pixels meet the accuracy 

of the interpolated images to a certain extent and do not damage the original SST variation trend of the interpolated image.. 
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After several simulations of different experimental pixel window sizes, the noise was found to be minimized when a sliding 

window of 6 by 6 pixels was used, and this window size was considered to have the best complement value. 

2.43.3.3 Reconstruction of invalid SST pixels in high-latitude regions of the ocean 560 

At high latitudes, sea ice covers a significant fraction of the global oceans (approximately 5-8%). The presence of large areas 

of mixed sea ice and open water makes it difficult to retrieve SSTs (Høyer et al., 2012; Vincent et al., 2008). In addition, there 

is persistent cloud cover in polar regions, with cloud cover occurring up to 90% of the time in summer and 50%-60% of the 

time in winter in the Arctic (Høyer et al., 2012). The continuous cloud cover and extended twilight period complicate the 

detection of cloud, which thus present problems for identifingidentifying clouds correctly of cloud detection algorithms. 565 

Therefore, it is challenging to use satellite sensors to accurately retrieve SST at high latitudes, including the Arctic Ocean. 

Moreover, because of the existence of sea ice and the difficulty of navigating in ice-filled water, the amount of field 

observations at the area is generally scarce compared to other regions (Reynolds et al., 2002). The Microwave and AVHRR 

SST data used in this study have limited available pixels in high latitude regions, so it is impossible to reconstruct MODIS 

SST data in high latitude regions only by relying on these data and in situ data. 570 

High-latitude SSTs can be estimated based on satellite sea ice concentrations (SICs). In areas with sea ice, the SST is the 

temperature of the open water or of the water under the ice (Banzon et al., 2020). Multiple analysis (L4) products from 

GHRSST enable SST estimation near the polar region by converting SIC into SST. Due to differences in satellite source data, 

integration methods and methods for converting SIC to SST, the accuracy of levels 4 SST products of GHRSST-PP vary in 

many aspects. After understanding the differences among current GHRSST level 4 products and their qualities and 575 

availabilities in different areas, the OISST V2.1 product was selected to restore invalid pixels in the MODIS SST data in the 

high-latitude area with sea ice coverage. In the product, SICs were revised to SSTs to remove warm biases in the Arctic region. 

In areas of high latitudes, since the microwave-based SST data (used in this paper) exclude sea ice pixels, that is, SSTs are 

missing when the number of pixels with sea ice contamination exceeds a specified value, we used a combination of two 

strategies to reconstruct the missing SST data to improve the accuracy of the results. A summary flowchart of the process is 580 

schematically illustrated in Figure 11. 
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Figure 11. The summary flowchart for reconstructing invalid SST pixels in high latitude regions of the ocean 

First, the variables l2p_flags and the sea ice fraction in the AVHRR SST data were used to identify the sea ice extent. The 

sea ice fraction variable quantified the fraction of sea ice contamination in a given pixel (ranging from 0 to 1), and bit 2 of the 585 

l2p_flags variable was recorded if an input pixel recorded ice contamination. These variables can be used to identify sea ice 

pixels. Then, we used the first strategy to reconstruct invalid pixels in high latitudes without sea ice coverage. Pixels with 

invalid SST values in the MODIS data were collocated with in situ and AVHRR observations. Invalid pixels were filled using 

the values from the valid in situ or AVHRR data at the same location and the same time (priority was given to the use of in 

situ data). Then, for the invalid pixels without available observations, we used the method described in section 2.43.3.2 above 590 

to fill the pixels using microwave data. Finally, considering the characteristics of the slow changes in SST and the fact that 

SST changes in the same area are interannual and its changes in the short term are usually small, the invalid pixels without any 

filling data were reconstructed by using the GWR method combined with spatiotemporal information. That is, we obtained the 

effective pixels of the same date in the previous year and the following year at the same position and the effective pixel values 

of the adjacent dates (within two days) in the same year. Then, thereplace invalid pixels were replaced with the composite 595 

average pixel value of valid pixels from the adjacent dates. If the number of effective pixels was too small, then the GWR 
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method was used to reconstruct the invalid pixel. 

 In another strategy, grid cellspixels with invalid SST values due to sea ice-covered areas were collocated with in situ and 

AVHRR SSTs. Invalid pixels, which were filled using values from valid in situ SST or AVHRR data collectedobserved at the 

same location and at the same time. ThenFinally, the adjusted OISST V2.1 products were used to reconstruct the invalid pixels 600 

in sea ice-covered areas that didwhen there are not have sufficient replacement pixels in sea ice-covered areas. The adjustment 

algorithm is a linear regression algorithm that relies on coefficients derived from collocated, cotemporalco-temporal OISST 

and MODIS SST observations. These data were then used to fill the missing value pixels by linear interpolation: 

𝑇𝑀 = 𝛼 × 𝑇𝑂 + 𝛽                            (20) 

where TM is the adjusted SST after interpolation (units: °C);. TO is the pixel value of the OISST product;. α is the correction 605 

factor of the OISST on the SST value from MODIS, which is the regression coefficient based on, which is determined by 

matching the clear sky pixelsdata of dailythe MODIS SSTs inSST data and the corresponding two images;OISST data, and β 

is the estimated intercept.  

34 Result 

MODIS has superior coverage and performance in sampling global SST and has been verified by various studies (Barton and 610 

Pearce, 2006). Moreover, to better assess the accuracy of the new SST product, we performed verification of the original 

MODIS data, oceanic multisource data compensated for different measurement times and effective sampling depths, and the 

new SST data in different regions. The accuracy of the data was assessed using five statistical indexes: the correlation 

coefficient of determination (R2), root mean squared error (RMSE), bias, absolute bias (Abs_Bias), and scatter index (SI). The 

bias was calculated as the SST obtained from the MODIS SST product minus the in situ SST. The scatter index, usually 615 

denoted as SI, was used to measure the magnitude of the bias between the SST product and the in situ observations versus the 

in situ observations. A smaller SI means a more accurate measurement.  

𝑅2 =
(∑ (𝑆𝑆𝑇i−𝑆𝑆𝑇)(𝑆𝑆𝑇𝑖

′−𝑆𝑆𝑇′̅̅ ̅̅ ̅̅ ̅)𝑛
𝑖=1 )2

∑ (𝑆𝑆𝑇i−𝑆𝑆𝑇)
2𝑛

𝑖=1 ∑ (𝑆𝑆𝑇𝑖
′−𝑆𝑆𝑇′̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1

                                (21) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑆𝑆𝑇𝑖 − 𝑆𝑆𝑇𝑖

′)2𝑛
𝑖=1                                  (22) 

𝑏𝑖𝑎𝑠 =
1

𝑛
∑ (𝑆𝑆𝑇𝑖 − 𝑆𝑆𝑇𝑖

′)𝑛
𝑖=1                                    (23) 620 

𝑎𝑏𝑠_𝑏𝑖𝑎𝑠 =
1

𝑛
∑ |𝑆𝑆𝑇𝑖 − 𝑆𝑆𝑇𝑖

′|𝑛
𝑖=1                                 (24) 

𝑆𝐼 =
√
1

𝑛
∑ [(𝑆𝑆𝑇i−𝑆𝑆𝑇)−(𝑆𝑆𝑇𝑖

′−𝑆𝑆𝑇′̅̅ ̅̅ ̅̅ ̅)]2𝑛
𝑖=1

𝑆𝑆𝑇′̅̅ ̅̅ ̅̅ ̅                                 (25) 

where SSTi is the MODIS SST value of matching point i. 𝑆𝑆𝑇𝑖
′ is in situ observation value of matching point i. n is the number 

of matching points.𝑆𝑆𝑇 and 𝑆𝑆𝑇′̅̅ ̅̅ ̅̅  are the average value of SST obtained from MODIS products and the average value of 

SST obtained from in situ observations, respectively. 625 
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In addition, to convey information more easily and concisely, Taylor diagrams (Taylor, 2001) were also used to compare 

the accuracies of different SST products, as they provide a way to graphically summarize the relative accuracies of several 

products. Taylor diagrams are two-dimensional scatter plots in which discrete points give an indication of how well patterns 

match each other in terms of their correlation coefficient (R), centered RMSE (E), and normalized standard deviation (SDV), 

all at once (Castro et al., 2016). These statistics are defined as follows, where M and O are the simulated and observed patterns, 630 

respectively. 

𝑅 =
1

𝑁−1
∑ (

𝑚𝑖−𝑚

𝜎𝑚
)(
𝑜𝑖−𝑜

𝜎𝑜
)𝑁

𝑖=1                                     (2026) 

SDV =
𝜎𝑚

𝜎𝑜
                                           (2127) 

𝐸2 =
(𝑅𝑀𝑆𝐸2−𝑏𝑖𝑎𝑠2)

𝜎𝑜
                                 (2228) 

𝐸2 = 𝑆𝐷𝑉2 + 1 − 2𝑆𝐷𝑉 × 𝑅                                 (2229) 635 

In the Taylor diagram, SDV is shown as the radial distance, and R is shown as the cosine of an azimuthal angle in the polar 

plot. The observed patterns are represented by points on the X-axis at R = 1 and SDV = 1. E is the distance from the simulated 

patterns to the observed patterns, and this distance can quantify how closely the simulated patterns resemble the observed 

patterns. 

34.1 Evaluation of the original product 640 

We conducted a comparative analysis based on the distribution of invalid pixels in different regions, as shown in Tables 1 and 

2. The Arctic Ocean was not verified becauseand the original data had many missing pixels at high latitudes. Tables 1 and 2 

show the validation results of validations of the original monthly MODIS SST values against the in situ SST measurements 

and the (including the uncorrected in situ data and corrected in situ data) were shown in Table 1. Validation using in situ SST 

measurements compensated for the effective sampling depths, respectively. Without correction of the sampling depths of the 645 

in situ SST measurements, the MODIS-based daytime SST measurements showed positive biases, while the MODIS-based 

nighttime SST measurements showed negative biases except over the Atlanticshows that the RMSE ranges from 0.768 °C to 

1.727 °C (SI: 0.034-0.066), and validation using corrected Ocean. With corrected sampling depths of the in situ SST 

measurements, MODIS-based nighttime SST measurements of the Atlantic Ocean also showed negative biases. In addition, 

MODIS-based daytime SST products are better than nighttime products, and the measurements over the Atlantic Ocean have 650 

the lowest accuracies. 

Table 1. Analysis of SST matching points between original monthly MODIS-TERRA/AQUA and in situ SST measurements 

from 2002 to 2019indicates that the RMSE ranges from 0.719 °C to 1.167 °C (SI: 0.032 to 0.544). 

Table 1. Statistics of the validation results of original monthly MODIS SSTs against in situ SST measurements (non- 

corrected/corrected) 655 

  Day/NightI R2 Abs_bias bias RMSE SI 
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n situ data 

Pacific Ocean 

dNon-c 0.97739793 0.66936364 0.2240 1.15130753 0.05480507 

ncorrected 0.97869854 0.68075638 -0.18218958 1.1665 0.05320423 

Atlantic Ocean 

dNon-c 0.95619663 0.82798634 0.2543 1.45277271 0.07090657 

ncorrected 0.95849662 0.96347272 0.0921 1.62251670 0.09700544 

Indian Ocean 

dNon-c 0.97869915 0.69295271 0.02717677 1.1606 0.04980339 

ncorrected 0.98369925 0.60824875 -0.20097185 1.24120.0320 0.0613  

Global Ocean 

dNon-c 0.97219735 0.72627478 0.1900 1.25932461 0.05910581 

ncorrected 0.9789835 0.70796293 -0.14349671 1.26660.0454 0.0615 

Table 2. Analysis of SST matching points between original monthly MODIS-TERRA/AQUA and in situ SST measurements 

adjusted by GOTM from 2002 to 2019 

 Day/Night R2 Abs_bias bias RMSE SI 

Pacific Ocean 

d 0.9850 0.5794 0.1528 0.9134 0.0437 

n 0.9880 0.5995 -0.2360 0.8925 0.0397 

Atlantic Ocean 

d 0.9776 0.6822 0.1015 0.8254 0.0503 

n 0.9821 0.7624 -0.1709 1.0686 0.0622 

Indian Ocean 

d 0.9892 0.5654 0.0150 0.8254 0.0406 

n 0.9954 0.5072 -0.2924 0.7162 0.0326 

Global Ocean 

d 0.9843 0.6097 0.1054 0.9314 0.0439 

n 0.9898 0.6031 -0.2393 0.8849 0.0414 

3 

4.2 Evaluation of the bias adjustment 

34.2.1 Evaluation of satellite data bias adjustment 660 

Different sensors and satellites can obtain measurements at several different times throughout the diurnal cycle. In addition , 

microwave and thermal infrared sensors have different effective measurement depths. Since both the AMSRE and MODIS 

instruments are aboard the AQUA satellite, they both pass through the equator at approximately 01:30 and 13:30.  Therefore, 

in order to verify the depth compensation conducted by the GOTMcorrection model, we used the GOTMdepth correction 

model to perform depth correction on the daily AMSRE data. That is, the sampling depth of AMSRE daily data was corrected 665 

to the sampling depth of MODIS data, and then compared the corrected values with the corresponding MODIS daily data 

collected at the same time.. Figure 12 (a) shows the validation results of the AMSRE data sampling depth compensated by the 

GOTM. It can be seenSST data, which shown that the overall result between the corrected data have better consistency, with 
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theand the MODIS data presents a good linear relationship. The RMSE value beingis reduced from 1.137℃ to 0.508℃ and 

the absolute bias beingis reduced from 0.718℃ to 0.302, indicating℃, which indicates that the GOTMmodel can simulate the 670 

SST at different depths well and can be used for SST conversions between different depths. Furthermore, we compared and 

analyzed the nighttime products of the same sensor with the corresponding daytime products after a time correction to verify 

the time correction performed by the GOTMmodel. Taking AMSRE daytime SST products that pass through the equator at 

approximately 13:30 as an example, we corrected thethese SST values to AMSREthe corresponding nighttime products that 

pass through the equator at 01:30 SST values (Figure 12 (b)). With this method, the region that experiences a temperature 675 

increaseShown from 01:30 to 13:30 is well-corrected. Comparing the SST values before and after the correction with the actual 

SST at 01:30,figure 12 (b), there was an obvious daily temperature increasediurnal warming before the correction, and the data 

after the correction had lower absolute bias and RMSE values, indicating that. Thus, the GOTMmodel also can simulate the 

diurnal variation in the SST well and can be used to normalize the SSTs observed at different times. 

 680 

Figure 12. The scatter diagrams of the daily original SST data and corrected results versus their corresponding actual SST data 

from 2002 to 2019. The blue points indicate original SST pixel values. The green points represent the values in corrected SST 

data, and the statistical accuracy measures (R2, Bias, Abs_Bias, and RMSE) are also indicated. 

34.2.2 Evaluation of in situ data bias adjustment 

To validate the correction results of using the GOTM for thetemperature depth compensation ofand observation time correction 685 

model on in situ SSTs, we selected the matchups corresponding to the effective pixels of daily MODIS SSTs from the in situ 

SSTs and compared and analyzed the daily MODIS SSTs with these matchups corrected by the GOTM.. Figures 13 and 14 

both show the verification results of the MODIS SSTs against the in situ data before and after the calibration, respectively. 

Figure 13 reflects the change in the difference between all types of in situ data before and after the correction and the 
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corresponding MODIS SST data. The SSTsIt can be shown from figure 13 that the MODIS sensor and range of temperature 690 

difference between uncorrected in situ observations showed a large deviation withoutdata and MODIS data is about -2℃ - 

2.5℃, while the depth compensation,difference range between corrected in situ data and the deviation was 

significantlyMODIS data is reduced afterto the correctionrange of -0.5℃-0.75℃. Figure 14 is based on the MODIS SST data 

as a reference and shows the distribution of SSTs before and after the correction from the 8 platforms described in the 

normalized Taylor diagram. In Figure 14, the degrees of agreement are compared among the in situ data from different 695 

platforms before and after the correction with the MODIS data. The points representing the in situ SSTs lying near the MODIS 

observations (the MODIS observations are represented by points on the X-axis at R = 1 and SDV = 1) have relatively high R 

and low E values. After the depth correction, the points representing the in situ SSTs are closer to the MODIS observations, 

which means that compared with the in situ data before correction, the agreement between the two is better. Therefore, the 

corrected result of the GOTMmodel is stable and reliable and can be used for the conversion of SSTs from in situ observations 700 

taken at different depths. 

 

Figure 13. Marginal Histogram of the difference between in situ data before and after correction and the corresponding MODIS 

SST data. (The margins of the scatterplot isare a histogram of the variables, indicating the distribution of data in either direction) 
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 705 

Figure 14. Normalized Taylor diagrams showing differences between matched SST from in situ data before and after correction 

and the corresponding MODIS SST data. 

34.3 Evaluation of the new product 

34.3.1 Accuracy verification of low-quality pixels 

In this study, we only restored invalid pixels, including low-quality pixels and missing pixels, in the MODIS data and first 710 

evaluated the improvement effect of these pixels. Figure 15 shows the validation results of the low-quality MODIS SST data 

and the reconstruction results versus the corresponding in situ observations, including the corrected in situ data and uncorrected 

data, showing the comparison of the accuracies of the low-quality pixels before and after the reconstruction.in situ data. The 

validation results showindicate that the reconstructed MODIS SST data are always more consistent with the in situ data, 

including the corrected data and uncorrected data, than the values before reconstruction, with RMSE values lower than 0.675°C 715 

and RR2 values higher than 0.991. Compared with the original values, the accuracies of the corrected values are improved by 

more than 0.65°C. 
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Figure 15. The scatter diagrams of the low-quality MODIS SST data and the reconstruction results versus their corresponding 

in situ SST data from 2002 to 2019. The blue points indicate low-quality MODIS SST pixel values. The orange points represent 720 

the values in reconstructed SST data, and the statistical accuracy measures (R2, Bias, Abs_Bias, and RMSE) are also indicated. 

34.3.2 Overall accuracy verification 

To fully verify the overall accuracy of the reconstructed SST products, we compared the performances of the original MODIS 

SST and the reconstructed SST products relative to the in situ datasetdata via Taylor diagrams. The normalized Taylor diagrams 

showing the performances of the two products relative to the in situ data before and after the correction are presented in Figure 725 

16. Compared with the original MODIS product, the reconstructed product can better represent the in situ observations, with 

the highest R value, lowest E value and SDV closest to one. Among them, the original MODIS product with the lowest 

consistency with both the uncorrected observations and the corrected observations by far consists of the Atlantic SSTs, with 

E=0.090 and 0.057, SDV=0.967 and 0.982, and R=0.954 and 0.9711, respectively. After reconstruction, the Atlantic SSTs 

show very good correlation, with a lower E value and SDV closer to 1 with both the corrected and uncorrected observations, 730 

and its accuracy is significantly improved. 
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Figure 16. Normalized Taylor diagrams showing differences between matched SST from in situ data before (a) and after (b) 735 

correction and the corresponding SST products. 

To further understand the credibility of the reconstructed product and clarify the limitations of this method, we further 

assessed the performance in terms of the output biases in different regions. The associated validation statistics of the new SST 

dataset against the corrected in situ observations and uncorrected in situ observations are summarized in Table 32. The new 

dataset is in agreement with the uncorrected in situ observations with abs_bias=0.3358°C, RMSE=0.5767°C, and SI=0.0352 740 
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on the global ocean. Among these statistics, the RMSE, SI and abs_bias of the Atlantic region are slightly larger than the 

values in the global ocean, but they are all better than those of the original MODIS SST data (see Table 1 for details), the 

correlation coefficients of this product in different regions are all greater than 0.984, and thethese SI isvalues are less than 

0.004. The04. For the whole ocean, the abs_bias of the new SST product relative to the corrected in situ observations is 

0.3349°C, and the RMSE and SI are 0.4742°C and 0.0242, respectively. The RMSE, SI and abs_bias of the values of the 745 

Atlantic Ocean region are also slightly larger than those of the global values. However, they are still better than those of the 

original MODIS SST data (see Table 21 for details), the correlation coefficients of the product in the different areas are greater 

than 0.995, and thethese SI isvalues less than 0.0032032. In addition, the RMSE and SI values of the edge areas and high 

latitude areas are slightly lower than the global values, which indicates that the accuracy of the data in these areas is higher. 

These results indicate that the reconstructed MODIS SST dataset is robust and accurate due to its high consistency with in si tu 750 

observations, including corrected and uncorrected observations. Therefore, we believe that the accuracy of SST data can be 

improved by the method adopted in this paper. 

Table 32 Statistics of the validation results of new SSTs against in situ SST measurements (non- corrected/corrected) 

 In situ data R2 Abs_bias RMSE SI 

Pacific Ocean 

Non-c 0.9888 0.2977 0.5219 0.0306 

corrected 0.9960 0.3226 0.4618 0.0219 

Atlantic Ocean 

Non-c 0.9846 0.4343 0.7657 0.0391 

corrected 0.9952 0.3666 0.4864 0.0320 

Indian Ocean 

Non-c 0.9963 0.3095 0.5010 0.0238 

corrected 0.9977 0.2529 0.4080 0.0186 

Global Ocean 

Non-c 0.9906 0.3358 0.5767 0.0352 

corrected 0.9961 0.3349 0.4742 0.0242 

Arctic Ocean 

Non-c 0.9933 0.3660 0.5161 0.0298 

corrected 0.9971 0.3122 0.4738 0.0243 

marginal regions  

Non-c 0.9941 0.3360 0.5049 0.0269 

corrected 0.9983 0.3342 0.467 0.0219 

To investigate the performance of the reconstructed product relative to the other products, a comparison between the OISST 

product and the reconstructed data in this study was conducted during 2002-2019. OISST Version 2.1 is an analysis product 755 

constructed by combining observations from different platforms on a regular global grid, such as AVHRR data from NOAA 

satellites, ships, Argo float and drift floats, with a spatial grid size of 0.25°. For the OISST images, we averaged the daily SST 

data corresponding to each month and obtained monthly SST images. Then, the dataset was validated against the corresponding 

in situ observations, including the uncorrected and corrected in situ SSTs, as shown in Figure 17 (a). The RMSE values of 

OISST against the uncorrected and corrected in situ observations in the global ocean were 0.602°C and 0.495°C, respectively. 760 
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Those of the reconstructed SSTs against the uncorrected and corrected in situ observations in the global ocean were 0.577°C 

and 0.474°C, respectively. Compared to these, the overall accuracy of the reconstructed data is better. In addition, we also 

performed an intercomparison with the 2° Extended Reconstructed Sea Surface Temperature (ERSST) product, which is a 

global monthly SST dataset derived from the International Comprehensive Ocean–Atmosphere Dataset (ICOADS) that uses 

statistical methods to enhance spatial completeness. Figure 17 (b) reflects the monthly average SST changes in different oceans 765 

from the ERSST product and the reconstructed products over the 2002-2019 period, indicating a reasonable consistency 

between the two. Based on the accuracy assessment and data intercomparison results, it can be seen that the reconstructed 

MODIS products of 2002-2019 are reliable with high accuracies and that the reconstructed models we designed are effective. 

 

 770 
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Figure 17. Validation statistics of the reconstructed product and other SST products during 2002–2019. (a): intercomparison 

with OISST, A and C represent the results of OISST and new SSTs against uncorrected in situ SST measurements, respectively. 

B and D represent the results of OISST and new SSTs against corrected in situ SST measurements, respectively. (b) 

intercomparison with ERSST, black and blue are monthly mean SST changes of ERSST and new SSTs in different ocean from 

2002 to 2019. 775 

5 Data availability 

The Reconstructed MODIS SST products at 0.041° resolution from 2002 to 2019 are freely available to the public in the img 

format at http://doi.org/10.5281/zenodo.4419804 (Cao et al., 2021), which are distributed under a Creative Commons 

Attribution 4.0 License.  

46 Discussion 780 

SST dataset with high accuracy, spatial completeness and fine resolution has important research and application value in the 

research of global change, disaster prevention and mitigation, and economics. The complementary information of the SST data 

derived from multiple satellite sensors in spatial completeness and accuracy makes it possible to generate the improved global 

coverage, high- quality unified SST data set by integrating the multiple SST products. Conclusions 

There are many differences in terms of effective sampling depths and measurement times of SST products derived from various 785 

instruments, which will lead to complicated The purpose of this study is to build a long-term series of global major 

meteorological disaster remote sensing data sets with high spatio-temporal and consistency based on the current global multi-

source remote sensing data and ground observation site data, and to provide key ocean temperature parameters (such as sea 

surface temperature) for marine meteorological disaster forecasting models, especially rapid forecasts of marine disasters such 

as typhoons, and provide early warning services for global fishing vessels and merchant ships. 790 

In order to ensure the temporal and spatial differences in SSTconsistency of different products (Castro et al., 2004; Minnett 

et al., 2011; Wick et al., 2004). Therefore, data, we built a temperature depth and observation time correction model based 

GOTM for modeling of the diurnal variations of SSTsignal at different surface depths must also be considered inthus bridging 

the merginggap of multi-source data. The GOTM model simulates the hydrodynamic and thermodynamic processes of vertical 

mixing of one-dimensional water columns in natural waters, and comprehensively considers the effects of solar short-wave 795 

radiation, long-wave radiation, latent heat, sensible heat and cloudiness on the diurnal variations of SST, which can more 

accurately simulate the diurnal variations of SST than traditional empirical regression models that only consider the main 

factors of diurnal variations (such as wind speed, solar radiation, etc.). In addition, it has a high vertical resolution and can be 

encrypted on the surface layer to simulate the difference between the skin layer and the sub-skin layer, so as to achieve the 

uniformity of temperature at different observation depths. Therefore, the method based GOTM simulation method was used 800 
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to unify the temporal and spatial reference of SST at different depths and different times for each pixel of the image, and the 

accuracies of each sensor and in situ observations are improved byabout 0.3-0.8℃. However, there are still certain errors, 

which are not only related to the characteristics of different sensors, retrieval algorithms, etc., but also to the accuracy of the 

GOTM model simulation. The simulation accuracy of GOTM largely depends on the input meteorological parameters. The 

wind speed, sea temperature, relative humidity, cloud cover and other data used in this paper come from ECMWF reanalysis 805 

and forecast data. The spatial resolutions of these data are relatively low, and the temporal resolutions are 3-6 hours, which are 

obviously insufficient for the rapidly changing volume such as wind speed and cloud cover.which has some influence to 

accuracy. If the meteorological parameters with higher accuracy and resolution are available, the simulation accuracy is 

expected tocan be improved further. In addition, when correcting temperature obtained from in situ observations, not every 

the in situ observations from the iQuam, not every in situ observations from iQuam record the depth at the same time of 810 

measurement.. For example, the actual depthtemperature measured by the drift buoydrifting buoys is not fixed at 0.2m beneath 

the surface, which will fluctuate due to the actioninfluence of waves and so on.other factors. Therefore, there will be a certain 

deviation in the correction toof the skin layer, and these factors will ultimately affect the accuracy of the reconstructed product. 

In addition, the SST data in the grid form representrepresents the average temperature in the grid area, while the in situ 

observations represent just the temperature near the locations of the stationstations. Although thisthe study usesused the 815 

average value of the high-quality observationsobservation data that fall in the grid area with temporal sampling less than or 

equal to 1 h as the matched data of the grid, it iswas still limited by the number of measured data within the grid. Especially in 

the high latitude areas where the measured points are sparse, the uncertainties associated with such matches could potential ly 

bias the reconstruction and validation results. Therefore, more meteorological observation stations will be needare needed to 

help improve the accuracy of the product. The acquisition and integration of rasterized SST isare a complex problem, and the 820 

reconstruction models proposed in this research isare just the beginning, which needs to be improved and developed 

continuously. How to better solve the time phase and sampling depth problems of satellite remote sensing data, and to introduce 

multiple types of data sources into the model is a way to improve the product accuracy, which needs further in-depth research 

in the future. 

5 Data availability 825 

The Reconstructed MODIS SST products at 0.041° resolution from 2002 to 2019 are freely available to the public in the img 

format at http://doi.org/10.5281/zenodo.4419804 (Cao et al., 2021), which are distributed under a Creative Commons 

Attribution 4.0 License.  

6 Conclusions 
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This study presentsFinally, a new SST product was obtained with fullhigh spatiotemporal coverage based on multisource 830 

data after calibration by using a temperature depth and observation time correction model.above model. The product, generated 

by inputting infrared-based, microwave-based and in situ SST data into the reconstruction spatial model, has a monthly 

temporal interval and a 0.041° spatial interval. This dataset effectively removed approximately 25% of the missing pixels or 

low-quality SST pixels from, which has higher accuracy and better consistency with statistics than the original MODIS 

monthly images.datasets, and it combines the advantages of multi-source data. Detailed comparisons and analyses with the in 835 

situ observations (including uncorrected in situ data and corrected in situ data) and OISST and ERSST products also illustrate 

the reliability and accuracy of the reconstructed product. This dataset effectively addresses the issues of inconsistent 

observation times and sampling depths of multisource data and compensates for the insufficiency of reconstructing actual SST 

pixels under clear-sky conditions rather than under clouds in some studies with very limited information, achieving good 

temporal and spatial coverages; thusThus, this product can be used for mesoscale ocean phenomenon analyses. It will be of 840 

great useuseful in research related to global change, local area disaster prevention and mitigation, and economic research. 

Moreover. In addition, the reconstruction strategy used in this study can be extended to the reconstruction of temporal and 

spatial gap-free fields of other multisourcemulti-source and multitemporalmulti-temporal satellite data, providing technical 

support for the generation of satellite reconstruction SST series products with a unified spatiotemporal reference for any 

temporal and spatial intervals space-time gapless field reconstruction. 845 
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