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Abstract. Dams and reservoirs are among the most widespread human-made infrastructure on Earth. Despite their societal 

and environmental significance, spatial inventories of dams and reservoirs, even for the large ones, are insufficient. A 

dilemma of the existing georeferenced dam datasets is the polarized focus on either dam quantity and spatial coverage (e.g., 

GOODD) or detailed attributes for a limited dam quantity or region (e.g., GRanD and national inventories). One of the most 

comprehensive datasets, the World Register of Dams (WRD) maintained by the International Commission on Large Dams 20 

(ICOLD), documents nearly 60,000 dams with an extensive suite of attributes. Unfortunately, the WRD records provide no 

geographic coordinates, limiting the benefits of their attributes for spatially explicit applications. To bridge the gap between 

attribute accessibility and spatial explicitness, we introduce the Georeferenced global Dams And Reservoirs (GeoDAR) 

dataset, created by utilizing online geocoding API and multi-source inventories. We release GeoDAR in two successive 

versions (v1.0 and v1.1) at https://doi.org/10.5281/zenodo.6163413 https://doi.org/10.6084/m9.figshare.13670527. GeoDAR 25 

v1.0 holds 22,74322,560 dam points georeferenced from WRD, whereas v1.1 consists of a) 24,97824,783 dam points after a 

harmonization between GeoDAR v1.0 and GRanD and b) 21,57621,515 reservoir polygons retrieved from high-resolution 

water masks. Due to geocoding challenges, GeoDAR spatially resolved ~40% of the records in WRD which, however, 

comprise over 90% of the total reservoir area, catchment area, and reservoir storage capacity. GeoDAR does not release the 

proprietary WRD attributes, but upon individual user requests we may provide assistance in associating GeoDAR spatial 30 

features with the WRD attribute information that users have acquired from ICOLD. Despite this limit, GeoDAR with a dam 

quantity triple that of GRanD, significantly enhances the spatial details of smaller but more widespread dams and reservoirs, 

and complements other existing global dam inventories. Along with its extended attribute accessibility, GeoDAR is expected 
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to benefit a broad range of applications in hydrologic modelling, water resource management, ecosystem health, and energy 

planning.  35 

1 Introduction 

Since around the 1950s, the world has seen an unprecedented boom in large dam construction as a response to the ever-

growing human demands for water and energy (Chao et al., 2008; Wada et al., 2017). Today, dams and their impounded 

reservoirs are ubiquitous across many global basins, providing multiple services that range from hydropower and flood 

control to water supply and navigation (Belletti et al., 2020; Biemans et al., 2011; Boulange et al., 2021; Döll et al., 2009; 40 

Grill et al., 2019). These benefits were, however, often gained at the costs of fragmenting river systems, submerging arable 

lands, displacing population, and disturbing climate regimes (Carpenter et al., 2011; Cretaux et al., 2015; Degu et al., 2011; 

Grill et al., 2019; Latrubesse et al., 2017; Nilsson and Berggren, 2000; Tilt et al., 2009; Vörösmarty et al., 2003; Wang et al., 

2017). 

Despite such environmental and societal significance, our spatial inventory of global dams and reservoirs, even for the large 45 

ones (such as those with a surface area >1 km2), has been insufficient. We still lack a thorough and authoritative dataset that 

documents both geographic coordinates (latitude and longitude) and standard attributes (e.g., purpose, reservoir storage 

capacity, and hydropower capacity) of the existing large dams. One of the most comprehensive datasets, the World Register 

of Dams (WRD), is regularly updated by the International Commission on Large Dams (ICOLD; https://www.icold-

cigb.org), a non-governmental organization dedicated to the global sharing of professional dam/reservoir information. The 50 

recent version of ICOLD WRD documents nearly 60,000 “large” dams, defined as those with a wall higher than 15 m or 

between 5 to 15 m but with a reservoir storage greater than 3 million m3 (mcm). These WRD records are considered to be 

“complete” to the extent of contributions from willing nations and water authorities (Wada et al., 2017).  

While ICOLD WRD provides more than 40 attributes (e.g., reservoir storage capacity, dam height, and reservoir purpose), 

the dam locations are, unfortunately, either not georeferenced or publically available. Despite the availability of many 55 

essential attributes, missing geographic coordinates has severely limited the applications of WRD, including for hydrological 

modelling and hydropower planning (Yassin et al., 2019) which require the dam records to be spatially explicit. This 

dilemma may be partially resolved by using georeferenced regional registers such as the United States National Inventory of 

Dams (US NID; https://nid.sec.usace.army.mil). Nevertheless, such regional registers are not always publicly available, 

especially in developing nations where dam construction is still booming (Zarfl et al., 2015). 60 

Other global dam and reservoir datasets that are georeferenced, however, often lack essential attributes. An example is the 

recently published GlObal geOreferenced Database of Dams (GOODD V1) (Mulligan et al., 2020), which contains 38,667 

dam points digitized from Google Earth imagery and their associated catchments delineated from digital elevation models 
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(DEMs). Despite this dam quantity, GOODD provides no other attribute information. Another inventory, the Global River 

Obstruction Database (GROD) (Kornei, 2020; Whittemore et al., 2020; Yang et al. 2022), located more than 35,00030,500 65 

flow obstructions along rivers wider than 30 m as mapped in the Global River Width from Landsat (GRWL) database (Allen 

and Pavelsky, 2018). The current attributes are limited to obstruction types such as locks, weirs, and multiple types of dams. 

In addition, GROD is tailored for the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission which is 

designed to observe river reaches wider than 50–100 m (Biancamaria et al., 2016). While these rivers are sufficiently 

captured by GRWL, the obstruction infrastructure identified along the river mask in GRWL excludes many large dams on 70 

rivers narrower than 30 m. In the US, for instance, there are at least 5,170 NID-registered dams higher than 15 m (i.e., large 

dams according to ICOLD criteria), but less than 8% of these dams intersect with GRWL (i.e., located on rivers wider than 

30 m). 

Among the few global dam/reservoir datasets that provide both georeferenced locations and essential attributes, are the 

United Nations Food and Agricultural Organization (FAO) AQUASTAT (Li et al., 2011) and the Global Reservoir and Dam 75 

database (GRanD) (Lehner et al., 2011). GRanD was constructed by harmonizing AQUASTAT and a wide range of regional 

gazetteers and inventories. Its latest version, v1.3, contains 7,320 dams as well as their reservoir boundaries and 

approximately 50 attributes, with a cumulative storage capacity of 6,881 km3. Since its publication, GRanD has been applied 

extensively by a variety of studies, although its focus is on the world’s largest dams (e.g., >0.1 km3) and its quantity (7,320 

dams) is a fraction of the 59,000 dams documented in WRD. A spatially resolved inclusion of additional large dams, such as 80 

those in compliance with the ICOLD definition, has been increasingly desired by the hydrology community and encouraged 

by growing collaborations from multiple disciplines such as biogeochemistry, ecology, energy planning, and infrastructure 

managements (Belletti et al., 2020; Boulange et al., 2021; Grill et al., 2019; Lin et al., 2019; Wada et al., 2017). 

Here, we present the initial versions of the Georeferenced global Dams And Reservoirs dataset, or GeoDAR. We built 

GeoDAR by leveragingutilizing multi-source dam and reservoir inventories and the Google Maps geocoding API. Our goal 85 

is to tackle the limitations of existing datasets by offering a dam inventory that is both spatially resolved and has an extended 

ability to access important attributes. As summarized in Table 1, our GeoDAR product includes two successive versions. 

GeoDAR v1.0 is essentially a georeferenced subset of ICOLD WRD. It contains nearly 23,00022,560 dam points, each 

indexed by an identifier (ID) that is associated with a WRD record, allowing for the potential retrieval of all its 40+ 

proprietary attributes from ICOLD. GeoDAR v1.1 consists of a) nearly 25,000 dam points which harmonized v1.0 and 90 

GRanD for an expanded inclusion of the largest dams, and b) the reservoir boundaries for most (8687%) of the dam points 

based on a one-to-one relationship between dams and reservoirs. Due to geocoding challenges, GeoDAR v1.0 spatially 

resolved about 40% of the individual dams in WRD. However, these georeferenced locations were quality controlled, and 

after the harmonization with GRanD, v1.1 captures a total storage capacity of 72977,384 km3, a magnitude comparable to 

the full storage capacity of WRD. While GeoDAR v1.1 can be considered as a version that supersedes v1.0, the latter was, in 95 
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principle, georeferenced independently from GRanD. , and wWe  opted to release both versions so that users have the 

flexibility to choosedecide whichever works better for their cases and potentially improve the harmonization.  

For proprietary reasons, neither GeoDAR version releases any WRD attributes. Instead, we offer an option for users if they 

need to acquire the attributes: upon individual request we may assist the user who has purchased WRD (https://www.icold-

cigb.org/GB/world_register/world_register_of_dams.asp) to associate the GeoDAR ID with the ICOLD “international code”, 100 

through which WRD attributes can be linked to each GeoDAR feature (see Sections 3.3 and 7 for more details). Even 

without the proprietary WRD attributes, GeoDAR offers one of the most extensive and spatially-resolved global inventory of 

dams and reservoirs, which may benefit a variety of applications in hydrology, hydropower planning, and ecology.   

Table 1. GeoDAR product versions and components 

Version Description Component Acquisition sources/methods Count Storage 
capacity (km3) 

Reservoir polygon 
area (km2) 

v1.0 
 

Georeferenced 
ICOLD Dam points 

Geo-matched via regional registers 13,14926
0 1309.31,308.2 --- 

Geocoded via Google Maps API 93509,27
8 1226.21,232.4 --- 

Supplemented by Wada et al. (2017) 133 3,900.0 --- 

Total 22,56022,
743 6435.56,440.6 --- 

v1.1 
 

Harmonized 
ICOLD and 
GRanD 

Dam points 

GeoDAR v1.0 alone (excluding 
overlap with GRanD v1.3) 

17,73217,
480 428.3507.2 --- 

GRanD v1.3 and GeoDAR 1.0 50115,08
0 5995.56,006.0 --- 

GRanD v1.3 and other ICOLD 14251,41
4 604.7603.0 --- 

GRanD v1.3 alone 810809 268.0267.7 --- 

Total 24,97824,
783 7296.67383.8 --- 

Reservoir 
polygons 

GRanD v1.3 reservoirs 71817,12
0 6801.36,717.7 472,379.6446,525.2 

HydroLAKES v1.0 76737,18
4 223.9259.8 16,677.613,661.9 

UCLA Circa- 2015 Lakes 67227,21
1 92.1238.5 4802.936,126.6 

Total 21,57621,
515 7117.47,216.1 493,860.2496,313.8 

2 Methods 105 

2.1 Definitions and overview 

We aim to georeference (i.e., acquire the latitude and longitude of) each dam listed in ICOLD WRD, by using the nominal 

location (e.g., a descriptive address for a dam or reservoiri.e., descriptive information) available in the WRD attributes. 

Examples of the attributes that are important for georeferencing include the names of the dam and reservoir, the 

administrative divisions the dam is affiliated with, and the name of the impounded river. Using such attribute information, 110 

https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp
https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp
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spatial coordinates of a dam may be either a) queried from an existing register or inventory where dam records were already 

georeferenced and verified, or b) estimated through a geocoding service that can convert nominal locations to numeric 

spatial coordinates. Our preference was the former when possible to optimize the georeferencing accuracy. 

The schematic procedure of GeoDAR production is illustrated in Fig. 1. We started by removing duplicate records from the 

59,071 dams listed in the original ICOLD WRD (accessed in March 2019). Here “duplicates” are defined as the dams that 115 

are either a) repeatedly recorded with identical (or highly similar) attribute information or b) different dam structures but 

associated with the same reservoir. Examples of the second scenario include a reservoir’s primary dam and secondary/saddle 

dams dyke such as the Boonton Dam and its associated Parsippany Dike (40.884° N, 74.408° W) in New Jersey and multiple 

controls for one reservoir such as Veersedam and Zandkreekdam for Veerse Meer (51.549° N, 3.678° E) in the Netherlands. 

Although “duplicates” in this scenario refer to different dam bodies, including them could lead to double or multiple 120 

counting of the storage capacity of the same reservoir, and similar to the production of GRanD, our goal was to link one 

reservoir to one dam (if possible). After removing the identified duplicates, the cleaned WRD contains 56,81550 unique 

dams/reservoirs. These dams/reservoirs have with an accumulative total water storage capacity of 73347,328 km3 (based on 

the original WRD attribute values (which occasionally are missing or have unit errors) or 7,720 km3 after 

replacement/correction by Wada et al. (2017) and GRanD (see Section 2.4). Unless otherwise described, the ICOLD WRD 125 

mentioned in the following text refers to the version after duplicate removal. We acknowledge that owing to the challenges 

of lacking explicit spatial information and occasional attribute errors in WRD, our duplicate removal is not perfect and may 

have misidentified or missed some duplicate dams. 

We then compared the unique ICOLD WRD records against a collection of georeferenced dam registers we acquired from 

regional water authorities and agencies. When the attribute information of a WRD dam matched that in a regional register, 130 

the spatial coordinates from the latter were “borrowed” by the WRD record. We term this process “geo-matching”, which 

resulted in the georeferencing of 13,30113,190 WRD dams. For the remaining dams in WRD, we applied the alternative 

approach “geocoding”, which transforms a nominal location (such as the dam or reservoir address formulated by ICOLD 

attribute information) to a pair of spatial coordinates. The tool we used to implement geocoding was the Google Maps 

geocoding API (http://developers.google.com/maps). The geocoding process successfully retrieved the spatial coordinates of 135 

another 94109,338 WRD dams. The combined output from both geo-matching and geocoding were next collated with the 

spatial coordinates and reservoir storage capacities of 133 WRD dams larger than 10 km3 as documented in Wada et al. 

(2017). These processes resulted in GeoDAR v1.0, a total of 22,74322,560 georeferenced WRD dam points with an 

accumulative storage capacity of 64366,441 km3 (accounting for more than 80% of that in ICOLD WRD). The Venn 

diagram in Fig. 2a provides an overview of the logical relations among the georeferencing sources and methods for GeoDAR 140 

v1.0. 

http://developers.google.com/maps
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Figure 1. Schematic flowchart of GeoDAR production. Text in roman indicates applied or produced datasets, and text in 

italics indicates methods or procedures. The number noted by asterisk excludes 27 dams that are also in Wada et al. (2017).  145 

To further improve our spatial inventory of the world’s largest dams, we performed a harmonization between the dam points 

in GeoDAR v1.0 and GRanD v1.3. The harmonization aimed at merging both datasets, removing duplicates (overlap) 

between them, and when possible, associating each new dams supplemented by GRanD with the corresponding WRD 

records. This process identified another 22352,223 dam points, including 1,41425 associated with WRD but not 

georeferenced in GeoDAR v1.0. With removal of duplicates, this harmonization led to a total number of 24,97824,783 150 

georeferenced dam points, with an accumulative storage capacity of 72977,384 km3 (comparable to that in the original 

WRD). An overview of this harmonization process is illustrated by the Venn diagram in Fig. 2b. Finally, the reservoir 

polygons for each of the georeferenced dams were retrieved as thoroughly as possible from three global water body datasets: 

GRanD v1.3 reservoirs (Lehner et al., 2011), HydroLAKES v1.0 (Messager et al., 2016), and the Landsat-based UCLA 

Circa- 2015 Lake Inventory (Sheng et al., 2016). These nearly 25,000 dam points and their associated reservoir polygons 155 

constitute GeoDAR v1.1. Details of production processes and their Quality Assurance and Quality Control (QA/QC) are 

included in the following method sections. 
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Figure 2. Venn diagrams illustrating the logical relations among georeferencing data sources and methods for GeoDAR. (a) 160 

GeoDAR v1.0 and (b) GeoDAR v1.1 (dams only). Boxes indicate final subsets in each GeoDAR version, and the arrows 

point to the georeferencing sources or methods. Topology of the shapes illustrates logical relations among the data/methods, 

but sizes of the shape were not drawn to scale of the data volume.  
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2.2 Geo-matching regional registers 

The ICOLD WRD was a joint contribution from more than 100 member nations, some of which also release detailed and 165 

publicly accessible dam registers that have been georeferenced. These regional/local registers, with reliable spatial 

coordinates already provided for each dam, were our preferred sources for georeferencing WRD. Since this type of register is 

not available for most countries, we searched multiple water authority and project websites, and collected seven 

georeferenced regional registers or inventories that are open access. Their names, sources, and numbers of documented dams 

are summarized in Table 2.  170 

Table 2. Regional registers or inventories for geo-matching and the validation of geocoding. 

Region Register/Source 
Dam count 

Regional register ICOLD WRD Geo-matched 
Geo-matching 
Brazil RSB (SNISB, 2017) 23,630 13471,345 686668 (5150%) 
Cambodia ODC (2015) 73 7 3 (43%) 
Canada CanVec (NRC, 2017) 843 651648 437435 (67%) 
Europe MARS (2017) 5,043 66756,671 40333,981 (60%) 
Myanmar ODM (2018) 254 33 14 (42%) 
South Africa LRD (DWS, 2019) 5,592 1,105 848842 (7776%) 
United States NID (USACE, 2018) 91,213 88868,862 72807,247 (82%) 
Total  126,648 18,70418,671 13,30113,190 (71%) 
Geocoding validation 
China (mainland) NPCGIS (accessed 2021) Not counted 23,78323,747 --- 
India NRLD (2019) 5,723 5,074 --- 
Japan JDF (accessed 2021) 2,349 3,089 --- 

Register/source acronyms: Relatório de Segurança de Barragens (RSB, Dams Safety Report of Brazil), Open Development 

Cambodia (ODC), Managing Aquatic ecosystems and water Resources under multiple Stress project (MARS), Open 

Development Myanmar (ODM), List of Registered Dams (LRD) of South Africa, National Inventory of Dams (NID) of US, 

National Platform for Common Geospatial Information Services (NPCGIS) of China, National Register of Large Dams 175 

(NRLD) of India, and Japan Dam Foundation (JDF). Regional inventories were collected with partial reference to the Global 

Dam Watch project (http://globaldamwatch.org). Dam numbers for regional registers are based on the records with valid 

geographic coordinates, and numbers for ICOLD WRD are based on the records after duplicate removal.  See full registers, 

references, and download links in the reference list. 

These seven registers/inventories cover Brazil, Canada, the United States, 31 European countries (including part of Russia), 180 

South Africa, and part of Southeast Asia (Cambodia and Myanmar), with a total dam count of more than 126,000. Besides 

http://globaldamwatch.org/
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spatial coordinates, each of these registers also provides attributes for their documented dams, which were required by the 

geo-matching process. While other dam inventories could be available, our geo-matching effort for GeoDAR v1.0 was 

focused on these collected ones. However, we referred to additional registers from China, India, and Japan (Table 2) for the 

validation of our WRD geocoding (see Validation). For these additional regional registers, it was either inconvenient to bulk-185 

download the dam records, or we were legally restricted from releasing their dam coordinates. Therefore, we only used these 

registers for the purpose of validation.  

The procedure of geo-matching is illustrated in Fig. 3. Given each regional register, our goal was to find its matching records 

from the subset of ICOLD WRD for the same region, by cross-checking value similarities for several key attributes between 

the two datasets. On one hand, the compared attributes must be mutually available in both datasets. On the other hand, the 190 

attributes should cover various themes so that in combination, they are able to disambiguate records that represent different 

dams but may coincide in certain attributes. Taking both requirements into account, the key attributes used include the dam 

and reservoir names, multiple levels of administrative/political divisions for the dam, and the dam’s completion year. The 

river on which the dam was constructed was also considered for all regions except Cambodia as the register does not contain 

such an attribute. For each of the key attributes, we considered values in WRD and the regional register agreeing with each 195 

other if the similarity score between the value sequences exceeded about 85% (meaning that there are more than 8 pairs of 

identical elements, with consideration of their orders, between two 10-characterelement string sequences). This similarity 

threshold tolerated minor variations in spelling that often occur among different data sources. If an agreement was not 

reached between the two full sequences (e.g., “Maharashtra Pradesh” and “Maharashtra”), the similarity was then tested 

between the main subsets of the sequences in order to increase the matching success.  200 
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Figure 3. Schematic procedure of geo-matching regional registers. Text in roman indicates applied or produced datasets, and 

text in italics indicates methods or procedures. 

One of the geo-matching challenges was that the levels of political/administrative divisions are not always comparable or 205 

consistent between WRD and the regional registers. In WRD, the divisions were provided at the levels of country, 

state/province, and the nearest town/city, which are inconsistent with some of the registers. For example, the register for 

Brazil (Dams Safety Report in 2017) provides the finest division at the county level, whereas the European inventory (from 

the MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) project) documents no divisions 

below the national level. To improve the feasibility in division comparison, we performed a “reverse geocoding” for each 210 

georeferenced regional register using the Google Maps geocoding API. Opposite to regular (or “forward”) geocoding which 

converts a nominal location to numeric spatial coordinates, this reverse geocoding converted the spatial coordinates of each 

dam documented in the register, to a parsed address that contains administrative divisions at consecutive levels. These multi-

level divisions and subdivisions were appended to the original regional registers (Fig. 3), thus enabling a more flexible and 

complete comparison with the WRD attributes and thus an increased success rate of geo-matching.   215 

We considered a WRD record matched with a regional record if their agreements on the key attributes warranted a 

reasonable confidence that the two are the same dam. In principle, a high confidence would require a unanimous agreement 

on all key attributes. However, this ideal scenario was often unnecessary and sometimes impossible. One of the reasons is 

that the key attributes do not always have valid values. In WRD, for instance, the values of “nearest town” for nearly all 

(>99%) US dams are null. While this attribute is valid for most other dams, the nearest town/city in WRD is not necessarily 220 

the division that administrates or contains the dam as is the case in the township in some regional registers. Another reason is 

that our collected multi-source datasets were not collated by a universal standard. As a result, inherent discrepancies of the 

attribute definitions and/or values may exist among the datasets. One example is the dam’s “completion year”, which could 

be ambiguous between the year when the dam construction was concluded and the year when the dam operation was 

initiated or commissioned. These two definitions do not necessarily lead to the same year. To address such inconsistencies, 225 

we defined a baseline scenario that required any pair of matched WRD and regional records to agree on the following:  

• Dam or reservoir name,  

• Country, state/province if values are valid, and  

• At a minimum, (a) either completion year or river if the town/city values disagree or are invalid, or (b) town/city 

when completion years and rivers do not both disagree.  230 

In compliance with this baseline, we implemented an automated QA to filter out any matching errors and optimize the 

matching accuracy for each WRD record. In brief, any match that did not meet the baseline scenario was removed, and the 

remaining geo-matched pairs were ranked to three discrete QA levels (M1, M2, and M3) according to the quality of attribute 
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agreements (see definitions in Supplementary Table S1). As the QA rank increases (from M3 to M1), agreements on the key 

attributes improved from the baseline to the ideal scenario (i.e., a unanimous agreement). If a WRD record was matched to 235 

multiplemore than one records in the regional register, the QA selected the match with the best rank. This way, each 

georeferenced WRD record was only matched to the best-ranking regional record. Users may refer to the provided QA ranks 

as a measure of the general reliability of each geo-matched location. It is worth noting that our geo-matching purpose was to 

acquire the spatial coordinates of any matched WRD record from the regional register, rather than collating or correcting any 

existing attribute values. In other words, some of the WRD and regional records may actually refer to the same dams but 240 

were matched unsuccessfully due to major discrepancies between their attribute values. This led to a conservative success 

rate in our automated geo-matching. More technical details about QA are given in our Python scripts at  

https://github.com/jida-wang/georeferencing-ICOLD-dams-and-reservoirshttps://github.com/surf-hydro/georeferencing-

ICOLD-dams-and-reservoirs.  

Following the automated QA, we performed a manual QC to reassure the accuracy of the geo-matching results. We went 245 

through each geo-matched WRD record to examine whether its attributes (e.g., dam/reservoir name, administrative locations, 

river name, construction year, and storage capacity) indeed agreed with those of the regional source. If an evident evident 

discrepancy was identified, the “match” was removed or corrected from in the final productresult. Although we made every 

endeavour to be as rigorous as possible, remnant matching errors are still possible due to the challenges of incompleteness 

and intrinsic errors in the attribute information (refer to Section 4 for accuracies). For occasional cases that a dam was 250 

matched correctly to the register attributes but misplaced due to poorer quality of the spatial coordinates in the register, we 

tried to adjust or, if possible, correct the register’s spatial coordinates using the best possible resources (such as Google Maps 

and other open-source documents). If we were unable to observe any water infrastructure at the location of a correct match, 

we took a conservative action and removed the match. We admit that this might mistakenly delete some of the structures 

(e.g., small run-of-the-river hydropower stations, weirs, and diversions) that are too small to be visible from Google Map 255 

imagery. Our manual QC identified ~4% error in the geo-matched WRD records, most of which came from QA rank M3. 

After removing these errors, the geo-matching process concluded with a total of 13,30113,190 WRD records georeferenced 

(Fig. 3), including 32753,238, 70396,987, and 29872,965 for QA ranks M1, M2, and M3, respectively (Supplementary Table 

S1). The success rate, i.e., the number of geo-matched dams as a percentage of the number of WRD records, varies from 

about 40% in Southeast Asia to about 80% in South Africa and US (Table 2), with an overall success of 71% in all geo-260 

matched regions (Fig. 3). 

2.3 Geocoding via Google Maps 

The subset of ICOLD WRD that was not geo-matched includes the remaining 54035,481 (29%) dams in the geo-matched 

regions and the entire 38,14638,144 dams in the other regions of the world (Fig. 2a). For these dams, we applied the Google 

Maps geocoding API, a sophisticated cloud-based geocoding service, to retrieve the spatial coordinates of each dam as 265 
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thoroughly and accurately as possible. To do so, we designed a recursive geocoding procedure that implemented three 

primary steps on each dam: forward geocoding, reverse geocoding, and QA filtering. The purpose of each of the steps and 

their logical relations are illustrated in Fig. 4.  

 270 

Figure 4. Schematic procedure of geocoding using Google Maps API. Text in roman indicates applied or produced datasets, 

and text in italics indicates methods or procedures. The dashed line arrow indicates that this step is not always necessary. 

The forward geocoding (see Section 2.1 for definition) used the text address of each dam as the input, which we formatted 

by concatenating the WRD attribute values, to output the latitude and longitude of the dam. The WRS attributes used for 

address formatting include dam name, reservoir name, statement/province, and country. “Nearest town” was excluded 275 

because it is not always the township administrating the dam or reservoir. Together with the spatial coordinates, the forward 

geocoding also output a Google Maps address associated with the coordinates, which was parsed to individual components  

including feature name, street name, and political divisions. These output address components, in return, provided valuable 

information for QA: if the geocoded coordinates are correct, the associated output address components should agree well 

with those of the WRD input. However, we noticed that address components from forwarding geocoding are often limited in 280 

terms of division levels. To complement this limitation, we utilized reverse geocoding (see Section 2.2 for definition) to 

convert the coordinates from forward geocoding to an updated address with more complete division levels. The address 

components from both forward and reverse geocoding were combined and hereafter referred to as the “output address”. 
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Similar to geo-matching, we employed a QA filter to approach the optimal geocoding result. This process first arranged the 

attributes of each WRD record to several address formats as they could result in different geocoding outputs. The address 285 

arrangements are listed in Supplementary Table S2, and their preference order is rationalized in Supplementary Text. Each 

of these WRD addresses was used iteratively for both forward and reverse geocoding (as described above). Their geocoded 

spatial coordinates were then ranked to five discrete QA levels based on how well the input and output addresses agree with 

each otheron individual components (C1 to C5, Supplementary Table S3).  The iteration was terminated if the highest QA 

rank was achieved; otherwise, the coordinates that render the best possible QA rank was used as the geocoding result.  290 

As explained in Supplementary Table S3, the compared address components include the name of the featuredam or reservoir 

and its affiliated political divisions from town/city to country levels. Consistent with geo-matching, we considered that a 

component was agreed on if the similarity of its values from both input and output addresses exceeds about 85%.  Since the 

nearest town in WRD was not used for forward geocoding, we treated it as an “independent reference” for validating the 

township component in the output address. Although the town or city near the dam (from WRD) does not always coincide 295 

with that administrating the dam (from the geocoding output), their occasional agreement would strengthen our confidence 

of the geocoded coordinates if other components were also well matched between the WRD input and the geocoding output. 

For this reason, we opted to include the township comparison as a supplementary criterion in the geocoding QA process. The 

highest QA rank (C1) corresponds to a unanimous agreement on all address components. However, the minimum rank (C5) 

only required the agreement on the dam or reservoirfeature name, which is a more flexible baseline in comparison with that 300 

for geo-matching. This was because some of the large reservoirs, particularly those on/ or near political boundaries, have 

shared or ambiguous divisions, and the ambiguity might be further amplified by the geocodedoutput coordinates which could 

fall in anywhere from the dam to across the reservoir water surface. Since we aimed to maximize the quantity of 

georeferenced records, a flexible baseline scenario was purposely adopted to keep as many geocoded dams as possible. In 

addition, some of the outputs, regardless of agreement on the address components, are not dams or reservoirs. We therefore 305 

included another baseline filter which aimed to remove any error that is not water infrastructure by analysing the feature type 

information in the geocoding output (see scripts in Code Availability). Although the QA process was designed to be 

automated, we still manually enforced hundreds of the initial outputs, many of which had returned feature names in native 

languages, to pass the baseline filters. As a result, the automated geocoding procedureour QA yielded a total of more than 

16,00016,088 geocoded WRD records, each with the a pair of optimal spatial spatial coordinates and the corresponding QA 310 

rank.  

 

To complement the automated QA process, we then conductedperformed a rigorous QC to manually identify correct and/or 

and remove the remaining geocoding errors. In principle, wWe considered a geocoding error e reviewed each of the 
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geocoded points against high-resolution Google Earth and Esri images, and deleted any identified error as a location where 315 

(a) no dam or reservoir could be visibly verified from Google Earth or Esri images, or (b) the WRD attribute information is 

inconsistent with the feature or division labels on Google Maps. In such cases, we usually first manually re-geocode this dam 

(by directly using the Google Maps interface) before deleting this error if it was not correctable. While Tthe geo-matched 

coordinates from regional registers are usually on or close to the dam bodies, but the geocoded coordinates could be located 

on the reservoir. Note Tthe latter case was not considered as an error. Due to China’s GPS shift problem, geocoded points 320 

inacross mainland China tended to often show a systematic offset of roughly 500 m from their actual dam or reservoir 

features. For such Chinese dams, we tried to reduce their geocoding offsets as much as possible, by manually relocating the 

coordinate points to their correct dams or reservoirs. Our QC process ended up removing about 42% of the originally 

geocoded dams, most of which stemmed from relatively lower QA ranks (see statistics in Supplementary Table S3). The 

complete geocoding procedure resulted in 94109,338 georeferenced and quality controlled WRD records, with an overall 325 

success rate of 2221%.   

2.4 Supplementation with other global inventories 

The outputs from both geo-matching and geocoding, a total of 22,71122,528 georeferenced ICOLD WRD records (Fig. 2a), 

was further supplemented or harmonized by two global dam/reservoir inventories to improve our inclusion of the world’s 

largest dams. We considered this process necessary for two reasons. First, our georeferencing process, particularly 330 

geocoding via Google Maps API, did not warrant an exhaustive inclusion of the largest dams. This is particularly evident for 

regions where the address and label information in Google Maps is either lacking or difficult to pass the automated QA due 

to language ambiguity or naming discrepancies. Second, through cross-referencing we noted that the attribute values of 

reservoir storage capacity provided in ICOLD WRD are occasionally erroneous (also noted by Mulligan et al. (2020)), e.g., 

by a factor of 1000 probably caused by unit confusion in WRD compilation. As part of the supplementation/harmonization 335 

process, we therefore collated the ICOLD reservoir storage capacities with those in the two global inventories below and 

corrected any evident errors in ICOLD. 

2.4.1 Supplementation with Wada et al (2017): forming GeoDAR v1.0 

Wada et al. (2017) compiled a list of all 144 large dams with a reservoir storage capacity larger than 10 km3 in the world. 

Among them, 139 dams were provided with spatial coordinates. We verified each of the dam locations and made minor 340 

adjustments and correction to further assure the quality. The attributes of these 139 dams were then manually compared with 

those in ICOLD WRD. We found that 133 of them were documented in WRD but 32 were georeferenced unsuccessfully in 

our geo-matching or geocoding procedure. Therefore, we borrowed the spatial coordinates of these 32 large dams in Wada et 

al. (2017) to supplement what we had georeferenced. The coordinates of the other 101 large dams, which we georeferenced 

successfully (41 from geo-matching and 60 from geocoding), were also overwritten by those in Wada et al. (2017) to double-345 

assure and improve their spatial accuracies. This supplementation is illustrated by the Venn diagram in Fig. 2a. 
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We then compared the storage capacities of each of the 133 dams in Wada et al. (2017) with those in WRD and identified 22 

of them exhibiting substantial discrepancies between the two datasets. We then collated their storage capacities with other 

documents (e.g., regional inventories, GRanD, and Wikpedia) and concluded that Wada et al. (2017) may supersedes WRD 

in the accuracy of storage capacity for 16 of the 22 dams. Therefore, tThe storage capacities of these 16 dams in Wada et al. 350 

(2017) were used to replace the original WRD capacities. Our data collation and verification for Wada et al. (2017) are given 

in Supplementary Table S4 (full spreadsheet accessible at https://doi.org/10.5281/zenodo.6163413). . The entire 

supplementation process, including adding new dams, updating existing dam coordinates, and correcting reservoir storage 

capacities, increased the total storage capacity of our georeferenced dams by 15%, and 70% of the capacity increase comes 

from the 32 added large dams. For improved clarity, it is worth reiterating that all dams supplemented by Wada et al. (2017) 355 

were also documented in ICOLD WRD. The combined results of geo-matching and geocoding, after the supplementation 

from Wada et al. (2017), defines GeoDAR v1.0 containing 22,74322,560 georeferenced records in ICOLD WRD. 

2.4.2 Harmonization with GRanD: forming GeoDAR v1.1 

While GeoDAR v1.0 largely exceeds GRanD in dam count, a visual comparison of their spatial distributions revealed that 

the latter is often complementary to (instead of completely duplicated by) the former in many regions of the world. This 360 

motivated us to perform a systematic harmonization between the two datasets. The merged version, which we entitled 

GeoDAR v1.1, combines the merits of GRanD in accurately documenting the world’s largest dams and GeoDAR v1.0 in 

providing extensive spatial details of smaller but more widespread dams. 

We assumed that GRanD, by having collated multiple data sources, is superior to GeoDAR v1.0 in the accuracies of both 

spatial locations and attribute values (particularly reservoir storage capacity) of the world’s largest dams. While this may be 365 

true for most cases, we identified at least 6988 dams in GRanD with possible location errorsthat exhibit evident 

georeferencing or attribute errors. With the help of several references such as regional registers (Table 2), the recently 

published Dataset of Georeferenced Dams in South America (DDSA) (Paredes-Beltran et al., 2021), Google Maps, and other 

online documents, we were able to correct the locations of 76 of these damsThese dams were excluded from the 

harmonization process. and absorbed the corrected coordinates to the harmonization. The other 12 GRanD dams, including 3 370 

duplicates with other dams and 9 we were unable to correct the locations for, were excluded from the harmonization. What 

was also excluded Aare another 5 dams in GranD that were documented as subsumed or replaced by newer dams were also 

excluded. For user convenience, we released these 74~90 GranD dams together with the identified issues and suggested new 

coordinates (if possible) in Supplementary Table S45 (full spreadsheet accessible at  

https://doi.org/10.5281/zenodo.6163413). Using the remaining Using the adjusted GRanD data (7,303 points), the 375 

harmonization 7246 GRanD dams the harmonizing process (Fig. 5) aimed at: (a)  

• Iimproving spatial coordinates of the dam points in GeoDAR v1.0, (b)  

• Aadding WRD dams that are not georeferenced in GeoDAR v1.0 but are included by GRanD, (c)  
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• Ccorrecting storage capacity errors in the georeferenced WRD, and (d)  

• Aabsorbing the remaining GRanD dams that are not documented in WRD.  380 

 Detailed processing for each of the objectives is given below.  

 

Figure 5. Schematic procedure of harmonizing GeoDAR v1.0 and GRanD v1.3 to form GeoDAR v1.1 Text in roman 

indicates applied or produced datasets, and text in italics indicates methods or procedures. GRanD used for harmonization 385 

excludes 74 problematic records (see Supplementary Table S45). 

First, when a dam in GeoDAR v1.0 also exists in GRanD, the spatial coordinates of the former were replaced by those of the 

latter. We implemented a two-step procedure to identify the overlapping dams between GeoDAR v1.0 and GRanD. Step 1 

was based on attribute association while Step 2 utilized spatial query. Specifically, Step 1 detected matching records between 

ICOLD WRD and GRanD by assessing agreements on several attributes, including dam/reservoir names, administrative 390 

divisions, impounded rivers, and completion years. This step was essentially the same as “geo-matching” that was used to 

link WRD records to regional registers for GeoDAR v1.0 (Section 2.2). The association results, after a meticulous manual 

QC, identified ~4,66070 dams in GRanD that were georeferenced in GeoDAR v1.0. For the remaining GRanD dams, Step 2 

utilized their reservoir polygons to spatially intersect with the dam points in GeoDAR v1.0. A distance tolerance of ~5 km 

was applied to assist the spatial association and account for possible offsets in GeoDAR v1.0. As part of the QC, the attribute 395 

values of each pair (one from GRanD and the other from WRD) were manually compared to determine whether they are 
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indeed the same dam. This step identified another ~350400 or so overlapping dams between the two datasets. In total, we 

found that GeoDAR v1.0 overlaps 5,01180 out of the 72467,303 dams in GRanD, and their spatial coordinates were updated 

to be consistent with those in GRanD.  

Second, for the remaining 2,23523 dams in GRanD that do not overlap GeoDAR v1.0, we assumed that at least part of them 400 

could be matched to the WRD records not georeferenced in GeoDAR v1.0. Therefore, we performed another round of 

attribute association between the remaining subsets of GRanD and WRD. After QC, this process identified another 1,42514 

WRD dams that are included by GRanD. These additional WRD dams, with a total storage capacity of 6053 km3, were then 

added to our inventory using the spatial coordinates provided in from GRanD. As a result of the first two objectives, 

GeoDAR v1.1 georeferenced 24,16823,974 (4342%) out of the 56,85056,815 dams in ICOLD WRD, including 64366,494 405 

that overlap with GRanD.  

Third, to reduce the impact of possible attribute errors in ICOLD WRD, we next merged the values of reservoir storage 

capacity from both WRD and GRanD to a single updated attribute, where the original values in WRD or Wada et al. (2017) 

were overwritten by those of the overlapping dams in GRanD (if the GRanD values are valid). This correction led to a minor 

increase of 2.486 km3 (less than 0.1.2%) in the total reservoir storage capacity. Eventually, the remaining 810809 dams in 410 

GRanD, which were not found in WRD, were appended to our georeferenced WRD so that the final inventory absorbed the 

entire dataset of GRanD. It is worth noting that similar to geo-matching (Section 2.2), our attribute association here could be 

conservative, meaning that some of the dams appended from GRanD might be documented in the remaining WRD (the 

subset not georeferenced successfully). The complete harmonization process, combining the above three steps, led to a total 

of 24,97824,783 georeferenced dams in GeoDAR v1.1 (Fig. 2b). 415 

2.5 Retrieving reservoir boundaries 

Reservoir polygons of the georeferenced dam points were retrieved as thoroughly as possible from three global water body 

datasets: GRanD reservoirs (Lehner et al., 2011), HydroLAKES v1.0 (Messager et al., 2016), and UCLA Circa- 2015 Lake 

Inventory (Sheng et al., 2016). These three water body datasets exhibit an increasing spatial resolution: from 7000+ polygons 

in GRanD reservoirs provided exclusively for GRanD’s dam points, to millions of water body polygons, including both 420 

natural lakes and reservoirs, in the other two datasets. While HydroLAKES documents 1.4 million water bodies larger than 

0.1 km2 (10 ha), the Landsat-based UCLA Circa- 2015 Lake Inventory further reduced the minimum size to only 0.004 km2 

(0.4 ha), resulting in another 7.7 million water bodies on the global continental surface. Accordingly, we implemented a 

hierarchical procedure, where the three water body datasets were applied in ascending order of spatial resolution to retrieve 

the reservoir boundaries with an overall decreasing size. 425 
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Specifically, GRanD v1.3 provides 7,230181 reservoir polygons for the 7,303246 collected dam points used for 

harmonization. The remaining 65 dams without reservoir polygons are either river barrages and thus have no proper 

reservoirs, or infrastructures that were too recent to have filled impoundments. Other rarer cases also include dams that were 

abandoned or to be constructed (Lehner et al., 2011). These 7181 GRanD reservoir polygons were first assigned to their 

associated dam points in GeoDAR v1.1 through GRanD IDs. Reservoirs of the remaining 17,73217,480 dam points in 430 

GeoDAR v1.1, which were georeferenced from ICOLD alone, were next retrieved from HydroLAKES when possible. To 

avoid duplicates in the reservoirs retrieved from different data sources, we only used the subset of HydroLAKES that is 

spatially independent from (i.e., not intersecting with) GRanD reservoirs. Different from reservoir assignment using GRanD, 

there was no common attribute ID to pair HydroLAKES polygons with the remaining dam points, so their reservoir retrieval 

relied completely on spatial association. One major challenge in dam-reservoir spatial association was the ambiguity caused 435 

by the offsets between our georeferenced dam points and their actual reservoir polygons (see Section 2.3).  

To tackle this ambiguity, we designed a procedure that consists of three rounds of iteration to progressively optimize 

reservoir-dam association. This procedure was based on two assumptions, both conditional on a reasonable spatial tolerance. 

We started with 500 m to be roughly consistent with the georeferencing offset observed in China. The first assumption was 

that larger reservoirs are more likely to be documented than smaller ones, in both ICOLD WRD and Google Maps. 440 

Therefore, the first round of iteration assigned each of the dams to the largest water body within the tolerance. This 

assignment might, however, lead to a situation where multiple dams were assigned to the same reservoir. To untangle this 

situation, the remaining iterations assumed Tobler’s First Law of Geography (Tobler, 1970): “everything is related to 

everything else, but near things are more related than distant things” (p.236). Accordingly, for any water body mistakenly 

associated with multiple dams, the second round of iteration reassigned the water body to its closest dam, and the other 445 

dam(s) within the tolerance, as a result, was/were left unpaired. To reduce the number of such “orphan” dams, a final, third 

round of iteration assigned the remaining unpaired dams to the next closest water body that was within the spatial tolerance 

and had not been previously associated with any dams. If this led to multiple dams associated with one reservoir again, only 

the dam with the closest proximity to the reservoir was kept. Through experimentation, we opted to implement this three-

iteration procedure twice, first using a conservative 500-m tolerance to maximize the accuracy for most associations, and 450 

then a 1-km tolerance to further minimize the number of orphan dams.  

This multi-iteration procedure retrieved roughly ~7,600 reservoir polygons from HydroLAKES. For the remaining dam 

points left unpaired, we applied the same association procedure to continue retrieving their reservoirs from the high-

resolution UCLA Circa- 2015 Lake Inventory. Similarly, only the subset that does not intersect with the retrieved 

HydroLAKES polygons was considered, in order to avoid duplicates in the retrieved reservoirs from different datasets. The 455 

use of UCLA Circa- 2015 Lake Inventory retrieved another ~6700 or so reservoirs.  
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We followed the automated reservoir retrieval by Aa manual QC to was performed on the combined result to visually 

confirm that each retrieved reservoir polygon was matched to the correct dam point, and if not, we tried to adjust the 

association as thoroughly as possible. This visual QC was particularly necessary for lake-dense regions, including the case of 

cascade reservoirs immediately downstream/upstream to each other. While some of the dams, such as barrages, diversion 460 

infrastructure, and dams under construction, do not have visible impoundments (Lehner et al., 2011), we tried to be as 

meticulous as possible to verify and recover any missing reservoirs. For instance, we were unable to manually retrieve 10 

reservoirs (including 4 completed after 2000) from the UCLA Circa 2015 Lake Inventory for the ~70 dams in GRanD v1.3 

without polygons. We also replaced hundreds of reservoirs initially retrived from GRanD and HydroLAKES by the polygons 

in the UCLA inventory to improve the boundary accuracy and completeness.  465 

3 Product components and usage 

We here provide a detailed documentation of the components and structure of the GeoDAR versions (v1.0 and v1.1). To 

facilitate the description, the two GeoDAR versions and their component statistics are explained in Table 1, and spatial 

distributions of the dam points and reservoir polygons are visualized in Figs. 6 and 7. 

3.1 GeoDAR v1.0: dams 470 

GeoDAR v1.0 is a collection of 22,74322,560 dam points georeferenced exclusively for ICOLD WRD (Fig. 6a). Among 

them, 13,26013,149 or 58% were retrieved from geo-matching regional dam registers, 93509,278 or 41% from Google Maps 

geocoding API, and the remaining 133 largest dams from the spatial inventory in Wada et al. (2017) (Fig. 6b). For improved 

accuracies, WRD storage capacities of most of these 133 large reservoirs were replaced by the values in Wada et al. (2017) 

(see Section 2.4.1), and unless stated otherwise, our following statistics on storage capacities were calculated after this 475 

replacement. 

The total reservoir storage capacity of the 22,743these dams is 6435.56,441 km3, meaning that GeoDAR v1.0 georeferenced 

40% of the 56,85015 WRD records but included more than 80% of their cumulative reservoir storage capacity. The total 

storage capacity of the 133 largest dams from Wada et al. (2017), despite being limited in number, reaches 3900 km3 or 61% 

of the cumulative storage capacity in GeoDAR v1.0, and the other ~40% capacity was split almost equally between the 480 

remaining 22,000+ geo-matched and geocoded dams. Although the registers used for geo-matching are regional, the dams in 

GeoDAR v1.0, as shown in Fig. 6b, are distributed in 148151 out of the 164165 countries or territories in WRD (including 

ICOLD member and non-member countries), largely owing to our geocoding efforts through Google Maps API. Since 

GeoDAR v1.0 was produced independently from other global dam datasets such as GRanD, it can also be used to cross-

compare, supplement, and potentially improve other dam datasets. Validation of our georeferencing accuracy for v1.0 is 485 

provided in Section 4.  



21 
 

3.2 GeoDAR v1.1: dams and reservoirs 

GeoDAR v1.1 consists of a) 24,97824,783 dam points (Fig. 6a) representing a full harmonization between GeoDAR v1.0 

and GRanD v1.3, and b) 21,57621,515 reservoir polygons (Fig. 7). In these nearly 25,000 dam points, 17,73217,480 or 71% 

come from GeoDAR v1.0 alone, 64366,494 or 26% shared by ICOLD WRD and GRanD, and the other 810809 or 3% from 490 

GRanD alone (Table 1; Fig. 6c). Among the 64366,494 shared dams, 50115,080 were georeferenced in both GeoDAR v1.0 

and GRanD, and the remaining 14251,414 were introduced through the harmonization with GRanD. This resulted in a total 

of 24,16823,974 georeferenced WRD records (4342% of all WRD records) in GeoDAR v1.1. In addition to the expanded 

number of georeferenced WRD dams, GRanD supplemented another 810809 dams which are exclusive of WRD. The total 

22352,223 dams added by GRanD, notated as “GRanD v1.3 & other ICOLD” and “GRanD v1.3 only” in Fig. 6c, are 495 

distributed worldwide and complement v1.0, particularly in regions such as Africa and Central Asia where geocoding using 

Google Maps was challenging. After this ICOLD-GRanD harmonization, the spatial coverage of the dam points in GeoDAR 

v1.1 increased to 154155 out of the 164165 countries in WRD.  

As described in Section 2.4.2, we substituted the reservoir storage capacities in GRanD for the original capacity values of 

their overlapping WRD dams. As a result, the total reservoir storage capacity in GeoDAR v1.1 reaches 7296.67,384 km3, 500 

which compares to ~95% of the cumulative capacity in the entire ICOLD WRD (see Section 5.1 for more comparisons with 

ICOLD). As reported in Table 1, 8281% (59966,006 km3) of the total storage capacity in GeoDAR v1.1 is explained by the 

50115,080 relatively large dams georeferenced in both GeoDAR v1.0 and GRanD. The 17,73217,480 smaller dams from 

GeoDAR v1.0 alone contribute only 67% (428507 km3) of the total storage capacity, which is roughly comparable to the 

subset from GRanD alone (268 km3) or the subset from GRanD and other ICOLD WRD (605603 km3). These capacity 505 

contributions suggest that compared to GRanD, the major improvement of GeoDAR lies on the increased number of 

relatively small dams, rather than the increase in total storage capacity of the dams (see Section 5.2 for more comparisons 

with GRanD).  
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 510 

Figure 6. Georeferenced dam points in GeoDAR. (a) A total of 24,97824,783 dam points in v1.1 superimposed by 

22,74322,560 dam points by in v1.0. (b) Georeferencing methods and data sources for v1.0. (c) Data sources for v1.1. 
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Different from GeoDAR v1.0, version 1.1 also includes a component of reservoir polygons which represent water 

impoundment extents associated with 21,57621,515 or 8687% of the georeferenced dam points (Fig. 7). Reservoir polygons 

for the remaining 1413% of the dam points were retrieved unsuccessfully due to a combination of factors, including limited 515 

spatial resolutions of the applied water masks, offsets in our georeferenced dam points, and the fact that some of the dams 

(e.g., river barrages) have no evident water impoundments. Nevertheless, the retrieved reservoir polygons have a cumulative 

area of 493,860496,314 km2, accounting for 9698% of the total reservoir area of all georeferenced dams in GeoDAR v1.1 

(reservoir areas without polygons are based on WRD documented attributes). These retrieved reservoirs polygons also 

correspond to a cumulative storage capacity of 71177,216 km3, also accounting for nearly 98% of the total storage capacity 520 

in v1.1. These statistics indicate that the reservoirs whose boundaries were retrieved unsuccessfully were mostly small in 

area and storage.  

The numbers of reservoir polygons retrieved from each of the three water body datasets are fairly comparable (roughlyabout 

70007,100–7,200 each), but the total reservoir storage capacity and area both decrease drastically with the increasing spatial 

resolution of the water body datasets (Table 1). As a result, the mean reservoir polygon size decreased from 6663 km2 for 525 

those retrievedidentified from GRanD, to 2 km2 from HydroLAKES and then less than 15 km2 from the UCLA Circa- 2015 

Lake Inventory. This result is overall consistent with the design of our hierarchical procedure (Section 2.5), where smaller 

reservoirs were successively retrieved with the help of finer water masks. It is important to note that the retrieved polygons 

do not always represent the maximum water extents of the reservoirs because water boundaries in the retrieval sources were 

not necessarily mapped in the maximum inundation periods. For example, the UCLA Circa- 2015 Lake Inventory contains 530 

approximately more than 9.5 million water bodies larger than 0.4 ha, which were mapped from Landsat images acquired 

during the “steady” climate periods (Lyons and Sheng, 2018) and thus represent the average seasonal extent of each water 

body (Sheng et al., 2016). Despite not always being the largest water extents, our retrieved reservoir polygons enhanced the 

spatial details of global reservoir locations, using which users can further expand or refine the water boundaries to their 

specific needs.   535 
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Figure 7. Reservoir polygons and their retrieval data sources in GeoDAR v1.1. For display, GRanD polygons are 

superimposed by HydroLAKES polygons and then by UCLA Circa 2015 Lakes.  540 
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3.3 Attributes and usage 

The GeoDAR dataset, including dam points for v1.0 and both dam points and reservoir polygons for v1.1, is provided as 

three separate shapefiles. For user convenience, we also duplicated the two dam point shapefiles in the comma-separated 

values (csv) format. The file names and attributes are explained in Table 3. Although most of our dam points were 

georeferenced using WRD records, our published GeoDAR complies with the proprietary rights of ICOLD and does not 545 

directly release any attribute from WRD. The attributes we provide in GeoDAR, as listed in Table 3, are only limited to our 

georeferencing methods, QA/QC, validation, and other information (such as spatial coordinates and part of the reservoir 

storage capacities) that is already open source or has been permitted for use by the original producers.  

Table 3. Attributes in the data products of GeoDAR 

Attribute Description and values 
v1.0 dams (file name: GeoDAR_v10_dams; format: comma-separated values (csv) and point shapefile) 
IDid_v10 Dam ID inof GeoDAR version 1.0 this version (type: integer). Note this is not the “International Code” in 

ICOLD WRD but is associated with “International Code” through encryption.   
latitude Latitude of the dam point in decimal degree (type: float) on datum World Geodetic System (WGS) 1984. 
longitude  Longitude of the dam point in decimal degree (type: float) on WGS 1984. 
Ggeo_mtd Georeferencing methods (type: text). Unique values include: “geo-matching CanVec”, “geo-matching 

LRD”, “geo-matching MARS”, “geo-matching NID”, “geo-matching ODC”, “geo-matching ODM”, “geo-
matching RSB”, “geocoding (Google Maps)”, and “Wada et al. (2017)”. Refer to Table 2 for acronyms. 

qa_rankQA_level Quality assurance (QA) levels (type: text). Unique values include: “M1”, “M2”, “M3”, “C1”, “C2”, “C3”, 
“C4”, and “C5”. Refer to Supplementary Tables S1 and S3 for value explanation. 

rv_mcm Reservoir storage capacity or volume in million cubic meters (type: float). Values are only available for 
dams acquired from Wada et al. (2017). Capacity values of other records in ICOLD WRD capacity values 
are not released fordue to  proprietary restrictionreasons. 

val_scn Validation result (type: text). Unique values include: “correct”, “register”, “mismatch”, “misplacement”, 
and “Google Maps”. Refer to Table 4 for value explanation. 

val_src Main sSources used for validation (type: text). Values include: “CanVec”, “Google Maps”, “JDF”, “LRD”, 
“MARS”, “NID”, “NPCGIS”, “NRLD”, “ODC”, “ODM”, “RSB”, and “Wada et al. (2017)”, and other 
websites and literature. Refer to Table 2 for acronyms.  

qc Roles and name initials of co-authors/personnel participating in data quality control (QC) and validation. 
v1.1 dams (file name: GeoDAR_v11_dams; format: comma-separated values (csv) and point shapefile) 
IDid_v11 Dam ID of GeoDAR version 1.1 in this version (type: integer). Note this is not the “International Code” in 

ICOLD WRD but is associated with “International Code” through encryption. 
IDid_v10 v1.0 ID of this dam/reservoir (as in ID_v10) if it is also included georeferenced inin v1.0 (type: integer).  
IDid_GRDgrd_v13 GRanD ID of this dam if georeferenced also included in GRanD v1.3 (type: integer). 
latitude Latitude of the dam point in decimal degree (type: float) on WGS 1984. Value may be different from that in 

v1.0.  
longitude  Longitude of the dam point in decimal degree (type: float) on WGS 1984. Value may be different from that 

in v1.0. 
pnt_src Source(s) of the georeferenced dam point. Unique values include: “GeoDAR v1.0 alone”, “GRanD v1.3 and 

GeoDAR 1.0”, “GRanD v1.3 and other ICOLD”, “GRanD v1.3 alone”. Refer to Table 1 for more details. 
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Ggeo_mtd_v10 Same as geomtd in v1.0 if this dam was is georeferenced included in v1.0.  
qa_rankQA_level Same as QA_level in v1.0 if this dam wasis georeferencedincluded in v1.0. 
val_scn Same as val_scn in v1.0 if this dam is included in v1.0. 
val_src Same as val_src in v1.0 if this dam is included in v1.0. 
rv_mcm_v10 Same as rv_mcm in v1.0 if this dam is included in v1.0. 
rv_mcm_v11 Reservoir storage capacity in million cubic meters in this version (type: float). For Due to proprietary 

restrictionasons, provided values are limited to dams in values are only provided for dams acquired from 
Wada et al. (2017) and GRanD v1.3. If a dam is included by both Wada et al. (2017) and GRanD v1.3, the 
value from the latter takes precedence.  

har_srcrv_mcm_v10 Source(s) to harmonize the dam points. Unique values include: “GeoDAR v1.0 alone”, “GRanD v1.3 and 
GeoDAR 1.0”, “GRanD v1.3 and other ICOLD”, “GRanD v1.3 alone”. Refer to Table 1 for more 
details.Same as rv_mcm in v1.0 if this dam was georeferenced in v1.0. 

pnt_srcval_scn Source(s) of the dam point spatial coordinates. Same as val_scn in v1.0 if this dam was georeferenced in 
v1.0.Unique values include: “GeoDAR v1.0”, “original GRanD”, “adjusted GRanD” (meaning original 
points in GRanD adjusted to improve the locations), “corrected GRanD” (meaning misplaced dam points in 
GRanD corrected and relocated; also see Table S5).  

qc Roles and name initials of co-authors/personnel for data QC, validation, and other manual operations. 
val_src Same as val_src in v1.0 if this dam was georeferenced in v1.0. 
v1.1 reservoirs (file name: GeoDAR_v11_reservoirs; format: polygon shapefile) 
plg_src Source of the retrieved reservoir polygon (type: text). Unique values include “GRanD v1.3 reservoirs”, 

“HydroLAKES v1.0”, and “UCLA Circa- 2015 Lakes”. Refer to Table 1 for more details. 
plg_a_km2 Area of the retrieved reservoir polygon in square kilometres (calculated using the cylindrical equal area 

projection on WGS 1984).  
All other attributes in v1.1 dams. 

Note: Missing or inapplicable values are flagged by “Null” for text-type attributes and “-999” for numeric-type attributes. 550 

Although WRD attributes are not directly available in GeoDAR, we suggest two possible ways for users to acquire at least 

some of the essential attributes. Upon the user’s reasonable request and on a case-by-case basis, we may provide assistance 

in decrypting the association between GeoDAR IDs (Table 3) and ICOLD’s International Codes, and using the International 

Codes, the user can link each of the dams/reservoirs in GeoDAR to the entire 40 or so proprietary attributes in WRD. This is 

also based on the premise that the user needs to acquire the WRD attribute data from ICOLD, and that the user agrees not to 555 

release the GeoDAR-WRD association or the WRD attributes to the public. Alternatively, since we imposed no usage 

restrictions on our spatial features (geometric dam points and reservoir polygons), users are free to integrate them with other 

datasets and tools, such as remote sensing observations and modelling, to acquire the needed attributes, particularly those not 

yet documented in ICOLD WRD. Acquisition methods have been exemplified for at least the following attributes: reservoir 

hypsometry and bathymetry (Li et al., 2020; Yigzaw et al., 2018), surface evaporation loss (Mady et al., 2020; Zhan et al., 560 

2019; Zhao and Gao, 2019a), operation rules (Shin et al., 2019; Yassin et al., 2019), completion years (Zhang et al., 2019), 

storage capacities (Liu et al., 2020), and the changes in water area (Pekel et al., 2016; Yao et al., 2019; Zhao and Gao, 

2019b), level (Cretaux et al., 2011; Schwatke et al., 2015), and storage or volume (Busker et al., 2019; Cretaux et al., 2016; 

Gao et al., 2012; Zhang et al., 2014).  
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4 Validation 565 

Separate from the QA/QC during data production, we also performed a posterior validation to further assess the accuracy of 

the georeferenced ICOLD WRD records. The validation sample consists of about 1400 dam points (Fig. 8), which were 

selected worldwide from GeoDAR v1.0 and represent the results of our geo-matching and geocoding prior to GRanD 

harmonization. The collection of the validation points followed a stratified sampling method (Table 4). From the subset of 

GeoDAR v1.0 produced by geo-matching, we randomly selected about 40 dam points for each of the geo-matching regions 570 

(Brazil, Canada, Europe, South Africa, and United States), with the exception of Southeast Asia (Cambodia and Laos) where 

all 17 geo-matched WRD dams were included for validation. We allowed the sample to occasionally overlap with GRanD 

because dams in GeoDAR v1.0 were georeferenced independently from GRanD and those shared with GRanD reflect our 

georeferencing accuracy for the world’s largest dams. However, for each regional sample, we limited the number of GRanD-

overlapping dams to no more than 30% of the entire regional sample size if possible (Table 4). This was to comply with the 575 

size ratio between GRanD and GeoDAR v1.0 (about 1:3) so that our validation still emphasized smaller, newly 

georeferenced dams. We also randomly selected 40 out of the 133 large WRD dams supplemented by Wada et al. (2017), 

considering that they are part of GeoDAR v1.0 and the supplementation was based on attribute association similar to 

regional geo-matching. In total, 260 dams were selected for validating the geo-matching accuracy. For each dam, we 

manually checked whether its spatial coordinates in GeoDAR v1.0 are consistent with those documented in the geo-580 

matching source (see source references in Table 2).  

Table 4. Validation statistics for GeoDAR v1.0 

Region Main reference Sample Accuracy Error source 
Geo-matching  260; 84 252 (96.9%) --- 
Brazil RSB 40; 7 38 (95.0%) Register 
Canada CanVec 41; 13 38 (92.7%) Register; Mismatch 
Europe MARS 41; 3 40 (97.6%) Register 
South Africa LRD 40; 11 40 (100%) --- 
Southeast Asia ODC; ODM 17 (all); 4 15 (88.2%) Register 
United States NID 41; 9 40 (100%) --- 
Global Wada et al (2017) 40; 37 40 (100%) --- 
Geocoding  1,152; 316 1,0945 (95.10%) --- 
China NPCGIS 250; 30 247 (98.8%) Misplacement 
India NRLD 220; 57 215 (97.7%) Misplacement 
Japan JDF 232 (all); 148 209 (90.1%) Misplacement; Google Maps 
Others Google Maps 450; 81 4234 (94.02%) Misplacement 
ALLTotal  1,412; 400 1,3467 (95.34%) --- 
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Note: In “Sample”, the two numbers delimited by semicolon indicate the size of the validation sample from GeoDAR v1.0 

(left) and the number of dams in this sample that overlap with GRanD v1.3 (right), respectively. “Error source” lists error 

scenarios in decreasing order of frequency. “Mismatch” indicates geo-matching errors due to incorrect association between 585 

WRD and the source/reference register. “Register” indicates geo-matching errors due to inaccurate spatial coordinates in the 

source register (despite correct association). “Misplacement” indicates geocoding errors where the WRD attribute 

information disagrees with the Google Maps label. “Google Maps” indicates geocoding errors due to endogenous feature 

labelling mistakes in Google Maps (despite the WRD attribute information and the Goole Maps label agreeing with each 

other). See Table 2 (column “Register/Source”) for reference details. 590 

From the remaining subset of GeoDAR v1.0 produced by geocoding, we followed the same stratified sampling scheme and 

selected 220 to 250 dam points for each of China, India, and Japan. Another 450 dam points were sampled from the other 

regions of the world (Table 4). Compared to geo-matching which was based on attribute association with georeferenced 

regional registers, the geocoding process was more complicated and relied largely on the geographic information repository 

in Google Maps and its embedded geocoding algorithms. To increase our confidence in the geocoding results, we therefore 595 

purposefully enlarged the sample size for each validation region. As described in Section 2.2, three additional georeferenced 

datasets from authoritative registries in China, Indian, and Japan were used exclusively for the purpose of geocoding 

validation (refer to Table 2 for register details). For the remaining regions of the world, the validation was based on a 

meticulous manual comparison between the WRD information of each sampled dam point and the associated Google Maps 

label, including the dam/reservoir name, administrative divisions, the nearest town/city, and the impounded river name if 600 

possible. When necessary, we also referred to other auxiliary information including open-source gazetteers and other 

literature. In total, we collected 1,152 dam points for validating the accuracy of geocoding, including all 232 Japanese dams 

in GeoDAR v1.0. The distribution of all sampled validation dams is shown in Fig. 8. 

As reported in Table 4, our geo-matching accuracy ranges from 88% to 100% among different regions, with an overall 

accuracy of 97%. Causes of the identified geo-matching errors (see the last column in Table 4) were not necessarily mistakes 605 

in our attribute association between WRD and the georeferenced registers, but sometimes inaccurate spatial coordinates 

provided by the georeferenced registers themselves. An example is Skutvik Dam (completion year 1991) in Norway (Fig. 8), 

where coordinates are documented to be 68.025° N and 15.345° E in MARS. However, inspected from high-resolution 

Google Maps imagery, no dam or reservoir could be conclusively verified at or near this coordinate point, except for three 

surrounding lakes that are all over 2 km away and labelled with other names (Vanbassenget, Lanstøvatnet, and 610 

Stenslandsvatnet). The documented coordinates for this dam are probably inaccurate.  

The accuracies of our geocoded samples ranges from 90% for Japan to 98–99% for India and China, with an overall 

accuracy of 95%. As shown in Table 4, most of the errors were related to the misplacement of the dam/reservoir to another 
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feature, typically a free-flowing river reach, which shares the name and administrative divisions with the dam/reservoir. One 

example is Nambiar Dam near the city of Tirunelveli in the state of Tamil Nadu, southern India (Fig. 8). The correct 615 

coordinates, according to NRLD, are 8.374° N and 77.738° E where the Google Maps labelled “Nambi Dam” instead of 

Nambiar Dam. Probably because of this spelling inconsistency, our geocoded coordinates were misplaced on a reach of the 

Nambi(y)ar River (8.435° N, 77.569° E, labelled as “Nambiyar”) about 20 km upstream from the dam. Although our 

recursive geocoding procedure (Section 2.3) embedded an automated filter that examines the type of the feature at each 

returned point (scripts accessible through Code availability), this filter was designed to only eliminate the coordinates where 620 

feature types are clearly disparate from a dam or reservoir (such as commercial and residential buildings). Our experiments 

showed that dams/reservoirs and free-flowing river reaches could both be categorized as “establishment” of “natural feature” 

and a feature type that is more specific to dams/reservoirs was hardly seen. Thus, to avoid over-filtering, we allowed a 

certain ambiguity in the geocoded feature types, and then relied on manual QC to correct or remove mistaken coordinates as 

thoroughly as possible. The misplacement of dams to their upstream/downstream river reaches is a major cause of the 625 

relatively low geocoding accuracy in Japan. Through experimentations, we noticed that Google Maps labelling for some of 

the Japanese dams that are homonymous to their impounded rivers, is either lacking or highly adapted to the Japanese 

language. The latter further challenged our geocoding accuracy using English-based ICOLD information. For one of the 

errors in Japan, we verified from the JDF register that Google Maps mislabelled Myojin Dam in Horoshima Prefecture 

(34.587° N, 132.505° E) as “Nabara Dam” whose correct location is 3 km downstream (34.563° N, 132.517° E; Fig. 8). As a 630 

result, our georeferenced coordinates for Nabara Dam were wrong although our geocoding process was correct. However, 

given what we have observed, such endogenous labelling errors in Google Maps are probably rare. 

Integrating the validations for both geo-matching and geocoding, our overall georeferencing accuracy is 95.495.3% in terms 

of dam count or 99.1% in terms of total storage capacity based on the sampled 1,412 dams. While these statistics can be 

considered as an accuracy measure of our data product, the identified errors in the validation sample have been corrected 635 

wherever possible or otherwise removed in our released GeoDAR v1.0 and v1.1 (for simplicity, our reported statistics after 

QC have considered this additional correction). To reflect the accuracy of GRanD harmonization, we also randomly sampled 

another ~100 dams in v1.0 that were associated with GRanD in v1.1, and identified no association errors among them. 
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 640 

Figure 8. Validation sample and results for GeoDAR v1.0. The validation sample consists of 1,412 georeferenced ICOLD 

dams, including 260 dams from geo-matching and 1,152 dams from geocoding. See Table 4 for detailed validation statistics. 

5 Comparisons with existing global datasets 

To better understand the improvements and potential applications of GeoDAR, we compare it with three major global dam 

and reservoir datasets: the complete ICOLD WRD, GRanD (v1.3), and GOODD (V1). To recap the pros and cons of each 645 

dataset, ICOLD WRD documents over 56,000 unique dam records with a broad suite of attributes, but the provided dam 
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records are not georeferenced. GOODD depicts the spatial details of more than 38,000 dam points and their catchments but 

does not include any other attribute. GRanD is georeferenced and provides multiple essential attributes, but the records are 

limited to 7320 large dams. Accordingly, our comparison first emphasized the aspects of dam quantity, reservoir area, and if 

applicable, the spatial pattern and distribution of the dams. These aspects are directly acquirableopenly available from the 650 

spatial features (i.e., dam points and reservoir polygons) in GeoDAR. Considering that each GeoDAR feature is explicitly 

also linked to a WRD or GRanD record which contains detailed attributes, our comparison also includes two important 

attributes, i.e., reservoir storage capacity and catchment area, to help inform the extended capability of GeoDAR once the 

attributes are acquired.  

5.1 Comparison with ICOLD WRD 655 

Despite our efforts to integrate multi-source registers and the Google Maps geocoding API, georeferencing ICOLD WRD, 

particularly smaller dams in poorly documented regions, has proven to be challenging. This challenge was reflected by the 

proportion of WRD that was spatially resolved in GeoDAR. As compared in Table 5, GeoDAR v1.0 included 40% of the 

56,85056,815 records in the entire WRD. Although limited in number, these georeferenced records compromised a balance 

between geocoding thoroughness and quality (see Sections 2.2 and 2.3), and account for 84% of the total reservoir storage 660 

capacity in WRD. The larger proportion in terms of storage capacity indicates that most of the sizable dams in WRD have 

been spatially resolved. This message is also corroborated by Fig. 9. Nearly 70% of the 12,42512,412 WRD dams larger than 

10 mcm, for example, have been georeferenced in GeoDAR v1.0 (Fig. 9a). While 80% of the 21,84521,849 WRD dams 

smaller than 1 mcm were not georeferenced, these smaller dams account for less than 1% of the total WRD storage capacity 

(Fig. 9b). After harmonization with GRanD, the proportion of WRD georeferenced in GeoDAR v1.1 increased to 4342% by 665 

count or 92% by storage capacity (Table 5), and these percentages represent our best result for georeferencing WRD. By 

absorbing the remaining dams in GRanD as well, v1.1 has a total dam count equivalent to 44% of WRD and a cumulative 

storage capacity less than 5% below that of the full WRD (Table 5; Fig. 9b). Compared to v1.0, the margin between the 

distribution curves of GeoDAR v1.1 and WRD, particularly for relatively large dams, was further reduced (Fig. 9a). As a 

result, the number of dams larger than 10 mcm in GeoDAR v1.1 exceeds 80% of that in WRD, and the number of dams 670 

larger than 1 mcm reaches 60% of that in WRD. 

Table 5. Summative comparisons among GeoDAR, ICOLD, and GRanD 

Statistics 
ICOLD GRanD GeoDAR 

Full WRD v1.3 v1.0 (WRD) v1.1 (WRD) v1.1 (WRD ∪ GRanD) 

Dam count 56,85056,81
5 7,320 22,74322,560 24,16823,974 24,97824,783 

Storage capacity (km3) 7642.2 
7,720.2 6,881.0 6435.56513.2 7028.57,116.2 7296.67,383.8 
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Reservoir area (km2) 513,897.3 
519,159.5 

474,192.8 
475,543.9 --- 474,129.9476,

602.5 493,860.2496,313.8 

Catchment area (103 km2) 150,279.5 
150,114.6 116,455.9 --- 140,597.6140,

389.4 148,166.6 147,958.1 

Note: To improve the validity of data comparison, statistics in Seciton 5 are based on the following adjustments. When a 

dam is documented in both GRanD and WRD, we considered that attribute values in GRanD (if available) (excluding those 

of the 74 dams in Supplementary Table S4) hadtook precedence (meaning that WRD values were replaced by those in 675 

GRanD). Exceptions are the GRanD dams not used in GeoDAR v1.1 harmonization (Supplementary Table S5).  over those 

in WRD for computing “Reservoir storage capacity” and “Catchment area” for GeoDAR v1.1 and “Entire WRD”. When a 

dam has both a reservoir polygon and an area attribute, the polygon area took precedence for calculatingcomputing 

“Reservoir area” statistics. Reservoir area statistics for GeoDAR v1.1 only include considered the dams whose reservoir 

polygons were successfully retrieved. Statistics for GRanD are based on the entire records in v1.3.    680 
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Figure 9. Comparison among GeoDAR, ICOLD WRD, and GRanD by reservoir storage capacity. (a) Frequency (count) 

distribution. (b) Cumulative (integral) storage capacities. Statistics were based on 80 equal-size bins on a logarithmic scale 

between the minimum and maximum storage capacities (i.e., 0.001 to 204,800 mcm).  685 

The spatial coverage of GeoDAR, in comparison with WRD, was summarized for each of the 165 countries with registered 

WRD records (Fig. 10). We reported in Section 3.1 that the georeferenced dams in GeoDAR v1.0 are distributed in 148 out 

of the 164 countries registered in ICOLD WRD, and the spatial coverage was further improved to 154 countries in v1.1. 
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Since GeoDAR Our comparison focused on GeoDAR v1.1 as it represents an improved version of our spatial dam inventory, 

we compare it with WRD in terms of dam count and reservoir storage capacity for each of the registered countries 690 

worldwide (Fig. 10). Among these 164 WRD165 countries, the median proportion of the dam count covered by GeoDAR 

v1.1 is 62%, with the first and third quartiles being 35% and 89%, respectively. As shown in Fig. 10a, better coverages tend 

to occur in North America, Europe, Russia, OceaniaAustralia, and part of South America and Africa, whereas poorer 

coverages are seen in East Asia, South Asia, and part of the Middle East. The coverages in China and India, for example, are 

only about 22–26% due to a large quantity of WRD records for these two countries (23,74923,749 in China excluding 695 

Taiwan, and 5,074 in India) but relatively limited information on Google Maps. Despite lower percentages, the dam counts 

for China and India in GeoDAR are nearly six and four times of those in GRanD, respectively (see Section 5.2 for details), 

suggesting that our improvements on the spatial details of dams for major emerging nations are substantial. Compared with 

dam counts, GeoDAR’s coverage for reservoir storage capacity is higher overall (Fig. 10b). Among the 157 countries with 

documented reservoir storage capacities, the median coverage in GeoDAR reaches 9798%, with the first and third quartiles 700 

being 8687% and nearly 100%, respectively. If we exclude the 809 dams supplemented by GRanD alone and only consider 

the WRD portion of GeoDAR v1.1, the coverage becomes overall lower but by a limited extent. Among these countries, the 

median proportion of the WRD dams covered by the WRD portion of GeoDAR v1.1 is 59% (with 33% and 83% as the first 

and third quartiles) in terms of dam count and 95% (82% and over 99% as first and third quartiles) in terms of reservoir 

storage capacity (Supplementary Fig. S1), suggesting that a substantial proportion of WRD had been georeferenced in many 705 

of the register countries before the additional supplementation from GRanD. More detailed comparisons (among ICOLD, 

GranD v1.3, and GeoDAR v1.3) for each of the 165 countries are given in Supplementary Table S6. 

To assess the coverage in GeoDAR for leading dam contributors, we further highlight the top five countries by either dam 

count or total reservoir storage capacity. According to WRD, the top five countries by dam count are China (23,749), US 

(8886), India (5074), Japan (3089), and Brazil (1347). GeoDAR v1.1 covers the dam counts of these countries by 22%, 90%, 710 

26%, 20%, and 59%, respectively. The top five countries by total reservoir storage capacity are Russia (917.8 Gigatons 

(Gt)), Canada (892.3 Gt), US (867.1 Gt), China (814.1 Gt), and Brazil (673.5 Gt). The coverage ranges from 88% for China, 

92% for Brazil, 98% for Russia, to about 100% for the US and Canada. 



36 
 

 715 

Figure 10. GeoDAR (v1.1) as proportion of ICOLD WRD for each country or territory. (a) By dam count and (b) by 

reservoir storage capacity. Statistics for Taiwan and Greenland were computed separately from mainland China and 

Denmark.For consistency, storage capacities of dams shared by WRD and GeoDAR were based on the values in GeoDAR.  

Catchment areas of the reservoirs often indicate the stream order of the impounded river, and thus the scales of flow and 

sediment alterations by the dam. Locating dams with an improved representation of catchment areas, particularly smaller 720 

ones, has been increasingly needed by hydrologic modelling and watershed managements (Grill et al., 2019; Lin et al., 

2019). To evaluate how GeoDAR spatially resolved WRD in this aspect, we directly used the values of the attribute 

“catchment area” provided in WRD. As many records in WRD are missing catchment areas, we combined the available 

values in both WRD and GRanD, and when a dam has catchment areas in both datasets, we preferred the value in GRanD. 

As reported in Table 5, the subset of WRD georeferenced in GeoDAR v1.1 has a total catchment area of 141140 million 725 

km2, which covers 94% of the total catchment area in WRD. The remaining 6% gap was largely closed by the inclusion of 

the remaining non-WRD dams from GRanD. It is worth mentioning that these statistics do not take into account the dams 

without validdocumented catchment areas. While it is possible to retrieve catchment boundaries for GeoDAR dams (e.g., 

using high-resolution DEM as per Mulligan et al. (2020)), acquiring accurate catchment areas of the other WRD dams 

(which have not been georeferenced) is prohibited due to unknown pour point locations. Therefore, our comparison was only 730 

based on the attribute values that are already available. This explains why GeoDAR georeferenced less than half of the WRD 

records by count but included more than 90% of the total catchment area. Similar to the pattern of reservoir storage capacity, 
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higher proportions of the WRD catchment area covered by GeoDAR are skewed towards the dams with larger catchment 

areas (Fig. 11a). For example, the number of dams with a catchment area larger than 10 km2 in GeoDAR equals 8988% of 

that in WRD, and the coverage increases to 95% for the dams with a catchment area larger than 100 km2.  735 

 

Figure 11. Comparison among GeoDAR, ICOLD WRD, and GRanD by reservoir catchment area and reservoir area. (a) 

Frequency (count) distributions by reservoir catchment area. Statistics were based on 40 bins between the minimum and 

maximum catchment areas (i.e., 1 to 4.04 million4,040,000 km2). (b) Frequency distribution by reservoir area. Statistics are 740 

based on 80 bins between the minimum and maximum reservoir areas (i.e., 0.001 to 66,866.7 km2). All bins are of equal size 

Formatted: Centered
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on a logarithmic scale. Considering that catchment areas are often missing in WRD, a smaller bin size 40 was used to 

generate smoother distribution curves. Catchment areas were acquired from data attribute values. When a dam is in both 

GRanD and WRD, the value in GRanD took precedence. Reservoir areas for GeoDAR and GRanD were based on their 

reservoir polygons, and the small proportions of dams missing reservoir polygons were not counted in distribution curves. 745 

Reservoirs areas for ICOLD WRD were based on reservoir polygons if available in GeoDAR or from the WRD attribute if 

not. 

Although GeoDAR does not include reservoir catchment boundaries, it does provide reservoir polygons for 8687% of the 

georeferenced dam points. As reported in Section 3.2, the remaining 1413% of the dam points without reservoir polygons, if 

inferred from their available attribute values, yield a reservoir area that is only 24% of the total reservoir area of all GeoDAR 750 

dams. For this reason, we focus on the retrieved reservoir polygons for comparing how GeoDAR v1.1 represents the 

reservoir areas in the entire ICOLD WRD. Among the 21,57621,515 polygons, 20,77820,718 (96%) are associated with the 

georeferenced WRD dams. These retrieved WRD reservoirs have a total area of 474477 thousand km2, accounting for 92% 

of the cumulative reservoir area in WRD (Table 5). After supplementation of the other 798797 polygons from GRanD, the 

total reservoir area reached 494496 thousand km2, equivalent to 96% of the cumulative reservoir area in WRD. Like other 755 

attributes, the values of reservoir area are not always available in all WRD records, so our reported coverage percentages are 

theoretically overestimated. However, if a WRD record is missing its area attribute value but has a retrieved reservoir 

polygon, we used the area of the reservoir polygon as the de facto reservoir area in calculating WRD statistics, and the other 

WRD records still missing reservoir areas probably contribute a miniscule fraction of the aggregated area. Therefore, we 

consider our comparison to be overall reasonable. Keeping this limitation in mind, we showed in the distribution curves (Fig. 760 

11b) that the number of GeoDAR reservoir polygons accounts for 68% of all WRD records that have reservoir area values 

(either documented or de facto), and consistent with the distributions of other attributes, higher coverages for reservoir area 

tend to occur for larger reservoirs. For example, GeoDAR retrieved 81118,263 reservoirs larger than 1 km2, which account 

for 80% of those in WRD. The coverage increases to 92% for reservoirs larger than 10 km2 although the reservoir polygon 

number decreases to 25432,570. 765 

5.2 Improved spatial density over GRanD 

While GRanD emphasized dams larger than 100 mcm (or 0.1 km3), GeoDAR aimed to georeference WRD records which, by 

definitions, have a minimum storage capacity of 3 mcm or smaller if the dam is higher than 15 m (see Section 1). This 

reduced storage threshold entailed a substantial increase of the dam quantity in GeoDAR. As compared in Table 5, GeoDAR 

v1.0, which was generated independently from GRanD, is already more than triple the dam quantity in GRanD (7,320) and 770 

accounts for 9495% of the total reservoir storage capacity in GRanD (6,881 Gt). With the harmonization with GRanD, the 

number of dams in GeoDAR v1.1 reaches 341339% of that in GRanD, with a total reservoir storage capacity also exceeding 
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67% of that in GRanD. This comparison suggests that the improvement of GeoDAR is mainly manifested as the increased 

dam quantity, rather than reservoir storage capacity. 
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Figure 12. Global distribution of reservoir storage capacities of georeferenced dams. (a) GRanD v1.3 and (b) GeoDAR v1.1. 

DisplayedShown on the maps are 7,312 out of the 7,320 dams in GRanD v1.3 and 24,34724,174 out of the 24,97824,783 

dams in GeoDAR v1.1 with documented or estimated reservoir storage capacities.  
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The increased dam quantity in GeoDAR is manifested as a ubiquitous improvement of the spatial density of smaller dams 780 

worldwide (Fig. 12). Since GeoDAR v1.1 has absorbed GRanD v1.3, the global patterns for capacious reservoirs are overall 

similar between the two datasets. What is noticeably different are the proliferated density of thousands of smaller reservoirs, 

particularly those beyond the main focus of GRanD (such as smaller than 100 mcm). The substantial increase of smaller 

dams and reservoirs is corroborated by the distribution curves in Fig. 9a, where the mode storage capacity (i.e., the capacity 

corresponding to the peak frequency) shifted from about 100 mcm in GRanD to about 3–5 mcm in GeoDAR (both v1.0 and 785 

v1.1). The area between the distribution curves is largely explained by the addition of ~16,60016,500 dams smaller than 100 

mcm in GeoDAR v1.1 (Fig. 9a), which correspond to a total storage increase of 126124 Gt or 9695% of the total storage of 

the dams smaller than 100 mcm in GRanD (Fig. 9b). It is important to note that the added reservoirs in GeoDAR still comply 

with ICOLD’s definition of “large dams” (see Section 1). Although their aggregated storage is limited, these relatively small 

reservoirs are geographically widespread, meaning that they are locally significant for filling service gaps between more 790 

sporadic larger dams. Examples include hundreds of smaller dams/reservoirs that provide irrigation from southern Europe 

(Fig. 13b) to north-western and central India (Fig. 13c), hydropower and water usage in central and southern China (Fig. 

13a), and flood controls across the Mississippi River Basin and southern Texas in the US (Fig. 13d). The sheer number of 

these added smaller dams and reservoirs accentuate the benefits of an improved knowledge of their spatial locations, such as 

what GeoDAR offers, for strategizing water and energy managements and assessing fragmentation of the river ecosystems 795 

(Belletti et al., 2020; Grill et al., 2019).  
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Figure 13. Regional distributions of reservoir storage capacities in GRanD v1.3 and GeoDAR v1.1. (a) China and its 800 

surrounding East and Southeast Asia. (b) Europe. (c) India and its surrounding South Asia. (d) US and its surrounding North 

America. Graduated symbols for GeoDAR (blue bubbles) are superimposed by symbols for GRanD (red bubbles).  

To assist regional applications, we further aggregated the improvements of GeoDAR over GRanD into national scales. As 

shown in Fig. 14, GeoDAR’s improvements in either dam count or reservoir storage capacity pervade more than 120 

countries which occupying about 86% of the continental landmass (excluding Greenland and Antarctica). The increase of 805 
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dam count occurs in 126127 out of the 154155 GeoDAR countries (Fig. 14a). These countries include 1718 countries 

without GRanD records at all (such as Haiti, United Arab Emirates, Yemen, and Bhutan), and the other 109 countries 

comprise 80% of the 137 countries with GRanD records. There are slightly fewer countries with a confirmed increase of 

reservoir storage capacity (Fig. 14b) because some of the added WRD records are missing storage capacity values. The 

number of these countries is 116117, including 1415 without GRanD records at all.  810 

While GeoDAR’s improvements are widespread, the improvement levels are not geographically uniform (Fig. 14). Globally 

speaking, the spatial patterns of number and capacity increases are overall consistent, with  the major hotpots concurring 

with large or industrialized nations (e.g., US, China, Brazil, India, and European countries) and less impressive increases in 

smaller, drier, and/or less developed nations (e.g., part of Africa and South America). This is reasonable as bigger and/or 

more developed nations usually possess a larger quantity of dam infrastructures and thus a greater potential for GeoDAR to 815 

improve. However, this pattern also reflects the disparities due to several factors, such as a possible bias in WRD (as it is a 

volunteered dataset and not all member nations contributed equally), the accessibility of regional registers for geo-matching, 

and geocoding challenges for different countries. The top five countries in terms of dam count increase are the US (an 

increase of 60906,039 or 317314%), China (43764,352 or 477474%), India (967963 or 291290%), South Africa (672667 or 

250248%), and Brazil (586575 or 289219%) (Supplementary Table S6). These five countries cover nearly three quarters of 820 

the global dam count increase (17,65817,463). Similarly, the top five countries in terms of storage capacity increase are the 

US (129123 km3 or 1716%), Canada (73 Gt or 8%), Brazil (6766 km3 or 12%), China (44 km3 or 7%), and India (3233 km3 

or 12%), and Canada (15 km3 or 2%) or Iraq (17 km3 or 17%) if including the unfinished Bekhme Dam, which together 

comprise nearly 7068% of the global storage capacity increase (416503 km3). 

Certain regions with limited increases in dam count, such as the Middle East, Southeast Asia, and southern Africa, show 825 

more pronounced improvements in storage capacity. This contrast indicates that, in addition to smaller dams and reservoirs 

(e.g., <100 mcm), GeoDAR also supplemented GRanD by including more capacious reservoirs. Examples are Dau Tieng 

Dam in Vietnam (storage capacity 1580 mcm; location 11.323° N, 106.341° E), San Roque Dam in the Philippines (990 

mcm; 16.147° N, 120.685° E), Mrica Dam in Indonesia (193 mcm; 7.392° S, 109.605° E), Marib Dam in Yemen (398 mcm; 

15.396° N, 45.244° E), and the recently completed Lauca Dam in Angola (5482 mcm; 9.739° S, 15.127° E). GeoDAR also 830 

inventoried some large hydroelectric projects that are under construction or consideration. Examples are Diamer-Bhasha 

Dam in Pakistan (expected 10,000 mcm; 35.521° N, 73.739° E), Bakhtiari Dam in Iran (expected 4,845 mcm; 32.958° N, 

48.761° E), Bekhme Dam in Iraq (17,000 mcm; 36.701° N, 44.271° E), Diamer-Bhasha Dam in Pakistan (expected 10,000 

mcm; 35.521° N, 73.739° E),  and Myitsone Dam in Myanmar (13,282 mcm; 25.691° N, 97.516° E).  



46 
 

835 



47 
 

 

Figure 14. Country-level improvements in GeoDAR v1.1 over GRanD v1.3. (a) Increase of dam count and (b) increase of 

total reservoir storage capacity for each country or territory. Aggregated statistics for dam count and storage capacity were 

also compared for each continent. For convenience of comparison, both statistics were displayed on Panel a.  
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By further aggregating national statistics to each continent (Fig. 14a), the result echoes that GeoDAR’s major improvement 840 

lies on the quantity or spatial density of the dams, rather than their total reservoir storage capacity. However, this should not 

overshadow the fact that improvements of both dam count and storage capacity do exist in all continents. As summarized in 

Fig. 14a, the continental improvement ascends from 173 more dams with a 6 km3 total capacity in Oceania, to a scale of 

6000–7000 more dams with a 100–200 km3 capacity in North America or Asia. Unfortunately, because the total storage 

capacity is disproportionally dominated by the largest reservoirs and GRanD has already included most of them, the added 845 

storage capacity by GeoDAR relative to what has existed in GRanD appears limited and descends from 89–911% in Asia 

and North America, Asia, and7–8% in Oceania and South America, 7% in Oceania, to only 1–23% in Africa and Europe and 

Africa. By contrast, GeoDAR’s dam quantity ranges from being almost double that of GRanD in Oceania and Africa, to 

being triple to quadruple in the other continents. 

A derivative benefit of the increased dam quantity is a more complete representation of the regulated watersheds, which is 850 

critical to improving discharge estimates. As revealed by the distribution curves in Fig. 11a, GeoDAR improved GRanD in 

the inclusion of reservoir catchment areas from two aspects. First, the exceedance of the number of reservoir catchments is 

almost unanimous on all area levels. This corresponds to a total increase of the regulated catchment area by 31,71131,502 

km2 or 27% (Table 5). Second, the increase of reservoir catchments is skewed towards smaller catchments, signifying a more 

realistic inventory of human water regulations in the basins of lower stream orders or closer to stream headwaters. As shown 855 

in the distribution curves (Fig. 11a), the average increasing rate is augmented from about 30% for catchments larger than 

1000 km2, 80% for catchments between 10 and 1000 km2, to more than 600% for those smaller than 10 km2. The mode of 

catchment areas decreases from about 200–400 km2 in GRanD to 30–100 km2 in GeoDAR, with the latter much closer to the 

mode of the entire WRD (15–50 km2). As a result, the number of dams with a catchment size smaller than 25 km2, for 

example, which is the channelization threshold for the high-resolution MERIT Basins hydrography dataset (Lin et al., 2019; 860 

Yamazaki et al., 2017)), is 35563,570 or 27% in GeoDAR in comparison to only 671695 or 910% in GRanD. These small-

catchment dams, once integrated into river networks, may substantially improve the performance of routing models. 

Consistent with our comparison with WRD (Section 5.1), these statistics are only based on the records with valid catchment 

areas. Considering that missing values more likely occur to dams with smaller catchments, our reported improvement could 

be theoretically conservative.  865 

The increased dam count in GeoDAR also enabled the retrieval of surface extents of another 14,000 or so smaller reservoirs 

(Fig. 7). These added reservoir polygons have an average median size of 0.51.4 km2 in comparison to 4.365 km3 in GRanD. 

They aggregate to a total area of 19,88019,667 km2, a scale comparable to 30 Lake Meads. Although this area increase may 

appear substantial, it only expanded the global reservoir area in GRanD by a marginal proportion of 4%. Similar to the 

pattern of storage capacities, reservoir areas follow a quasi-Pareto distribution, meaning that smaller reservoirs tend to 870 

dominate the population (or number) whereas larger reservoirs dominate the area and storage. This explains why the increase 



49 
 

of relative area is small, but the increase of absolute quantity is double that of the entire reservoir polygons in GRanD. For 

example, 95% of the total reservoir area in GeoDAR comes from only 12% of the reservoir polygons larger than 10 km2, and 

about 90% of these large reservoirs are already included by GRanD (Fig. 11b). This pattern again suggests that the core 

value of GeoDAR is not to augment the global scale of reservoir area or storage, but to amplify the local details of smaller 875 

dams and reservoirs. Owing to the added details, the mode of reservoir area is on the order of 1–10 km2 in GRanD but was 

refined by one order of magnitude to 0.1–1 km2 in GeoDAR.  

If we group the global dams by their documented main purpose, we observe in Fig. 15 that GeoDAR improved GRanD 

unanimously in both dam count and storage capacity for all main purposes (Fig. 15). For the same reason as explained above 

(i.e., the added reservoirs are small), the increases of dam count appear more prominent than those of storage capacity, and 880 

the increases of storage capacity from GRanD to GeoDAR are overall more evident than those from GeoDAR to ICOLD 

WRD. The exception is the dams with “others” or “unknown” purposes whose total storage capacity in GeoDAR is lower. 

This is because when GRanD and WRD records conflict with each other in the GeoDAR harmonization process, the attribute 

values in GRanD took precedence only if they are available or valid (“others” or “unknown” was considered as invalid 

reservoir purpose). Assuming that reservoir operations vary by purpose, this unanimous improvement of the spatial 885 

inventory for all reservoir purposes, in conjunction with satellite-observed water budget variations, can help us better 

generalize reservoir operation rules which are critical to improving water managements.  
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Figure 15. Comparison among GRanD v1.3, GeoDAR v1.1, and ICOLD WRD by dam/reservoir purpose. (a) Dam counts 

and (b) total reservoir storage capacities for each main purpose. Dam purposes are based on attribute values provided in 

WRD and GRanD. For a dam with multiple purposes, its “main purpose” was considered as the one with the highest order of 

priority. The main purpose in GRanD took precedence if it differs from that in WRD.  

5.3 Spatially complementary to GOODD 895 

The recently published GOODD (V1) dataset (Mulligan et al., 2020) includes 38,667 dam points in the world, which were 

digitized by scanning through Google Earth imagery with supports of regional inventories and the Shuttle Radar Topography 

Mission Water Body Dataset (SWBD, 2005). Despite lacking essential attributes, GOODD is thus far the most 

comprehensive global inventory of dam locations and catchments. The digitization was performed during 2007 to 2011 and 

was later updated in 2016. This means that reservoirs postdating 2016 were not yet included in the dataset. The completeness 900 

and accuracy of GOODD also depend on the sizes of the dams or reservoirs. According to Mulligan et al. (2020), the 

resolution and quality of available Google Earth imagery during the digitization period were low in some parts of the world 

(such as China), and an experiment in the US showed that detectable dams and reservoirs from low resolution imagery (e.g., 

Landsat Geocover 2000) may require the reservoir length greater than 500 m and the dam width greater than 150 m. These 
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minimum size criteria do not necessarily overlap with those of ICOLD WRD which instead emphasize the reservoir storage 905 

capacity and dam height (see Section 1).  

Because of these digitizing limitations and criterion difference, the dam points in GeoDAR are spatially complementary to, 

rather than always duplicated by, those in GOODD across many regions. Figure 16 identified four examples in Cerrado 

Brazil, northern China, southwestern France, and northern Pakistan, where a large proportion of the GeoDAR dams were not 

digitized by GOODD. Some of the dams that only appear in GeoDAR also comply with the minimum size criteria of 910 

GOODD, and examples are those enlarged in the right panels except the Duber Khwar Dam in Pakistan (35.119° N, 72.927° 

E; Fig. 16j) which was completed more recently in 2014. Since the area of the Duber Khwar Reservoir (about 0.05 km2) is 

smaller than the resolution of HydroLAKES (0.1 km2) and the dam completion year overlaps with the image acquisition 

period of the UCLA Circa- 2015 Lake Inventory (from May 2013 to August 2015 (Sheng et al., 2016)), GeoDAR 

georeferenced the dam point but did not successfully retrieve the reservoir polygon.  915 

To approximate how GeoDAR and GOODD complement each other globally, we intersected both dam datasets with the 30-

m-resolution UCLA Circa- 2015 Lake Inventory. We noticed thatAs a result of manual snapping to the 30-arc second 

HydroSHEDS streamflow network (Lehner et al., 2008), some of the points in GOODD, particularly in regions like China, 

India, and Brazil, ended up havingexhibit substantial geographic offsets from the actual locationsdams or reservoirs observed 

in the Google Earth imagery. For a pilot experiment, we applied a 1-km tolerance tolerance (about 30-arc-second on the 920 

equator) when intersecting the UCLA lake inventory with GOODD, and kept a 500-m tolerance as used in Section 2.5 for 

intersecting the lake inventory with GeoDAR. The result shows that among the 55,000 or so water bodies that intersect either 

datasets, 80% intersect with GOODD and the other 20% with GeoDAR alone. These statistics imply that GeoDAR may have 

an ability to expand the number of dams in GOODD by roughly about 25% (i.e., 20% divided by 80%). Since we applied a 

larger tolerance for GOODD, this estimated expansion by GeoDAR is likely conservative (considering that the number of 925 

GOODD-intersecting reservoirs may be overestimated). If a 500-m tolerance is used for both intersections, the expansion by 

GeoDAR will increase to roughly 45%. In addition to the expanded spatial coverage, GeoDAR indexed each georeferenced 

dam point to a WRD and/or GRanD record and thus enabled access to multiple attributes, whereas GOODD carries no 

attribute information except the delineated reservoir catchments. These regional and global comparisons suggest that, even 

just with the geometric dam points, GeoDAR is not a simple replication of GOODD, but instead complements GOODD for 930 

an improved spatial coverage and density of global dams. 
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Figure 16. Comparisons between GRanD v1.3, GOODD V1, and GeoDAR v1.1 in selected regions of the world. (a)-(b) 

Cerrado, Brazil (Mato Grasso State). (c)-(e) Northern China (Shandong Province). (f)-(h) Southwestern France (Aquitaine 935 

and Midi-Pyrenees). (i)-(k) Northern Pakistan (northern highlands and foothills). GRanD points (red) are placed on top of 

GOODD (green) which is placed on top of GeoDAR (yellow). Background image source: Esri imagery base map. 
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6 Data availability 

GeoDAR v1.0 (dam points) and v1.1 (both dam points and reservoir polygons) are available for download from the 

figshareZenodo repository https://doi.org/10.5281/zenodo.6163413 . The dam points are stored in both csv and shapefile 940 

formats, and the reservoir polygons are provided in shapefile. Their attributes and values are described in Table 3 as well as 

in the repository website. The data usage information is described in Section 3.3. Other citation courtesy and disclaimer 

information are given in the Disclaimer section and the repository website. All released datasets and information are 

available under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license 

(https://creativecommons.org/licenses/by/4.0). Users who would like to link GeoDAR records to the proprietary WRD 945 

attributes they have purchased in advance from ICOLD should contact the corresponding author.  

7 Summary and applications 

We have produced a comprehensive and spatially resolved dam and reservoir dataset, GeoDAR, which complementarily 

improved the existing global inventories of large dams. We demonstrated that the production of GeoDAR is not a direct 

compilation or collation of existing dam datasets. Instead, it involved a first-known effort to georeference ICOLD WRD. 950 

This was jointly enabled by geo-matching (or table-associating) multi-source regional registers and geocoding descriptive 

attributes through the Google Maps API. This georeferencing effort resulted in GeoDAR v1.0 which contains 22,74322,560 

spatially resolved dam points, each associated with a WRD record, with an overall accuracy of 95%. Each of the 

georeferenced records was also labelled with a QA score, providing users a reference to the qualities of individual dam 

locations. Our georeferencing process and accuracy validation, as we have elaborated in substantive detail, have important 955 

methodological values for future expansions of spatial dam inventories using similar approaches, such as Geo-Wiki and 

OpenStreetMap.  

To further ensure the optimal inclusion of the world’s largest dams, we harmonized the georeferenced WRD (or GeoDAR 

v1.0) carefully with GRanD v1.3. Using the harmonized dam points as spatial identifiers, most of their reservoir boundaries 

were then retrieved from high-resolution water body datasets. This ICOLD-GRanD harmonization and the subsequent 960 

reservoir retrieval resulted in GeoDAR v1.1, our end product, which holds 24,97824,783 dam points (including 

24,16823,974 linked to WRD) and 21,57621,515 reservoir polygons. This product spatially resolved 4244% of the entire 

ICOLD WRD by dam count and more than 90% by reservoir storage capacity. Since most of the world’s largest reservoirs 

(e.g., >0.1 km3) are already included in GRanD, GeoDAR adds limited improvements (by 4–27%) to the total reservoir area, 

storage capacity, and catchment area. However, by including many smaller dams particularly in lower and middle latitudes, 965 

GeoDAR is triple the size of GRanD in terms of dam and reservoir quantity. For this reason, one of the major improvements 

of GeoDAR is its unparalleled ability to capture relatively small dams, or in other words, to enhance the spatial detail of 

global dam and reservoir distributions.  

https://doi.org/10.5281/zenodo.6163413
https://creativecommons.org/licenses/by/4.0
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Besides an improved quantity and spatial detail, another unique value of GeoDAR is its capability of bridging the locations 

of dams to a broad suite of attributes that are essential to scientific applications. A standing dilemma of existing global dam 970 

datasets is the divergence between the focus on dam quantity or spatial detail and the provision of detailed attributes for a 

limited dam quantity. This dilemma was partially ameliorated by GeoDAR because its georeferenced dams and reservoirs 

were explicitly indexed to WRD and/or GRanD records where many attributes are available. Since the original WRD is not 

georeferenced, our perception was that the task of georeferencing WRD to enable a spatially explicit application of the 

attribute information, even at regional scales, may fell on individual users. To avoid the duplication of efforts and to 975 

facilitate scientific applications, we performed this comprehensive georeferencing on the entirety of ICOLD WRD as 

thoroughly as possible, and hereby released the resultant dam coordinates and reservoir polygons to the public as part of 

GeoDAR. We would like to reiterate the disclaimer that GeoDAR does not directly contain, and neither do we intend to 

release, the original WRD attribute data which are proprietary to ICOLD. In other words, the association between GeoDAR 

IDs and WRD IDs exist but were purposefully encrypted. However, if individual users need GeoDAR records to be linked to 980 

the WRD attributes that they already purchased from ICOLD, we can be contacted and on a case-by-case basis, we may 

provide this assistance given that the users agree not to release the decryption key or the proprietary WRD attributes.  

We envision that GeoDAR, with its enhanced spatial density and extended accessibility to essential attributes, will benefit a 

wide spectrum of disciplines and applications. It is worth noting that although most dams in GeoDAR are smaller than those 

in GRanD or AQUASTAT, they are still compliant with ICOLD’s size criteria which exclude countless tiny on-farm 985 

reservoirs and water storage tanks. Nevertheless, we have suggested from regional examples that GeoDAR partially 

complements some of the most extensive global dam inventories such as GOODD, despite GOODD owning a larger number 

of dams. In this sense, even just with the 25,000 or so geometric dam points, GeoDAR contributes yet another fundamental 

extension to global water infrastructure databases. If these dam points are rectified to high-resolution hydrographic networks 

(such as MERIT Hydro (Lin et al., 2021; Yamazaki et al., 2019)), GeoDAR, together with other existing dam and barrier 990 

datasets, can help refine our understanding of how human water infrastructure fragmented global rivers and their ecosystems 

(Belletti et al., 2020; Grill et al., 2019; Kornei, 2020Yang et al., 2022), especially with a more exhaustive inclusion of 

smaller and/or headwater catchments.  

Alongside the detailed dam points, GeoDAR’s reservoir boundaries provide thus far the most comprehensive global base 

maps for assessing reservoir dynamics and the impacts of human water regulation. In combination with the expanding 995 

constellation of satellite sensors (e.g., ICESat-2, Sentinel-6, and the forthcoming SWOT), this high-resolution base map will, 

for instance, enable a more complete and accurate monitoring of water storage variation and surface evaporation in global 

reservoirs (Biancamaria et al., 2016; Chen et al., 2021; Cretaux et al., 2016; Zhao and Gao, 2019a). Tracking the 

spatiotemporal balance between reservoir water storage and evaporative loss will help strategize regional water 

managements under a warming climate (Cretaux et al., 2015). Since our knowledge and understanding improves as 1000 
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observations increase, the observed water storage dynamics for an increased quantity of reservoirs will inevitably entail a 

more realistic generalization of the reservoir operation rules. This is particularly true if the attribute information such as 

reservoir purpose and storage capacity are also utilized. Considering that small but widespread reservoirs have a strong 

cumulative impact on discharge (Habets et al., 2018; Lin et al., 2019), the improved operation rules and the fine details of 

reservoir storage changes will benefit discharge estimations from hydrological models. From another perspective, 1005 

GeoDAR’s reservoir polygons can also help refine surface water typology, either by directly using them to mask artificial 

impoundments from natural lakes, or by expanding the training pool to enhance machine learning algorithms so that 

additional reservoirs can be detected (Fang et al., 2019). A refined water typology map will, in turn, assist other analysis 

tools in improving our assessments of how human footprints alter surface hydrology and its related biodiversity and 

ecosystem health. 1010 

8 Code availability 

Python scripts for geo-matching, geocoding, and reservoir assignment are publicly available at https://github.com/surf-

hydro/georeferencing-ICOLD-dams-and-reservoirs https://github.com/jida-wang/georeferencing-ICOLD-dams-and-

reservoirs. We request users who adapt or use the scripts to cite Wang et al. (2021). 
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11 Disclaimer 

GeoDAR v1.0 and v1.1 contain knowledge derived from ICOLD WRD (https://www.icold-1030 

cigb.org/GB/world_register/acknowledgements_wrd.asp) but release no original values of the proprietary WRD attributes 

(except the storage capacities of a few large dams used to verify and correct Wada et al. (2017); see Table S4). The 

production and dissemination of GeoDAR (spatial features) abide by ICOLD’s legal policies (https://www.icold-

cigb.org/GB/legal.asp) and were approved by the Central Office of ICOLD. GeoDAR v1.0 represents an initial effort of 

georeferencing WRD at a global scale, and the resultant dam distribution may be geographically skewed and thus may not 1035 

reflect the distribution of all WRD records. The authors are not responsible for any consequence arising from this limitation. 

GeoDAR v1.1 absorbed the spatial features (i.e., dam point coordinates and most of the reservoir polygons) in GRanD v1.3. 

To acknowledge the originality of GRanD, we request that  a users to should cite Lehner et al. (2011) if he/shethey only uses 

the subset of GeoDAR v1.1 from GRanD alone and meanwhile does not use the WRD attribute data associated with the 

GRanD features. However, iIf GRanD waiss used together with our corrected spatial corrected spatial coordinates 1040 

(Supplementary Table S5), we recommend users citingrequest users to cite this paper as well. The source of each spatial 

feature in GeoDAR v1.1 has beenis specified in the attributes “pnt_srchar_src” and “pnt_src” for dam points and the 

attribute “plg_src” for reservoir polygons (see Table 3). For any questions about data citation, pleaseusers are recommended 

to contact the corresponding author JW. Authors of this paper claim no responsibility or liability for any consequences 

related to the use, citation, or dissemination of GeoDAR. 1045 
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