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Abstract. Large-scale hydrological studies are often limited by the lack of available observation data with a good spatiotempo-

ral coverage. This has affected the reproducibility of previous studies and the potential improvement of existing hydrological

models. In addition to the observation data itself, insufficient or poor quality metadata has also discouraged researchers to in-

tegrate the already available datasets. Therefore, improving both, the availability, and quality of open water quality data would

increase the potential to implement predictive modeling on a global scale.5

The Global River Water Quality Archive (GRQA) aims to contribute into improving water quality data coverage by aggre-

gating and harmonizing five national, continental and global datasets: CESI, GEMSTAT, GLORICH, WATERBASE and WQP.

The GRQA compilation involved converting observation data from the five sources into a common format and harmonizing

the corresponding metadata, flagging outliers, calculating time series characteristics and detecting duplicate observations from

sources with a spatial overlap. The final dataset extends the spatial and temporal coverage of previously available water quality10

data and contains 42 parameters and over 17 million measurements around the globe covering the 1898–2020 time period.

Metadata in the form of statistical tables, maps and figures are provided along with observation time series.

The GRQA dataset, supplementary metadata and figures are available for download on the DataCite and OpenAire enabled

Zenodo repository https://doi.org/10.5281/zenodo.5097436 (Virro et al., 2021).

1 Introduction15

Human-driven loads of nutrients to aquatic ecosystems have become the main driver of eutrophication in waterways and coastal

zones (Desmit et al., 2018; Sinha et al., 2019). Agricultural production is already one of the major forces behind environmental

degradation (Foley et al., 2011), and population growth is increasing that pressure (Mueller et al., 2012). The use of nitrogen

(N) and phosphorus (P) fertilizers to increase agricultural productivity is predicted to increase threefold by 2050 unless more

efficient fertilizer use can be implemented (Tilman et al., 2001). At the same time, it has been estimated that "globally, over20

3 billion people are at risk of disease because the water quality of their water source is unknown, due to a lack of data" (UN-

Water, 2021). In order to achieve the UN SDG 6, we need better understanding of our water resources and water quality.

Monitoring and modeling the hydrochemical properties of rivers is essential for understanding and mitigating water quality
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deterioration due to agricultural and industrial non-point source pollution (Krysanova et al., 1998; Leon et al., 2001; Wu and

Chen, 2013). Modeling of different water quality indicators such as nutrients (Caraco and Cole, 1999; He et al., 2011), carbon25

compounds (Evans et al., 2005; Hope et al., 1994), sediments (Choubin et al., 2018; Ouyang et al., 2018) and oxygen (Radwan

et al., 2003; Singh et al., 2009) gives valuable understanding of hydrochemical cycles and enables to estimate the effect of

human influence on them.

Traditional approaches to water quality modeling consist of applying bottom-up, physically based models on the catchment

level (Wellen et al., 2015). Calibration and validation data in the form of water quality observations used when developing the30

model and verifying its performance is usually gathered through in situ observations and, more recently, automated sensor net-

works. Although airborne remote sensing based data acquisition methods have been successfully used to supplement field data

for lakes (Chen and Quan, 2011; Toming et al., 2016), applying those methods is only viable in the case of rivers with a large

enough surface area (Olmanson et al., 2013). Therefore, improving the river water quality data spatial and temporal coverage

with remote sensing is limited. Significant progress has been made in improving the technical capabilities and lowering the35

installation and maintenance costs of the field sensors, but the spatial and temporal coverage of observation sites remains to be

an issue (Pellerin et al., 2016).

In order to improve the spatial coverage of water quality and hydrological data, different solutions have been used in pre-

dictive hydrological mapping. Until recently, a common approach for predicting water quality and hydrological phenomena in

ungauged catchments has been the application of already existing process-based models to catchments with similar character-40

istics (Hrachowitz et al., 2013; Strömqvist et al., 2012; Wood et al., 2011). These physical models usually require extensive

calibration along with location-specific knowledge, which limits the wider applicability and spatial upscaling that can be done

(Abbaspour et al., 2015; McMillan et al., 2012).

Recently, advances in implementing machine learning (ML) methods in hydrology have given rise to a new, data-driven

approach to hydrological modeling (Mount et al., 2016). Comparison of physically based and ML approaches has shown that45

ML methods can achieve a similar accuracy to the physically based ones and outperform them when describing nonlinear

relationships (Chau, 2006; Ouali et al., 2017; Papacharalampous et al., 2019). The recent advent of so-called physics-guided

ML, which entails combining process-based models with ML methods is likely to become more applicable in the near future

as well (Kratzert et al., 2019; Shen et al., 2018; Marzadri et al., 2021).

Nevertheless, a major problem related to large-scale predictive hydrological modeling has been the lack of available obser-50

vation data with a good spatiotemporal coverage (Bierkens, 2015). This has affected the reproducibility of previous studies

and the potential improvement of existing models (Blöschl et al., 2019; Meals et al., 2010; Stagge et al., 2019). In addition

to the observation data itself, insufficient or poor quality metadata has also discouraged researchers to integrate the already

available datasets. Here, ambiguities in supplementary metadata such as parameter names, units and methods of measurement

has limited the use of open data for large-scale water quality modeling purposes (Archfield et al., 2015; Hutton et al., 2016;55

Sprague et al., 2017). Therefore, improving both the availability and quality of open water quality data would increase the

potential to implement predictive modeling on a global scale. Global ML models have been already successfully used for

discharge modeling (Beck et al., 2015; Gudmundsson and Seneviratne, 2015) and recent years have seen the publication of
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global discharge datasets (Do et al., 2018; Harrigan et al., 2020). The publication of global and continental datasets (Hartmann

et al., 2014; Read et al., 2017) could make ML methods applicable for large-scale water quality modeling as well (Shen et al.,60

2020). However, issues related to a lack of training and validation data due to general data scarcity affects model accuracy and,

therefore, limits the further adoption of ML for global water quality predictions (Chen et al., 2020).

We aim to address the aforementioned issues by presenting the novel Global River Water Quality Archive (GRQA) by inte-

grating and harmonizing five different global and regional datasets. The resulting dataset has combined observation data for 42

different forms of some of the most important water quality parameters relevant for nutrients (e.g. water temperature, oxygen,65

phosphorus, nitrogen and carbon compounds). Supplementary metadata and statistics are provided with the observation time

series to improve the usability of the dataset. An extensive data catalogue with maps showing the spatiotemporal coverage

and graphs describing the distribution of all 42 parameters as supplementary material of the study (see Supplement). We re-

port on developing a harmonized schema and reproducible workflow that can be adapted to integrate and harmonize further

data sources. In addition, we provide recommendations for improving multi-source water quality data compilation, especially70

focusing on the metadata quality and adhering to the FAIR Data Principles (Wilkinson et al., 2016). We conclude our study

with a call for action to extend this dataset and hope that the provided reproducible method of data integration and metadata

provenance shall lead as an example.

2 Data

A total of five data sources were used to compile the GRQA with two being global, one regional, and two national level (Table75

1). All datasets with the exception of GEMSTAT are publicly available to download online as CSV or Excel file packages.

GEMSTAT data can be requested via email. The number of available observation sites was highly dependent on the source

with the Water Quality Portal (WQP) maintained by the United States Geological Survey (USGS) having the most sites. Files

used during the creation of GRQA are listed in Table 2.

2.1 CESI80

The first dataset included in GRQA originated from the Canadian Environmental Sustainability Indicators program (CESI)

operated by Environment and Climate Change Canada (ECCC), which is a Canadian governmental department responsible for

coordinating environmental policies and programs. CESI consists of water quality measurements collected by federal, provin-

cial and territorial monitoring programs from Canadian rivers from the 2002–2018 time period (Environment and Climate

Change Canada, 2020). CESI data is mainly focused on heavy metals, so out of the 42 of parameters included in GRQA only85

eight were available in CESI (Table 1). It is the smallest of the five source datasets with site count ranging from two to 77 per

parameter. Mean time series length per site is approximately 13 years and the average number of observations per site is 145.
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Table 1. Source datasets used for compiling GRQA with their total number of observations, parameters and timeframe length in GRQA. All

datasets were retrieved on November 16, 2020.

Dataset Name Data provider Observations Timeframe Parameters

(source/

GRQA)

Site count

range

Mean time

series length

per site

Mean

observation

count per site

n n/n n years n

CESI Water quality in

Canadian rivers

Environment

Canada

30,457 2002–2018 8/42 2–77 12.9 145

GEMSTAT Global Fresh-

water Quality

Database

International

Centre for Water

Resources and

Global Change

2,094,598 1950–2020 32/42 7–4,274 9.2 77

GLORICH GLObal RIver

Chemistry

database

Institute of

Geology of the

University of

Hamburg

3,231,797 1942–2011 26/42 4–9,728 4.1 41

WATERBASE Waterbase - Wa-

ter Quality

European Envi-

ronment Agency

306,332 2008–2018 15/42 4–1,976 1.4 19

WQP USGS Water

Quality Portal

Environmental

Protection

Agency

8,689,335 1898–2020 37/42 1–59,000 3.4 25

2.2 GEMSTAT

The Global Freshwater Quality Database GEMStat (Färber et al., 2018) is hosted by the International Centre for Water Re-

sources and Global Change (ICWRGC) and provides inland water quality data within the framework of the GEMS/Water90

Programme of the United Nations Environment Programme (UNEP). GEMStat contains over 7 million samples from approx-

imately 5,700 sites in 75 countries. The data was obtained through a custom request to their data portal (International Centre

for Water Resources and Global Change, 2020).

Approximately 500 water quality parameters were available in the GEMSTAT database, out of which 32 were used when

compiling GRQA (Table 1). Observations cover the period 1950–2020 and mean observation count per parameter is approx-95

imately 41. Mean time series length per site is nine years. Site count per parameter ranges from less than ten (dissolved and

total carbon) to 4,274 (total phosphorus).

2.3 GLORICH

The GLObal RIver CHemistry (GLORICH) database (Hartmann et al., 2014) is a collection of hydrochemical data from more

than 1.27 million observations and more than 18,000 sampling locations across the globe. The samples originate from various100

environmental monitoring programs and scientific literature.
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Table 2. Source dataset files used for compiling GRQA. WQP sites and observations were downloaded separately for each parameter and

file names were assigned during the process.

File name Size (MB) Rows Description Sheet name Source

wqi-federal-raw-data-2020-

iqe-donnees-brutes-fed.csv

171.5 314,867 Observation data CESI

data_request.xls 2.4 5,419 Site data Station_Metadata GEMSTAT

data_request.xls 2.4 30 Parameter data Parameter_Metadata GEMSTAT

data_request.xls 2.4 311 Method data Methods_Metadata GEMSTAT

pH.csv 21.9 372,211 Observation data GEMSTAT

Carbon.csv 19.2 337,928 Observation data GEMSTAT

Nitrogen.csv 65.1 1,052,823 Observation data GEMSTAT

Phosphorus.csv 24.3 386,113 Observation data GEMSTAT

Oxygen_Demand.csv 20.1 331,617 Observation data GEMSTAT

Solids.csv 11.8 201,628 Observation data GEMSTAT

Water_Temperature.csv 23.9 370,335 Observation data GEMSTAT

Oxygen.csv 30.6 488,749 Observation data GEMSTAT

Sampling_Locations_v1.shp 0.4 15,553 Site point data GLORICH

sampling_locations.csv 1.6 18,897 Site name data GLORICH

catchment_properties.csv 10.2 15,514 Catchment data GLORICH

hydrochemistry.csv 273.3 1,274,102 Observation data GLORICH

Waterbase_v2019_1_S_WISE6_

SpatialObject_DerivedData.csv

15.1 62,288 Site data WATERBASE

ObservedProperty.csv 0.2 888 Observation data WATERBASE

Waterbase_v2019_1_T_WISE6_

DisaggregatedData.csv

10019.2 39,121,790 Observation data WATERBASE

WQP_*_sites.csv 2543 9,467,369 Site data WQP

WQP_*_obs.csv 2749.8 10,088,212 Observation data WQP
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Out of 47 water quality parameters available in the raw data, 26 were chosen to be included in the GRQA (Table 1). The

samples cover the time period of 1942–2011, but the length of the time series is dependent on the parameter. Mean time

series length per site is less than a decade for all parameters. The number of available sites per parameter ranges from just

four (particulate organic nitrogen) to 9,728 (dissolved inorganic phosphorous). The dataset can be downloaded at Pangaea105

(Hartmann et al., 2019).

2.4 WATERBASE

Waterbase is the generic name given to the European Environment Agency’s (EEA) databases on the status and quality of

Europe’s rivers, lakes, groundwater bodies and transitional, coastal and marine waters (European Environment Agency, 2020).

The database is compiled from data sent by the national European water agencies involved in the Water Framework Directive110

(WFD).

Over 600 water quality parameters are included in the full dataset out of which 15 matched those of GRQA (Table 1). Out

of all source datasets, WATERBASE had the shortest time series with observations covering only the period 2008–2018. The

maximum site count per parameter is 1,976, while there were on average only around 19 observations per site.

In May 2020, the ICWRGC announced that parts of WATERBASE had been also added to the GEMSTAT database (Inter-115

national Centre for Water Resources and Global Change, 2020). However, only sites with more than three years of data were

included in this update. As mean time series length per site was only 1.4 years in WATERBASE, a significant number of sites

were left out, which is why we decided to include WATERBASE separately in GRQA. Although it is likely that there were

many observations, which appeared both in GEMSTAT and WATERBASE, the duplication detection procedure discussed in

section 3.3 should have identified them.120

2.5 WQP

USGS, the U.S. Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council developed the

Water Quality Portal (WQP), which is so far the largest standardised water quality database (Read et al., 2017; United States

Geological Survey, 2020). Although the portal also includes data from a few other countries (e.g. Mexico, Pacific islands)

associated with the National Water Information System (NWIS) network, only a very limited amount of non-US samples were125

available. For this reason, only US national data was selected to be added to GRQA.

Due to the size of the source dataset, the full set of parameters could not be downloaded at once. Therefore, a scripted

download procedure was used to retrieve water quality samples and their corresponding sampling sites separately per parameter.

In the case of temperature, the data had to be further divided by state. Unlike other source datasets used in the study, the WQP

often had multiple versions of the same parameter available under separate codes, in case the parameter had been measured in130

different units, using different methods, etc. The final count of parameters used for GRQA was 37 (Table 1).

The longest time series of source datasets is present in the WQP with some dating back to 1898. However, the average time

series length per station is just over three years. Like GEMSTAT, WQP is still being updated, so most parameters have their
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latest observations from 2020. Site count ranges from a single station (dissolved inorganic nitrogen) to 59,000 per parameter

(total suspended solids).135

3 Methodology

The GRQA compilation workflow was divided into three parts: (1) The pre-processing stage involved converting observation

data from the five sources into a common format and harmonizing the corresponding metadata; (2) Pre-processed data were

merged by parameter, after which outliers and time series characteristics were detected; (3) Duplicate detection was conducted

in the last processing step. The Pandas (McKinney et al., 2010), GeoPandas (Jordahl et al., 2020) and NumPy (Harris et al.,140

2020) Python libraries were used throughout all data processing stages.

3.1 Source data preprocessing

Parameter selection. The parameters included in GRQA cover the four groups of water quality indicators outlined in the

introduction: nutrients, carbon, sediments and oxygen (Table 7). GLORICH was used as a reference for parameter selection

due to being one of the two global source datasets and having the least amount of discrepancies within source data, i.e. each145

GLORICH parameter had a single matching code, unit, etc.

Parameter harmonization. Preliminary analysis showed that there were ambiguities in the parameter names, codes, units and

chemical forms in the different source datasets, which has been identified as a recurring issue when dealing with multi-source

water quality data (McMillan et al., 2012; Sprague et al., 2017). For this reason, lookup tables were created for each of the

source datasets (*_code_map.csv) to use as guides in the following processing stages (Table 3). The purpose of the schemas150

was to match parameter codes and other metadata with the versions used later in the GRQA. For most parameters, this could

be done based on the literal names, remarks and descriptions in the metadata. Relevant literature and online resources were

consulted for more ambiguous scenarios. One such example was total suspended solids (TSS), which can also be reported as

suspended particulate matter (SPM) (Neukermans et al., 2012). Where a reliable decision could not be made (e.g. biological

oxygen demand as BOD vs BOD5) the parameters were kept separate.155

Unit conversion. Units of measurement were harmonized along with other metadata. All parameters except temperature (°C),

pH and dissolved oxygen (%) were converted into mg/l, which was the most prevalent unit in source data. Where units were

converted, observation values had to be changed as well. This was done by calculating conversion constants, which were based

on both the magnitude of the source unit (e.g. µg/l vs mg/l) and the reported chemical form of the parameter. The latter affected

nitrite (NO2), nitrate (NO3) and ammonium (NH4) the most, as these parameters had a variety of forms in the source data that160

were all converted into corresponding nitrogen versions (NO2-N, NO3-N & NH4-N). In some cases, the chemical form could be

identified from the source unit (e.g. mg{N}/L or mg{NO3}/L), while others were detected by examining parameter names and

method descriptions (e.g. "Nitrate, reported as nitrogen"). Where possible, additional information about these missing forms

was collected from proxy sources, such as other similar datasets (e.g. Börker et al. (2020) in the case of GLORICH). These

references have been included in the form_ref column in corresponding lookup tables (*_code_map.csv). For other nitrogen165
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Table 3. Summary table of lookup table attributes.

Attribute name Description Data type

source_param_code Parameter code in source dataset string

source_param_code_meta Additional code specification used for CESI string

param_code Parameter code in GRQA string

source_param_name Parameter name in source dataset string

param_name Parameter name in GRQA string

source_param_form Parameter chemical form in source dataset string

param_form Parameter chemical form in GRQA string

form_ref Parameter form reference string

source_unit Parameter unit in source dataset string

divisor Divisor applied to the observation value float

multiplier Multiplier applied to the observation value float

conversion_constant Unit conversion constant calculated based on divisor and multi-

plier and applied to the observation value

float

unit Parameter unit in GRQA string

source Source dataset name string

(TKN, TN, etc.), all carbon (DOC, TC, etc.) and phosphorus (TP, TIP, etc.) parameters, the chemical were assumed to be either

N, C or P even if not reported, because there is only one common element in the molecule (Sprague et al., 2017). GLORICH

was the only source dataset, which also needed conversion constants for carbon and phosphorus parameters as they had been

reported as µmol/l. All WQP units matched those intended to be used for GRQA, so no conversion was needed. The formula

for conversion constants was170

x2 =
x1 ×Mx2

n×Mx1

(1)

where x1 and x2 are observation values before and after conversion, M is the corresponding molar mass and n the magnitude

difference between source and converted unit. Some examples of unit conversion are given in Table 4. The full list of all unit

conversion procedures is given in the appendix (Table A1).

Site ID duplication. There were some instances of duplicated site IDs in GLORICH (2 site pairs) and WATERBASE (101175

pairs) source data, which meant that joining observations with sites would have created duplicate time series as well. Site ID

duplicates could indicate that were have been small shifts in the site location or that the site had been closed and reinstated

at some point. If the distance between the duplicate pairs was less than a kilometer, only the first instance was retained in the

output table. When distance was greater than a kilometer both instances were removed as metadata that could be used to make

a decision (e.g. when the site first opened) was not available. Finally, all duplicate pairs were exported as separate files (e.g.180

GLORICH_dup_sites).

8



Table 4. Examples of unit conversion from the chemical form in source data to the GRQA version. x1 and x2 are observation values before

and after conversion, respectively.

Parameter code Source Form Source form Unit Source unit x1 Mx2 n Mx1 x2

TAN CESI N NH3 mg/l mg/l 0.106 14.007 1 17.031 0.087

NO2N GEMSTAT N NO2 mg/l mg/l NO2 0.024 14.007 1 46.005 0.007

NO3N GLORICH N NO3 mg/l µmol/l 210.268 14.007 1000 62.004 0.048

NH4N WATERBASE N NH4 mg/l mg/l 0.063 14.007 1 18.039 0.049

Coordinate conversion. CESI and WQP originally had the site coordinates in the North American Datum of 1983 (NAD83).

The Pyproj (Snow et al., 2020) Python library was used for converting the North American site coordinates into World Geodetic

System 1984 (WGS84) which was the coordinate system chosen for the GRQA.

Observation data filtering. Preliminary cleaning included the removal of observations of negative, missing or low quality185

values. In this case, low quality refers to measurements that were flagged as either coming from unreliable sources or having any

kind of literal quality assessment flag in the source data (e.g. "poor quality"). Additionally, observations marked as below (<)

or above (>) detection limit in source data where flagged as such in GRQA as well (column detection_limit_flag). Observations

originating from unreliable sources or otherwise suspect (e.g. unvalidated) were omitted. Three source datasets (GEMSTAT,

GLORICH & WATERBASE) had this type of a quality evaluation included in the metadata. Observations from sites marked190

as "Not for publication" due to national legislation in WATERBASE were also not included in GRQA.

Filtration information. Where possible, supplementary information about whether a sample was filtered or unfiltered was

retained as filtration can affect the sample values (Sprague et al., 2017). This information was usually available in a separate

metadata column. Both "filtered" and "dissolved" were used depending on the source. GRQA includes the dissolved versions of

certain parameters (total nitrogen, total phosphorus and Kjeldahl nitrogen), which originally did not exist as separate parameters195

in WATERBASE and WQP. In those cases, the filtered/dissolved observations of TN, TP and TKN in the two datasets were

treated as the corresponding dissolved forms (TDN, TDP, DKN) in GRQA.

Time and date processing. Observations could have invalid timestamps due to formatting or entry errors, so a validity check

was included in the pre-processing scripts. Dates were tested against the presumed source format and observations with incor-

rectly formatted or implausible dates were removed. The source datasets used different date formats, which were all converted200

into a common one (%Y-%m-%d). Were possible, observation time was extracted as well. A default value (00:00:00) was used

to fill missing information. Time zone information was only possible to extract from the WQP. Other sources lacked time zone

information, so it was not possible to determine whether the recorded timestamp was in local or Coordinated Universal Time

(UTC) and the time given is up to the user to interpret.

Other metadata. If available, metadata about the upstream basin area, its unit and the name of the greater drainage region205

of the site was included in GRQA. Additional information about methods used or other available observation remarks in the

source data were also retained. The metadata depended on the source and was available only sporadically and could not be

concatenated in a reasonable way between the datasets, so the information is given in the GRQA for each source separately in
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the format of source_meta_sourcecolumnname (e.g. GEMSTAT_meta_Analysis Method Code). Here, the source column names

were kept as they appear in raw data, e.g. spaces were not replaced with underscores.210

3.2 Outlier treatment, time series availability and continuity

Time series availability and continuity. The analysis of the statistics generated during pre-processing showed that most of the

time series extracted from the source datasets are very discontinuous. For example, the mean time series length per site for

total phosphorus (TP) in GEMSTAT was 6.6 years and 4.9 years in GLORICH, while the mean observation count per site was

only 57.7 and 52.4, respectively. This means that many sites have observations at a monthly time step at best. Similar findings215

have been previously reported about WQP time series (Read et al., 2017; Shen et al., 2020).

In order to illustrate the suspected temporal fragmentation in observation data, monthly availability and monthly continuity

statistics appropriated from the strategy used by Crochemore et al. (2019) were calculated for each site in each of the merged

parameter time series. Both characteristics can give insight to the granularity of the time series and can affect the applicability

of different modeling methods. Monthly availability of observation data was defined as the ratio between number of months220

with at least one observation and the total number of months a particular site had any observations. A ratio of 1.0 would mean

that there was at least one observation in every month of the time series. Monthly continuity was calculated as the ratio between

the longest period of consecutive months with any measurements and the length of time series in months. Here, a ratio of 1.0

would mean that there were no months without observations and the time series is continuous on a monthly level. The resulting

characteristics were added as columns in the output files.225

Outlier flagging. Water quality modeling often involves dealing with numerous outliers and uncertainties in observation

data, particularly when integrating time series from multiple sources (McMillan et al., 2012; Sprague et al., 2017). Due to the

differences in environmental conditions and water regimes, the potential range of observation values can vary a lot between

catchments. Although extreme outliers caused by faulty equipment or data entry errors can sometimes be detectable by ex-

amining distribution plots, it is often difficult to decide whether an outlier is an error or not. For example, sudden spikes in230

observation time series can be caused by events such as accidental fertilizer spills to the waterway or a cow getting entrapped

in a in-stream wetland (Hughes et al., 2016), which can have short-term effects on water quality and, therefore, should not be

removed from data. However, flagging outliers can still help researchers troubleshoot potential issues at the modeling stage.

For this reason, no observations were omitted from the time series and two flags associated with outliers were added to the

output tables instead. First flag (obs_iqr_outlier) shows whether an observation was deemed to be an outlier by the interquartile235

range (IQR) test. IQR is defined as the difference between the third (Q3) and first (Q1) quartile. All values greater than

Q3+1.5× IQR or less than Q1−1.5× IQR are considered outliers. The second flag (obs_percentile) was an indicator (0.0–

1.0) showing which percentile a particular observation belongs to. Histograms along with box and whisker plots were used to

visually show the range and distribution of the parameter observations. The plots were produced for every parameter and are

included in the GRQA data repository.240
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3.3 Duplicate observation detection

The global datasets (GEMSTAT and GLORICH) used in this study had at least partial spatial overlap with the other three

sources, which means that merging could have created duplicate sites in the GRQA. Contrary to site ID duplicates within the

same dataset discussed in section 3.1, site duplicates from different sources would likely also have different IDs. Therefore,

rather than comparing ID information, the duplicates had to be identified by spatial proximity and time series similarity. Similar245

to procedures described in section 3.2, duplicate detection was done separately for each parameter.

First stage of duplicate detection was clustering sites based on their geographic location. The DBSCAN (density-based

spatial clustering of applications with noise) algorithm (Xu et al., 1998) from the Scikit-learn Python library (Pedregosa et al.,

2011) was used to create clusters of sites within a one kilometer radius of each other, which is the approximate accuracy of

around two decimal points in latitude/longitude degrees. There does not seem to be a consensus for assigning this search radius250

for duplicate detection and the assessment of spatial proximity depends on the subjective threshold set by authors. For example,

the GSIM streamflow dataset (Do et al., 2018) used a radius of 5 km for selecting potential duplicate gauging stations. The

1 km radius was chosen to avoid having too many false positives (e.g. in the case of small headwater catchments) to evaluate

in the second stage of deduplication (RMSE calculation). A major advantage of DBSCAN compared to similar density-based

clustering methods is that the algorithm can be run without determining a priori the number of output clusters (Birant and Kut,255

2007). In addition, DBSCAN has shown to be more applicable than others when dealing with large-scale datasets (Khan et al.,

2014; Parimala et al., 2011).

Although there are time series similarity detection methods that can be applied to irregular time series and handle some

degree of discontinuity, the focus of those methods is on misalignment of the time of observations rather than differences in

the pattern of time series gaps (Berndt and Clifford, 1994). Therefore, it is likely that GRQA time series are too fragmented for260

these advanced methods to yield reliable results. A conservative approach based on root-mean-square error (RMSE) was chosen

here instead. Output site clusters were converted into unique site pairs, so that all sites within a cluster could be compared to

one another (e.g. a cluster of four would yield six unique ID pairs). Site ID pairs were then used to extract corresponding time

series from observation data. Only observations made on matching dates were used for calculating the RMSE and only pairs

where RMSE was equal to zero were considered as potential duplicates. Finally, the duplicates were exported into separate265

CSV files (e.g. TP_dup_obs.csv) along with relevant metadata to help the user decide whether the sites can be considered

duplicate (Table 5). A high number of matching dates with the same observation value (column date_match_count) would

indicate a higher likelihood of duplication.

4 Results

GRQA data model and descriptive overview. The GRQA dataset consists of observation time series for 42 different water270

quality parameters provided in tabular form as CSV files. Each of the observation files is accompanied by corresponding

metadata files (tables and images) describing the spatial and temporal characteristics of the time series.

GRQA is made up of the following files (Fig. 1):

11



Table 5. Summary table of duplicate observation file attributes.

Attribute name Description Data type

obs_id_1 Observation ID of first site string

lat_wgs84_1 Latitude of first site float

lon_wgs84_1 Longitude of first site float

site_id_1 First site ID string

site_name_1 First site name string

obs_value_1 First site observation value float

source_1 First site source string

site_ts_availability_1 First site availability float

site_ts_continuity_1 First site continuity float

obs_date Observation date string

obs_id_2 Observation ID of second site string

lat_wgs84_2 Latitude of second site float

lon_wgs84_2 Longitude of second site float

site_id_2 Second site ID string

site_name_2 Second site name string

obs_value_2 Second site observation value float

source_2 Second site source string

site_ts_availability_2 Second site availability float

site_ts_continuity_2 Second site continuity float

date_match_count Number of matching dates with the same observation value int

param_code Parameter code string

– A data catalog (GRQA_data_catalog.pdf ) with maps showing the spatiotemporal coverage and graphs describing the

distribution of all 42 parameters along with a README file describing the dataset structure275

– Water quality observation time series files (named paramcode_GRQA.csv)

– GRQA metadata (folder meta) containing descriptive statistics (GRQA_param_stats.csv) and duplicate observation files

(source_dup_obs.csv), where relevant

– The set of overview figures (folder figures) contains

Histograms (paramcode_GRQA_hist.png) and box plots (paramcode_GRQA_box.png) showing the distribution of280

observation values by source dataset

Maps showing the spatial distribution of the observations by source (paramcode_GRQA_spatial_dist.png)

Maps showing the median observation values of sites (paramcode_GRQA_median.png)
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Figure 1. Diagram showing the folder structure and contents of the GRQA dataset.

Maps showing the monthly availability (paramcode_GRQA_availability.png) and continuity

(paramcode_GRQA_continuity.png) of the observations285

The five source datasets are also included in the GRQA data package. Folder source_data includes

– The raw folder with downloaded source files and harmonization schemas used in the preprocessing stage

(source_code_map.csv) for each source dataset along with the original units (source_units.csv)

– The sourcename/processed folder contains summary statistics of observation values by parameter for each source dataset

before (paramcode_source_raw_stats.csv) and after (paramcode_source_processed_stats.csv) processing along with in-290

formation about the number of missing values (source_missing_values.csv) and source file size (source_file_info.csv)

– Where relevant, processed/meta also includes duplicate site ID files (source_dup_sites.csv)
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Table 6. Summary table of output water quality observation file attributes.

Attribute name Description Data type

obs_id Unique observation ID generated by hashing string

lat_wgs84 Observation site latitude in WGS84 float

lon_wgs84 Observation site longitude in WGS84 float

obs_date Observation date in the %Y-%m-%d format string

obs_time Observation time in the %H:%M:%S format string

obs_time_zone Observation time zone code string

site_id Observation site ID string

site_name Observation site name string

site_country Observation site country string

upstream_basin_area Site upstream basin area string

upstream_basin_area_unit Site upstream basin area unit string

drainage_region_name Drainage region where site is located in string

param_code Parameter code in GRQA string

source_param_code Parameter code in source dataset string

param_name Parameter name in GRQA string

source_param_name Parameter name in source dataset string

obs_value Observation value in GRQA float

source_obs_value Observation value in source dataset float

detection_limit_flag Whether a value was flagged as below (<) or above (>) detection limit in source data string

param_form Parameter chemical form in GRQA string

source_param_form Parameter chemical form in source dataset string

unit Parameter unit in GRQA string

source_unit Parameter unit in source dataset string

filtration Sample filtration information string

source Source dataset name string

obs_percentile Percentile of the observation value float

obs_iqr_outlier Flag to mark whether observation value is an outlier according to the

interquartile range test

string

site_ts_availability Monthly availability of the time series per site float

site_ts_continuity Monthly continuity of the time series per site float

*_meta_* Other observation metadata with a reference to the corresponding source column

(e.g., GEMSTAT_meta_Method Description)

string

. . . . . .
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Table 7. GRQA water quality parameter statistics.

Parameter

code

Parameter name Sites Observations Median value Unit Start year End year Outlier %

BOD Biochemical Oxygen Demand 2,945 163,531 2.627 mg/l 1974 2019 13.4

BOD5 Biochemical Oxygen Demand

(BOD5)

13,283 278,629 5.875 mg/l 1905 2020 8.3

BOD7 Biochemical Oxygen Demand

(BOD7)

386 5,282 2.200 mg/l 2013 2018 5.9

COD Chemical Oxygen Demand 2,769 126,372 22.362 mg/l 1974 2019 10.8

CODCr Chemical Oxygen Demand (Cr) 671 7,350 24.900 mg/l 2013 2018 3.4

CODMn Chemical Oxygen Demand

(Mn)

287 2,310 4.600 mg/l 2013 2018 2.3

DC Total Dissolved Carbon 7 9 4.800 mg/l 2000 2001 0

DIC Dissolved Inorganic Carbon 969 30,633 12.266 mg/l 1968 2020 3.5

DIN Dissolved Inorganic Nitrogen 119 7,822 4.200 mg/l 1998 2019 2.6

DIP Dissolved Inorganic Phospho-

rus

9,931 612,922 0.040 mg/l 1942 2017 13.3

DKN Dissolved Kjeldahl Nitrogen 2,820 80,732 0.347 mg/l 1973 2020 6.5

DO Dissolved Oxygen 48,072 1,487,724 8.835 mg/l 1898 2020 2.2

DOC Dissolved Organic Carbon 14,799 413,328 2.804 mg/l 1968 2020 6.8

DON Dissolved Organic Nitrogen 10,811 163,630 0.371 mg/l 1951 2020 8.1

DOP Dissolved Organic Phosphorus 142 899 0.010 mg/l 1971 2003 8.7

DOSAT Dissolved Oxygen Saturation 34,949 953,274 92.164 % 1898 2020 8.7

NH4N Ammonium Nitrogen 11,372 651,850 0.027 mg/l 1942 2018 15.1

NO2N Nitrite Nitrogen 30,902 720,944 0.010 mg/l 1900 2020 12.7

NO3N Nitrate Nitrogen 45,422 1,229,584 0.468 mg/l 1900 2020 11.1

PC Particulate Carbon 2,898 51,049 0.908 mg/l 1995 2020 11

pH pH 27,577 1,372,794 6.886 pH 1900 2020 14.1

PIC Particulate Inorganic Carbon 1,095 9,196 0.060 mg/l 1974 2020 14

PN Particulate Nitrogen 2,996 56,125 0.129 mg/l 1981 2020 9.5

POC Particulate Organic Carbon 22,910 615,941 1.617 mg/l 1900 2020 9.7

PON Particulate Organic Nitrogen 28 1,111 0.120 mg/l 1989 2019 14

POP Particulate Organic Phosphorus 12 13 0.020 mg/l 1999 2000 7.7

TAN Total Ammonia Nitrogen 27,980 717,776 0.065 mg/l 1900 2020 13.3

TC Total Carbon 1,181 12,338 27.000 mg/l 1968 2007 3.3

TDN Total Dissolved Nitrogen 968 62,980 0.310 mg/l 1972 2020 11.2

295
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Table 7. Continued.

Parameter

code

Parameter name Sites Observations Median value Unit Start year End year Outlier %

TDP Total Dissolved Phosphorus 3,325 169,297 0.031 mg/l 1965 2020 11.3

TEMP Water Temperature 26,860 1,113,471 18.968 Deg C 1912 2020 9.3

TIC Total Inorganic Carbon 1,984 23,024 11.833 mg/l 1968 2019 3.8

TIN Total Inorganic Nitrogen 78 12,951 3.649 mg/l 1992 2020 0.8

TIP Total Inorganic Phosphorus 1,328 42,495 0.026 mg/l 1971 2018 13.8

TKN Total Kjeldahl Nitrogen 9,418 425,595 0.680 mg/l 1962 2020 8.1

TN Total Nitrogen 18,507 575,887 1.329 mg/l 1958 2020 11.9

TOC Total Organic Carbon 18,032 420,029 4.526 mg/l 1958 2020 7.2

TON Total Organic Nitrogen 22,799 592,654 0.622 mg/l 1900 2020 8.6

TOP Total Organic Phosphorus 294 1,811 0.030 mg/l 1971 2020 11.9

TP Total Phosphorus 44,990 1,914,538 0.105 mg/l 1900 2020 11.8

TPP Total Particulate Phosphorus 77 5,836 0.021 mg/l 1978 2019 10.5

TSS Total Suspended Solids 68,592 1,958,429 9.785 mg/l 1898 2020 20.5

The structure of GRQA observation files is given in Table 6. In addition to the attributes outlined in section 3, the extracted

metadata also includes information about the upstream basin and drainage region of the observation site. It has to be noted

that the availability of this information was dependent on both the source (i.e. not present in CESI and WATERBASE) and the

observation site itself and is therefore available only sporadically in GRQA as well (Table 6). Parameter codes, names, forms300

and observation values in GRQA are given as they appeared in source data alongside their harmonized and processed GRQA

versions, so that end users could assess the validity of conversion and make corrections if needed.

Statistical overview of the parameters included in GRQA is shown in Table 7. The number of sites per parameter ranges

from only 7 (DC) up to 68,592 (TSS). Parameters having more sites generally also have more observations. Parameters with a

small number of sites and observations were usually present in only one or two source datasets. For example, dissolved organic305

phosphorus (DOP) only existed in WQP. Different versions of biochemical and chemical oxygen demand that could not be

harmonized based on source metadata were kept separate, although the median value for BOD and BOD5 ended up being

equal.

Spatial distribution of water quality observation sites depended on the parameter and is illustrated in Fig. 2 using dissolved

oxygen (DO), dissolved organic carbon (DOC), TP and TSS. These parameters were the largest in terms of number of sites310

and observations in their corresponding groups (oxygen, carbon, nutrients and sediments). They are also used in the following

figures. Some observations that could be made when examining site maps were the following:

– Europe and North America are the best represented in the case of all parameters

– Coverage is also good in Australia, New Zealand, parts of East Asia and Brazil in the case of some of the key parameters

(e.g. TP, TN)315
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Figure 2. Distribution of observation sites for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total

suspended solids (TSS).

– Rest of the world (Africa, most of Asia) only has sporadic coverage

The temporal distribution of the four parameters is given in Fig. 3. Similar to the spatial distribution, temporal coverage of

observations depended on both source data and parameter with WQP having the longest and WATERBASE the shortest time

series. Most of the data from GEMSTAT are from the past decade, while GLORICH has a more even observation distribution

throughout the time series.320

Statistical characteristics of GRQA observation time series. As mentioned in the previous section, each of the observation

files was accompanied by a set of images and tables giving insight into the characteristics of the observation time series. The

structure of tabular summary statistics is shown in Table 8. These files contain some basic statistics (standard deviation, etc)

about observation values per parameter and source. In addition, information about the temporal characteristics of time series

(mean length per site, etc) is given as well as this can be important when assessing the suitability of the data for modeling325

purposes.
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Figure 3. Temporal distribution of observations for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and

total suspended solids (TSS) for the period 1970–2020. Percentage of observations before the period shown on the plot is given for each

parameter. Only seven observations (1.69× 10−5%) existed for DOC in the 1968–1970 period.
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Figure 4. Distribution of observation values for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total

suspended solids (TSS). Outliers determined by the IQR test (Table 7) are not shown on the plot.
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Table 8. Summary table of observation time series statistics file attributes.

Attribute name Description Data type

source_param_code Parameter code in source dataset string

param_code Parameter code in GRQA string

param_name Parameter name in source dataset string

source_param_form Parameter form in source dataset string

param_form Parameter form in GRQA string

source_unit Parameter unit in source dataset string

unit Parameter unit in GRQA string

count Total number of observations int

min Minimum observation value float

max Maximum observation value float

mean Mean observation value float

median Median observation value float

std Standard deviation of observation values float

min_year Time series start int

max_year Time series end int

ts_length Total time series length per parameter float

site_count Total number of sites per parameter int

mean_obs_count_per_site Mean observation count per site float

mean_ts_length_per_site Mean time series length in years per site float

The applicability of water quality modeling is greatly affected by the distribution of observation values as a majority of

modeling methods require a near normal distribution. The skewness caused by extreme outliers is a common problem in

hydrological modeling. The observations often follow a lognormal distribution, which means that the data often needs to be

transformed and normalized in order to be usable (Helsel, 1987; Hirsch et al., 1982; Parmar and Bhardwaj, 2014). Similar330

behavior was also examined in GRQA, where values of most parameters showed a strong positive skew. This can be seen in

histograms (Fig. 4) and box plots (Fig. A1). For illustrative purposes, values determined as outliers by the IQR test have been

omitted from the figures. In the case of parameters such as TP and TSS, the skewness remains even after outlier omission. This

is confirmed by the box plots, where the total range of the values greatly exceeds the median.

Availability (Fig. 5) and continuity (Fig. 6) plots were used to examine the temporal fragmentation of the time series. In335

general, observations from national sources (CESI and WQP) exhibited slightly higher availability and continuity than others,

likely caused by more consistent data acquisition frameworks. No clear spatial pattern emerged from the analysis meaning

that differences in both indicators exist at the site level even within the same country. Due to how the metrics were calculated,

shorter time series outperformed longer ones. An example of this is TP in Brazil, where the examined high continuity correlated
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Figure 5. Monthly availability for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total suspended solids

(TSS).

with very short mean time series length (less than a year). Parameters with very fragmented time series (e.g. TSS) had only a340

limited number of sites where observations had been collected consistently throughout the whole time frame.

The GRQA also includes plots of median observation values, which were calculated over the whole time series for each site.

Seasonal fluctuations cannot be identified on this aggregation level, so the maps are meant to be only indicative. An example

of median plots can be seen in the appendix (Fig. A2).

5 Discussion345

5.1 Limitations and considerations regarding the use of GRQA

Taking into account aforementioned issues encountered during the compilation of GRQA, certain limitations and potential

remaining errors have to be considered when using the dataset for water quality modeling.
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Figure 6. Monthly continuity for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total suspended solids

(TSS).

Potential errors in unit conversion. As described in section 3, several assumptions had to be made when creating harmoniza-

tion schemas about the chemical form of certain nitrogen parameters (NO2, NO3 and NH4). However, if the assumption made350

based on this limited ancillary information was incorrect then using the conversion would have been affected as well. For this

reason, the source observation values along with source units were retained and the users can retrace the conversion steps using

the harmonization schemas.

Skewness of observation values. The outlier treatment strategy used for GRQA involved only flagging the values based

on the IQR test, which means that the skewness illustrated in section 4 still remains. Although the described strong positive355

skew existed also in source data, potential unit conversion errors could have exaggerated it. As shown by histograms, omitting

flagged outliers is not enough to eliminate the skewness in some cases (TP and TSS), so additional processing could be needed

to transform the data into a normal shape. Power transformation methods like the Box-Cox transformation (Box and Cox, 1964)

could be used to further minimize skewness. It is likely that some of the most extreme outliers are caused by data entry errors
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or equipment malfunction rather than events such as agricultural spills. For setting thresholds to determine whether a value is360

illogical or not, more sophisticated outlier detection methods based on some general freshwater quality guidelines (Enderlein

et al., 1996) could perhaps be used to further filter the observation values.

5.2 Suggestions for improving multi-source water quality data compilation

Metadata quality. When merging datasets from different sources, most of the complications stemmed from inadequate metadata

of water quality observations, such as ambiguous parameter names and codes, and missing details on the chemical forms of365

parameters. This information would be integral for harmonizing units and observation values. The terms used for indicating

the filtration status of samples are often dependent on the interpretation of the authors (total vs unfiltered, dissolved vs filtered),

which can affect results when merging (McMillan et al., 2012; Sprague et al., 2017). Annotation of suspect or incomplete

data is another aspect of good quality metadata (Gudivada et al., 2017). Internal quality control measures such as the ones in

GEMSTAT and WATERBASE would help the end user in the data cleaning stage and eliminate some of the outliers.370

The following aspects should be considered to make multi-source data harmonization more efficient in the future:

– Parameter forms should be reported with the units

– The filtration status of the samples should be reported and the terms filtered/unfiltered should be preferred as opposed to

the more ambiguous dissolved/total

– Machine-readable quality flags as found in GEMSTAT (columns Value Flags and Data Quality) or WATERBASE375

(columns resultObservationStatus, metadata_statusCode and metadata_observationStatus) should be added

– Whether observations are daily or monthly at the source level should be clearly defined

– Area units (m2, km2, etc) should be included, when the upstream catchment area of the site is reported

– Other information about potential errors in the data (potential duplicates, typographical errors, etc)

– When certain assumptions or decisions are made when harmonizing data from different sources, they should be reported380

when the data is published

Spatial and temporal discontinuity. Although spatial coverage of water quality observations in GRQA exceeds that of the

existing global datasets (GEMSTAT and GLORICH), large areas of Africa and Asia are empty. A major reason might be a

lack of knowledge and funding to update and extend site networks, particularly in hard to reach areas. In addition, not all

governments adhere to an open data policy. Therefore, improving the spatial coverage of water quality data still relies mostly385

on implementing additional measures to encourage countries to share it in accordance with open data principles.

The availability and continuity analysis showed that the GRQA time series are fragmented and significant gaps remain

in the data, which will negatively affect large-scale modeling performance. These gaps could be caused by both issues with

sensor maintenance or technical limitations under certain conditions (weather, etc) and inconsistencies in the data acquisition
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practices on the local level. Recently, ML based solutions for time series augmentation have been used to fill in gaps in historical390

monitoring data (Gao et al., 2018; Ren et al., 2019). However, this kind of gap filling still requires enough good quality training

data in the existing time series fragments to be effective and can potentially only be of help when improving the temporal,

rather than spatial coverage.

Another option for improving continuity is using data from one time series to fill in gaps in another. For example, turbidity

has been successfully translated into TP and TSS content (Castrillo and García, 2020; Jones et al., 2011). As turbidity data can395

be acquired at a higher frequency than TP and TSS, the use of such surrogate parameters can be helpful in data scarce regions

for certain parameters.

General remarks. An important part in improving the spatiotemporal coverage of water quality is raising awareness about

the existing datasets (e.g. GEMSTAT), so that new institutions could join the contributor network and submit their own site

data. Continued growth of international collaboration will be vital in improving open global water quality data (Blöschl et al.,400

2019; Tang et al., 2019). Most of the data collected locally is intended only for regional or national use. Thus, the data is not

compatible with those from other countries due to lack of common metadata management practices with problems discussed

above being a major bottleneck (Hutton et al., 2016; Sprague et al., 2017; Stagge et al., 2019). Providing those institutions

with an example workflow when designing water quality data pipelines, such as the schema recently proposed by Plana et al.

(2019), would help them develop their own data management strategy. The workflow used to compile GRQA along with the405

issues raised in this study will hopefully also help to draw attention to this topic.

6 Conclusions

The GRQA dataset was created with the intention to improve the spatiotemporal coverage of previously available open water

quality data and provide an example workflow for multi-source data compilation that can be accustomed for other data sources

as well. The current version of GRQA is mainly focused on different forms of the main nutrients (N and P) and carbon410

compounds, although GEMSTAT, WATERBASE and WQP also had many other types of parameters that are used as water

quality indicators (heavy metals, pesticides, etc). Other researchers are able to make additions and customize the dataset to

their needs for parameter-specific studies using the scripts published with GRQA.

Updates and additions by the hydrological community are encouraged to further develop GRQA. As it stands, GRQA is a

set of well structured CSV files rather than a queryable database. We intend to add a Jupyter Notebook example of loading415

and processing the CSV files to the GRQA GitHub repository. We included an extensive data catalogue with graphs and maps

for temporal and spatial coverage of every variable as supplementary material. This should help potential users to get a better

overview of the data before downloading it. Converting the files into a database would also greatly improve data management

and make extending GRQA easier in the future. In the case of a relational database, the schema recommended by Plana et al.

(2019) could be followed. We also consider the addition of an online dashboard for data visualization and download, similar to420

that of GEMSTAT or WQP. A versioning system along with a metadata validation strategy similar to Welty et al. (2020) could

be implemented to ensure metadata quality.
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Future work could also include the development of a dataset for catchment characteristics in order to better study how water

quality in rivers and streams is affected by land use changes in their catchments. The CAMELS dataset (Addor et al., 2017)

and its regional implementations (Chagas et al., 2020; Coxon et al., 2020) can be used as an example. In addition, interactions425

between water quality and streamflow can be further studies by linking water quality observations to streamflow data from the

Global Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018).

Code and data availability. The GRQA dataset, supplementary metadata and figures are available for download on the DataCite and Ope-

nAire enabled Zenodo repository https://doi.org/10.5281/zenodo.5097436 (Virro et al., 2021).

The data processing scripts used for the compilation of GRQA are available on Zenodo https://doi.org/10.5281/zenodo.5082147 (Virro430

and Kmoch, 2021).

Appendix A: Figures and tables in appendices
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Figure A1. Box plot of observation values for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total

suspended solids (TSS). Outliers determined by the IQR test (Table 7) are not shown on the plot.
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Figure A2. Spatial distribution of yearly median observation values for dissolved oxygen (DO), dissolved organic carbon (DOC), total

phosphorus (TP) and total suspended solids (TSS). Outliers determined by the IQR test are not shown on the plot.
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Table A1. Conversion procedures of source data units and chemical forms into their corresponding GRQA versions for all parameters.

Parameter code Source Form Source form Unit Source unit Divisor Multiplier Conversion constant

TAN CESI N NH3 mg/l MG/L 17.031 14.007 0.822441

NO3N CESI N N mg/l MG/L 1 1 1

NO2N CESI N N mg/l MG/L 1 1 1

TN CESI N N mg/l MG/L 1 1 1

TDN CESI N N mg/l MG/L 1 1 1

DO CESI O2 O2 mg/l MG/L 1 1 1

pH CESI pH PH UNITS 1 1 1

TP CESI P P mg/l MG/L 1 1 1

TDP CESI P P mg/l MG/L 1 1 1

TEMP CESI Deg C DEG C 1 1 1

DC GEMSTAT C C mg/l mg/l 1 1 1

DIC GEMSTAT C C mg/l mg/l 1 1 1

DOC GEMSTAT C C mg/l mg/l 1 1 1

POC GEMSTAT C C mg/l µg/g 1 1 1

POC GEMSTAT C C mg/l mg/l 1 1 1

TC GEMSTAT C C mg/l mg/l 1 1 1

TIC GEMSTAT C C mg/l mg/l 1 1 1

TOC GEMSTAT C C mg/l mg/l 1 1 1

DKN GEMSTAT N N mg/l mg/l 1 1 1

DON GEMSTAT N N mg/l mg/l 1 1 1

NH4N GEMSTAT N N mg/l mg/l 1 1 1

NH4N GEMSTAT N NH4 mg/l mg/l NH4 18.039 14.007 0.776484

NH4N GEMSTAT N N mg/l µg/l 1000 1 0.001

NO2N GEMSTAT N N mg/l mg/l 1 1 1

NO2N GEMSTAT N NO2 mg/l mg/l NO2 46.005 14.007 0.304467

NO2N GEMSTAT N N mg/l µg/l 1000 1 0.001

NO3N GEMSTAT N N mg/l mg/l 1 1 1

NO3N GEMSTAT N NO3 mg/l mg/l NO3 62.004 14.007 0.225905

NO3N GEMSTAT N N mg/l µg/l 1000 1 0.001

PN GEMSTAT N N mg/l mg/l 1 1 1

PON GEMSTAT N N mg/l mg/l 1 1 1

PON GEMSTAT N N mg/l µg/g 1 1 1

TDN GEMSTAT N N mg/l mg/l 1 1 1

TKN GEMSTAT N N mg/l mg/l 1 1 1

435
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Table A1. Continued.

Parameter code Source Form Source form Unit Source unit Divisor Multiplier Conversion constant

TN GEMSTAT N N mg/l mg/l 1 1 1

TON GEMSTAT N N mg/l mg/l 1 1 1

DO GEMSTAT O2 O2 mg/l mg/l 1 1 1

DOSAT GEMSTAT % % 1 1 1

BOD GEMSTAT O2 O2 mg/l mg/l 1 1 1

COD GEMSTAT O2 O2 mg/l mg/l 1 1 1

pH GEMSTAT pH — 1 1 1

DIP GEMSTAT P P mg/l mg/l 1 1 1

TDP GEMSTAT P P mg/l mg/l 1 1 1

TDP GEMSTAT P P mg/l µg/l 1000 1 0.001

TIP GEMSTAT P P mg/l mg/l 1 1 1

TP GEMSTAT P P mg/l mg/l 1 1 1

TP GEMSTAT P P mg/l µg/l 1000 1 0.001

TPP GEMSTAT P P mg/l µg/g 1 1 1

TPP GEMSTAT P P mg/l mg/l 1 1 1

TSS GEMSTAT mg/l mg/l 1 1 1

TEMP GEMSTAT Deg C °C 1 1 1

TEMP GLORICH Deg C °C 1 1 1

pH GLORICH pH 1 1 1

DO GLORICH O2 O2 mg/l mg O2 L-1 1 1 1

DOSAT GLORICH % % 1 1 1

TSS GLORICH mg/l mg L-1 1 1 1

TC GLORICH C C mg/l µmol L-1 1000 12.011 0.012011

TIC GLORICH C C mg/l µmol L-1 1000 12.011 0.012011

DIC GLORICH C C mg/l µmol L-1 1000 12.011 0.012011

PIC GLORICH C C mg/l µmol L-1 1000 12.011 0.012011

TOC GLORICH C C mg/l µmol L-1 1000 12.011 0.012011

DOC GLORICH C C mg/l µmol L-1 1000 12.011 0.012011

POC GLORICH C C mg/l µmol L-1 1000 12.011 0.012011

TN GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

TDN GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

PN GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

TIN GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

DIN GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

TON GLORICH N N mg/l µmol L-1 1000 14.007 0.014007
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Table A1. Continued.

Parameter code Source Form Source form Unit Source unit Divisor Multiplier Conversion constant

DON GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

PON GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

TKN GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

DKN GLORICH N N mg/l µmol L-1 1000 14.007 0.014007

NO3N GLORICH N NO3 mg/l µmol L-1 1000 0.225905 0.000226

NO2N GLORICH N NO2 mg/l µmol L-1 1000 0.304467 0.000304

NH4N GLORICH N NH4 mg/l µmol L-1 1000 0.776484 0.000776

TP GLORICH P P mg/l µmol L-1 1000 30.973 0.030973

TDP GLORICH P P mg/l µmol L-1 1000 30.973 0.030973

TPP GLORICH P P mg/l µmol L-1 1000 30.973 0.030973

TIP GLORICH P P mg/l µmol L-1 1000 30.973 0.030973

DIP GLORICH P P mg/l µmol L-1 1000 30.973 0.030973

NO3N WATERBASE N NO3 mg/l mgNO3/L 62.004 14.007 0.225905

NO2N WATERBASE N NO2 mg/l mgNO2/L 46.005 14.007 0.304467

NH4N WATERBASE N NH4 mg/l mgNH4/L 18.039 14.007 0.776484

NH4N WATERBASE N NH3 mg/l mgNH3/L 17.031 14.007 0.822441

NH3N WATERBASE N NH3 mg/l mgNH3/L 17.031 14.007 0.822441

NH3N WATERBASE N N mg/l ug/L 1000 1 0.001

TP WATERBASE P P mg/l mgP/L 1 1 1

TSS WATERBASE mg/l mg/L 1 1 1

TEMP WATERBASE Deg C Cel 1 1 1

DOSAT WATERBASE % % 1 1 1

DO WATERBASE O2 O2 mg/l mg/L 1 1 1

DO WATERBASE O2 O2 mg/l mgO2/L 1 1 1

BOD5 WATERBASE O2 O2 mg/l mgO2/L 1 1 1

BOD7 WATERBASE O2 O2 mg/l mgO2/L 1 1 1

CODCr WATERBASE O2 O2 mg/l mgO2/L 1 1 1

CODMn WATERBASE O2 O2 mg/l mgO2/L 1 1 1

DOC WATERBASE C C mg/l mgC/L 1 1 1

DOC WATERBASE C C mg/l mg/L 1 1 1

TOC WATERBASE C C mg/l mgC/L 1 1 1

TOC WATERBASE C C mg/l mg/L 1 1 1

pH WATERBASE pH 1 1 1

TKN WATERBASE N N mg/l mgN/L 1 1 1

TKN WATERBASE N N mg/l mg/L 1 1 1
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Table A1. Continued.

Parameter code Source Form Source form Unit Source unit Divisor Multiplier Conversion constant

TON WATERBASE N N mg/l mgN/L 1 1 1

PON WATERBASE N N mg/l mgN/L 1 1 1

TIN WATERBASE N N mg/l mgN/L 1 1 1

TN WATERBASE N N mg/l mgN/L 1 1 1

PC WQP C C mg/l mg/l 1 1 1

DC WQP C C mg/l mg/l 1 1 1

TC WQP C C mg/l mg/l 1 1 1

DO WQP O2 O2 mg/l mg/l 1 1 1

DOSAT WQP % % saturatn 1 1 1

PIC WQP C C mg/l mg/l 1 1 1

DIC WQP C C mg/l mg/l 1 1 1

TIC WQP C C mg/l mg/l 1 1 1

TAN WQP N N mg/l mg/l as N 1 1 1

TAN WQP N N mg/l mg/l as N 1 1 1

DIN WQP N N mg/l mg/l as N 1 1 1

TIN WQP N N mg/l mg/l as N 1 1 1

NO3N WQP N N mg/l mg/l as N 1 1 1

NO3N WQP N N mg/l mg/l as N 1 1 1

NO2N WQP N N mg/l mg/l as N 1 1 1

NO2N WQP N N mg/l mg/l as N 1 1 1

PON WQP N N mg/l mg/l 1 1 1

DON WQP N N mg/l mg/l 1 1 1

TON WQP N N mg/l mg/l 1 1 1

POP WQP P P mg/l mg/l as P 1 1 1

DOP WQP P P mg/l mg/l as P 1 1 1

TOP WQP P P mg/l mg/l as P 1 1 1

PN WQP N N mg/l mg/l 1 1 1

TPP WQP P P mg/l mg/l as P 1 1 1

TDP WQP P P mg/l mg/l as P 1 1 1

TP WQP P P mg/l mg/l as P 1 1 1

TP WQP P P mg/l mg/l as P 1 1 1

TN WQP N N mg/l mg/l 1 1 1

TDN WQP N N mg/l mg/l 1 1 1

TN WQP N N mg/l mg/l 1 1 1

POC WQP C C mg/l mg/l 1 1 1
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Table A1. Continued.

Parameter code Source Form Source form Unit Source unit Divisor Multiplier Conversion constant

DOC WQP C C mg/l mg/l 1 1 1

TOC WQP C C mg/l mg/l 1 1 1

BOD5 WQP O2 O2 mg/l mg/l 1 1 1

BOD5 WQP O2 O2 mg/l mg/l 1 1 1

pH WQP pH std units 1 1 1

TSS WQP mg/l mg/l 1 1 1

TEMP WQP Deg C deg C 1 1 1
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