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Abstract. Dams and reservoirs are among the most widespread human-made infrastructure on Earth. Despite their societal
and environmental significance, spatial inventories of dams and reservoirs, even for the large ones, are insufficient. A
dilemma of the existing georeferenced dam datasets is the polarized focus on either dam quantity and spatial coverage (e.g.,
GOODD) or detailed attributes for a limited dam quantity or region (e.g., GRanD and national inventories). One of the most
comprehensive datasets, the World Register of Dams (WRD) maintained by the International Commission on Large Dams
(ICOLD), documents nearly 60,000 dams with an extensive suite of attributes. Unfortunately, the WRD records provide no
geographic coordinates, limiting the benefits of their attributes for spatially explicit applications. To bridge the gap between
attribute accessibility and spatial explicitness, we introduce the Georeferenced global Dams And Reservoirs (GeoDAR)
dataset, created by utilizing online geocoding APl and multi-source inventories. We release GeoDAR in two successive

versions (v1.0 and v1.1) at https://doi.org/10.5281/zenodo.6163413-https://dei-orgl10-6084/m9-figshare.13670527. GeoDAR
v1.0 holds 22,74322,560 dam points georeferenced from WRD, whereas v1.1 consists of a) 24;97824,783 dam points after a

harmonization between GeoDAR v1.0 and GRanD and b) 24;5#621,515 reservoir polygons retrieved from high-resolution
water masks. Due to geocoding challenges, GeoDAR spatially resolved ~40% of the records in WRD which, however,
comprise over 90% of the total reservoir area, catchment area, and reservoir storage capacity. GeoDAR does not release the
proprietary WRD attributes, but upon individual user requests we may provide assistance in associating GeoDAR spatial
features with the WRD attribute information that users have acquired from ICOLD. Despite this limit, GeoDAR with a dam
quantity triple that of GRanD, significantly enhances the spatial details of smaller but more widespread dams and reservoirs,

and complements other existing global dam inventories. Along with its extended attribute accessibility, GeoDAR is expected
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to benefit a broad range of applications in hydrologic modelling, water resource management, ecosystem health, and energy
planning.

1 Introduction

Since around the 1950s, the world has seen an unprecedented boom in large dam construction as a response to the ever-
growing human demands for water and energy (Chao et al., 2008; Wada et al., 2017). Today, dams and their impounded
reservoirs are ubiquitous across many global basins, providing multiple services that range from hydropower and flood
control to water supply and navigation (Belletti et al., 2020; Biemans et al., 2011; Boulange et al., 2021; Déll et al., 2009;
Grill et al., 2019). These benefits were, however, often gained at the costs of fragmenting river systems, submerging arable
lands, displacing population, and disturbing climate regimes (Carpenter et al., 2011; Cretaux et al., 2015; Degu et al., 2011;
Grill et al., 2019; Latrubesse et al., 2017; Nilsson and Berggren, 2000; Tilt et al., 2009; V6résmarty et al., 2003; Wang et al.,
2017).

Despite such environmental and societal significance, our spatial inventory of global dams and reservoirs, even for the large
ones (such as those with a surface area >1 km?), has been insufficient. We still lack a thorough and authoritative dataset that
documents both geographic coordinates (latitude and longitude) and standard attributes (e.g., purpose, reservoir storage
capacity, and hydropower capacity) of the existing large dams. One of the most comprehensive datasets, the World Register
of Dams (WRD), is regularly updated by the International Commission on Large Dams (ICOLD; https://www.icold-
cigh.org), a non-governmental organization dedicated to the global sharing of professional dam/reservoir information. The
recent version of ICOLD WRD documents nearly 60,000 “large” dams, defined as those with a wall higher than 15 m or
between 5 to 15 m but with a reservoir storage greater than 3 million m® (mcm). These WRD records are considered to be
“complete” to the extent of contributions from willing nations and water authorities (Wada et al., 2017).

While ICOLD WRD provides more than 40 attributes (e.g., reservoir storage capacity, dam height, and reservoir purpose),
the dam locations are, unfortunately, either not georeferenced or publically available. Despite the availability of many
essential attributes, missing geographic coordinates has severely limited the applications of WRD, including for hydrological
modelling and hydropower planning (Yassin et al., 2019) which require the dam records to be spatially explicit. This
dilemma may be partially resolved by using georeferenced regional registers such as the United States National Inventory of

Dams (US NID; https://nid.sec.usace.army.mil). Nevertheless, such regional registers are not always publicly available,

especially in developing nations where dam construction is still booming (Zarfl et al., 2015).

Other global dam and reservoir datasets that are georeferenced, however, often lack essential attributes. An example is the
recently published GlObal geOreferenced Database of Dams (GOODD V1) (Mulligan et al., 2020), which contains 38,667
dam points digitized from Google Earth imagery and their associated catchments delineated from digital elevation models
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(DEMs). Despite this dam quantity, GOODD provides no other attribute information. Another inventory, the Global River
Obstruction Database (GROD) (Kernei,-2620;:-Whittemore et al., 2020; Yang et al. 2022), located more than 35,860030,500
flow obstructions along rivers wider than 30 m as mapped in the Global River Width from Landsat (GRWL) database (Allen
and Pavelsky, 2018). The current attributes are limited to obstruction types such as locks, weirs, and multiple types of dams.
In addition, GROD is tailored for the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission which is
designed to observe river reaches wider than 50-100 m (Biancamaria et al., 2016). While these rivers are sufficiently
captured by GRWL, the obstruction infrastructure identified along the river mask in GRWL excludes many large dams on
rivers narrower than 30 m. In the US, for instance, there are at least 5,170 NID-registered dams higher than 15 m (i.e., large
dams according to ICOLD criteria), but less than 8% of these dams intersect with GRWL (i.e., located on rivers wider than
30 m).

Among the few global dam/reservoir datasets that provide both georeferenced locations and essential attributes, are the
United Nations Food and Agricultural Organization (FAO) AQUASTAT (Li et al., 2011) and the Global Reservoir and Dam
database (GRanD) (Lehner et al., 2011). GRanD was constructed by harmonizing AQUASTAT and a wide range of regional
gazetteers and inventories. Its latest version, v1.3, contains 7,320 dams as well as their reservoir boundaries and
approximately 50 attributes, with a cumulative storage capacity of 6,881 km?. Since its publication, GRanD has been applied
extensively by a variety of studies, although its focus is on the world’s largest dams (e.g., >0.1 km?) and its quantity (7,320
dams) is a fraction of the 59,000 dams documented in WRD. A spatially resolved inclusion of additional large dams, such as
those in compliance with the ICOLD definition, has been increasingly desired by the hydrology community and encouraged
by growing collaborations from multiple disciplines such as biogeochemistry, ecology, energy planning, and infrastructure
managements (Belletti et al., 2020; Boulange et al., 2021; Grill et al., 2019; Lin et al., 2019; Wada et al., 2017).

Here, we present the initial versions of the Georeferenced global Dams And Reservoirs dataset, or GeoDAR. We built
GeoDAR by leveragingutitizing multi-source dam and reservoir inventories and the Google Maps geocoding API. Our goal
is to tackle the limitations of existing datasets by offering a dam inventory that is both spatially resolved and has an extended
ability to access important attributes. As summarized in Table 1, our GeoDAR product includes two successive versions.
GeoDAR v1.0 is essentially a georeferenced subset of ICOLD WRD. It contains rearly-23.00022,560 dam points, each
indexed by an identifier (ID) that is associated with a WRD record, allowing for the potential retrieval of all its 40+

proprietary attributes from ICOLD. GeoDAR V1.1 consists of a) nearly 25,000 dam points which harmonized v1.0 and
GRanD for an expanded inclusion of the largest dams, and b) the reservoir boundaries for most (8687%) of the dam points

based on a one-to-one relationship between dams and reservoirs. Due to geocoding challenges, GeoDAR v1.0 spatially

resolved about 40% of the individual dams in WRD. However, these georeferenced locations were quality controlled, and
after the harmonization with GRanD, v1.1 captures a total storage capacity of 72977,384 km?®, a magnitude comparable to

the full storage capacity of WRD. While GeoDAR v1.1 can be considered as a version that supersedes v1.0, the latter was, in
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principle, georeferenced independently from GRanD. ;-and-w\We -opted to release both versions so that-users have the

flexibility to eheesedecide whichever works better for their cases and potentially improve the harmonization.

For proprietary reasons, neither GeoDAR version releases any WRD attributes. Instead, we offer an option for users if they
need to acquire the attributes: upon individual request we may assist the user who has purchased WRD (https://www.icold-
cigh.org/GB/world_register/world_register_of dams.asp) to associate the GeoDAR ID with the ICOLD “international code”,

through which WRD attributes can be linked to each GeoDAR feature (see Sections 3.3 and 7 for more details). Even
without the proprietary WRD attributes, GeoDAR offers one of the most extensive and spatially-resolved global inventory of
dams and reservoirs, which may benefit a variety of applications in hydrology, hydropower planning, and ecology.

Table 1. GeoDAR product versions and components

. L L Storage Reservoir polygon
Version  Description Component Acquisition sources/methods Count capacity (km?) area (km?)
Geo-matched via regional registers é&m% 1309:31,308.2 -
vi0 Georeferenced Geocoded via Google Maps API 8; 380927 1506510324 -
. 1COLD Dam points e
Supplemented by Wada et al. (2017) 133 3,900.0 -
Total L0 eazsspad06
GeoDAR v1.0 alone_(excluding 1773217, 283
overlap with GRanD v1.3 480 =507.2 -
GRanD v1.3 and GeoDAR 1.0 008 sggss60060 -
Dam points GRanD v1.3 and other ICOLD S s0a76030
GRanD v1.3 alone 810809 268.0267.7 -
Harmonized
vil 1COLD and Total 2SR 7206673838
GRanD EZTY
GRanD v1.3 reservoirs 0 1,12 6804-36,717.7 472,379-6446,525.2
. HydroLAKES vL.0 67118 5239508 16,677.613,661.9
Reservoir 4
polygons UCLA Circa- 2015 Lakes 51 2212 4519385 4802.936,126.6
Total 51’5 2L F41747.216.1 493,860-2496,313.8
2 Methods

2.1 Definitions and overview

We aim to georeference (i.e., acquire the latitude and longitude of) each dam listed in ICOLD WRD, by using the nominal
location (e.g., a descriptive address for a dam or reservoiri-edeseriptive-information) available in the WRD attributes.
Examples of the attributes that are important for georeferencing include the names of the dam and reservoir, the

administrative divisions the dam is affiliated with, and the name of the impounded river. Using such attribute information,
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spatial coordinates of a dam may be either a) queried from an existing register or inventory where dam records were already
georeferenced and verified, or b) estimated through a geocoding service that can convert nominal locations to numeric

spatial coordinates. Our preference was the former when possible to optimize the georeferencing accuracy.

The schematic procedure of GeoDAR production is illustrated in Fig. 1. We started by removing duplicate records from the
59,071 dams listed in the original ICOLD WRD (accessed in March 2019). Here “duplicates” are defined as the dams that
are either a) repeatedly recorded with identical (or highly similar) attribute information or b) different dam structures but
associated with the same reservoir. Examples of the second scenario include a reservoir’s primary dam-and secondary/saddle
dams-éyke such as the Boonton Dam and its associated Parsippany Dike (40.884° N, 74.408° W) in New Jersey and multiple
controls for one reservoir such as Veersedam and Zandkreekdam for VVeerse Meer (51.549° N, 3.678° E) in the Netherlands.
Although “duplicates” in this scenario refer to different dam bodies, including them could lead to double or multiple

counting of the storage capacity of the same reservoir, and similar to the production of GRanD, our goal was to link one

reservoir to one dam (if possible). After removing the identified duplicates, the cleaned WRD contains 56,81550 unique

dams/reservoirs. These dams/reservoirs have-with an accumulative tetal-waterstorage capacity of 73347,328 km® (based on

the original WRD attribute values_(which occasionally are missing or have unit errors) or 7,720 km? after
replacement/correction by Wada et al. (2017) and GRanD (see Section 2.4). Unless otherwise described, the ICOLD WRD

mentioned in the following text refers to the version after duplicate removal. We acknowledge that owing to the challenges

of lacking explicit spatial information and occasional attribute errors in WRD, our duplicate removal is not perfect and may

have misidentified or missed some duplicate dams.

We then compared the unique ICOLD WRD records against a collection of georeferenced dam registers we acquired from
regional water authorities and agencies. When the attribute information of a WRD dam matched that in a regional register,
the spatial coordinates from the latter were “borrowed” by the WRD record. We term this process “geo-matching”, which
resulted in the georeferencing of £3;36113,190 WRD dams. For the remaining dams in WRD, we applied the alternative
approach “geocoding”, which transforms a nominal location (such as the dam or reservoir address formulated by ICOLD
attribute information) to a pair of spatial coordinates. The tool we used to implement geocoding was the Google Maps
geocoding API (http://developers.google.com/maps). The geocoding process successfully retrieved the spatial coordinates of

another 94109,338 WRD dams. The combined output from both geo-matching and geocoding were next collated with the
spatial coordinates and reservoir storage capacities of 133 WRD dams larger than 10 km? as documented in Wada et al.
(2017). These processes resulted in GeoDAR V1.0, a total of 22,74322,560 georeferenced WRD dam points with an
accumulative storage capacity of 64366,441 km® (accounting for more than 80% of that in ICOLD WRD). The Venn
diagram in Fig. 2a provides an overview of the logical relations among the georeferencing sources and methods for GeoDAR
v1.0.
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Figure 1. Schematic flowchart of GeoDAR production. Text in roman indicates applied or produced datasets, and text in

italics indicates methods or procedures.-Fhe-rumber-noted-by-asterisk-exelude dams-that-are-alse-in-Wada-et-al(20

To further improve our spatial inventory of the world’s largest dams, we performed a harmonization between the dam points
in GeoDAR v1.0 and GRanD v1.3. The harmonization aimed at merging both datasets, removing duplicates_(overlap)
between them, and when possible, associating each-new dams supplemented by GRanD with the corresponding WRD
records. This process identified another 22352,223 dam points, including 1,41425 associated with WRD but not
georeferenced in GeoDAR v1.0. With removal of duplicates, this harmonization led to a total number of 24,97824,783
georeferenced dam points, with an accumulative storage capacity of 72977,384 km®{comparable-to-that-in-the-original
WRDB). An overview of this harmonization process is illustrated by the Venn diagram in Fig. 2b. Finally, the reservoir
polygons for each of the georeferenced dams were retrieved as thoroughly as possible from three global water body datasets:
GRanD v1.3 reservoirs (Lehner et al., 2011), HydroLAKES v1.0 (Messager et al., 2016), and the Landsat-based UCLA
Circa-.2015 Lake Inventory (Sheng et al., 2016). These nearly 25,000 dam points and their associated reservoir polygons
constitute GeoDAR v1.1. Details of production processes and their Quality Assurance and Quality Control (QA/QC) are
included in the following method sections.
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160 Figure 2. Venn diagrams illustrating the logical relations among georeferencing data sources and methods for GeoDAR. (a)

GeoDAR v1.0 and (b) GeoDAR v1.1 (dams only). Boxes indicate final subsets in each GeoDAR version, and the arrows
point to the georeferencing sources or methods. Topology of the shapes illustrates logical relations among the data/methods,

but sizes of the shape were not drawn to scale of the data volume.
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2.2 Geo-matching regional registers

The ICOLD WRD was a joint contribution from more than 100 member nations, some of which also release detailed and
publicly accessible dam registers that have been georeferenced. These regional/local registers, with reliable spatial
coordinates already provided for each dam, were our preferred sources for georeferencing WRD. Since this type of register is
not available for most countries, we searched multiple water authority and project websites, and collected seven
georeferenced regional registers or inventories that are open access. Their names, sources, and numbers of documented dams

are summarized in Table 2.

Table 2. Regional registers or inventories for geo-matching and the validation of geocoding.

. . Dam count

Region Register/Source . -

Regional register  ICOLD WRD Geo-matched
Geo-matching
Brazil RSB (SNISB, 2017) 23,630 13471,345 686668 (5150%)
Cambodia ODC (2015) 73 7 3 (43%)
Canada CanVec (NRC, 2017) 843 651648 437435 (67%)
Europe MARS (2017) 5,043 66756,671 40333,981 (60%)
Myanmar ODM (2018) 254 33 14 (42%)
South Africa LRD (DWS, 2019) 5,592 1,105 848842 (##76%)
United States NID (USACE, 2018) 91,213 88868,862 72807,247 (82%)
Total 126,648 18;70418,671 13;30113,190 (71%)
Geocoding validation
China_ (mainland) NPCGIS (accessed 2021) Not counted 23,78323,747
India NRLD (2019) 5,723 5,074
Japan JDF (accessed 2021) 2,349 3,089

Register/source acronyms: Relatério de Seguranca de Barragens (RSB, Dams Safety Report of Brazil), Open Development
Cambodia (ODC), Managing Aquatic ecosystems and water Resources under multiple Stress project (MARS), Open
Development Myanmar (ODM), List of Registered Dams (LRD) of South Africa, National Inventory of Dams (NID) of US,
National Platform for Common Geospatial Information Services (NPCGIS) of China, National Register of Large Dams
(NRLD) of India, and Japan Dam Foundation (JDF). Regional inventories were collected with partial reference to the Global

Dam Watch project (http://globaldamwatch.org). Dam numbers for regional registers are based on the records with valid

geographic coordinates, and numbers for ICOLD WRD are based on the records after duplicate removal.- See full registers,

references, and download links in the reference list.

These seven registers/inventories cover Brazil, Canada, the United States, 31 European countries (including part of Russia),
South Africa, and part of Southeast Asia (Cambodia and Myanmar), with a total dam count of more than 126,000. Besides
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spatial coordinates, each of these registers also provides attributes for their documented dams, which were required by the
geo-matching process. While other dam inventories could be available, our geo-matching effort for GeoDAR v1.0 was
focused on these collected ones. However, we referred to additional registers from China, India, and Japan (Table 2) for the
validation of our WRD geocoding (see Validation). For these additional regional registers, it was either inconvenient to bulk-
download the dam records, or we were legally restricted from releasing their dam coordinates. Therefore, we only used these

registers for the purpose of validation.

The procedure of geo-matching is illustrated in Fig. 3. Given each regional register, our goal was to find its matching records
from the subset of ICOLD WRD for the same region, by cross-checking value similarities for several key attributes between
the two datasets. On one hand, the compared attributes must be mutually available in both datasets. On the other hand, the
attributes should cover various themes so that in combination, they are able to disambiguate records that represent different
dams but may coincide in certain attributes. Taking both requirements into account, the key attributes used include the dam
and reservoir names, multiple levels of administrative/political divisions for the dam, and the dam’s completion year. The
river on which the dam was constructed was also considered for all regions except Cambodia as the register does not contain
such an attribute. For each of the key attributes, we considered values in WRD and the regional register agreeing with each
other if the similarity score between the value sequences exceeded about 85% (meaning that there are more than 8 pairs of
identical elements, with consideration of their orders, between two 10-characterelement string-sequences). This similarity
threshold tolerated minor variations in spelling that often occur among different data sources. If an agreement was not
reached between the two full sequences (e.g., “Maharashtra Pradesh” and “Maharashtra”), the similarity was then tested

between the main subsets of the sequences in order to increase the matching success.

Georeferenced ICOLD subset
regional registers (18,704 dams) 13,301 (71%)
(Table 2) geo-matched dams
| v / (Tables 2 and S1)
v Geo-matching . Automated ___ Manual
Google Maps Reverse (Attribute association) —~ QA(TableS1) =~ QC
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details
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Figure 3. Schematic procedure of geo-matching regional registers. Text in roman indicates applied or produced datasets, and

text in italics indicates methods or procedures.

One of the geo-matching challenges was that the levels of political/administrative divisions are not always comparable or
consistent between WRD and the regional registers. In WRD, the divisions were provided at the levels of country,
state/province, and the nearest town/city, which are inconsistent with some of the registers. For example, the register for
Brazil (Dams Safety Report in 2017) provides the finest division at the county level, whereas the European inventory (from
the MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) project) documents no divisions
below the national level. To improve the feasibility in division comparison, we performed a “reverse geocoding” for each
georeferenced regional register using the Google Maps geocoding API. Opposite to regular (or “forward”) geocoding which
converts a nominal location to numeric spatial coordinates, this reverse geocoding converted the spatial coordinates of each
dam documented in the register, to a parsed address that contains administrative divisions at consecutive levels. These multi-
level divisions and subdivisions were appended to the original regional registers (Fig. 3), thus enabling a more flexible and

complete comparison with the WRD attributes and thus an increased success rate of geo-matching.

We considered a WRD record matched with a regional record if their agreements on the key attributes warranted a
reasonable confidence that the two are the same dam. In principle, a high confidence would require a unanimous agreement
on all key attributes. However, this ideal scenario was often unnecessary and sometimes impossible. One of the reasons is
that the key attributes do not always have valid values. In WRD, for instance, the values of “nearest town” for nearly all
(>99%) US dams are null. While this attribute is valid for most other dams, the nearest town/city in WRD is not necessarily
the division that administrates or contains the dam as is the case in the township in some regional registers. Another reason is
that our collected multi-source datasets were not collated by a universal standard. As a result, inherent discrepancies of the
attribute definitions and/or values may exist among the datasets. One example is the dam’s “completion year”, which could
be ambiguous between the year when the dam construction was concluded and the year when the dam operation was
initiated or commissioned. These two definitions do not necessarily lead to the same year. To address such inconsistencies,
we defined a baseline scenario that required any pair of matched WRD and regional records to agree on the following:

e Dam or reservoir name,

e Country, state/province if values are valid, and

e Ataminimum, (a) either completion year or river if the town/city values disagree or are invalid, or (b) town/city

when completion years and rivers do not both disagree.

In compliance with this baseline, we implemented an automated QA to filter out any matching errors and optimize the
matching accuracy for each WRD record. In brief, any match that did not meet the baseline scenario was removed, and the

remaining geo-matched pairs were ranked to three discrete QA levels (M1, M2, and M3) according to the quality of attribute

11
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agreements (see definitions in Supplementary Table S1). As the QA rank increases (from M3 to M1), agreements on the key
attributes improved from the baseline to the ideal scenario (i.e., a unanimous agreement). If a WRD record was matched to
multiplemere-than-ene records in the regional register, the QA selected the match with the best rank. This way, each
georeferenced WRD record was only matched to the best-ranking regional record. Users may refer to the provided QA ranks
as a measure of the general reliability of each geo-matched location. It is worth noting that our geo-matching purpose was to
acquire the spatial coordinates of any matched WRD record from the regional register, rather than collating or correcting any
existing attribute values. In other words, some of the WRD and regional records may actually refer to the same dams but
were matched unsuccessfully due to major discrepancies between their attribute values. This led to a conservative success
rate in our automated geo-matching. More technical details about QA are given in our Python scripts at

https://github.com/surf-hydro/georeferencing-

ICOL D-dams-and-reservoirs.

Following the automated QA, we performed a manual QC to reassure the accuracy of the geo-matching results. We went
through each geo-matched WRD record to examine whether its attributes (e.g., dam/reservoir name, administrative locations,
river name, construction year, and storage capacity) indeed agreed with those of the regional source. If an evident-evident
discrepancy was identified, the “match” was removed or corrected frem-in the final productresut. Although we made every
endeavour to be as rigorous as possible, remnant matching errors are still possible due to the challenges of incompleteness
and intrinsic errors in the attribute information (refer to Section 4 for accuracies). For occasional cases that a dam was

matched correctly to the register attributes but misplaced due to poorer quality of the spatial coordinates in the register, we

tried to adjust or, if possible, correct the register’s spatial coordinates using the best possible resources (such as Google Maps

and other open-source documents). If we were unable to observe any water infrastructure at the location of a correct match

we took a conservative action and removed the match. We admit that this might mistakenly delete some of the structures

(e.g., small run-of-the-river hydropower stations, weirs, and diversions) that are too small to be visible from Google Map

imagery. Our manual QC identified ~4% error in the geo-matched WRD records, most of which came from QA rank M3.
After removing these errors, the geo-matching process concluded with a total of 43;36413,190 WRD records georeferenced
(Fig. 3), including 32#53,238, #0396,987, and 29872,965 for QA ranks M1, M2, and M3, respectively (Supplementary Table
S1). The success rate, i.e., the number of geo-matched dams as a percentage of the number of WRD records, varies from
about 40% in Southeast Asia to about 80% in South Africa and US (Table 2), with an overall success of 71% in all geo-
matched regions (Fig. 3).

2.3 Geocoding via Google Maps

The subset of ICOLD WRD that was not geo-matched includes the remaining 54635,481 (29%) dams in the geo-matched
regions and the entire 38;14638,144 dams in the other regions of the world (Fig. 2a). For these dams, we applied the Google

Maps geocoding API, a sophisticated cloud-based geocoding service, to retrieve the spatial coordinates of each dam as
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thoroughly and accurately as possible. To do so, we designed a recursive geocoding procedure that implemented three

primary steps on each dam: forward geocoding, reverse geocoding, and QA filtering. The purpose of each of the steps and

their logical relations are illustrated in Fig. 4.

Forward
//“'___ geocoding "7~ Reformatted
/ AL address (Table 52)
Initial address r/ Ty \
Table S2 i Descriptivi A filter
A coordinates address (Table S3)
ICOLD subset l e ded
(43,549 dams not Reverse xpandec
eo-matched .~ —# administrative —
9 ) geocoding il
~, Forward .
— geocoding ~=-- Reformatted
- AL address (Table S2)
Initial address ¥ N A
(Table 52) Spatial Descriptive QA filter
T coordinates address (Table $3)
ICOLD subset l
(43,625 dams not Reverse Exlpgndsq
geo-matched) geocoding — administrative —
270 details

9410 (22%)
/v geocoded dams.
(Table $3)
Optimized spatial Manual
coordinates Qc

‘o 34,139 other
dams in WRD

9,338 (21%)
” geocoded dams
f (Table 53)

Optimized spatial Manual /
coordinates Qc ﬂ

\
\u 34,287 other
dams in WRD

Figure 4. Schematic procedure of geocoding using Google Maps API. Text in roman indicates applied or produced datasets,

and text in italics indicates methods or procedures. The dashed line arrow indicates that this step is not always necessary.

The forward geocoding (see Section 2.1 for definition) used the text address of each dam as the input, which we formatted

by concatenating the WRD attribute values, to output the latitude and longitude of the dam. The WRS attributes used for

275 address formatting include dam name, reservoir name, statement/province, and country. “Nearest town” was excluded

because it is not always the township administrating the dam or reservoir. Together with the spatial coordinates, the forward

geocoding also output a Google Maps address associated with the coordinates, which was parsed to individual components

including feature name, street name, and political divisions. These output address components, in return, provided valuable

information for QA: if the geocoded coordinates are correct, the associated output address components should agree well

280 with those of the WRD input. However, we noticed that address components from forwarding geocoding are often limited in

terms of division levels. To complement this limitation, we utilized reverse geocoding (see Section 2.2 for definition) to

convert the coordinates from forward geocoding to an updated address with more complete division levels. The address

components from both forward and reverse geocoding were combined and hereafter referred to as the “output address”.
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Similar to geo-matching, we employed a QA filter to approach the optimal geocoding result. This process first arranged the
attributes of each WRD record to several address formats as they could result in different geocoding outputs. The address
arrangements are listed in Supplementary Table S2, and their preference order is rationalized in Supplementary Text. Each
of these WRD addresses was used iteratively for both forward and reverse geocoding (as described above). Their geocoded
spatial coordinates were then ranked to five discrete QA levels based on how well the input and output addresses agree with
each otheren-ndividual-compenents (C1 to C5, Supplementary Table S3).- The iteration was terminated if the highest QA
rank was achieved; otherwise, the coordinates that render the best possible QA rank was used as the geocoding result.

As explained in Supplementary Table S3, the compared address components include the name of the featuredam-erreservoir
and its affiliated political divisions from town/city to country levels. Consistent with geo-matching, we considered that a
component was agreed on if the similarity of its values from both input and output addresses exceeds about 85%. -Since the
nearest town in WRD was not used for forward geocoding, we treated it as an “independent reference” for validating the
township component in the output address. Although the town or city near the dam (from WRD) does not always coincide
with that administrating the dam (from the geocoding output), their occasional agreement would strengthen our confidence
of the geocoded coordinates if other components were also well matched between the WRD input and the geocoding output.
For this reason, we opted to include the township comparison as a supplementary criterion in the geocoding QA process. The
highest QA rank (C1) corresponds to a unanimous agreement on all address components. However, the minimum rank (C5)
only required the agreement on the dam-erreserveirfeature name, which is a more flexible baseline in comparison with that
for geo-matching. This was because some of the large reservoirs, particularly those on/-er-near political boundaries, have
shared or ambiguous divisions, and the ambiguity might be further amplified by the geecededoutput coordinates which could

addition, some of the outputs, regardless of agreement on the address components, are not dams or reservoirs. We therefore

included another baseline filter which aimed to remove any error that is not water infrastructure by analysing the feature type

information in the geocoding output (see scripts in Code Availability). Although the QA process was designed to be

automated, we still manually enforced hundreds of the initial outputs, many of which had returned feature names in native
languages, to pass the baseline filters. As a result, the-autemated-geocoding-procedureour QA yielded a-tetal-ef-more than
16,00016,088 geocoded WRD records, each with the a-pair-ef-optimal spatial spatial-coordinates and the corresponding QA

rank.

To complement the autemated-QA process, we then conductedperformed a rigorous QC to manually-identify-correct and/or
and-remove the remaining geocoding errors. ta-principle-wWe considered a geocoding error e-reviewed-each-of-the
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as a location where

(a) no dam or reservoir could be visibly verified from Google Earth or Esri images, or (b) the WRD attribute information is

inconsistent with the feature or division labels on Google Maps. In such cases, we usually first manually re-geocode this dam

(by directly using the Google Maps interface) before deleting this error if it was not correctable. While Fthe geo-matched

coordinates from regional registers are usually on or close to the dam bodies,-but the geocoded coordinates could be located
on the reservoir. Note Fthe latter case was not considered as an error. Due to China’s GPS shift problem, geocoded points
nacross mainland China tended-to-often show a systematic offset of roughly 500 m from their actual dam or reservoir
features. For such Chinese dams, we tried to reduce their geocoding offsets-as-mueh-as-possible; by manually relocating the
coordinate points to their correct dams or reservoirs. Our QC process ended up removing about 42% of the originally
geocoded dams, most of which stemmed from relatively lower QA ranks (see statistics in Supplementary Table S3). The
complete geocoding procedure resulted in 94189,338 georeferenced and quality controlled WRD records, with an overall

success rate of 2221%.

2.4 Supplementation with other global inventories

The outputs from both geo-matching and geocoding, a total of 22,71122,528 georeferenced ICOLD WRD records (Fig. 2a),
was further supplemented or harmonized by two global dam/reservoir inventories to improve our inclusion of the world’s
largest dams. We considered this process necessary for two reasons. First, our georeferencing process, particularly
geocoding via Google Maps API, did not warrant an exhaustive inclusion of the largest dams. This is particularly evident for
regions where the address and label information in Google Maps is either lacking or difficult to pass the automated QA due
to language ambiguity or naming discrepancies. Second, through cross-referencing we noted that the attribute values of
reservoir storage capacity provided in ICOLD WRD are occasionally erroneous (also noted by Mulligan et al. (2020)), e.g.,
by a factor of 1000 probably caused by unit confusion in WRD compilation. As part of the supplementation/harmonization
process, we therefore collated the ICOLD reservoir storage capacities with those in the two global inventories below and

corrected any evident errors in ICOLD.

2.4.1 Supplementation with Wada et al (2017): forming GeoDAR v1.0

Wada et al. (2017) compiled a list of all 144 large dams with a reservoir storage capacity larger than 10 km? in the world.
Among them, 139 dams were provided with spatial coordinates. We verified each of the dam locations and made minor
adjustments and-eorrection-to further assure the quality. The attributes of these 139 dams were then manually compared with
those in ICOLD WRD. We found that 133 of them were documented in WRD but 32 were georeferenced unsuccessfully in
our geo-matching or geocoding procedure. Therefore, we borrowed the spatial coordinates of these 32 large dams in Wada et
al. (2017) to supplement what we had georeferenced. The coordinates of the other 101 large dams, which we georeferenced
successfully (41 from geo-matching and 60 from geocoding), were also overwritten by those in Wada et al. (2017) to double-

assure and improve their spatial accuracies. This supplementation is illustrated by the Venn diagram in Fig. 2a.
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We then compared the storage capacities of each of the 133 dams in Wada et al. (2017) with those in WRD and identified 22
of them exhibiting substantial discrepancies between the two datasets. We then collated their storage capacities with other
documents (e.g., regional inventories, GRanD, and Wikpedia) and concluded that Wada et al. (2017) may supersedes WRD
in the accuracy of storage capacity for 16 of the 22 dams. FhereforetThe storage capacities of these 16 dams in Wada et al.
(2017) were used to replace the original WRD capacities. Our data collation and verification for Wada et al. (2017) are given

in Supplementary Table S4 (full spreadsheet accessible at https://doi.org/10.5281/zenodo.6163413). - The entire

supplementation process, including adding new dams, updating existing dam coordinates, and correcting reservoir storage
capacities, increased the total storage capacity of our georeferenced dams by 15%, and 70% of the capacity increase comes
from the 32 added large dams. For improved clarity, it is worth reiterating that all dams supplemented by Wada et al. (2017)
were also documented in ICOLD WRD. The combined results of geo-matching and geocoding, after the supplementation
from Wada et al. (2017), defines GeoDAR v1.0 containing 22,74322,560 georeferenced records in ICOLD WRD.

2.4.2 Harmonization with GRanD: forming GeoDAR v1.1

While GeoDAR v1.0 largely exceeds GRanD in dam count, a visual comparison of their spatial distributions revealed that
the latter is often complementary to (instead of completely duplicated by) the former in many regions of the world. This
motivated us to perform a systematic harmonization between the two datasets. The merged version, which we entitled
GeoDAR v1.1, combines the merits of GRanD in accurately documenting the world’s largest dams and GeoDAR v1.0 in

providing extensive spatial details of smaller but more widespread dams.

We assumed that GRanD, by having collated multiple data sources, is superior to GeoDAR v1.0 in the accuracies of both
spatial locations and attribute values (particularly reservoir storage capacity) of the world’s largest dams. While this may be
true for most cases, we identified at least 6988 dams in GRanD with possible location errorsthat-exhibit-evident
geereferencing-or-attribute-errors. With the help of several references such as regional registers (Table 2), the recently
published Dataset of Georeferenced Dams in South America (DDSA) (Paredes-Beltran et al., 2021), Google Maps, and other
online documents, we were able to correct the locations of 76 of these damsFhese-dams-were-exetuded-from-the
harmeonization-precess: and absorbed the corrected coordinates to the harmonization. The other 12 GRanD dams, including 3
duplicates with other dams and 9 we were unable to correct the locations for, were excluded from the harmonization. What
was also excluded Aare another 5 dams in GranD that were decumented-as-subsumed or replaced by newer dams-were-alse

exeluded. For user convenience, we released these 74~90 GranD dams together with the identified issues and suggested rew

coordinates (if possible) in Supplementary Table S45 (full spreadsheet accessible at
https://doi.org/10.5281/zenodo.6163413). Using-the-remaining-Using the adjusted GRanD data (7,303 points), the
harmonization 7246-GRanb-dams-the-harmenizing-proeess-(Fig. 5) aimed at: (a)

+—limproving spatial coordinates of the dam points in GeoDAR v1.0, (b)

+——Aadding WRD dams that are not georeferenced in GeoDAR v1.0 but are included by GRanD, (c)
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e+ (Ccorrecting storage capacity errors in the georeferenced WRD, and (d)
380 e———Aabsorbing the remaining GRanD dams that are not documented in WRD.

_Detailed processing for each of the objectives is given below.
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Figure 5. Schematic procedure of harmonizing GeoDAR v1.0 and GRanD v1.3 to form GeoDAR v1.1 Text in roman
385 indicates applied or produced datasets, and text in italics indicates methods or procedures. GRanD used for harmonization

excludes 74 problematic records (see Supplementary Table S45).

First, when a dam in GeoDAR v1.0 also exists in GRanD, the spatial coordinates of the former were replaced by those of the

latter. We implemented a two-step procedure to identify the overlapping dams between GeoDAR v1.0 and GRanD. Step 1

was based on attribute association while Step 2 utilized spatial query. Specifically, Step 1 detected matching records between
390 ICOLD WRD and GRanD by assessing agreements on several attributes, including dam/reservoir names, administrative
divisions, impounded rivers, and completion years. This step was essentially the same as “geo-matching” that was used to
link WRD records to regional registers for GeoDAR v1.0 (Section 2.2). The association results, after a meticulous manual
QC, identified ~4,66070 dams in GRanD that were georeferenced in GeoDAR v1.0. For the remaining GRanD dams, Step 2
utilized their reservoir polygons to spatially intersect with the dam points in GeoDAR v1.0. A distance tolerance of ~5 km
395 was applied to assist the spatial association and account for possible offsets in GeoDAR v1.0. As part of the QC, the attribute

values of each pair (one from GRanD and the other from WRD) were manually compared to determine whether they are
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indeed the same dam. This step identified another ~350400 or so overlapping dams between the two datasets. In total, we
found that GeoDAR v1.0 overlaps 5,04180 out of the 72467,303 dams in GRanD, and their spatial coordinates were updated
to be consistent with those in GRanD.

Second, for the remaining 2,23523 dams in GRanD that do not overlap GeoDAR v1.0, we assumed that at least part of them
could be matched to the WRD records not georeferenced in GeoDAR v1.0. Therefore, we performed another round of
attribute association between the remaining subsets of GRanD and WRD. After QC, this process identified another 1,42514
WRD dams that are included by GRanD. These additional WRD dams, with a total storage capacity of 6053 km?, were then
added to our inventory using the spatial coordinates-previded-in from GRanD. As a result of the first two objectives,
GeoDAR v1.1 georeferenced 24;16823,974 (4342%) out of the 56,85056,815 dams in ICOLD WRD, including-64366,494
that overlap with GRanD.

Third, to reduce the impact of possible attribute errors in ICOLD WRD, we next merged the values of reservoir storage
capacity from both WRD and GRanD to a single updated attribute, where the original values in WRD or Wada et al. (2017)

were overwritten by those of the overlapping dams in GRanD (if the GRanD values are valid). This correction led to a minor

increase of 2.486 km? (less-than-0-1.2%) in the total reservoir storage capacity. Eventually, the remaining 820809 dams in
GRanD, which were not found in WRD, were appended to our georeferenced WRD so that the final inventory absorbed the
entire dataset of GRanD. It is worth noting that similar to geo-matching (Section 2.2), our attribute association here could be
conservative, meaning that some of the dams appended from GRanD might be documented in the remaining WRD (the
subset not georeferenced successfully). The complete harmonization process, combining the above three steps, led to a total
of 24,97824,783 georeferenced dams in GeoDAR v1.1 (Fig. 2b).

2.5 Retrieving reservoir boundaries

Reservoir polygons of the georeferenced dam points were retrieved as thoroughly as possible from three global water body
datasets: GRanD reservoirs (Lehner et al., 2011), HydroLAKES v1.0 (Messager et al., 2016), and UCLA Circa- 2015 Lake
Inventory (Sheng et al., 2016). These three water body datasets exhibit an increasing spatial resolution: from 7000+ polygons
in GRanD reservoirs provided exclusively for GRanD’s dam points, to millions of water body polygons, including both
natural lakes and reservoirs, in the other two datasets. While HydroLAKES documents 1.4 million water bodies larger than
0.1 km? (10 ha), the Landsat-based UCLA Circa- 2015 Lake Inventory further reduced the minimum size to only 0.004 km?
(0.4 ha), resulting in another 7.7 million water bodies on the global continental surface. Accordingly, we implemented a
hierarchical procedure, where the three water body datasets were applied in ascending order of spatial resolution to retrieve

the reservoir boundaries with an overall decreasing size.
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Specifically, GRanD v1.3 provides 7,23018% reservoir polygons for the 7,303246 eeHected-dam points_ used for

harmonization, Ae-FemaHHhRg-eo-6aMmS-WHRBH eSer/oe peyYgonRSare-eHnAe Yer-BaHageSahathtShave-RoP

abandoned-or-to-be-constructed-(Lehneret-al;2011)-These 7:81-GRanD reservoir-polygons were first assigned to their

associated dam points in GeoDAR v1.1 through GRanD IDs. Reservoirs of the remaining +#73217,480 dam points in

GeoDAR v1.1, which were georeferenced from ICOLD alone, were next retrieved from HydroLAKES when possible. To
avoid duplicates in the reservoirs retrieved from different data sources, we only used the subset of HydroLAKES that is
spatially independent from (i.e., not intersecting with) GRanD reservoirs. Different from reservoir assignment using GRanD,
there was no common attribute ID to pair HydroLAKES polygons with the remaining dam points, so their reservoir retrieval
relied completely on spatial association. One major challenge in dam-reservoir spatial association was the ambiguity caused
by the offsets between our georeferenced dam points and their actual reservoir polygons (see Section 2.3).

To tackle this ambiguity, we designed a procedure that consists of three rounds of iteration to progressively optimize
reservoir-dam association. This procedure was based on two assumptions, both conditional on a reasonable spatial tolerance.
We started with 500 m to be roughly consistent with the georeferencing offset observed in China. The first assumption was
that larger reservoirs are more likely to be documented than smaller ones, in both ICOLD WRD and Google Maps.
Therefore, the first round of iteration assigned each of the dams to the largest water body within the tolerance. This
assignment might, however, lead to a situation where multiple dams were assigned to the same reservoir. To untangle this
situation, the remaining iterations assumed Tobler’s First Law of Geography (Tobler, 1970): “everything is related to
everything else, but near things are more related than distant things” (p.236). Accordingly, for any water body mistakenly
associated with multiple dams, the second round of iteration reassigned the water body to its closest dam, and the other
dam(s) within the tolerance, as a result, was/were left unpaired. To reduce the number of such “orphan” dams, a final, third
round of iteration assigned the remaining unpaired dams to the next closest water body that was within the spatial tolerance
and had not been previously associated with any dams. If this led to multiple dams associated with one reservoir again, only
the dam with the closest proximity to the reservoir was kept. Through experimentation, we opted to implement this three-
iteration procedure twice, first using a conservative 500-m tolerance to maximize the accuracy for most associations, and

then a 1-km tolerance to further minimize the number of orphan dams.

This multi-iteration procedure retrieved roughly 7,600 reservoir polygons from HydroLAKES. For the remaining dam
points left unpaired, we applied the same association procedure to continue retrieving their reservoirs from the high-
resolution UCLA Circa- 2015 Lake Inventory. Similarly, only the subset that does not intersect with the retrieved
HydroLAKES polygons was considered, in order to avoid duplicates in the retrieved reservoirs from different datasets. The

use of UCLA Circa- 2015 Lake Inventory retrieved another ~6700 or so reservoirs.
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We followed the automated reservoir retrieval by Aa manual QC to was-performed-on-the-combinedresult-to-visually

confirm that each retrieved reservoir polygon was matched to the correct dam point, and if not, we tried to adjust the

association as thoroughly as possible. This visual QC was particularly necessary for lake-dense regions, including the case of

cascade reservoirs immediately downstream/upstream to each other. While some of the dams, such as barrages, diversion

infrastructure, and dams under construction, do not have visible impoundments (Lehner et al., 2011), we tried to be as

meticulous as possible to verify and recover any missing reservoirs. For instance, we were unable to manually retrieve 10

reservoirs (including 4 completed after 2000) from the UCLA Circa 2015 Lake Inventory for the ~70 dams in GRanD v1.3

without polygons. We also replaced hundreds of reservoirs initially retrived from GRanD and HydroL AKES by the polygons

in the UCLA inventory to improve the boundary accuracy and completeness.

3 Product components and usage

We here provide a detailed documentation of the components and structure of the GeoDAR versions (v1.0 and v1.1). To
facilitate the description, the two GeoDAR versions and their component statistics are explained in Table 1, and spatial

distributions of the dam points and reservoir polygons are visualized in Figs. 6 and 7.

3.1 GeoDAR v1.0: dams

GeoDAR v1.0 is a collection of 22,74322,560 dam points georeferenced exclusively for ICOLD WRD (Fig. 6a). Among
them, 13;26013,149 or 58% were retrieved from geo-matching regional dam registers, 93569,278 or 41% from Google Maps
geocoding API, and the remaining 133 largest dams from the spatial inventory in Wada et al. (2017) (Fig. 6b). Fer-improved
aceuracies;-WRD storage capacities of most of these 133 large reservoirs were replaced by the values in Wada et al. (2017)
(see Section 2.4.1), and unless stated otherwise, our following statistics on storage capacities were calculated after this

replacement.

The total reservoir storage capacity of the-22.743these dams is 6435:56,441 km?, meaning that GeoDAR v1.0 georeferenced
40% of the 56,85015 WRD records but included more than 80% of their cumulative reservoir storage capacity. The total
storage capacity of the 133 largest dams from Wada et al. (2017), despite being limited in number, reaches 3900 km? or 61%
of the cumulative storage capacity in GeoDAR v1.0, and the other ~40% capacity was split almost equally between the
remaining 22,000+ geo-matched and geocoded dams. Although the registers used for geo-matching are regional, the dams in
GeoDAR v1.0, as shown in Fig. 6b, are distributed in 248151 out of the 164165 countries_or territories in WRD-(ineluding
1cOLD-member-and-non-member-countries), largely owing to our geocoding efforts through Google Maps API. Since
GeoDAR v1.0 was produced independently from other global dam datasets such as GRanD, it can also be used to cross-
compare, supplement, and potentially improve other dam datasets. Validation of our georeferencing accuracy for v1.0 is
provided in Section 4.
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3.2 GeoDAR v1.1: dams and reservoirs

GeoDAR v1.1 consists of a) 24;97824,783 dam points (Fig. 6a) representing a full harmonization between GeoDAR v1.0
and GRanD v1.3, and b) 24;57621,515 reservoir polygons (Fig. 7). In these nearly 25,000 dam points, +%73217,480 or 71%
come from GeoDAR v1.0 alone, 64366,494 or 26% shared by ICOLD WRD and GRanD, and the other 816809 or 3% from
GRanD alone (Table 1; Fig. 6¢c). Among the 64366,494 shared dams, 50415,080 were georeferenced in both GeoDAR v1.0
and GRanD, and the remaining 44251,414 were introduced through the harmonization with GRanD. This resulted in a total
of 24:16823,974 georeferenced WRD records (4342% of all WRD records) in GeoDAR v1.1. In addition to the expanded
number of georeferenced WRD dams, GRanD supplemented another 820809 dams which are exclusive of WRD. The total
22352,223 dams added by GRanD, notated as “GRanD v1.3 & other ICOLD” and “GRanD v1.3 only” in Fig. 6c, are
distributed worldwide and complement v1.0, particularly in regions such as Africa and Central Asia where geocoding using
Google Maps was challenging. After this ICOLD-GRanD harmonization, the spatial coverage of the dam points in GeoDAR
v1.1 increased to 454155 out of the 464165 countries in WRD.

As described in Section 2.4.2, we substituted the reservoir storage capacities in GRanD for the original capacity values of
their overlapping WRD dams. As a result, the total reservoir storage capacity in GeoDAR V1.1 reaches 7296-67,384 km?,
which compares to ~95% of the cumulative capacity in the entire ICOLD WRD (see Section 5.1 for more comparisons with
ICOLD). As reported in Table 1, 8281% (59966,006 km?) of the total storage capacity in GeoDAR v1.1 is explained by the
50115,080 relatively large dams georeferenced in both GeoDAR v1.0 and GRanD. The 4#,73217,480 smaller dams from
GeoDAR V1.0 alone contribute only 67% (428507 km?®) of the total storage capacity, which is roughly comparable to the
subset from GRanD alone (268 km?®) or the subset from GRanD and other ICOLD WRD (605603 km®). These capacity
contributions suggest that compared to GRanD, the major improvement of GeoDAR lies on the increased number of
relatively small dams, rather than the increase in total storage capacity of the dams (see Section 5.2 for more comparisons
with GRanD).
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Figure 6. Georeferenced dam points in GeoDAR. (a) A total of 24;97824,783 dam points in v1.1 superimposed by
22.74322,560 dam points by in v1.0. (b) Georeferencing methods and data sources for v1.0. (c) Data sources for v1.1.
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Different from GeoDAR v1.0, version 1.1 also includes a component of reservoir polygons which represent water
impoundment extents associated with 21,57621,515 or 8687% of the georeferenced dam points (Fig. 7). Reservoir polygons
for the remaining £413% of the dam points were retrieved unsuccessfully due to a combination of factors, including limited
spatial resolutions of the applied water masks, offsets in our georeferenced dam points, and the fact that some of the dams
{e-g—river-barrages)-have no evident water impoundments. Nevertheless, the retrieved reservoir polygons have a cumulative
area of 493,860496,314 km?, accounting for 9698% of the total reservoir area of all georeferenced dams in GeoDAR v1.1
(reservoir areas without polygons are based on WRB-documented attributes). These retrieved reservoirs peltygons-alse
correspond to a cumulative storage capacity of 74177,216 km?, also accounting for nearly 98% of the total storage capacity

in v1.1. These statistics indicate that the reservoirs whose boundaries were retrieved unsuccessfully were mostly small in

area and storage.

The numbers of reservoir polygons retrieved from each of the three water body datasets are fairly comparable (reughbyabout
70007,100-7,200 each), but the total reservoir storage capacity and area beth-decrease drasticalhy-with the increasing spatial
resolution of the water body datasets (Table 1). As a result, the mean reservoir polygon size decreased from 6663 km? for

those retrievedidentified from GRanD, to 2 km? from HydroLAKES and then-less-than-15 km? from the UCLA Circa- 2015

Lake Inventory. This result is overall consistent with the design of our hierarchical procedure (Section 2.5), where smaller

reservoirs were successively retrieved with the help of finer water masks. It is important to note that the retrieved polygons
do not always represent the maximum water extents of the reservoirs because water boundaries in the retrieval sources were
not necessarily mapped in the maximum inundation periods. For example, the UCLA Circa- 2015 Lake Inventory contains
approximately-more than 9:5 million water bodies larger than 0.4 ha, which were mapped from Landsat images acquired
during the “steady” climate periods (Lyons and Sheng, 2018) and thus represent the average seasonal extent of each water
body (Sheng et al., 2016). Despite not always being the largest water extents, our retrieved reservoir polygons enhanced the
spatial details of global reservoir locations, using which users can further expand or refine the water boundaries to their

specific needs.
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Figure 7. Reservoir polygons and their retrieval data sources in GeoDAR v1.1. For display, GRanD polygons are
540 superimposed by HydroLAKES polygons and then by UCLA Circa 2015 Lakes.
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3.3 Attributes and usage

The GeoDAR dataset, including dam points for v1.0 and both dam points and reservoir polygons for v1.1, is provided as

three separate shapefiles. For user convenience, we also duplicated the two dam point shapefiles in the comma-separated

values (csv) format. The file names and attributes are explained in Table 3. Although most of our dam points were

georeferenced using WRD records, our published GeoDAR complies with the proprietary rights of ICOLD and does not

directly release any attribute from WRD. The attributes we provide in GeoDAR, as listed in Table 3, are only limited to our

georeferencing methods, QA/QC, validation, and other information (such as spatial coordinates and part of the reservoir

storage capacities) that is already open source or has been permitted for use by the original producers.

Table 3. Attributes in the data products of GeoDAR

Attribute

Description and values

v1.0 dams (file name:

GeoDAR_v10_dams; format: comma-separated values (csv) and point shapefile)

1Did_v10

Dam ID inof GeoDAR version 1.0-this-versien (type: integer). Note this is not the “International Code” in
ICOLD WRD but is associated with “International Code” through encryption.

latitude Latitude of the dam point in decimal degree (type: float) on datum World Geodetic System (WGS) 1984.

longitude Longitude of the dam point in decimal degree (type: float) on WGS 1984.

Ggeo_mtd Georeferencing methods (type: text). Unique values include: