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Abstract. Large-scale hydrological studies are often limited by the lack of available observation data with a good spatiotempo-
ral coverage. This has affected the reproducibility of previous studies and the potential improvement of existing hydrological
models. In addition to the observation data itself, insufficient or poor quality metadata has also discouraged researchers to in-
tegrate the already available datasets. Therefore, improving both, the availability, and quality of open water quality data would
increase the potential to implement predictive modeling on a global scale.

The Global River Water Quality Archive (GRQA) aims to contribute into improving water quality data coverage by aggre-
gating and harmonizing five national, continental and global datasets: CESI, GEMSTAT, GLORICH, WATERBASE and WQP.
The GRQA compilation involved converting observation data from the five sources into a common format and harmonizing
the corresponding metadata, flagging outliers, calculating time series characteristics and detecting duplicate observations from
sources with a spatial overlap. The final dataset extends the spatial and temporal coverage of previously available water quality
data and contains 42 parameters and over 17 million measurements around the globe covering the 1898-2020 time period.
Metadata in the form of statistical tables, maps and figures are provided along with observation time series.

The GRQA dataset, supplementary metadata and figures are available for download on the DataCite and OpenAire enabled
Zenodo repository https://doi.org/10.5281/zenodo.5097436 (Virro et al., 2021).

1 Introduction

Human-driven loads of nutrients to aquatic ecosystems have become the main driver of eutrophication in waterways and coastal
zones (Desmit et al., 2018; Sinha et al., 2019). Agricultural production is already one of the major forces behind environmental
degradation (Foley et al., 2011), and population growth is increasing that pressure (Mueller et al., 2012). The use of nitrogen
(N) and phosphorus (P) fertilizers to increase agricultural productivity is predicted to increase threefold by 2050 unless more
efficient fertilizer use can be implemented (Tilman et al., 2001). At the same time, it has been estimated that "globally, over
3 billion people are at risk of disease because the water quality of their water source is unknown, due to a lack of data" (UN-
Water, 2021). In order to achieve the UN SDG 6, we need better understanding of our water resources and water quality.

Monitoring and modeling the hydrochemical properties of rivers is essential for understanding and mitigating water quality
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deterioration due to agricultural and industrial non-point source pollution (Krysanova et al., 1998; Leon et al., 2001; Wu and
Chen, 2013). Modeling of different water quality indicators such as nutrients (Caraco and Cole, 1999; He et al., 2011), carbon
compounds (Evans et al., 2005; Hope et al., 1994), sediments (Choubin et al., 2018; Ouyang et al., 2018) and oxygen (Radwan
et al., 2003; Singh et al., 2009) gives valuable understanding of hydrochemical cycles and enables to estimate the effect of
human influence on them.

Traditional approaches to water quality modeling consist of applying bottom-up, physically based models on the catchment
level (Wellen et al., 2015). Calibration and validation data in the form of water quality observations used when developing the
model and verifying its performance is usually gathered through in sifu observations and, more recently, automated sensor net-
works. Although airborne remote sensing based data acquisition methods have been successfully used to supplement field data
for lakes (Chen and Quan, 2011; Toming et al., 2016), applying those methods is only viable in the case of rivers with a large
enough surface area (Olmanson et al., 2013). Therefore, improving the river water quality data spatial and temporal coverage
with remote sensing is limited. Significant progress has been made in improving the technical capabilities and lowering the
installation and maintenance costs of the field sensors, but the spatial and temporal coverage of observation sites remains to be
an issue (Pellerin et al., 2016).

In order to improve the spatial coverage of water quality and hydrological data, different solutions have been used in pre-
dictive hydrological mapping. Until recently, a common approach for predicting water quality and hydrological phenomena in
ungauged catchments has been the application of already existing process-based models to catchments with similar character-
istics (Hrachowitz et al., 2013; Stromqvist et al., 2012; Wood et al., 2011). These physical models usually require extensive
calibration along with location-specific knowledge, which limits the wider applicability and spatial upscaling that can be done
(Abbaspour et al., 2015; McMillan et al., 2012).

Recently, advances in implementing machine learning (ML) methods in hydrology have given rise to a new, data-driven
approach to hydrological modeling (Mount et al., 2016). Comparison of physically based and ML approaches has shown that
ML methods can achieve a similar accuracy to the physically based ones and outperform them when describing nonlinear
relationships (Chau, 2006; Ouali et al., 2017; Papacharalampous et al., 2019). The recent advent of so-called physics-guided
ML, which entails combining process-based models with ML methods is likely to become more applicable in the near future
as well (Kratzert et al., 2019; Shen et al., 2018; Marzadri et al., 2021).

Nevertheless, a major problem related to large-scale predictive hydrological modeling has been the lack of available obser-
vation data with a good spatiotemporal coverage (Bierkens, 2015). This has affected the reproducibility of previous studies
and the potential improvement of existing models (Bloschl et al., 2019; Meals et al., 2010; Stagge et al., 2019). In addition
to the observation data itself, insufficient or poor quality metadata has also discouraged researchers to integrate the already
available datasets. Here, ambiguities in supplementary metadata such as parameter names, units and methods of measurement
has limited the use of open data for large-scale water quality modeling purposes (Archfield et al., 2015; Hutton et al., 2016;
Sprague et al., 2017). Therefore, improving both the availability and quality of open water quality data would increase the
potential to implement predictive modeling on a global scale. Global ML models have been already successfully used for

discharge modeling (Beck et al., 2015; Gudmundsson and Seneviratne, 2015) and recent years have seen the publication of
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global discharge datasets (Do et al., 2018; Harrigan et al., 2020). The publication of global and continental datasets (Hartmann
et al., 2014; Read et al., 2017) could make ML methods applicable for large-scale water quality modeling as well (Shen et al.,
2020). However, issues related to a lack of training and validation data due to general data scarcity affects model accuracy and,
therefore, limits the further adoption of ML for global water quality predictions (Chen et al., 2020).

We aim to address the aforementioned issues by presenting the novel Global River Water Quality Archive (GRQA) by inte-
grating and harmonizing five different global and regional datasets. The resulting dataset has combined observation data for 42
different forms of some of the most important water quality parameters relevant for nutrients (e.g. water temperature, oxygen,
phosphorus, nitrogen and carbon compounds). Supplementary metadata and statistics are provided with the observation time
series to improve the usability of the dataset. An extensive data catalogue with maps showing the spatiotemporal coverage
and graphs describing the distribution of all 42 parameters as supplementary material of the study (see Supplement). We re-
port on developing a harmonized schema and reproducible workflow that can be adapted to integrate and harmonize further
data sources. In addition, we provide recommendations for improving multi-source water quality data compilation, especially
focusing on the metadata quality and adhering to the FAIR Data Principles (Wilkinson et al., 2016). We conclude our study
with a call for action to extend this dataset and hope that the provided reproducible method of data integration and metadata

provenance shall lead as an example.

2 Data

A total of five data sources were used to compile the GRQA with two being global, one regional, and two national level (Table
1). All datasets with the exception of GEMSTAT are publicly available to download online as CSV or Excel file packages.
GEMSTAT data can be requested via email. The number of available observation sites was highly dependent on the source
with the Water Quality Portal (WQP) maintained by the United States Geological Survey (USGS) having the most sites. Files
used during the creation of GRQA are listed in Table 2.

2.1 CESI

The first dataset included in GRQA originated from the Canadian Environmental Sustainability Indicators program (CESI)
operated by Environment and Climate Change Canada (ECCC), which is a Canadian governmental department responsible for
coordinating environmental policies and programs. CESI consists of water quality measurements collected by federal, provin-
cial and territorial monitoring programs from Canadian rivers from the 2002-2018 time period (Environment and Climate
Change Canada, 2020). CESI data is mainly focused on heavy metals, so out of the 42 of parameters included in GRQA only
eight were available in CESI (Table 1). It is the smallest of the five source datasets with site count ranging from two to 77 per

parameter. Mean time series length per site is approximately 13 years and the average number of observations per site is 145.
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Table 1. Source datasets used for compiling GRQA with their total number of observations, parameters and timeframe length in GRQA. All

datasets were retrieved on November 16, 2020.

Dataset Name Data provider Observations  Timeframe Parameters Site count Mean time Mean
(source/ range series length observation
GRQA) per site count per site
n nin n years n
CESI Water quality in  Environment 30,457 2002-2018 8/42 2-77 12.9 145
Canadian rivers Canada
GEMSTAT Global ~ Fresh-  International 2,094,598 1950-2020 32/42 7-4,274 9.2 71
water Quality  Centre for Water
Database Resources  and
Global Change
GLORICH GLObal  RlIver Institute of 3,231,797 1942-2011 26/42 4-9,728 4.1 41
Chemistry Geology of the
database University of
Hamburg
WATERBASE  Waterbase - Wa-  European Envi- 306,332 2008-2018 15/42 4-1,976 1.4 19
ter Quality ronment Agency
WQP USGS Water  Environmental 8,689,335 1898-2020 37/42 1-59,000 3.4 25
Quality Portal Protection
Agency

2.2 GEMSTAT

The Global Freshwater Quality Database GEMStat (Férber et al., 2018) is hosted by the International Centre for Water Re-
sources and Global Change (ICWRGC) and provides inland water quality data within the framework of the GEMS/Water
Programme of the United Nations Environment Programme (UNEP). GEMStat contains over 7 million samples from approx-
imately 5,700 sites in 75 countries. The data was obtained through a custom request to their data portal (International Centre
for Water Resources and Global Change, 2020).

Approximately 500 water quality parameters were available in the GEMSTAT database, out of which 32 were used when
compiling GRQA (Table 1). Observations cover the period 1950-2020 and mean observation count per parameter is approx-
imately 41. Mean time series length per site is nine years. Site count per parameter ranges from less than ten (dissolved and

total carbon) to 4,274 (total phosphorus).
2.3 GLORICH

The GLObal RIver CHemistry (GLORICH) database (Hartmann et al., 2014) is a collection of hydrochemical data from more
than 1.27 million observations and more than 18,000 sampling locations across the globe. The samples originate from various

environmental monitoring programs and scientific literature.
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file names were assigned during the process.

Table 2. Source dataset files used for compiling GRQA. WQP sites and observations were downloaded separately for each parameter and

File name Size (MB) Rows Description Sheet name Source
wqi-federal-raw-data-2020- 171.5 314,867 Observation data CESI
ige-donnees-brutes-fed.csv

data_request.xls 2.4 5,419 Site data Station_Metadata GEMSTAT
data_request.xls 24 30 Parameter data Parameter_Metadata GEMSTAT
data_request.xls 24 311 Method data Methods_Metadata GEMSTAT
pH.csv 21.9 372,211 Observation data GEMSTAT
Carbon.csv 19.2 337,928 Observation data GEMSTAT
Nitrogen.csv 65.1 1,052,823  Observation data GEMSTAT
Phosphorus.csv 243 386,113 Observation data GEMSTAT
Oxygen_Demand.csv 20.1 331,617 Observation data GEMSTAT
Solids.csv 11.8 201,628 Observation data GEMSTAT
Water_Temperature.csv 239 370,335 Observation data GEMSTAT
Oxygen.csv 30.6 488,749 Observation data GEMSTAT
Sampling_Locations_v1.shp 0.4 15,553 Site point data GLORICH
sampling_locations.csv 1.6 18,897 Site name data GLORICH
catchment_properties.csv 10.2 15,514 Catchment data GLORICH
hydrochemistry.csv 273.3 1,274,102  Observation data GLORICH
Waterbase_v2019_1_S_WISE6_ 15.1 62,288 Site data WATERBASE
SpatialObject_DerivedData.csv

ObservedProperty.csv 0.2 888 Observation data WATERBASE
Waterbase_v2019_1_T_WISE6_ 10019.2 39,121,790  Observation data WATERBASE
DisaggregatedData.csv

WQP_*_sites.csv 2543 9,467,369  Site data WQP
WQP_*_obs.csv 2749.8 10,088,212  Observation data WQP
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Out of 47 water quality parameters available in the raw data, 26 were chosen to be included in the GRQA (Table 1). The
samples cover the time period of 1942-2011, but the length of the time series is dependent on the parameter. Mean time
series length per site is less than a decade for all parameters. The number of available sites per parameter ranges from just
four (particulate organic nitrogen) to 9,728 (dissolved inorganic phosphorous). The dataset can be downloaded at Pangaea

(Hartmann et al., 2019).
2.4 WATERBASE

Waterbase is the generic name given to the European Environment Agency’s (EEA) databases on the status and quality of
Europe’s rivers, lakes, groundwater bodies and transitional, coastal and marine waters (European Environment Agency, 2020).
The database is compiled from data sent by the national European water agencies involved in the Water Framework Directive
(WFD).

Over 600 water quality parameters are included in the full dataset out of which 15 matched those of GRQA (Table 1). Out
of all source datasets, WATERBASE had the shortest time series with observations covering only the period 2008-2018. The
maximum site count per parameter is 1,976, while there were on average only around 19 observations per site.

In May 2020, the ICWRGC announced that parts of WATERBASE had been also added to the GEMSTAT database (Inter-
national Centre for Water Resources and Global Change, 2020). However, only sites with more than three years of data were
included in this update. As mean time series length per site was only 1.4 years in WATERBASE, a significant number of sites
were left out, which is why we decided to include WATERBASE separately in GRQA. Although it is likely that there were
many observations, which appeared both in GEMSTAT and WATERBASE, the duplication detection procedure discussed in

section 3.3 should have identified them.
2.5 WQP

USGS, the U.S. Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council developed the
Water Quality Portal (WQP), which is so far the largest standardised water quality database (Read et al., 2017; United States
Geological Survey, 2020). Although the portal also includes data from a few other countries (e.g. Mexico, Pacific islands)
associated with the National Water Information System (NWIS) network, only a very limited amount of non-US samples were
available. For this reason, only US national data was selected to be added to GRQA.

Due to the size of the source dataset, the full set of parameters could not be downloaded at once. Therefore, a scripted
download procedure was used to retrieve water quality samples and their corresponding sampling sites separately per parameter.
In the case of temperature, the data had to be further divided by state. Unlike other source datasets used in the study, the WQP
often had multiple versions of the same parameter available under separate codes, in case the parameter had been measured in
different units, using different methods, etc. The final count of parameters used for GRQA was 37 (Table 1).

The longest time series of source datasets is present in the WQP with some dating back to 1898. However, the average time

series length per station is just over three years. Like GEMSTAT, WQP is still being updated, so most parameters have their
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latest observations from 2020. Site count ranges from a single station (dissolved inorganic nitrogen) to 59,000 per parameter

(total suspended solids).

3 Methodology

The GRQA compilation workflow was divided into three parts: (1) The pre-processing stage involved converting observation
data from the five sources into a common format and harmonizing the corresponding metadata; (2) Pre-processed data were
merged by parameter, after which outliers and time series characteristics were detected; (3) Duplicate detection was conducted
in the last processing step. The Pandas (McKinney et al., 2010), GeoPandas (Jordahl et al., 2020) and NumPy (Harris et al.,

2020) Python libraries were used throughout all data processing stages.
3.1 Source data preprocessing

Parameter selection. The parameters included in GRQA cover the four groups of water quality indicators outlined in the
introduction: nutrients, carbon, sediments and oxygen (Table 7). GLORICH was used as a reference for parameter selection
due to being one of the two global source datasets and having the least amount of discrepancies within source data, i.e. each
GLORICH parameter had a single matching code, unit, etc.

Parameter harmonization. Preliminary analysis showed that there were ambiguities in the parameter names, codes, units and
chemical forms in the different source datasets, which has been identified as a recurring issue when dealing with multi-source
water quality data (McMillan et al., 2012; Sprague et al., 2017). For this reason, lookup tables were created for each of the
source datasets (*_code_map.csv) to use as guides in the following processing stages (Table 3). The purpose of the schemas
was to match parameter codes and other metadata with the versions used later in the GRQA. For most parameters, this could
be done based on the literal names, remarks and descriptions in the metadata. Relevant literature and online resources were
consulted for more ambiguous scenarios. One such example was total suspended solids (TSS), which can also be reported as
suspended particulate matter (SPM) (Neukermans et al., 2012). Where a reliable decision could not be made (e.g. biological
oxygen demand as BOD vs BODS) the parameters were kept separate.

Unit conversion. Units of measurement were harmonized along with other metadata. All parameters except temperature (°C),
pH and dissolved oxygen (%) were converted into mg/l, which was the most prevalent unit in source data. Where units were
converted, observation values had to be changed as well. This was done by calculating conversion constants, which were based
on both the magnitude of the source unit (e.g. g/l vs mg/l) and the reported chemical form of the parameter. The latter affected
nitrite (NO,), nitrate (NO3) and ammonium (NHy) the most, as these parameters had a variety of forms in the source data that
were all converted into corresponding nitrogen versions (NO,-N, NO3-N & NHy4-N). In some cases, the chemical form could be
identified from the source unit (e.g. mg{N}/L or mg{NO; }/L), while others were detected by examining parameter names and
method descriptions (e.g. "Nitrate, reported as nitrogen"). Where possible, additional information about these missing forms
was collected from proxy sources, such as other similar datasets (e.g. Borker et al. (2020) in the case of GLORICH). These

references have been included in the form_ref column in corresponding lookup tables (*_code_map.csv). For other nitrogen
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Table 3. Summary table of lookup table attributes.

Attribute name Description Data type
source_param_code Parameter code in source dataset string
source_param_code_meta  Additional code specification used for CESI string
param_code Parameter code in GRQA string
source_param_name Parameter name in source dataset string
param_name Parameter name in GRQA string
source_param_form Parameter chemical form in source dataset string
param_form Parameter chemical form in GRQA string
form_ref Parameter form reference string
source_unit Parameter unit in source dataset string
divisor Divisor applied to the observation value float
multiplier Multiplier applied to the observation value float

conversion_constant Unit conversion constant calculated based on divisor and multi-  float
plier and applied to the observation value
unit Parameter unit in GRQA string

source Source dataset name string

(TKN, TN, etc.), all carbon (DOC, TC, etc.) and phosphorus (TP, TIP, etc.) parameters, the chemical were assumed to be either
N, C or P even if not reported, because there is only one common element in the molecule (Sprague et al., 2017). GLORICH
was the only source dataset, which also needed conversion constants for carbon and phosphorus parameters as they had been
reported as umol/l. All WQP units matched those intended to be used for GRQA, so no conversion was needed. The formula
for conversion constants was

ry = n
where z; and x5 are observation values before and after conversion, M is the corresponding molar mass and n the magnitude
difference between source and converted unit. Some examples of unit conversion are given in Table 4. The full list of all unit
conversion procedures is given in the appendix (Table Al).

Site ID duplication. There were some instances of duplicated site IDs in GLORICH (2 site pairs) and WATERBASE (101
pairs) source data, which meant that joining observations with sites would have created duplicate time series as well. Site ID
duplicates could indicate that were have been small shifts in the site location or that the site had been closed and reinstated
at some point. If the distance between the duplicate pairs was less than a kilometer, only the first instance was retained in the
output table. When distance was greater than a kilometer both instances were removed as metadata that could be used to make

a decision (e.g. when the site first opened) was not available. Finally, all duplicate pairs were exported as separate files (e.g.

GLORICH_dup_sites).
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Table 4. Examples of unit conversion from the chemical form in source data to the GRQA version. 1 and x2 are observation values before

and after conversion, respectively.

Parameter code Source Form  Source form Unit  Source unit 1 My, n My, T2

TAN CESI N NH3 mg/l mg/l 0.106 14.007 1 17.031  0.087
NO2N GEMSTAT N NO2 mg/l  mg/lNO2 0.024 14.007 1 46.005  0.007
NO3N GLORICH N NO3 mg/l pmol/l 210.268 14.007 1000 62.004 0.048
NH4N WATERBASE N NH4 mg/l mg/l 0.063 14.007 1 18.039  0.049

Coordinate conversion. CESI and WQP originally had the site coordinates in the North American Datum of 1983 (NAD83).
The Pyproj (Snow et al., 2020) Python library was used for converting the North American site coordinates into World Geodetic
System 1984 (WGS84) which was the coordinate system chosen for the GRQA.

Observation data filtering. Preliminary cleaning included the removal of observations of negative, missing or low quality
values. In this case, low quality refers to measurements that were flagged as either coming from unreliable sources or having any
kind of literal quality assessment flag in the source data (e.g. "poor quality"). Additionally, observations marked as below (<)
or above (>) detection limit in source data where flagged as such in GRQA as well (column detection_limit_flag). Observations
originating from unreliable sources or otherwise suspect (e.g. unvalidated) were omitted. Three source datasets (GEMSTAT,
GLORICH & WATERBASE) had this type of a quality evaluation included in the metadata. Observations from sites marked
as "Not for publication" due to national legislation in WATERBASE were also not included in GRQA.

Filtration information. Where possible, supplementary information about whether a sample was filtered or unfiltered was
retained as filtration can affect the sample values (Sprague et al., 2017). This information was usually available in a separate
metadata column. Both "filtered" and "dissolved" were used depending on the source. GRQA includes the dissolved versions of
certain parameters (total nitrogen, total phosphorus and Kjeldahl nitrogen), which originally did not exist as separate parameters
in WATERBASE and WQP. In those cases, the filtered/dissolved observations of TN, TP and TKN in the two datasets were
treated as the corresponding dissolved forms (TDN, TDP, DKN) in GRQA.

Time and date processing. Observations could have invalid timestamps due to formatting or entry errors, so a validity check
was included in the pre-processing scripts. Dates were tested against the presumed source format and observations with incor-
rectly formatted or implausible dates were removed. The source datasets used different date formats, which were all converted
into a common one (% Y-%m-%d). Were possible, observation time was extracted as well. A default value (00:00:00) was used
to fill missing information. Time zone information was only possible to extract from the WQP. Other sources lacked time zone
information, so it was not possible to determine whether the recorded timestamp was in local or Coordinated Universal Time
(UTC) and the time given is up to the user to interpret.

Other metadata. If available, metadata about the upstream basin area, its unit and the name of the greater drainage region
of the site was included in GRQA. Additional information about methods used or other available observation remarks in the
source data were also retained. The metadata depended on the source and was available only sporadically and could not be

concatenated in a reasonable way between the datasets, so the information is given in the GRQA for each source separately in
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the format of source_meta_sourcecolumnname (e.g. GEMSTAT _meta_Analysis Method Code). Here, the source column names

were kept as they appear in raw data, e.g. spaces were not replaced with underscores.
3.2 Outlier treatment, time series availability and continuity

Time series availability and continuity. The analysis of the statistics generated during pre-processing showed that most of the
time series extracted from the source datasets are very discontinuous. For example, the mean time series length per site for
total phosphorus (TP) in GEMSTAT was 6.6 years and 4.9 years in GLORICH, while the mean observation count per site was
only 57.7 and 52.4, respectively. This means that many sites have observations at a monthly time step at best. Similar findings
have been previously reported about WQP time series (Read et al., 2017; Shen et al., 2020).

In order to illustrate the suspected temporal fragmentation in observation data, monthly availability and monthly continuity
statistics appropriated from the strategy used by Crochemore et al. (2019) were calculated for each site in each of the merged
parameter time series. Both characteristics can give insight to the granularity of the time series and can affect the applicability
of different modeling methods. Monthly availability of observation data was defined as the ratio between number of months
with at least one observation and the total number of months a particular site had any observations. A ratio of 1.0 would mean
that there was at least one observation in every month of the time series. Monthly continuity was calculated as the ratio between
the longest period of consecutive months with any measurements and the length of time series in months. Here, a ratio of 1.0
would mean that there were no months without observations and the time series is continuous on a monthly level. The resulting
characteristics were added as columns in the output files.

Outlier flagging. Water quality modeling often involves dealing with numerous outliers and uncertainties in observation
data, particularly when integrating time series from multiple sources (McMillan et al., 2012; Sprague et al., 2017). Due to the
differences in environmental conditions and water regimes, the potential range of observation values can vary a lot between
catchments. Although extreme outliers caused by faulty equipment or data entry errors can sometimes be detectable by ex-
amining distribution plots, it is often difficult to decide whether an outlier is an error or not. For example, sudden spikes in
observation time series can be caused by events such as accidental fertilizer spills to the waterway or a cow getting entrapped
in a in-stream wetland (Hughes et al., 2016), which can have short-term effects on water quality and, therefore, should not be
removed from data. However, flagging outliers can still help researchers troubleshoot potential issues at the modeling stage.

For this reason, no observations were omitted from the time series and two flags associated with outliers were added to the
output tables instead. First flag (obs_iqr_outlier) shows whether an observation was deemed to be an outlier by the interquartile
range (/QR) test. IQR is defined as the difference between the third (Q3) and first (1) quartile. All values greater than
@3+ 1.5 x IQR or less than Q1 — 1.5 x IQR are considered outliers. The second flag (obs_percentile) was an indicator (0.0-
1.0) showing which percentile a particular observation belongs to. Histograms along with box and whisker plots were used to
visually show the range and distribution of the parameter observations. The plots were produced for every parameter and are

included in the GRQA data repository.
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3.3 Duplicate observation detection

The global datasets (GEMSTAT and GLORICH) used in this study had at least partial spatial overlap with the other three
sources, which means that merging could have created duplicate sites in the GRQA. Contrary to site ID duplicates within the
same dataset discussed in section 3.1, site duplicates from different sources would likely also have different IDs. Therefore,
rather than comparing ID information, the duplicates had to be identified by spatial proximity and time series similarity. Similar
to procedures described in section 3.2, duplicate detection was done separately for each parameter.

First stage of duplicate detection was clustering sites based on their geographic location. The DBSCAN (density-based
spatial clustering of applications with noise) algorithm (Xu et al., 1998) from the Scikit-learn Python library (Pedregosa et al.,
2011) was used to create clusters of sites within a one kilometer radius of each other, which is the approximate accuracy of
around two decimal points in latitude/longitude degrees. There does not seem to be a consensus for assigning this search radius
for duplicate detection and the assessment of spatial proximity depends on the subjective threshold set by authors. For example,
the GSIM streamflow dataset (Do et al., 2018) used a radius of 5 km for selecting potential duplicate gauging stations. The
1 km radius was chosen to avoid having too many false positives (e.g. in the case of small headwater catchments) to evaluate
in the second stage of deduplication (RMSE calculation). A major advantage of DBSCAN compared to similar density-based
clustering methods is that the algorithm can be run without determining a priori the number of output clusters (Birant and Kut,
2007). In addition, DBSCAN has shown to be more applicable than others when dealing with large-scale datasets (Khan et al.,
2014; Parimala et al., 2011).

Although there are time series similarity detection methods that can be applied to irregular time series and handle some
degree of discontinuity, the focus of those methods is on misalignment of the time of observations rather than differences in
the pattern of time series gaps (Berndt and Clifford, 1994). Therefore, it is likely that GRQA time series are too fragmented for
these advanced methods to yield reliable results. A conservative approach based on root-mean-square error (RMSE) was chosen
here instead. Output site clusters were converted into unique site pairs, so that all sites within a cluster could be compared to
one another (e.g. a cluster of four would yield six unique ID pairs). Site ID pairs were then used to extract corresponding time
series from observation data. Only observations made on matching dates were used for calculating the RMSE and only pairs
where RMSE was equal to zero were considered as potential duplicates. Finally, the duplicates were exported into separate
CSV files (e.g. TP_dup_obs.csv) along with relevant metadata to help the user decide whether the sites can be considered
duplicate (Table 5). A high number of matching dates with the same observation value (column date_match_count) would

indicate a higher likelihood of duplication.

4 Results

GRQA data model and descriptive overview. The GRQA dataset consists of observation time series for 42 different water
quality parameters provided in tabular form as CSV files. Each of the observation files is accompanied by corresponding
metadata files (tables and images) describing the spatial and temporal characteristics of the time series.

GROQA is made up of the following files (Fig. 1):
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Table 5. Summary table of duplicate observation file attributes.

Attribute name Description Data type
obs_id_1 Observation ID of first site string
lat_wgs84_1 Latitude of first site float
lon_wgs84 1 Longitude of first site float
site_id_1 First site ID string
site_name_1 First site name string
obs_value_1 First site observation value float
source_1 First site source string
site_ts_availability_1  First site availability float
site_ts_continuity_1 First site continuity float
obs_date Observation date string
obs_id_2 Observation ID of second site string
lat_wgs84_2 Latitude of second site float
lon_wgs84_2 Longitude of second site float
site_id_2 Second site ID string
site_name_2 Second site name string
obs_value_2 Second site observation value float
source_2 Second site source string
site_ts_availability_2  Second site availability float
site_ts_continuity_2 Second site continuity float
date_match_count Number of matching dates with the same observation value  int
param_code Parameter code string

— A data catalog (GRQA_data_catalog.pdf) with maps showing the spatiotemporal coverage and graphs describing the
275 distribution of all 42 parameters along with a README file describing the dataset structure

— Water quality observation time series files (named paramcode_GRQA.csv)

— GRQA metadata (folder meta) containing descriptive statistics (GRQA_param_stats.csv) and duplicate observation files
(source_dup_obs.csv), where relevant
— The set of overview figures (folder figures) contains

280 Histograms (paramcode_GRQA _hist.png) and box plots (paramcode_ GRQA_box.png) showing the distribution of

observation values by source dataset
Maps showing the spatial distribution of the observations by source (paramcode_ GRQA_spatial_dist.png)

Maps showing the median observation values of sites (paramcode_ GRQA_median.png)
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README.txt

Water quality observation files (42)
BOD_GRQA.csv

TSS_GRQA.csv

source_data
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meta

Raw source files

GRQA_param_codes.txt
GRQA_param_stats.csv

Duplicate observations
DO_GRQA_dup_obs.csv

TSS_GRQ/—\._.aup_obs.csv

meta

source_units.csv
source_code_map.csv
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paramcode_source.csv
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meta

source_file_info.csv
source_missing_values.csv
source_processed_stats.csv

paramcode_GRQA _hist.png source_raw_stats.csv
paramcode_GRQA_median.png
paramcode_GRQA _spatial_dist.png
paramcode_GRQA _temporal_hist.png

Figure 1. Diagram showing the folder structure and contents of the GRQA dataset.
Maps showing the monthly availability (paramcode_ GRQA_availability.png) and continuity
285 (paramcode_GRQA _continuity.png) of the observations
The five source datasets are also included in the GRQA data package. Folder source_data includes

— The raw folder with downloaded source files and harmonization schemas used in the preprocessing stage

(source_code_map.csv) for each source dataset along with the original units (source_units.csv)

— The sourcename/processed folder contains summary statistics of observation values by parameter for each source dataset
290 before (paramcode_source_raw_stats.csv) and after (paramcode_source_processed_stats.csv) processing along with in-

formation about the number of missing values (source_missing_values.csv) and source file size (source_file_info.csv)

— Where relevant, processed/meta also includes duplicate site ID files (source_dup_sites.csv)
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Table 6. Summary table of output water quality observation file attributes.

Attribute name Description Data type
obs_id Unique observation ID generated by hashing string
lat_wgs84 Observation site latitude in WGS84 float
lon_wgs84 Observation site longitude in WGS84 float
obs_date Observation date in the % Y-%m-%d format string
obs_time Observation time in the %H:%M:%S format string
obs_time_zone Observation time zone code string
site_id Observation site ID string
site_name Observation site name string
site_country Observation site country string
upstream_basin_area Site upstream basin area string
upstream_basin_area_unit  Site upstream basin area unit string
drainage_region_name Drainage region where site is located in string
param_code Parameter code in GRQA string
source_param_code Parameter code in source dataset string
param_name Parameter name in GRQA string
source_param_name Parameter name in source dataset string
obs_value Observation value in GRQA float
source_obs_value Observation value in source dataset float
detection_limit_flag Whether a value was flagged as below (<) or above (>) detection limit in source data string
param_form Parameter chemical form in GRQA string
source_param_form Parameter chemical form in source dataset string
unit Parameter unit in GRQA string
source_unit Parameter unit in source dataset string
filtration Sample filtration information string
source Source dataset name string
obs_percentile Percentile of the observation value float
obs_iqr_outlier Flag to mark whether observation value is an outlier according to the string
interquartile range test

site_ts_availability Monthly availability of the time series per site float
site_ts_continuity Monthly continuity of the time series per site float
*_meta_* Other observation metadata with a reference to the corresponding source column string

(e.g., GEMSTAT_meta_Method Description)
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Table 7. GRQA water quality parameter statistics.

Parameter Parameter name Sites ~ Observations Median value  Unit  Start year End year Outlier %
code
BOD Biochemical Oxygen Demand 2,945 163,531 2.627 mg/1 1974 2019 13.4
BODS Biochemical Oxygen Demand 13,283 278,629 5.875 mg/l 1905 2020 8.3
(BODS)
BOD7 Biochemical Oxygen Demand 386 5,282 2.200 mg/1 2013 2018 59
(BOD7)
COD Chemical Oxygen Demand 2,769 126,372 22.362 mg/1 1974 2019 10.8
CODCr  Chemical Oxygen Demand (Cr) 671 7,350 24.900 mg/l 2013 2018 34
CODMn Chemical Oxygen Demand 287 2,310 4.600 mg/1 2013 2018 2.3
(Mn)
DC Total Dissolved Carbon 7 9 4.800 mg/1 2000 2001 0
DIC Dissolved Inorganic Carbon 969 30,633 12.266 mg/1 1968 2020 3.5
DIN Dissolved Inorganic Nitrogen 119 7,822 4.200 mg/1 1998 2019 2.6
DIP Dissolved Inorganic Phospho- 9,931 612,922 0.040 mg/1 1942 2017 133
rus
DKN Dissolved Kjeldahl Nitrogen 2,820 80,732 0.347 mg/l 1973 2020 6.5
DO Dissolved Oxygen 48,072 1,487,724 8.835 mg/l 1898 2020 22
DOC Dissolved Organic Carbon 14,799 413,328 2.804 mg/1 1968 2020 6.8
DON Dissolved Organic Nitrogen 10,811 163,630 0.371 mg/1 1951 2020 8.1
DOP Dissolved Organic Phosphorus 142 899 0.010 mg/1 1971 2003 8.7
DOSAT  Dissolved Oxygen Saturation 34,949 953,274 92.164 %o 1898 2020 8.7
NH4N Ammonium Nitrogen 11,372 651,850 0.027 mg/l 1942 2018 15.1
NO2N  Nitrite Nitrogen 30,902 720,944 0.010 mg/l 1900 2020 12.7
NO3N  Nitrate Nitrogen 45,422 1,229,584 0.468 mg/l 1900 2020 11.1
PC Particulate Carbon 2,898 51,049 0.908 mg/l 1995 2020 11
pH pH 27,577 1,372,794 6.886 pH 1900 2020 14.1
PIC Particulate Inorganic Carbon 1,095 9,196 0.060 mg/1 1974 2020 14
PN Particulate Nitrogen 2,996 56,125 0.129 mg/1 1981 2020 9.5
POC Particulate Organic Carbon 22,910 615,941 1.617 mg/1 1900 2020 9.7
PON Particulate Organic Nitrogen 28 1,111 0.120 mg/1 1989 2019 14
POP Particulate Organic Phosphorus 12 13 0.020 mg/1 1999 2000 7.7
TAN Total Ammonia Nitrogen 27,980 717,776 0.065 mg/1 1900 2020 13.3
TC Total Carbon 1,181 12,338 27.000 mg/l 1968 2007 33
TDN Total Dissolved Nitrogen 968 62,980 0.310 mg/1 1972 2020 11.2
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Table 7. Continued.

Parameter Parameter name Sites ~ Observations Median value  Unit  Start year End year Outlier %
code

TDP Total Dissolved Phosphorus 3,325 169,297 0.031 mg/1 1965 2020 11.3
TEMP Water Temperature 26,860 1,113,471 18.968 Deg C 1912 2020 9.3
TIC Total Inorganic Carbon 1,984 23,024 11.833 mg/l 1968 2019 3.8
TIN Total Inorganic Nitrogen 78 12,951 3.649 mg/l 1992 2020 0.8
TIP Total Inorganic Phosphorus 1,328 42,495 0.026 mg/1 1971 2018 13.8
TKN Total Kjeldahl Nitrogen 9,418 425,595 0.680 mg/l 1962 2020 8.1
TN Total Nitrogen 18,507 575,887 1.329 mg/l 1958 2020 11.9
TOC Total Organic Carbon 18,032 420,029 4.526 mg/l 1958 2020 72
TON Total Organic Nitrogen 22,799 592,654 0.622 mg/1 1900 2020 8.6
TOP Total Organic Phosphorus 294 1,811 0.030 mg/l 1971 2020 11.9
TP Total Phosphorus 44,990 1,914,538 0.105 mg/l 1900 2020 11.8
TPP Total Particulate Phosphorus 77 5,836 0.021 mg/1 1978 2019 10.5
TSS Total Suspended Solids 68,592 1,958,429 9.785 mg/l 1898 2020 20.5

The structure of GRQA observation files is given in Table 6. In addition to the attributes outlined in section 3, the extracted
metadata also includes information about the upstream basin and drainage region of the observation site. It has to be noted
that the availability of this information was dependent on both the source (i.e. not present in CESI and WATERBASE) and the
observation site itself and is therefore available only sporadically in GRQA as well (Table 6). Parameter codes, names, forms
and observation values in GRQA are given as they appeared in source data alongside their harmonized and processed GRQA
versions, so that end users could assess the validity of conversion and make corrections if needed.

Statistical overview of the parameters included in GRQA is shown in Table 7. The number of sites per parameter ranges
from only 7 (DC) up to 68,592 (TSS). Parameters having more sites generally also have more observations. Parameters with a
small number of sites and observations were usually present in only one or two source datasets. For example, dissolved organic
phosphorus (DOP) only existed in WQP. Different versions of biochemical and chemical oxygen demand that could not be
harmonized based on source metadata were kept separate, although the median value for BOD and BODS5 ended up being
equal.

Spatial distribution of water quality observation sites depended on the parameter and is illustrated in Fig. 2 using dissolved
oxygen (DO), dissolved organic carbon (DOC), TP and TSS. These parameters were the largest in terms of number of sites
and observations in their corresponding groups (oxygen, carbon, nutrients and sediments). They are also used in the following

figures. Some observations that could be made when examining site maps were the following:
— Europe and North America are the best represented in the case of all parameters
— Coverage is also good in Australia, New Zealand, parts of East Asia and Brazil in the case of some of the key parameters

(e.g. TP, TN)
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Figure 2. Distribution of observation sites for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total
suspended solids (TSS).

— Rest of the world (Africa, most of Asia) only has sporadic coverage

The temporal distribution of the four parameters is given in Fig. 3. Similar to the spatial distribution, temporal coverage of
observations depended on both source data and parameter with WQP having the longest and WATERBASE the shortest time
series. Most of the data from GEMSTAT are from the past decade, while GLORICH has a more even observation distribution
throughout the time series.

Statistical characteristics of GRQA observation time series. As mentioned in the previous section, each of the observation
files was accompanied by a set of images and tables giving insight into the characteristics of the observation time series. The
structure of tabular summary statistics is shown in Table 8. These files contain some basic statistics (standard deviation, etc)
about observation values per parameter and source. In addition, information about the temporal characteristics of time series
(mean length per site, etc) is given as well as this can be important when assessing the suitability of the data for modeling

purposes.
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Figure 3. Temporal distribution of observations for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and
total suspended solids (TSS) for the period 1970-2020. Percentage of observations before the period shown on the plot is given for each
parameter. Only seven observations (1.69 x 10~°%) existed for DOC in the 1968—1970 period.
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Figure 4. Distribution of observation values for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total
suspended solids (TSS). Outliers determined by the IQR test (Table 7) are not shown on the plot.
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Table 8. Summary table of observation time series statistics file attributes.

Attribute name Description Data type
source_param_code Parameter code in source dataset string
param_code Parameter code in GRQA string
param_name Parameter name in source dataset string
source_param_form Parameter form in source dataset string
param_form Parameter form in GRQA string
source_unit Parameter unit in source dataset string
unit Parameter unit in GRQA string
count Total number of observations int
min Minimum observation value float
max Maximum observation value float
mean Mean observation value float
median Median observation value float
std Standard deviation of observation values float
min_year Time series start int
max_year Time series end int
ts_length Total time series length per parameter float
site_count Total number of sites per parameter int
mean_obs_count_per_site Mean observation count per site float
mean_ts_length_per_site ~ Mean time series length in years per site float

The applicability of water quality modeling is greatly affected by the distribution of observation values as a majority of
modeling methods require a near normal distribution. The skewness caused by extreme outliers is a common problem in
hydrological modeling. The observations often follow a lognormal distribution, which means that the data often needs to be
transformed and normalized in order to be usable (Helsel, 1987; Hirsch et al., 1982; Parmar and Bhardwaj, 2014). Similar
behavior was also examined in GRQA, where values of most parameters showed a strong positive skew. This can be seen in
histograms (Fig. 4) and box plots (Fig. Al). For illustrative purposes, values determined as outliers by the IQR test have been
omitted from the figures. In the case of parameters such as TP and TSS, the skewness remains even after outlier omission. This
is confirmed by the box plots, where the total range of the values greatly exceeds the median.

Availability (Fig. 5) and continuity (Fig. 6) plots were used to examine the temporal fragmentation of the time series. In
general, observations from national sources (CESI and WQP) exhibited slightly higher availability and continuity than others,
likely caused by more consistent data acquisition frameworks. No clear spatial pattern emerged from the analysis meaning
that differences in both indicators exist at the site level even within the same country. Due to how the metrics were calculated,

shorter time series outperformed longer ones. An example of this is TP in Brazil, where the examined high continuity correlated

20


Holger
Highlight

Holger
Highlight


DO DOC

TP TSS

e 0-20% e 20-40% ® 40-60% 60 - 80% 80 - 100%

Figure 5. Monthly availability for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total suspended solids
(TSS).

340 with very short mean time series length (less than a year). Parameters with very fragmented time series (e.g. TSS) had only a
limited number of sites where observations had been collected consistently throughout the whole time frame.

The GRQA also includes plots of median observation values, which were calculated over the whole time series for each site.

Seasonal fluctuations cannot be identified on this aggregation level, so the maps are meant to be only indicative. An example

of median plots can be seen in the appendix (Fig. A2).

345 5 Discussion
5.1 Limitations and considerations regarding the use of GRQA

Taking into account aforementioned issues encountered during the compilation of GRQA, certain limitations and potential

remaining errors have to be considered when using the dataset for water quality modeling.
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Figure 6. Monthly continuity for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total suspended solids
(TSS).

Potential errors in unit conversion. As described in section 3, several assumptions had to be made when creating harmoniza-
tion schemas about the chemical form of certain nitrogen parameters (NO,, NO3; and NHy4). However, if the assumption made
based on this limited ancillary information was incorrect then using the conversion would have been affected as well. For this
reason, the source observation values along with source units were retained and the users can retrace the conversion steps using
the harmonization schemas.

Skewness of observation values. The outlier treatment strategy used for GRQA involved only flagging the values based
on the IQR test, which means that the skewness illustrated in section 4 still remains. Although the described strong positive
skew existed also in source data, potential unit conversion errors could have exaggerated it. As shown by histograms, omitting
flagged outliers is not enough to eliminate the skewness in some cases (TP and TSS), so additional processing could be needed
to transform the data into a normal shape. Power transformation methods like the Box-Cox transformation (Box and Cox, 1964)

could be used to further minimize skewness. It is likely that some of the most extreme outliers are caused by data entry errors
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or equipment malfunction rather than events such as agricultural spills. For setting thresholds to determine whether a value is
illogical or not, more sophisticated outlier detection methods based on some general freshwater quality guidelines (Enderlein

et al., 1996) could perhaps be used to further filter the observation values.
5.2 Suggestions for improving multi-source water quality data compilation

Metadata quality. When merging datasets from different sources, most of the complications stemmed from inadequate metadata
of water quality observations, such as ambiguous parameter names and codes, and missing details on the chemical forms of
parameters. This information would be integral for harmonizing units and observation values. The terms used for indicating
the filtration status of samples are often dependent on the interpretation of the authors (total vs unfiltered, dissolved vs filtered),
which can affect results when merging (McMillan et al., 2012; Sprague et al., 2017). Annotation of suspect or incomplete
data is another aspect of good quality metadata (Gudivada et al., 2017). Internal quality control measures such as the ones in
GEMSTAT and WATERBASE would help the end user in the data cleaning stage and eliminate some of the outliers.

The following aspects should be considered to make multi-source data harmonization more efficient in the future:
— Parameter forms should be reported with the units

— The filtration status of the samples should be reported and the terms filtered/unfiltered should be preferred as opposed to

the more ambiguous dissolved/total

— Machine-readable quality flags as found in GEMSTAT (columns Value Flags and Data Quality) or WATERBASE

(columns resultObservationStatus, metadata_statusCode and metadata_observationStatus) should be added

Whether observations are daily or monthly at the source level should be clearly defined

Area units (m?, km?, etc) should be included, when the upstream catchment area of the site is reported

Other information about potential errors in the data (potential duplicates, typographical errors, etc)

When certain assumptions or decisions are made when harmonizing data from different sources, they should be reported

when the data is published

Spatial and temporal discontinuity. Although spatial coverage of water quality observations in GRQA exceeds that of the
existing global datasets (GEMSTAT and GLORICH), large areas of Africa and Asia are empty. A major reason might be a
lack of knowledge and funding to update and extend site networks, particularly in hard to reach areas. In addition, not all
governments adhere to an open data policy. Therefore, improving the spatial coverage of water quality data still relies mostly
on implementing additional measures to encourage countries to share it in accordance with open data principles.

The availability and continuity analysis showed that the GRQA time series are fragmented and significant gaps remain
in the data, which will negatively affect large-scale modeling performance. These gaps could be caused by both issues with

sensor maintenance or technical limitations under certain conditions (weather, etc) and inconsistencies in the data acquisition
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practices on the local level. Recently, ML based solutions for time series augmentation have been used to fill in gaps in historical
monitoring data (Gao et al., 2018; Ren et al., 2019). However, this kind of gap filling still requires enough good quality training
data in the existing time series fragments to be effective and can potentially only be of help when improving the temporal,
rather than spatial coverage.

Another option for improving continuity is using data from one time series to fill in gaps in another. For example, turbidity
has been successfully translated into TP and TSS content (Castrillo and Garcia, 2020; Jones et al., 2011). As turbidity data can
be acquired at a higher frequency than TP and TSS, the use of such surrogate parameters can be helpful in data scarce regions
for certain parameters.

General remarks. An important part in improving the spatiotemporal coverage of water quality is raising awareness about
the existing datasets (e.g. GEMSTAT), so that new institutions could join the contributor network and submit their own site
data. Continued growth of international collaboration will be vital in improving open global water quality data (Bloschl et al.,
2019; Tang et al., 2019). Most of the data collected locally is intended only for regional or national use. Thus, the data is not
compatible with those from other countries due to lack of common metadata management practices with problems discussed
above being a major bottleneck (Hutton et al., 2016; Sprague et al., 2017; Stagge et al., 2019). Providing those institutions
with an example workflow when designing water quality data pipelines, such as the schema recently proposed by Plana et al.
(2019), would help them develop their own data management strategy. The workflow used to compile GRQA along with the

issues raised in this study will hopefully also help to draw attention to this topic.

6 Conclusions

The GRQA dataset was created with the intention to improve the spatiotemporal coverage of previously available open water
quality data and provide an example workflow for multi-source data compilation that can be accustomed for other data sources
as well. The current version of GRQA is mainly focused on different forms of the main nutrients (N and P) and carbon
compounds, although GEMSTAT, WATERBASE and WQP also had many other types of parameters that are used as water
quality indicators (heavy metals, pesticides, etc). Other researchers are able to make additions and customize the dataset to
their needs for parameter-specific studies using the scripts published with GRQA.

Updates and additions by the hydrological community are encouraged to further develop GRQA. As it stands, GRQA is a
set of well structured CSV files rather than a queryable database. We intend to add a Jupyter Notebook example of loading
and processing the CSV files to the GRQA GitHub repository. We included an extensive data catalogue with graphs and maps
for temporal and spatial coverage of every variable as supplementary material. This should help potential users to get a better
overview of the data before downloading it. Converting the files into a database would also greatly improve data management
and make extending GRQA easier in the future. In the case of a relational database, the schema recommended by Plana et al.
(2019) could be followed. We also consider the addition of an online dashboard for data visualization and download, similar to
that of GEMSTAT or WQP. A versioning system along with a metadata validation strategy similar to Welty et al. (2020) could

be implemented to ensure metadata quality.
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Future work could also include the development of a dataset for catchment characteristics in order to better study how water
quality in rivers and streams is affected by land use changes in their catchments. The CAMELS dataset (Addor et al., 2017)
and its regional implementations (Chagas et al., 2020; Coxon et al., 2020) can be used as an example. In addition, interactions
between water quality and streamflow can be further studies by linking water quality observations to streamflow data from the

Global Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018).

Code and data availability. The GRQA dataset, supplementary metadata and figures are available for download on the DataCite and Ope-
nAire enabled Zenodo repository https://doi.org/10.5281/zenodo.5097436 (Virro et al., 2021).

The data processing scripts used for the compilation of GRQA are available on Zenodo https://doi.org/10.5281/zenodo.5082147 (Virro
and Kmoch, 2021).

Appendix A: Figures and tables in appendices
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Figure A1l. Box plot of observation values for dissolved oxygen (DO), dissolved organic carbon (DOC), total phosphorus (TP) and total
suspended solids (TSS). Outliers determined by the IQR test (Table 7) are not shown on the plot.
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Figure A2. Spatial distribution of yearly median observation values for dissolved oxygen (DO), dissolved organic carbon (DOC), total

phosphorus (TP) and total suspended solids (TSS). Outliers determined by the IQR test are not shown on the plot.
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Table A1. Conversion procedures of source data units and chemical forms into their corresponding GRQA versions for all parameters.

Parameter code Source Form Source form  Unit  Source unit Divisor Multiplier =~ Conversion constant
TAN CESI N NH3 mg/1 MG/L 17.031 14.007 0.822441
NO3N CESI N N mg/l MG/L 1 1 1
NO2N CESI N N mg/l MG/L 1 1 1
TN CESI N N mg/l MG/L 1 1 1
TDN CESI N N mg/l MG/L 1 1 1
DO CESI 02 02 mg/1 MG/L 1 1 1
pH CESI pH PH UNITS 1 1 1
TP CESI P P mg/l MG/L 1 1 1
TDP CESI P P mg/l MG/L 1 1 1
TEMP CESI Deg C DEG C 1 1 1
DC GEMSTAT C C mg/1 mg/1 1 1 1
DIC GEMSTAT C C mg/l mg/l 1 1 1
DOC GEMSTAT C C mg/l mg/l 1 1 1
POC GEMSTAT C C mg/1 uglg 1 1 1
POC GEMSTAT C C mg/l mg/1 1 1 1
TC GEMSTAT C C mg/l mg/l 1 1 1
435 TIC GEMSTAT C C mg/l mg/l 1 1 1
TOC GEMSTAT C C mg/l mg/l 1 1 1
DKN GEMSTAT N N mg/1 mg/l 1 1 1
DON GEMSTAT N N mg/1 mg/l 1 1 1
NH4N GEMSTAT N N mg/l mg/l 1 1 1
NH4N GEMSTAT N NH4 mg/1 mg/INH4  18.039 14.007 0.776484
NH4N GEMSTAT N N mg/l ugll 1000 1 0.001
NO2N GEMSTAT N N mg/l mg/l 1 1 1
NO2N GEMSTAT N NO2 mg/l mg/INO2  46.005 14.007 0.304467
NO2N GEMSTAT N N mg/l g/l 1000 1 0.001
NO3N GEMSTAT N N mg/l mg/l 1 1 1
NO3N GEMSTAT N NO3 mg/1 mg/INO3  62.004 14.007 0.225905
NO3N GEMSTAT N N mg/1 pngl 1000 1 0.001
PN GEMSTAT N N mg/l mg/l 1 1 1
PON GEMSTAT N N mg/l mg/l 1 1 1
PON GEMSTAT N N mg/l nelg 1 1 1
TDN GEMSTAT N N mg/1 mg/l 1 1 1
TKN GEMSTAT N N mg/1 mg/l 1 1 1
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Table Al. Continued.

Parameter code Source Form Source form  Unit  Source unit Divisor Multiplier —Conversion constant
TN GEMSTAT N N mg/1 mg/l 1 1 1
TON GEMSTAT N N mg/1 mg/l 1 1 1
DO GEMSTAT 02 02 mg/1 mg/l 1 1 1
DOSAT GEMSTAT % % 1 1 1
BOD GEMSTAT 02 02 mg/1 mg/l 1 1 1
COD GEMSTAT 02 02 mg/1 mg/l 1 1 1

pH GEMSTAT pH — 1 1 1
DIP GEMSTAT P P mg/1 mg/1 1 1 1
TDP GEMSTAT P P mg/1 mg/1 1 1 1
TDP GEMSTAT P P mg/l pg/l 1000 1 0.001
TIP GEMSTAT P P mg/1 mg/1 1 1 1

TP GEMSTAT P P mg/l mg/l 1 1 1

TP GEMSTAT P P mg/l gl 1000 1 0.001
TPP GEMSTAT P P mg/l nelg 1 1 1
TPP GEMSTAT P P mg/1 mg/l 1 1 1
TSS GEMSTAT mg/1 mg/l 1 1 1
TEMP GEMSTAT Deg C °C 1 1 1
TEMP GLORICH Deg C °C 1 1 1

pH GLORICH pH 1 1 1
DO GLORICH 02 02 mg/l mgO2L-1 1 1 1
DOSAT GLORICH % % 1 1 1
TSS GLORICH mg/l mg L-1 1 1 1

TC GLORICH C C mg/1 pmol L-1 1000 12.011 0.012011
TIC GLORICH C C mg/l pmol L-1 1000 12.011 0.012011
DIC GLORICH C C mg/l pmol L-1 1000 12.011 0.012011
PIC GLORICH C C mg/l pmol L-1 1000 12.011 0.012011
TOC GLORICH C C mg/l pmol L-1 1000 12.011 0.012011
DOC GLORICH C C mg/1 pmol L-1 1000 12.011 0.012011
POC GLORICH C C mg/1 pmol L-1 1000 12.011 0.012011
TN GLORICH N N mg/1 pmol L-1 1000 14.007 0.014007
TDN GLORICH N N mg/1 pmol L-1 1000 14.007 0.014007
PN GLORICH N N mg/1 pmol L-1 1000 14.007 0.014007
TIN GLORICH N N mg/1 pmol L-1 1000 14.007 0.014007
DIN GLORICH N N mg/1 pmol L-1 1000 14.007 0.014007
TON GLORICH N N mg/1 pmol L-1 1000 14.007 0.014007
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Table Al. Continued.

Parameter code Source Form Source form  Unit  Source unit Divisor Multiplier —Conversion constant
DON GLORICH N N mg/1 pmol L-1 1000 14.007 0.014007
PON GLORICH N N mg/1 pmol L-1 1000 14.007 0.014007
TKN GLORICH N N mg/l pmol L-1 1000 14.007 0.014007
DKN GLORICH N N mg/l pmol L-1 1000 14.007 0.014007
NO3N GLORICH N NO3 mg/l pmol L-1 1000 0.225905 0.000226
NO2N GLORICH N NO2 mg/l pmol L-1 1000 0.304467 0.000304
NH4N GLORICH N NH4 mg/l pmol L-1 1000 0.776484 0.000776
TP GLORICH P P mg/l pmol L-1 1000 30.973 0.030973
TDP GLORICH P P mg/l pmol L-1 1000 30.973 0.030973
TPP GLORICH P P mg/1 pmol L-1 1000 30.973 0.030973
TIP GLORICH P P mg/1 pmol L-1 1000 30.973 0.030973
DIP GLORICH P P mg/1 pmol L-1 1000 30.973 0.030973
NO3N WATERBASE N NO3 mg/l mgNO3/L  62.004 14.007 0.225905
NO2N WATERBASE N NO2 mg/1 mgNO2/L  46.005 14.007 0.304467
NHA4N WATERBASE N NH4 mg/1 mgNH4/L  18.039 14.007 0.776484
NHA4N WATERBASE N NH3 mg/1 mgNH3/L  17.031 14.007 0.822441
NH3N WATERBASE N NH3 mg/l mgNH3/L  17.031 14.007 0.822441
NH3N WATERBASE N N mg/l ug/L 1000 1 0.001
TP WATERBASE P P mg/l mgP/L 1 1 1
TSS WATERBASE mg/l mg/L 1 1 1
TEMP WATERBASE Deg C Cel 1 1 1
DOSAT WATERBASE % % 1 1 1

DO WATERBASE 02 02 mg/l mg/L 1 1 1

DO WATERBASE 02 02 mg/l mgO2/L 1 1 1
BODS WATERBASE 02 02 mg/l mgO2/L 1 1 1
BOD7 WATERBASE 02 02 mg/1 mgO2/L 1 1 1
CODCr WATERBASE 02 02 mg/1 mgO2/L 1 1 1
CODMn WATERBASE 02 02 mg/1 mgO2/L 1 1 1
DOC WATERBASE C C mg/1 mgC/L 1 1 1
DOC WATERBASE C C mg/l mg/L 1 1 1
TOC WATERBASE C C mg/l mgC/L 1 1 1
TOC WATERBASE C C mg/l mg/L 1 1 1

pH WATERBASE pH 1 1 1
TKN WATERBASE N N mg/l mgN/L 1 1 1
TKN WATERBASE N N mg/l mg/L 1 1 1
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Table Al. Continued.

Parameter code Source Form Source form Unit Source unit Divisor Multiplier = Conversion constant
TON WATERBASE N N mg/1 mgN/L 1 1 1
PON WATERBASE N N mg/1 mgN/L 1 1 1
TIN WATERBASE N N mg/1 mgN/L 1 1 1
TN WATERBASE N N mg/1 mgN/L 1 1 1
PC WQP C C mg/1 mg/1 1 1 1
DC WQP C C mg/1 mg/1 1 1 1
TC WQP C C mg/1 mg/1 1 1 1
DO WQP 02 02 mg/1 mg/l 1 1 1
DOSAT WQP % % saturatn 1 1 1
PIC WQP C C mg/l mg/1 1 1 1
DIC WQP C C mg/l mg/1 1 1 1
TIC WQP C C mg/l mg/l 1 1 1
TAN WQP N N mg/l  mg/lasN 1 1 1
TAN WQP N N mg/l  mg/lasN 1 1 1
DIN WQP N N mg/l  mg/lasN 1 1 1
TIN WQP N N mg/l  mg/lasN 1 1 1
NO3N WQP N N mg/l  mg/las N 1 1 1
NO3N WQP N N mg/l  mg/lasN 1 1 1
NO2N WQP N N mg/l  mg/lasN 1 1 1
NO2N WQP N N mg/l  mg/lasN 1 1 1
PON WQP N N mg/1 mg/l 1 1 1
DON WQP N N mg/1 mg/1 1 1 1
TON WQP N N mg/l mg/l 1 1 1
POP WQP P P mg/l mg/l as P 1 1 1
DOP WQP P P mg/1 mg/l as P 1 1 1
TOP WQP P P mg/1 mg/l as P 1 1 1
PN WQP N N mg/1 mg/l 1 1 1
TPP WQP P P mg/1 mg/l as P 1 1 1
TDP WQP P P mg/l mg/l as P 1 1 1
TP WQP P P mg/l mg/l as P 1 1 1
TP WQP P P mg/1 mg/l as P 1 1 1
TN WQP N N mg/1 mg/1 1 1 1
TDN WQP N N mg/1 mg/1 1 1 1
TN WQP N N mg/1 mg/1 1 1 1
POC WQP C C mg/1 mg/l 1 1 1
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445

Table Al. Continued.

Parameter code  Source Form  Source form  Unit  Source unit Divisor Multiplier ~Conversion constant

DOC WQP C C mg/1 mg/1 1 1 1
TOC WQP C C mg/l mg/1 1 1 1
BOD5 WQP 02 02 mg/l mg/l 1 1 1
BODS5 WQP 02 02 mg/l mg/l 1 1 1
pH WQP pH std units 1 1 1
TSS WQP mg/1 mg/1 1 1 1
TEMP WQP Deg C deg C 1 1 1
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