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Abstract. Ground-based Global Navigation Satellite System (GNSS) measurements from nearly fifty stations distributed over

the Caribbean Arc have been analysed for the period 1 January-29 February 2020 in the framework of the EUREC4A (Elucidate

the Couplings Between Clouds, Convection and Circulation) field campaign. The aim of this effort is to deliver high-quality In-

tegrated Water Vapour (IWV) estimates to investigate the moisture environment of mesoscale cloud patterns in the Tradewinds

and their feedback on the large-scale circulation and energy budget.5

This paper describes the GNSS data processing procedures and assesses the quality of the GNSS IWV retrievals from four

operational streams and one reprocessed research stream which is the main data set used for offline scientific applications.

The uncertainties associated with each of the data sets, including the zenith tropospheric delay (ZTD) to IWV conversion

methods and auxiliary data, are quantified and discussed. The IWV estimates from the reprocessed data set are compared to

the Vaisala RS41 radiosonde measurements operated from the Barbados Cloud Observatory (BCO) and to the measurements10

from the operational radiosonde station at Grantley Adams international airport (GAIA), Bridgetown, Barbados. A significant

dry bias is found in the GAIA humidity observations with respect to the BCO sondes (-2.9 kgm−2) and the GNSS results

(-1.2 kgm−2). A systematic bias between the BCO sondes and GNSS is also observed (1.7 kgm−2) where the Vaisala RS41

measurements are moister than the GNSS retrievals. The IWV estimates from a collocated microwave radiometer agree with

the BCO soundings after an instrumental update on 27 January, while they exhibit a dry bias compared to the soundings and15

to GNSS before that date. IWV estimates from the ECMWF fifth generation reanalysis (ERA5) are overall close to the GAIA

observations, probably due to the assimilation of these observations in the reanalysis. However, during several events where

strong peaks in IWV occurred, ERA5 is shown to significantly underestimate the GNSS derived IWV peaks. Two successive

peaks are observed on 22 January and 23/24 January which were associated with heavy rain and deep moist layers extending
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from the surface up to altitudes of 3.5 and 5 km, respectively. ERA5 significantly underestimates the moisture content in the20

upper part of these layers. The origins of the various moisture biases are currently being investigated.

We classified the cloud organisation for five representative GNSS stations across the Caribbean Arc using visible satellite

images. A statistically significant link was found between the cloud patterns and the local IWV observations from the GNSS

sites as well as the larger-scale IWV patterns from the ECMWF reanalysis ERA5.

The reprocessed ZTD and IWV data set from 49 GNSS stations used in this study are available from the AERIS data centre25

(https://doi.org/10.25326/79; Bock (2020b)).

Copyright statement. copyrightstatement

1 Introduction

The overarching goal of EUREC4A (Elucidate the Couplings Between Clouds, Convection and Circulation) is to improve our

understanding of how trade-wind cumuli interact with the large-scale environment (Bony et al., 2017). Water vapour is one30

key ingredient of the atmospheric environment controlling the life cycle of convection with strong feedback on the large-scale

circulation and energy budget (Sherwood et al., 2010). The mechanisms involved are thought to play a significant role in the

climate sensitivity and model diversity (Sherwood et al., 2014).

The EUREC4A field campaign was elaborated to provide relevant observations on the cloud properties and their atmospheric

and oceanic environment across a range of scales (Stevens, 2021). The measurement platforms were deployed over two theatres35

of action. The first, referred to as the ’Tradewind Alley’, extends from an open ocean mooring at 51° W, 15° N to the Barbados

Cloud Observatory (BCO), 59° W, 13° N (Stevens et al., 2016). The second named the ’Boulevard des Tourbillons’ extends

from 7° N, off the northern Brazil coast, roughly to the BCO. Most of the distant open sea water vapour measurements

were made by Research Vessels (R/Vs) embarking radiosonde systems, lidars and microwave radiometers, for what concerns

water vapour measurements. They were completed by aircraft platforms leaving from the Grantley Adams international airport40

(GAIA), Brigdetown, Barbados, embarking dropsondes, in-situ and remote sensing measurement systems. The aircraft operated

mainly in a 200-km diameter circle centred on 57.7° W, 13.3° E in the Tradewind Alley, upstream from the BCO. In addition

to the research instrumentation deployed on these platforms, ground-based and ship-borne GNSS receivers were operated to

provide high temporal resolution Integrated Water Vapour (IWV) measurements. Results of ship-borne GNSS measurements

from the R/Vs Meteor, Maria S. Merian, and Atalante are described in a companion paper (Bosser et al., 2020). This paper45

focuses on the ground-based GNSS network measurements.

The ground-based GNSS network comprises a total of 49 stations of which 47 are permanent instruments devoted primar-

ily to geoscience investigations. Most of these stations belong to the Coconet continuoulsy operating GNSS network in the

Caribbean (https://coconet.unavco.org/, last access: 29 January 2021) and provide raw observations as well as station posi-

tions and velocities for monitoring, understanding, and prediction of various geo-hazards (earthquakes, hurricanes, flooding,50
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volcanoes, and landslides). Some other stations belong to the French permanent GNSS network, so-called ’Reseau GNSS

Permanent’ (RGP) operated by IGN in the Caribbean and French Guyana territories. Figure 1 shows the map of the stations.

Because of their location on the nearby Caribbean islands, most of the GNSS measurements mainly provide information on the

large scale atmospheric environment downstream the Tradewind Alley and the Boulevard des Tourbillons. Closer to the main

theatre of action of the field campaign, two collocated ground-based GNSS stations, referred to as BCON and BCOS, have55

been set up at the BCO in the framework of EUREC4A. Two stations were installed to insure redundancy during the campaign.

They complement the permanent instrumentation operated at the BCO (Stevens et al., 2016). The BCO GNSS stations were

installed on 31 October 2019 and are planned to operate for a full annual cycle at least. The measurements from these two

stations are transmitted in near real time thanks to the BCO infrastructure and are processed operationally by IGN in the RGP

processing stream, on one hand, and by ENSTA_B/IPGP (ENSTA Bretagne & IPGP), on the other hand. Both processing60

centers run continuously and provide IWV data with slightly different latency and precision. A more accurate research-mode

processing was also set up by ENSTA_B/IPGP to reprocess the data from all 49 stations in a homogeneous way, but for a

limited period, from 1 January to 29 February 2020, hence including the Coconet and RGP stations. A first release of this data

set is now available on the EUREC4A data base hosted by the AERIS data center (Bock, 2020b).

This paper aims at describing the ground-based GNSS data processing details and assessing the quality of the IWV retrievals65

from both the operational and research processing streams. Section 2 describes the GNSS data processing and IWV conver-

sion details. Section 3 compares the zenith tropospheric delay (ZTD) estimates and the IWV retrievals from the various data

processing streams for the two BCO stations. The intercomparison is completed with IWV measurements from the Vaisala

RS41 radiosondes and the HATPRO microwave radiometer operated during the EUREC4A campaign, as well the operational

radiosonde measurements operated by the Barbados weather service at GAIA. Section 4 provides a validation of the ECMWF70

fifth reanalysis (ERA5) (Hersbach et al., 2020) at regional scale with respect to the IWV retrievals from the extended GNSS

network and a preliminary analysis of the large scale IWV variations related to mesoscale cloud organisation in the Tradewinds.

Section 5 concludes the study.

2 GNSS data processing and IWV retrieval

A vast literature is covering the basic concepts of GNSS data processing for meteorological applications (see Guerova et al.75

(2016)). It will not be repeated here.

2.1 GNSS data processing streams

The GNSS measurements from the two BCO stations, hereafter called BCON and BCOS, are processed in four different

operational streams. Two of the streams are run by IGN as part of the RGP operations as will be referred to as ’RGP NRT’

(Near Real Time) and the ’RGP daily’. Both consist in network processing solutions where the BCO stations are processed80

in baselines formed with about 40 permanent stations operated in the Caribbean and French Guyana region and beyond. The

processing results, hereafter called "solutions", are produced on hourly and daily basis, respectively. The NRT solution uses
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ultra-rapid satellite clocks and orbits, and processes the measurements in 6-hourly windows shifted by one hour every hour.

For the permanent GNSS stations in the region, the ZTD estimates for the most recent hour are available within 45 min after

the end of measurements and are distributed to Numerical Weather Prediction (NWP) centres via the EUMETNET-GNSS85

water vapour program (E-GVAP). Although the BCO stations were included in this stream they are not registered as permanent

stations at E-GVAP and are thus not assimilated by the NWP centres. Due to the sliding window processing approach, each

hourly time slot is thus processed six times. The accuracy of the corresponding ZTD estimates depends on the time slot as will

be illustrated in the next Section. The main reason is that the quality of the NRT clocks and orbits is lower in the more recent

time slot because they are predicted (observations are not available in due time to constrain that part of the orbit calculation).90

The sampling of the ZTD estimates of the NRT solution is 15 min. On the other hand, the ’daily’ processing stream is updated

every day before 05 UTC. It is based on a longer time windows of 24 hours and benefits from slightly improved clock and orbit

products. Its accuracy is thus slightly higher. The sampling of the ZTD estimates of the daily solution is 1 h. This processing

stream is not sent to E-GVAP but is rather devoted to an operational quality control of the observations from the RGP stations.

It is also used for a posteriori verification of the NRT solution.95

The data from the BCO stations were also included in two other operational streams operated by ENSTA_B/IPGP in the

framework of ACTRIS-France (Aerosol, Cloud and Trace Gases Research Infrastructure – France, https://www.actris.fr/, last

access: 29 January 2021). These two streams are referred to as ’GIPSY rapid’ and ’GIPSY final’. They differ only by the clock

and orbit products which are released with daily and fortnightly latency, respectively. The GIPSY rapid processing is equivalent

to the RGP daily processing, while the GIPSY final processing on the other hand provides a higher level of accuracy. Both a100

streams provide ZTD estimates with a sampling of 5 minutes.

Apart from the usage of different clock and orbit products, the processing streams run by both analysis centres also differ

by their software packages and related processing options as summarised in Table 1. Most importantly, IGN uses the Bernese

GNSS version 5.2 software in double-difference processing mode (Dach et al., 2015) while ENSTA_B/IPGP use the GIPSY

OASIS II version 6.2 software in precise point positioning (PPP) mode (Zumberge et al., 1997). Various studies have compared105

the results and discussed the benefits and drawbacks of both approaches. When consistent clock and orbit products are used,

there is generally a good level of agreement (i.e. a few mm RMS differences in ZTD estimates).

Finally, the regional network including 49 GNSS stations was reprocessed by ENSTA_B/IPGP using again GIPSY OASIS II

version 6.2 software, in a very similar scheme as the final stream but with a few improved processing options. This processing

is expected to be the most accurate. It is referred to as ’GIPSY repro1’ in the following.110

2.2 GNSS data quality checking

The quality of the data processing results can be checked with two types of information: 1) global information quantifying the

accuracy of the processing in the 6-hourly or 24-hourly time window (e.g. reduced sum of squares of residuals, percentage of

solved ambiguities) and 2) the formal errors of the estimated parameters (station coordinates and ZTDs).
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For the operational streams, only the second type of information was available and a basic screening procedure was thus115

applied in the form of a range check on ZTD estimates with limits [1 m, 3 m] and on for ZTD formal errors with a limit of 0.02

m.

For the GIPSY repro1 solution, a more elaborated quality check was made using both types of information for all stations.

Mean statistics over the 2-month period are reported in Table S1 of the supplemental material. The mean RMS of residuals

for all 49 stations ranged between 0.009 m and 0.015 m. Five stations with values above 0.013 m may be unreliable (N240,120

DEHA, AIRS, BOUL, HABL). These stations have also small mean percentage of fixed ambiguities (≤ 50 %) and/or significant

temporal variations in both parameters. Station position repeatability was in general good both in the horizontal (≤ 0.005m)

and vertical (≤ 0.015m) except for two stations (BOUL, OLVN). In a second step, a tighter range check completed with an

outlier check were applied following the recommendations of Bock (2020a). The range check limits were [0.5 m, 3.0 m] on

ZTD values and 0.01 m on formal errors. The outlier check limits were computed for each station based on its median µ and125

standard deviation σ statistics over the 2-month period according to [µ− 5σ,µ+ 5σ] for the ZTD values and [0,µ+ 3.5σ] for

the formal errors. This screening procedure rejected 0.21 % of the ZTD data due exclusively to the formal error outlier check.

The GIPSY ZTD time series are generally quite small with few outliers as confirmed by the low outlier detection rate.

2.3 GNSS ZTD to IWV conversion

The ZTD is the sum of the zenith hydrostatic delay (ZHD) and the zenith wet delay (ZWD):130

ZTD = ZHD+ZWD (1)

During the data processing, ZHD is fixed to an a priori value, either from an empirical model or from a NWP model analysis

(Boehm et al., 2007), and ZWD is estimated. Errors in the a priori ZHD can propagate to the estimated ZWD but, in general,

this error is small (< 1 mm) and the sum of both is very close to the real ZTD. When IWV is to be extracted, it is desirable to

use a more accurate ZHD value computed from the surface air pressure:135

ZHD = 10−6k1Rd
Ps
gm

(2)

where k1 is the dry air refractivity coefficient, Rd the dry air specific gas constant, Ps surface air pressure, and gm the mean

acceleration due to gravity (Davis et al., 1985). IWV is derived from ZWD by applying a delay to mass conversion factor

κ(Tm):

IWV = κ(Tm)×ZWD (3)140

κ is a semi-empirical function of the weighted mean temperature Tm defined as (Bevis et al., 1992):

κ(Tm) =
106

Rv(k′2 + k3
Tm

)
(4)
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where k′2 and k3 are refractivity coefficients for the water molecule, Rv is the specific gas constant for water vapour. Tm is

defined as:

Tm =

∫
ρv(z)dz∫ ρv(z)
T (z) dz

(5)145

where ρv(z) and T (z) and the specific mass of water vapour and the air temperature, respectively, at height z above the

surface. The integrals are from the surface to the top of the atmosphere.

Practically, the GNSS IWV estimates are converted from the ZTD data using equations (1) to (4) with the auxiliary data, Ps

and Tm, given at the position of the GNSS station with interpolation to the GNSS times. On average for the 2-month period

(January-February 2020), the conversion parameter amounts to κ= 164 kgm−3 and the observed ZWD = 0.20 m results into150

IWV = 32 kgm−2. The sensitivity of IWV estimates to errors in the auxiliary data can be assessed by the partial derivatives:
∂IWV
∂ZTD = - ∂IWV

∂ZHD = 0.16 (kgm−2) mm−1, and ∂IWV
∂κ = 0.20 (kgm−2) (kgm−3) −1, or equivalently ∂IWV

∂Ps
= 0.35 (kgm−2)

hPa−1 and ∂IWV
∂Tm

= 0.12 (kgm−2) K−1, where the numerical values were computed from the average EUREC4A conditions.

Various sets of refractivity coefficients and auxiliary data were available and used with our operational and research GNSS

products and are described in the subsections below.155

2.3.1 RGP NRT and daily results

This dataset is provided only for the BCON and BCOS stations which benefit from colocated surface air pressure and temper-

ature measurements. The measurements come from Vaisala PTU200 Sensors connected directly to the GNSS receivers and are

included in the raw GNSS data files. The ZHD estimates are therefore computed using Eq. 2 and the Tm values are computed

using the widely used Bevis et al. (1992) formula:160

Tm = 70.2 + 0.72Ts (6)

where Ts is the surface pressure. This formula was derived by Bevis et al. (1992) from a radiosonde data set over the USA

with a RMS error of 4.7K. The refractivity coefficients used for the computation of ZHD and κ are from Thayer (1974), the

thermodynamics constants are from ICAO (1993), and the gm formula is from Saastamoinen (1972).

2.3.2 GIPSY rapid and final results165

This dataset is also provided only for the BCON and BCOS stations but it used the a priori values for ZHD available during the

data processing. The values were obtained from the Technical University of Vienna (TUV) as part of the VMF1 tropospheric

parameters computed from the ECMWF operational analysis (Boehm et al., 2006). The TUV also computes Tm values using

Eq. 5 from the same analysis. Both products are made available on a global grid with 2° latitude and 2.5° longitude resolution

every 6 hours. The refractivity coefficients and gm are the same as for the RGP data set.170
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2.3.3 GIPSY repro1 results

For the reprocessed data set we used a more rigorous approach following Bock (2020a). Here the ZHD and Tm values are

computed from ERA5 pressure-level data at the four surrounding grid points and are interpolated bilinearly to the positions of

the GNSS antennas. The ERA5 fields were used with the highest temporal and spatial resolutions: 1-hourly and 0.25° x 0.25°,

respectively. The refractivity coefficients and thermodynamics constants were updated from Bock (2020a) to account for the175

global CO2 content for January 2020 (see the Appendix). The gm formula proposed by Bosser et al. (2007) was used instead

of the Saastamoinen (1972) one.

This methodology provides the most accurate IWV estimates regarding the available data at the 49 stations of the extended

network and the best knowledge of uncertainties due to the various empirical formulas (Tm and gm) and auxiliary data.

2.3.4 Uncertainty due to IWV conversion methods180

The three data sets (RGP, GIPSY operational, and GIPSY repro1) used different conversion methods, which are associated

with different uncertainties. Although repro1 is the most accurate, it is not an operational stream and covers only a limited

period of time. Users may thus be interested by the near real time and extended time coverage of the two operational data sets

available for stations BCON and BCOS. The consistency of the different data sets is assessed in the next Section for ZTD and

IWV. Here we describe how the different error sources contribute to overall uncertainty in the IWV data.185

Let us consider two ZTD solutions from two different processing streams, ZTD1 and ZTD2, converted to IWV using

different ZHD and κ data, ZHD1,2 and κ1,2. The two IWV solutions, IWV1 and IWV2 write:

IWV1 = κ1 · (ZTD1 −ZHD1) (7)

IWV2 = κ2 · (ZTD2 −ZHD2) (8)

The difference ∆IWV = IWV2 − IWV1 can be separated into systematic and random components and written as a func-190

tion of the contributions (assumed independent) of the systematic and random differences of the three parameters ∆ZTD =

ZTD2 −ZTD1, ∆ZHD = ZHD2 −ZHD1, ∆κ= κ2 −κ1 as:

∆IWV = κ2 ·∆ZTD−κ2 ·∆ZHD+
IWV1

κ1
∆κ (9)

(σ∆IWV )2 = (κ2 ·σ∆ZTD)2 + (κ2 ·σ∆ZHD)2 +

(
IWV1

K1
σ∆κ

)2

(10)

The magnitude of the actual errors in the auxiliary data used in the different conversion methods can be appreciated from195

Fig. 2. The Figure shows that the ZHD data computed from ERA5 reanalysis and PTU sensor agree well. The mean pressure

(ZHD) difference, ERA5 - PTU, amounts to −0.13± 0.20 hPa (−0.30± 0.45 mm), which impact on IWV represents 0.045±
0.070 kgm−2. ERA5 is thus a good source of surface pressure for the IWV conversion with negligible bias at this site. The

ZHD estimates computed from ECMWF by TUV on the other hand have significant aliasing errors (Fig. 2). This is due to the

strong atmospheric tide seen in the surface pressure that cannot be resolved by the 6-hourly analysis data (shown by crosses200

upon the red dashed line in the lower ZHD panel).
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Regarding the κ data, TUV and ERA5 agree well but the PTU-derived curve has significant errors because it uses the

empirical formula given by Eq. 6 which is based on surface temperature and does not well correlate with the upper air variations

that influence Tm. In the case of the RGP data set, the use of Bevis et al. (1992) formula is the dominant error source in the

IWV conversion process, while in the case of GIPSY rapid and final results, the use of 6-hourly ZHD data from TUV is the205

main error source.

We also evaluated the accuracy of the ERA5 Tm estimates in comparison to Tm computed from the radiosonde data at the

BCO. The mean difference and standard deviation of the resulting IWV estimates for 138 soundings were 0.03 kgm−2 (ERA5

- soundings) and 0.05 kgm−2, respectively.

Compared to the differences in IWV estimates resulting from the use of different auxiliary data, the impact of the refractivity210

constants (Thayer (1974) vs. Bock (2020a)) is rather a small and represents a bias of 0.045 kgm−2.

3 ZTD and IWV intercomparisons at the BCO

In this Section we inter-compare both ZTD and IWV results from the five processing streams. The motivation for comparing

the ZTD results is that it reflects the uncertainty due to the GNSS processing only while the IWV comparison includes the

conversion errors discussed in the previous Section. The uncertainty in the ZTD data is of interest to the data assimilation215

community since ZTD are currently assimilated in most NWP models (rather than IWV). On the other hand, the uncertainty in

the IWV data may be of interest to users who wish to analyse the IWV directly (e.g. for process studies, intercomparison with

other observational techniques, or verification of atmospheric model simulations).

3.1 RGP NRT results

As explained above, in the RGP NRT solution, each hourly time slot is processed six times while it is shifted from the most220

recent position (referred to as NRT.6) to the oldest (NRT.1) in the 6-hourly time window. The highest precision is expected in

the central time slots (NRT.2 to NRT.5) because these are farther from the edges and are best constrained by the observations.

3.1.1 ZTD intercomparison

The overall uncertainty in the NRT solution is mainly due to the ultra-rapid satellite products and small window-size (impacting

the ambiguity resolution). It can be evaluated by comparison with the RGP daily or any of the GIPSY solutions. The upper part225

of Table 2 shows the results for the ZTD estimates. The comparison to RGP daily reveals a trend in the mean difference from

NRT.1 to NRT.6, with a large negative bias in NRT.1 of -0.04 m (RGP NRT ZTD < RGP daily ZTD). This bias was actually

unexpected. It is an artifact due to the propagation of tropospheric gradient biases from one time slot to the next. This feature

was corrected in July 2020 and the bias is no longer present in the current operational NRT product. The standard deviation

of differences shows a minimum (9.4 mm) for the NRT.4 solution. The values are actually smaller in the central time slots as230

expected. However, the formal errors (top row of Table 2) predict smaller uncertainty in the first time slot instead. This is a

consequence of using the previous normal equations.
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The comparison with GIPSY repro1 confirms these conclusions although there are small differences in the results: mainly,

the bias is slightly offset by 4 mm. Since this comparison involves two different software and processing approaches, these

small differences are not surprising. Note that the number of comparisons are also different by a factor of four due to the235

different ZTD sampling of the three solutions. Compared to GIPSY repro1, the RGP NRT.4 has the smallest bias and standard

deviation. We recommend thus to use this solution for near-real-time applications when timeliness is not too restrictive (e.g. in

NWP assimilation schemes, the ZTD data from NRT.6 are used which are a bit less accurate).

Figure 3 shows the ZTD and formal error time series from the RGP NRT.4 solution and the other two processing streams. It

it seen that the temporal variations in ZTD are very consistent among all three data streams with small differences (< 0.01 m)240

compared to the ZTD variations ( 0.1 m). On the other hand, the formal errors of the NRT solution are much larger than those

of the RGP daily and the GIPSY repro1 solutions. GIPSY repro1 has also more stable formal errors than RGP daily.

3.1.2 IWV intercomparison

The lower part of Table 2 shows the IWV results. In the case of the comparison of RGP NRT to RGP daily, the IWV results

are consistent with the ZTD results since both solutions use the same ZHD and K conversion data. The IWV differences are245

here proportional to the ZTD differences with a factor of 162 kgm−3which is close to the mean value of K=164 kgm−3. On

the other hand, the comparison with GIPSY repro1 includes the differences in the conversion data, and the ratio of IWV to

ZTD results is not a constant factor. This point is further discussed in the next sub-section. Similar to the ZTD results, the IWV

solution for NRT.4 is in good agreement with RGP daily and GIPSY repro1.

Figure 4 compares the NRT.6 IWV estimates to GIPSY repro1 for the time period from 10 to 20 January 2020 marked by a250

period of two days with high IWV around 45 kgm−2. It is striking that the NRT.6 solution shows spurious oscillations with a

period about 1 hour. This feature is due to the strong relative constraint (1 mm) in the NRT solution with an hourly update. The

constraint is the same in the NRT.4 slot but the oscillation is strongly damped (not shown). This result also militates for using

the NRT.4 solution rather than the NRT.6 solution when relevant.

3.2 RGP daily and GIPSY results255

Similar ZTD and IWV comparisons have been performed for the other processing streams which are of interest for offline

applications.

The left part of Table 3 shows the ZTD comparison results. The comparison of RGP daily to GIPSY rapid and repro1 show

very similar results. The agreement between the two processing software is quite good, with a small difference in the mean

values of 2.1-2.4 mm for station BCON and 1.1-1.3 mm for station BCOS. The standard deviations of ZTD differences is about260

5.7-5.8 mm for both stations. The differences reflect mainly the impact of using different satellite products, mapping functions,

tropospheric model constraints, and elevation cutoff angles. The comparison of the three GIPSY solutions show comparatively

much better agreement with almost no bias (the mean differences are around -0.1 to 0.3 mm) and very small standard deviations

(0.8 to 2.8 mm). The comparison of the two operational solutions (GIPSY rapid and final) shows the smallest standard deviation

because they use exactly the same processing options; the only difference is in the satellite products but they were produced by265
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the same analysis centre (JPL) and are highly consistent. The comparison of the GIPSY operational solutions to repro1 shows

slightly larger differences which are due to small differences in the processing options.

IWV comparisons have been performed for the same five combinations. In addition to the ZTD differences due to the

processing strategies these comparisons will include the effect of the IWV conversion methods:

– RGP daily and GIPSY rapid differ by ZHD (PTU vs. TUV) and K (Bevis vs. TUV); strong impact is expected from270

differences in both parameters;

– RGP daily and GIPSY repro1 differ by ZHD (PTU vs. ERA5) and K (Bevis vs. ERA5); strong impact is expected from

K;

– GIPSY rapid and final use the same conversion parameters;

– GIPSY rapid and final differ from repro1 by ZHD and K (TUV vs. ERA5); strong impact is expected from ZHD;275

The right part of Table 3 shows the IWV results and confirms they include additional errors compared to the ZTD results

(left part the Table). Most notably: (i) a change in the bias between RGP daily - GIPSY rapid and RGP daily - GIPSY repro1

because the two GIPSY solutions use different parameters. In the first comparison the bias is due to the ZHD data used in

the GIPSY rapid solution (TUV) and the K data in the RGP daily solution (due to Bevis et al. (1994) formula). In the second

comparison, only the K bias in the RGP rapid solution is involved. (ii) a noticeable bias and standard deviation between the280

two operational GIPSY solutions and the repro1 due to the ZHD data used in the former (TUV). The two operational GIPSY

solutions are highly consistent in IWV (similar to the ZTD solutions) but this result hides the fact that they include common

ZHD errors.

Table 4 quantifies more precisely the contributions from the difference error sources (ZTD, ZHD, and K) to the total IWV

differences, where the mean and random components have been separated according to Eqs. 9 and 10. It can be seen that:285

– In the RGP daily and GIPSY rapid comparison, all three error sources contribute in the same proportions to the bias,

while the random errors are dominated by ZTD errors.

– In the RGP daily and GIPSY repro1 comparison, the small bias in RGP daily is a result of almost exact cancelling of a

ZTD bias and a K bias in the RGP data. The random errors in the RGP data are again dominated by ZTD errors.

– In the GIPSY final and repro1 comparison, the bias in the GIPSY final is almost only due to a bias in ZHD, while the290

random errors are due to ZTD and ZHD differences of the same magnitude.

In conclusion, compared to the GIPSY repro1 dataset which uses the most accurate data processing and conversion param-

eters, both operational streams show small systematic and random errors on the level of ± 0.5 kgm−2 and ± 1.0 kgm−2,

respectively.

10



3.3 GNSS compared to other IWV data sources295

Two other instruments operated at the BCO facility are used here: the Vaisala RS41/MW41 radiosonde system (Stephan et al.,

2020) and the RPG, HATPRO-G5, microwave radiometer (MWR) (Rose et al., 2005). The IWV retrievals from these systems

were compared to IWV estimates from the BCON GNSS station (GIPSY repro1) and ERA5 IWV data for the period from 1

January to 29 February 2020. For the radiosondes, the level-1 pressure (P), temperature (T), and relative humidity (RH) data

were used and IWV was computed as:300

IWVRS =

Ptop∫
PGPS

q(P )/g(P )dP (11)

where the integral extends from the GNSS station height to the top of the sounding ( 24 km on average), q(P ) is the specific

humidity computed from RH and T using Tetens (1930) saturation pressure formula over water, g(P ) is the acceleration of

gravity as a function of altitude. The 1-sec time sampling of the radiosonde data provide high vertical resolution (about 5

m in the lower troposphere). They were checked for consistency and thinned for including only increasing altitude points.305

Very few data gaps were noticed in the vertical profiles which confirms that the sounding operations worked fine all along the

campaign and did not need further correction or screening. The BCO soundings provided a nearly continuous sampling of the

upper air conditions between 16 January and 19 February, every 4 hours (Stephan et al., 2020). The MWR worked for a more

extended period from 1 January to 15 February. The brightness temperature measurements were used to retrieve IWV using

a neural network algorithm provided by the manufacturer. In precipitating conditions, the measurements usually experience310

strong biases due to wet radome emissions (see Fig. 5) and are screened out according the a rain detection index (including

also sea spray detection). The IWV contents are nominally retrieved with a 1-sec sampling which we down-scaled to 5-min,

by computing arithmetic means to be consistent with the GNSS sampling. Some outliers remained in the MWR IWV series

which were subsequently removed from the comparisons by a simple outlier check of the IWV differences with limits mean ±
3 standard deviations).315

The ERA5 IWV contents above the GNSS station were computed from the hourly pressure level data at the four surrounding

grid points and interpolated bilinearly to the position of the GNSS antenna. The use of pressure level data instead of model

level data induces a minor bias of 0.2± 0.1 kgm−2 but these data are more convenient to use and consistent with the Tm

computation (see Sect. 2.3.3).

In addition, we also included the twice-daily (00 and 12 UTC) radiosonde measurements from the operational radiosonde320

station at Grantley Adams International Airport (GAIA, WMO code 78954) located 11 km away from the BCO. This station

used GRAW DFM-09 at the time of the campaign (Kathy-Ann Caesar, personal communication). The sonde data were retrieved

from the University of Wyoming sounding archive and contained on average 85 ± 6 vertical levels up to an altitude of 29 ±
2 km. The vertical sampling of these data is coarser than the BCO data but fine enough to compute proper IWV contents. The

latter were computed in a similar way as for the BCO soundings except near the surface where the ERA5 pressure level data325
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were used to complete the sounding profiles. This is because the GAIA station is located at an altitude of 57 m, slightly above

the BCO which is at 25 m altitude.

Figure 5 shows the IWV time series of the different data sources at their nominal time resolutions. The period underwent

large moisture variations with IWV fluctuations between 20 and 55 kgm−2. Several remarkable situations are observed such

as the peaks on 22 January around 12 UTC and 24 January around 00 UTC, and a few more in February (days 40, 42, 43-44,330

45). The agreement between the five data sets is good in general but ERA5 is seen to underestimate the IWV during the afore-

mentioned peaks. Quite obvious is also the bias between the two sounding data, with the BCO IWV contents systematically

higher than the GAIA measurements. Less easy to distinguish, but nevertheless significant, is the offset in the HATPRO MWR

IWV retrievals before and after the 27 January. The HATPRO data are actually more consistent with the GAIA data before

that date and instead more consistent with the BCO radiosonde data after. Analysis of the measured brightness temperatures335

showed that during the former period, the measurements were less accurate due to an instrumental malfunctioning which was

fixed on 27 January.

Figure 6 compares the IWV data from the five sources pairwise and includes some consistency statistics. The slope and offset

parameters were fitted using the York et al. (2004) method to account for errors in both coordinates. For both radiosondes and

HATPRO the uncertainty in the IWV estimates was assumed to be 5 %. For ERA5 the uncertainty was computed as the max340

- min of the IWV values at the four surrounding grid points before the horizontal interpolation, which is a measure of the

representativeness error (Bock and Parracho, 2019). The uncertainty estimates over the study period were 1.71± 0.31 kgm−2

for the BCO soundings, 1.57±0.28 kgm−2 for the GAIA soundings, 1.65±0.25 kgm−2 for HATPRO, and 1.48±0.86 kgm−2

for ERA5. For GNSS, the ZTD formal errors were converted to IWV and rescaled with a factor of 5 in order to be consistent

with the other data sources, yielding a final GNSS IWV uncertainty of 1.15± 0.16 kgm−2.345

Results from the GPS, the BCO and GAIA sondes, and the ERA5 comparisons are reported in Fig. 6. While IWV varies

from 20 to 55 kgm−2 over the period, the bias between the two sondes is -2.89 kgm−2 (GAIA - BCO) with a slope of 0.94

and an offset of -0.69 kgm−2. The GAIA data are drier than the BCO data over the full observation range. The comparison

of profiles shows that the humidity measurements from the two sondes differ mainly in the lowermost 2.5 km where the mean

difference in q is larger than 1 g kg−1. One contribution to this difference may be the difference of trajectories of the sounding350

balloons released from the two sites. Balloons released from the BCO site usually travel west and southwards over the Barbados

island until they reach an altitude of 6-8 km when they enter the westerly jet. The balloons released from GAIA drift in similar

directions but arrive earlier over the open sea as they are released from the Southern part of the island. A small "island effect"

might show up here as the moisture profiles over the Barbados island seemed to be slightly moister than those over the nearby

sea during the EUREC4A field campaign (Fig. A4 in Stephan et al. (2020)). Another contribution might arise from moisture355

transport associated with land and sea breezes as was previously evidenced in Colombo, Sri Lanka, where the land/see breezes

contributed to a daytime boundary layer moistening and nighttime drying observed in radiosoundings (Ciesielski et al., 2014a).

The moisture observations at the BCO exhibit actually a day/night variation in IWV of 1.7 kgm−2 whereas the variation at

GAIA is significantly smaller (1.1 kgm−2). Although both effects are not negligible, they are not large enough to explain the

mean bias between the BCO and GAIA sondes. Instead we suspect the difference in sonde types to play a more central role.360
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The Vaisala RS41 sondes used at BCO are from the last generation of sondes and are considered to provide significantly

improved temperature and humidity measurements compared to previous sonde types (e.g. Vaisala RS92) especially in cloudy

conditions (Jensen et al., 2016). High confidence in the BCO soundings suggests that the GAIA soundings have a significant

dry bias which may impact humidity analyses from NWP models that assimilate these observations. This seems to be the case

for ERA5 and would explain the high consistency between ERA5 and GAIA IWV estimates (bias of 0.29 kgm−2 and near365

unity slope) and the large difference of ERA5 compared to the BCO (bias of -2.33 kgm−2 and slope of 0.93). The GNSS IWV

estimates are intermediate between the two sounding results. Using GNSS as the reference, we conclude on a wet bias in the

BCO radiosonde data of 1.64 kgm−2 and a dry bias in the GAIA radiosonde data (-1.23 kgm−2) as well as in the ERA5 data

(-0.77 kgm−2). On the other hand, using the BCO soundings data as a reference one would conclude on a dry bias in all other

IWV estimates, except the HATPRO MWR after the instrumental fix on 27 January, where the MWR retrieval is slightly moist.370

Since no reference water vapour measurements were made at the same time, it is difficult to establish the absolute sign of these

biases. The GNSS - RS41 bias of -1.64 kgm−2 observed here represents a fractional bias of 5 % which is slightly larger the

uncertainty of both systems and thus needs to be explained. From our previous experience comparing Vaisala RS92 sondes and

GNSS IWV estimates (produced using the same approach as in this study) we observed slightly smaller biases of ± 0.5 to 2 %

(Bock et al., 2016). Further investigation is needed in the case of the RS41 vs. GNSS comparisons.375

The comparison of HATPRO IWV retrievals has been separated in two batches (before and after 27 January). Compared

to GNSS, the bias before (after) is -1.28 (+2.06) kgm−2 with a slope significantly larger than one indicating that the bias

increases with the amount of IWV. Similar slope values are obtained in the comparison to the other data sources, which might

be attributed to the MWR training data set (Rose et al., 2005). Occurring biases could be further corrected by applying a clear-

sky brightness temperature offset correction based on sounding data. In terms of temporal variability, the MWR, GNSS, and380

BCO sondes are in good agreement (standard deviation of differences ∼ 1 kgm−2 and correlation coefficient ≥ 0.98). The

bias with respect to the BCO soundings is 0.48 kgm−2 (MWR too moist) during the second period, but this bias is within the

known uncertainties.

ERA5 is biased low compared to both GNSS and BCO sondes with slopes lower than one, meaning that the dry bias increases

at larger IWV values. The scatter plots in Fig. 6 exhibit a few outlying values which correspond to the situation when ERA5385

underestimates the IWV peaks during the period 22-24 January (see Fig. 5). Quite surprisingly, the GAIA soundings during this

period, although slightly drier, are much closer to GPS and BCO than ERA5. Inspection of the vertical humidity profiles (Fig.

7) shows that ERA5 is close to the GAIA observations in the lower 2-2.5 km but does not account for the vertical extension and

the sharp drop in humidity at the top of the deep moist layer around 3-4 km on 22 January and around 5 km on 24 January. The

mis-representation of the relative humidity profile is spectacular on 24 January 00 UTC. This might be due to the assimilation390

of other data (e.g. satellite humidity sounders) that are biased low in the mid-troposphere during this event. Inspection of radar

reflectivity measurements from the BCO reveals that on both dates heavy rain was occurring over an extended part of the lower

troposphere (up to 3.5 km height on 22 January around 10-11 UTC and 5.0 km on 23 January around 22-23 UTC). This would

explain the saturated air (RH=100 %) below 3 km for the former and below 5 km for the latter of the two BCO soundings. The

GAIA soundings mimic the BCO soundings, but with a dry bias within these rainy layers. Above this layer, it seems that the395
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GAIA sondes have a moist bias, probably due to rain contamination of the humidity sensor, a problem that is corrected in the

design of the newer RS41 sondes (Jensen et al., 2016). Above the moist layers, ERA5 fits well the BCO profiles.

Complementary statistics are reported in Table 5 where the data have been time-matched. The conclusions are essentially

the same as discussed above, but the pair-wise biases can be more easily compared and combined.

4 Spatio-temporal distribution of IWV at the regional scale400

4.1 Comparison of IWV retrievals from GNSS network and ERA5 reanalysis

Figure 8 shows the mean and standard deviation of hourly IWV from ERA5 and GNSS for the two-month period. The mean

IWV is seen to be relatively uniform over the region, with a small SW-NE gradient correlated with the sea surface temperature

(SST) gradient (SST decreasing towards the NE). The maximum, around 35 kgm−2, is observed below 13° N in the more

tropical part of the domain, and the minimum to the NE is around 30 kgm−2. The mean ERA5 field is generally in good405

agreement with the GNSS observations over the Caribbean Arc (CA), with an exception over Puerto Rico (18° N, 67° W)

where ERA5 has a small dry bias (0.5 - 1 kgm−2). On average over all stations, the mean difference (ERA5 - GNSS) is -0.34

± 0.50 kgm−2, pointing to a small dry bias of ERA5 in the region with some site-to-site variation. This result is consistent

with the bias that is discussed in the previous Section based on BCO results, and also with the results of a previous study

(Bosser and Bock, 2021). But further investigation is needed to explain the reason of this dry bias in ERA5 (e.g. its link with410

the data assimilation). In terms of temporal variability, the agreement between ERA5 and GNSS is also quite good, except

over Puerto Rico. There is significant spatial modulation of the magnitude of variability. Again the maximum is observed to

the South over the tropical Atlantic Ocean. The average difference of standard deviation (ERA5 - GNSS) is -0.25 kgm−2,

meaning that the variability in ERA5 is slightly underestimated compared to GNSS. This may be partly due to a difference

in representativeness between the GNSS point observations and the gridded reanalysis fields (Bock and Parracho, 2019) and415

partly to some special situations where the reanalysis underestimates high IWV contents (see Fig. 5).

Table S2 in the Supplement gives the comparison results for all stations. The mean and standard deviation of IWV differ-

ences (ERA5 - GNSS) have been cross-compared with the GNSS data quality diagnostics from Table S1 and no significant

correlation was found. We therefore believe the main differences are not due to GNSS uncertainties but rather to differences

in representativeness such as evidenced particularly over Puerto Rico. Closer inspection of the ERA5 orography for this is-420

land shows that the topography is largely mis-represented in the model where the highest elevation is 316 m above sea level

whereas the real topography reaches 1338 m. Also, the latitudinal extension of the island is exaggerated (e.g. GNSS station

EMPR at 18.47° N is at an altitude, or geoid height, of 10 m whereas the nearest model grid point at 18.5° N is at an altitude

of 103 m). Since almost all the stations considered in this study are located on small volcanic islands with steep topography,

the mis-representation of the topography is a major source of uncertainty in the GNSS and ERA5 comparison. This poses also425

some problems to the assimilation of observations taken from surface meteorological stations and upper air soundings.
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4.2 Couplings between clouds, circulation, and humidity at the synoptic scale

To illustrate the spatio-temporal variability of IWV at the regional scale we have selected five GNSS stations representative of

the different parts of the Caribbean Arc (CA). The GNSS station CRO1 (St Croix, US Virgin Islands, 17.76° N, 64.58° W) was

chosen as representative of northern CA. The GNSS station of LDIS (Guadeloupe, 16.30° N, 61.07° W) and FFT2 (Martinique,430

14.60° N, 61.06° W) were chosen as representative of central CA, GNSS station BCOS (13.16° N, 59.42° W) was selected

as being representative of Barbados and the GNSS station of GRE1 (Grenade, 12.22° N, 61.64° W) was selected for southern

CA. The selection accounted for the continuity of the series (ideally 1440 hourly IWVs over the two months of January and

February 2020), and the processing quality diagnostics (see Sect. 2.3.3 and Table S1). For the islands associated with several

stations (e.g. 15 for Guadeloupe and 6 for Martinique), the GNSS station with the most complete IWV series and the best data435

quality was chosen.

The IWV times series associated with the five GNSS stations are shown in Fig. 9. They highlight substantial variability

in the course of the January-February 2020 period, alternating moist (in excess of 50 kgm−2) and dry (below 20 kgm−2)

episodes, sometimes within a few days as for instance in Barbados where GNSS-derived IWV was observed to decrease from

54.3 kgm−2 to 17.8 kgm−2 between 2300 UTC on 23 January and 2100 UTC on 27 January 2020 (Fig. 9d). Unsurprisingly,440

the time series of the five GNSS stations spanning over a region of 6° in latitude do not show obvious correlations, suggesting

that they are not influenced by the same IWV-impacting weather at the same time in the course of the two months.

Among the processes likely to strongly impact the IWV fields in the Tradewinds, shallow convection is of paramount

importance. Stevens et al. (2020) have shown that cloud mesoscale organisation in the Tradewinds is dominated by four main

patterns referred to as Fish, Flowers, Gravel and Sugar. These patterns have also been shown to depend on environmental445

conditions (Bony et al., 2020; Rasp et al., 2020; Schulz et al., 2021). The clouds embedded in these patterns are characterized

by different vertical and horizontal extensions, reflectivity, separation, etc. For instance, it has been shown that the clouds

compositing the Fish, Gravel, and Flowers have similar vertical extent (see Stevens et al. (2020), their Fig. 9, based on radar

observations in Barbados), but different from the small clouds composing the Sugar. For details on the characteristics of the

four cloud patterns, the reader is referred to Stevens et al. (2020); Schulz et al. (2021).450

In order to obtain a first assessment of the IWV values characterizing the environment of the mesoscale cloud organization

in the region of the CA, we have performed a visual classification of the cloud scenes over sixty days (between 1 January and

29 February 2020) over a domain spanning from 57.4° W to 67.6° W and from 8.9° N to 19.1° N. Our domain is similar in size

to the one used by Stevens et al. (2020) for the same months between 2007 and 2016, but shifted west by 10° and slightly south

as well to include the CA. The classification was performed by visual inspection of the MODIS Aqua and Terra visible images455

at 1330 and 1030 local equator crossing time available from NASA WorldView (https://worldview.earthdata.nasa.gov/, last

access: 29 January 2021). Unlike Stevens et al. (2020), we did not classify the dominant cloud scenes across the domain, but

came up with a classification of the cloud scenes around each of the selected GNSS stations in order to more accurately link

GNSS-derived IWVs with cloud organisation. This was necessary as on some days the different parts of the domain were not

under the influence of the same cloud pattern as for example shown in the Aqua and Terra MODIS images on 19 January 2020460
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(Fig. 10). On that day, St Croix was under the influence of a Fish while Barbados was surrounded by clear air. The clear-sky

band in between two cloud clusters is actually part of the Fish pattern. Guadeloupe located off the southern edge of the Fish

structure and was surrounded by Gravel, while Martinique and Grenade further south were bordered by Sugar. On other days

such as 13 January 2020, Gravel was observed to be uniformly spread across the CA domain (Fig. 10). The classification

performed for each of the five sites in January and February 2020 are provided in the Fig. 11.465

For each of the five GNSS stations representative of the different parts of the CA, the time series of cloud classification is

also shown, with Fish appearing in red, Gravel in green, Sugar in light blue, Flowers in dark blue and cloud-free conditions

in white. As also observed by Stevens et al. (2020) between 2007 and 2016, Gravel-type was the dominant mode of cloud

organisation over the CA during January and February 2020, with a number of cases ranging from 19 in Guadeloupe to 27 in

Grenade (Table 6). Fish was the next most dominant pattern of cloud organisation with a number of cases ranging from 10 in470

Martinique to 19 in St Croix and Guadeloupe. Sugar was the least observed cloud pattern (between 0 and 6 cases depending

on the site) as also demonstrated by Stevens et al. (2020). Flowers were observed more often in the central and southern part

of the CA (between 8 to 11 days), than in the northern part (on 3 days only). Finally, Cloud-free cases in between Fish and

Flowers were also observed on more than 10 days during the period of interest, except in the southern part of the CA where

only a few cloud-free days are observed.475

From the time series of IWV and the cloud classification shown in Fig. 9, and if we consider the two most dominant modes,

the picture emerges that Fish pattern (in red) is more systematically associated with higher IWV values than the Gravel pattern

(in green). This visual impression is confirmed when computing the average IWV values associated with Fish and Gravel

patterns over the five stations (Table 6). The mean IWV values in Fish environment are found between 40.5 and 35.1 kgm−2,

while their counterparts in gravel environment range between 33.1 and 30.8 kgm−2. Differences in the mean Fish-related and480

Gravel-related IWV values range between 4.3 kgm−2 (Guadeloupe) and 7.4 kgm−2 (Grenade), and are found to be significant

using a Student’s t-test (see Table 7). Clear scenes over the islands of interest are also seen to be associated with rather dry

conditions, whereas Flowers are associated with intermediate moister conditions with mean IWV values ranging between those

of Fish and Gravel. The differences in the mean Fish-related and clear conditions IWV values are also found to be significantly

different (the difference ranging between 8.4 kgm−2 in St Croix and 5 kgm−2 in Guadeloupe). Student’s t-tests also reveal485

that the difference in the IWV means of all the other pairs (i.e. Fish-Flowers, Gravel-Flowers, Gravel-Clear conditions and

Flowers-Clear conditions) are not significant.

From our analysis it also appears that ambient conditions in Grenade are moister than in the rest of the CA (this is reflected in

both the Fish-related and the Gravel-related mean IWV values), which is likely connected to the proximity of the Intertropical

Converge Zone located over the northeastern part of South America in boreal winter. Interestingly, the driest conditions are490

observed in Guadeloupe (the northern part of central CA) which may be an indication of a more pronounced influence of the

mid-latitudes.

In summary, based on a compilation of IWV values gathered from representative GNSS stations across the CA, we found

that the environment of Fish cloud patterns to be moister than that of Flowers cloud patterns which, in turn, is moister than the

environment of Gravel cloud patterns. This is consistent with the relative humidity profiles composited by Schulz et al. (2021).495
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Since Fish patterns are associated with weak winds (relative to Flowers or Gravel (Bony et al., 2020), it means that this high

humidity is related to mass convergence within the column, associated with ascent. The differences in the IWV means between

Fish and Gravel were assessed to be significant. Finally, the Gravel moisture environment was found to be similar to that of

clear, cloud-free conditions. The moister environment associated with the Sugar cloud pattern has not been assessed because

it was never prominent around the GNSS stations during the first two months of 2020 (but Sugar-like clouds occur very often500

within mesoscale cloud patterns).

In the following, we focus on the specific period during which a large variation of IWV was observed at the GNSS station

BCOS in Barbados from 54.3 kgm−2 to 17.8 kgm−2 between 2300 UTC on 23 January and 2100 UTC on 27 January 2020,

associated with a transition from a Fish cloud pattern to clear, cloud-free conditions (see the cloud scene classification in Fig.

9d). For the period from 20 to 30 January, the extreme IWV values were indeed observed in Barbados (i.e. values given above),505

the closest lowest values being observed in Martinique on 20 January and the closest highest value in St Croix on 24 January

2020.

On 22 January, a large southeast-northwest oriented Fish feature is observed with MODIS to extend over a large portion

of the CA, from Barbados to Guadeloupe, also covering Martinique (Fig. 13a), while Grenade is located in clearer air south

of the Fish and St Croix is covered by another distinct Fish feature further north. Figure 14a shows the ERA5-derived IWV510

field over the same domain as the MODIS Aqua visible image at roughly the same time (∼1500 UTC) together with the

GNSS-derived IWV values (overlain within open white circles at the location of the 49 GNSS stations). The Fish feature

extending over central CA is associated with a plume of rather high IWV over Barbados and Martinique in the ERA5 field,

but does not reach to Guadeloupe whereas GNSS retrievals indicate higher IWV values in the southern part of the island. The

GNSS stations in Barbados, Martinique and Guadeloupe all show IWV values in excess of 35 kgm−2 after 1200 UTC on that515

day, while lower values are observed in Grenade to the south and St Croix to the north (Fig. 12). In Barbados, a maximum

IWV value of 48.6 kgm−2 was observed at 1200 UTC which is associated with a deep moist lower troposphere as observed

from the radiosounding measurements made from the BCO (Figs. 7a and b). Using trajectory analyses from the LAGRANTO

Lagrangian analysis tool (Sprenger and Wernli, 2015), Villiger et al. (2020) also evidenced that air parcels arriving at 1000-

700 hPa above the BCO are transported from high latitudes towards the BCO by an extratropical surface cyclone/upper level520

trough located off the US East coast. The initially dry air parcels descend from upper-levels into the boundary layer, where

they experience a rapid moistening, before arriving at the BCO as anomalously humid.

On 23 January, a southeast-northwest oriented Fish feature is also observed with MODIS to extend between Barbados and

Martinique. Guadeloupe is under the influence of another distinct Fish feature further north, while Sugar is observed to surround

Grenade and cloud-free conditions are found over St Croix (Fig. 13b). Three distinct IWV plumes are seen in the ERA5 field,525

one over Puerto Rico, one further east over the Netherlands Antilles almost reaching Guadeloupe and one extending from the

southeast over Barbados and Martinique (Fig. 14b). Drier air masses are seen in St Croix (located between two IWV plumes

to the north) and in Grenade along the southern edge of the southernmost plume. Comparison between ERA5 and GNSS

IWV values suggest that the southernmost plume in ERA5 is located a bit too far south as ERA5 IWVs are underestimated in

Barbados and Martinique, and slightly overestimated in Grenade. On that day also, the GNSS stations in Barbados, Martinique530
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and Guadeloupe all show IWV values in excess of 35 kgm−2 after 1200 UTC, while lower values are observed in Grenade

to the south and St Croix to the north (Fig. 12). The maximum IWV value of 54.3 kgm−2 observed at the end of the day in

Barbados is in good agreement with that derived from the high-resolution radiosounding performed at 2240 UTC at the BCO

(Fig. 5). It exhibits a deep moist layer, with a nearly 100 % relative humidity in the first 5 km of the troposphere (Figs. 7c and

d) which was also highlighted by Stephan et al. (2020), their Fig. 9. Like on 22 January, the moist air below 5 km above the535

BCO is associated with transport from high latitudes towards the BCO by the extratropical surface cyclone/upper level trough

off the US East Coast (Villiger et al., 2020).

On 24 January, the cloud scene over the CA is dominated by Fish features again, with the previously observed southern

southeast-northwest oriented Fish pattern being shifted to the west, clearing most of the central CA and Barbados, while

moving over Grenade (Fig. 13c). It merges over the Caribbean Sea with a southwest-northeast oriented Fish structure going540

across the CA north of Guadeloupe. St Croix is underneath a distinct Fish at that time. As a result, Guadeloupe, Martinique

and Barbados are in a mostly cloud-free air mass moving in westward behind the ‘<’-shaped Fish structure. As shown in Fig.

14c, the ‘<’-shaped structure of Fish pattern also reflects in the ERA5-related IWV field, with higher IWV values located to the

south of Barbados and to the east of Grenade. The northern branch of the ‘<’-shaped plume appears to be located too far east in

ERA5 as suggested by the slight overestimation of IWVs over Guadeloupe compared to the GNSS retrievals. Consistent with545

the above described spatial distribution, the GNSS stations in Grenade shows the highest IWV values (reaching 50 kgm−2)

after 1200 UTC, while lower similar values (and a similar decreasing trend) are observed in Barbados, Martinique, Guadeloupe

and St Croix further north (Fig. 12).

On 25 January, Grenade and St Croix appear beneath the remains of two distinct Fish features, while cloud-free conditions

are observed in the rest of the CA. The central part of the CA is bordered with Sugar to the east (Fig. 13d). The ‘<’-shaped550

feature of higher IWVs is still visible in the ERA5 field further west with respect to the previous day, with most of the central

part of the CA being located in a drier environment (Fig. 14d). On that day also, the northern branch of the ‘<’-shaped IWV

plume appears to be located too far east in ERA5. The GNSS stations in Grenade shows the highest IWV values after 1200

UTC even though IWV is observed to decrease on that day as the ‘<’-shaped plume is moving west. IWV values in Barbados,

Martinique and Guadeloupe are even smaller than the previous days as drier air masses continue to move in from the Tropical555

north Atlantic (Fig. 12). A maximum of IWV is observed in St Croix in relationship with the presence of a Fish feature.

On 26 January, IWV values in Grenade, Barbados and Martinique continue to drop (Fig. 12) as large scale cloud features

(and related higher IWV values) continue to be advected westward (Figs. 13e and 14e, respectively). Cloud-free conditions

now dominate the central part of the domain, while Fish features are observed in the northwestern most corner of the domain,

covering both St Croix and Guadeloupe. As a result, the GNSS station in St Croix highlights a maximum of IWV reaching560

50 kgm−2, while larger IWV values than the previous day are also observed in Guadeloupe (Fig. 12), consistent with the

spatial distribution of IWV obtained with ERA5 (Fig. 14e).

Finally, on 27 January, a well-defined Fish feature is observed in the north of the domain, covering the US Virgin Islands and

St Croix (Fig. 13f), which is associated with a plume of IWV values between 40 and 50 kgm−2 (Fig. 14f). All the other stations

to the south are located in the drier, mostly clear-free air mass to the east of the Fish pattern. Martinique and Guadeloupe are565
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surrounded by Sugar while the environment of Barbados and Guadeloupe is observed to be cloud-free (Figs. 11 and 13f). The

GNSS station in St Croix highlights a IWV maximum of 50 kgm−2 for the second consecutive day, while in Barbados and

Grenade the GNSS stations record the lowest IWV values of the period after 1200 UTC as the driest conditions are evidenced

with ERA5 over the Tropical North Atlantic east of central CA (Fig. 14f). In Martinique and Guadeloupe, higher IWV values

are observed (between 30 and 35 kgm−2) after 1200 UTC (Fig. 12) as both stations appear to be located in regions of IWV570

gradients west of the drier air masses (Fig. 14f).

It is also worth noting that from 16 to 22 January the IWV features as modelled with ERA5 are moving westward across

the CA domain (not shown). On 22 and 23 January, IWV features remain quasi-stationary, while from 24 January onward,

there is a clear decoupling between the northern and southern part of the domain, with IWV features north of 14° N being

advected eastward and IWV structures south of 14° N moving westward. This is the origin of the ‘<’-shaped IWV feature seen575

on 24 and 25 January (Figs. 14c,d) as well as the the ‘<’-shaped Fish pattern observed in the MODIS images (Figs. 13c,d). The

eastward motion north of 14° N on 24 and 25 January is likely related to the growing influence of an extratropical disturbance

(sea surface pressure of 1005 hPa, not to be confused with the extratropical cyclone off the US East Coast) that formed north of

Puerto Rico on 22 January, with its center located at 30° N, 65° W, and moved northeastward in the following days (the center

of the disturbance is located at 35° N, 45° W on 25 January).580

5 Discussion and conclusions

This paper describes the data processing streams and discussed the quality of GNSS ZTD and IWV retrievals from four

operational streams run by IGN and ENSTA-B/IPGP and one research stream (GIPSY repro1), see Table 1. The two operational

streams run by IGN (RGP NRT and RGP daily) provide data for stations BCON and BCOS, the two GNSS stations installed

at the BCO for EUREC4A in October 2019, as a well as a few other sites in the French overseas territories of the Antilles.585

The RGP NRT stream provides ZTD estimate within 45 min after the end of measurements which are generally available for

assimilation into NWP models. We showed that this stream had some instabilities, especially in most recent 1-hour time slot,

which are corrected in the t-2h time slot. This instability was found to be related with the processing scheme and was corrected

since then by IGN. The other operational streams were shown to be in good agreement, with a small bias of 2 mm in ZTD

between the IGN and ENSTA-B/IPGP solutions due to the use of two different software packages. IWV estimates are made590

available for stations BCON and BCOS from all four operational streams since 31 October 2019. This offers the possibility to

analyse the IWV time series both in near real time and on the long term. However, due to the use of various different ZTD to

IWV conversion methods and auxiliary data, the uncertainty in the IWV estimates is variable and not optimal in these streams

(see Table 4). It is planned in the near future to improve and homogenize the operational IWV conversion approach for all four

operational streams and make these data available to the users.595

The GIPSY repro1 research stream includes 49 GNSS stations covering the Caribbean Arc (see Fig. 1). The ZTD and

IWV estimates from this stream, which is the main focus of this paper, have been analysed for the period 1 January-29

February 2020 and made available with 5 minute time sampling for scientific applications. This stream used a slightly improved
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processing approach and IWV conversion method and auxiliary data with reduced uncertainties. The uncertainty due to the

IWV conversion is believed to be at the level of ± 0.2 kgm−2 (see the Appendix). The data have been thoroughly quality600

checked and screened for outliers (see the Supplemental material).

The GNSS IWV estimates set have been compared to the Vaisala RS41 radiosonde measurements operated from the BCO

and to the measurements from the operational radiosonde station at GAIA (see Table 5). A significant dry bias is found in

the GAIA humidity observations, both with respect to the RS41 sondes (-2.9 kgm−2) and to the GNSS results (-1.2 kgm−2).

The RS41 sondes and GNSS measurements show also a systematic difference, with a mean of 1.64 kgm−2 or 5 %, where605

the GNSS retrievals are drier than the sonde measurements. The IWV estimates from a colocated MWR agree with the RS41

results after an instrumental update on 27 January, while they exhibit a dry bias compared to GNSS and sondes before that date.

Understanding the origins of the various moisture biases requires further investigation that is beyond the scope of this paper.

However, the GNSS minus sonde bias resembles strongly the results reported by Ciesielski et al. (2014b) where GNSS IWV

data were compared to corrected Vaisala RS92 radiosonde measurements at several sites in the Indian Ocean. These authors610

found a similar dry bias in the GNSS data although good agreement was found with MWR measurements. However, the same

authors also found systematic dry biases in satellite microwave data and in NWP model analyses/reanalyses compared to their

corrected radiosonde data. Other studies found either dry or wet biases, or no bias at all, between GNSS, radiosondes, and

other techniques (see e.g. Buehler et al. (2012) and references therein, and also Bock et al. (2007); Wang and Zhang (2008);

Yoneyama et al. (2008); Ning et al. (2012)).615

A global dry bias intrinsic in the GNSS technique is unlikely. Instead, site-specific error sources are thought to contribute

to biases with variable signs and magnitudes. It has been observed that at sites with multipath, satellite visibility obstructions,

and/or electromagnetic interferences, the ZTD estimates can be biased either dry or wet (Ning et al., 2011). Biases can also

result from using wrong antenna models or inaccurate mapping functions. Such situations can be detected by performing

cutoff tests and can be partly mitigated by using a higher cutoff angle. We checked the BCO GNSS data by reprocessing the620

measurements using two different cutoff angles, one lower (5°) and one higher (10°) than the nominal value (7°) and found

negligible impact on the mean ZTD estimates. This result excludes the hypothesis of any of those bias sources. However, GNSS

is not an absolute remote sensing technique and unless the IWV estimates are compared to an adequate reference it is difficult

to figure out which part of the observed bias is due to GNSS or to the RS41 sondes.

IWV estimates from the ERA5 reanalysis were also compared to GNSS data and to BCO and GAIA sonde data. It was found625

that the IWV content from reanalysis over Barbados is overall close to the GAIA observations. Indeed, ERA5 assimilated the

GAIA sondes but not the sondes from the BCO during EUREC4A (Irina Sandu, ECMWF, personal communication). At several

occasions, ERA5 is also shown to significantly underestimate IWV peaks observed by all systems (sondes, GNSS, and MWR)

by 5 to 8 kgm−2 (see Fig. 5). Two such events are documented (22 January and 23/24 January) during which a deep moist layer

extended from the surface up to altitudes of 3.5 and 5 km (see Fig. 7). It was shown that ERA5 significantly underestimated the630

moisture content in the upper part of these layers, possibly due to the assimilation of other data over the domain that were biased

low. Overall, the reanalysis showed a small dry bias (0.34 ± 0.50 kgm−2) over the study area in comparison to the 49 GNSS

stations. Although the assimilation of biased radiosonde data might be thought as a potential reason, recent experiments with
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the ECMWF Integrated Forecasting System show that removing all the radiosondes and dropsondes in the EUREC4A domain

does not significantly impact the simulated humidity field (Savazzi and Sandu, personal communication). Understanding the635

origin of the mean and occasional dry biases in ERA5 needs further investigation.

At the synoptic scale, ERA5 showed spatio-temporal variations in the IWV field over the domain which were in general

in good agreement with the observations from the GNSS network. The link with the cloud organisation was studied using

MODIS visible images inspired by the classification of Stevens et al. (2020). We found that the environment of Fish cloud

patterns was moister than that of Flowers cloud patterns which, in turn, is moister than the environment of Gravel cloud640

patterns. The differences in the IWV means between Fish and Gravel were assessed to be significant. Finally, the Gravel

moisture environment was found to be similar to that of clear, cloud-free conditions. The moisture environment associated

with the Sugar cloud pattern has not been assessed because it was hardly observed during the first two months of 2020.

These preliminary results prompt for a more systematic analysis of the cloud organisation and the lower and mid-tropospheric

moisture field.645
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Figure 1. Map of GNSS stations for which the measurements were reprocessed from 1 January to 29 February 2020. The data sources are

indicated below the figure.
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Figure 2. Time series of the auxiliary data (ZHD and K) used to convert ZTD to IWV in the different GNSS streams: high resolution ERA5

pressure level data, ECMWF analysis provided by TUV, surface pressure and temperature observations (PTU) for GNSS station BCON. Top:

from 1 January to 29 February 2020. Bottom: from 1 to 6 January 2020.
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Figure 3. Time series of ZTD estimates and formal errors (sigma) from RGP NRT.4, RGP daily, and GIPSY repro1 solutions from 1 January

to 29 February 2020.

29



Figure 4. Time series of IWV from near real time GNSS processing (RGP NRT.6) compared to post-processed GNSS (GIPSY repro1) from

10 to 20 January 2020. The upper plot shows the IWV time series and the lower plot the IWV difference (NRT minus repro1).
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Figure 5. Time series of IWV from GNSS station BCON, RS41 sondes and HATPRO microwave radiometer colocated at BCO, as well

as operational sondes from Grantley Adams International Airport (WMO ID 78954) and ERA5 reanalysis, from 15 January to 19 February

2020. The grey vertical bars at the bottom of the plot show precipitation data collected at BCO.
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Figure 6. Pairwise scatter diagrams of IWV estimates from GNSS station BCON (GPS), HATPRO MWR, Vaisala RS41 radiosondes released

from the BCO (RS BCO), operational radiosondes released from Grantley Adams International Airport (RS GA), and ERA5 reanalysis. The

HATPRO data set has been separated in two parts, before (black symbols) and after (red) the 27 January when the system was fixed for

an instrumental failure. Note that sample sizes are different between diagrams because each comparison is done with the highest temporal

resolution for the period of available data between 1 January and 29 February 2020.
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Figure 7. Humidity profiles from BCO and Grantley Adams radiosondes(WMO ID 78954) on (a, b) 22 January 2020 at 12 UTC and (c, d)

24 January 2020 at 00 UTC (exact times are indicated in the plot legend).
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Figure 8. Upper plots: mean and standard deviation of hourly IWV from ERA5 (background) and GNSS (circles) from 1 January to 29

February 2020. Lower plots: difference of mean and standard deviation of hourly IWV values (ERA5 - GNSS). In the upper plots, the GNSS

IWV data have been height corrected and gaps have been filled with ERA5 values to minimize representativeness differences. In the lower

plots, ERA5 IWV data have computed from pressure level profiles from the height of the GNSS stations upwards (no correction applied to

GNSS IWV data).

34



Figure 9. Time series of IWV from five GNSS stations for the period from 1 January to 29 February 2020 as well as the type of cloud patterns

in the vicinity of the GNSS sites (see color code in Fig. 11).
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Figure 10. Visible image from (upper left) MODIS Aqua and (upper right) Terra, on 19 January 2020, and (lower) MODIS Aqua, on 13

January 2020, depicting different cloud organisations over the study domain (57.4-67.6° W and 8.9-19.1° N). The yellow arrows locate St

Croix (north-west) and Barbados (south-east) in the upper left image, and Guadeloupe, Martinique and Grenade (from north to south) in the

upper right image. In the lower image, a Gravel cloud organisation is observed uniformly across the domain on 13 January 2020. Source:

NASA WorldView (https://worldview.earthdata.nasa.gov/, last access: 29 January 2021).
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Figure 11. Cloud type classification performed for each of the five sites in January and February 2020.
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Figure 12. IWV time series observed from GNSS over each of the five sites between 20 and 30 January 2020.
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Figure 13. Visible images from MODIS Aqua around 1330 UTC on each day between 22 and 27 January 2020 (from left to right and top to

bottom). Source: NASA WorldView (https://worldview.earthdata.nasa.gov/, last access: 29 January 2021).
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Figure 14. IWV fields from ERA5 reanalysis (background) and GNSS (circles) at 1500 UTC on each day between 22 and 27 January 2020

(see text insert in each image).
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Table 1. Details of the five processing streams operated by IGN and ENSTA_B/IPGP in the framework of EUREC4A.

RGP NRT  

Availability 31 October 2019 - present 
Software Bernese GNSS software v5.2 
Strategy Double-difference solution  
Network 30 to 40 permanent stations from South America to Canada 
Orbits and clocks Ultra-rapid IGS 
Window length 6 h, shifted by 1 h every hour 
Elevation cutoff angle  10° 
Observation sampling 30 s 
Observation weighting σ2 = 10-6/cos2(Z) where Z = zenith angle 
Tropospheric model ZHD and ZWD a priori : GPT model 

ZHD and ZWD mapping functions : GMF ; Gradient mapping function : tilting 
ZWD sampling : 15 min ; Gradient sampling : 1 per window 
ZWD constraint : 5 m absolute and 1 mm relative ; gradient constraint : 5 m 

Coordinate estimates Fixed 
Ambiguity resolution quasi-ionosphere free (baselines ≥ 20 km) and Sigma (baselines < 20 km) 
Specific features  
(NRT only) 

Re-use of the normal equation from previous solution 

RGP daily (difference wrt RGP NRT) 

Availability 31 October 2019 - present 
Network 70 to 80 permanent stations from South America to Canada 
Orbits and clocks Rapid ESA (European Space Agency) 
Window length 24 h 
Tropospheric model ZWD constraint : 5 m absolute and relative 

GIPSY rapid  

Availability 31 October 2019 - present 
Software GIPSY OASIS II software v6.4 
Strategy Precise Point Positioning (PPP) solution  
Orbits and clocks Rapid JPL (Jet Propulsion Laboratory) 
Window length 30 h (21UTC day D-1 to 03UTC day D+1) 
Elevation cutoff angle  7° 
Observation sampling 5 min 
Observation weighting Uniform weighting 
Tropospheric model ZHD and ZWD a priori : 6-hourly ECMWF analysis (provided by TUV) 

ZHD and ZWD mapping functions : VMF1 ; Gradient mapping function : Bar Sever, 1998 
ZWD and gradient model : Random Walk  
ZWD and gradient sampling : 5 min  
ZWD and gradient constraints : 5 mm h -1/2 (ZWD) and 0.5 mm h -1/2 (gradients) 

Coordinate estimates Estimated once per window 
Ambiguity resolution Bertiger et al., 2010 

GIPSY final (difference wrt GIPSY rapid) 

Orbits and clocks Final JPL 

GIPSY repro1 (difference wrt GIPSY rapid) 

Availability 1 January – 29 February 2020 
Orbits and clocks Final JPL 
Ionospheric model Order 2 
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Table 2. RGP NRT ZTD and IWV solutions (NRT.1 to NRT.6) compared to RGP daily and GIPSY repro1, station BCON, period 1 January

2020 to 29 February 2020. In the upper row, ’Sigma’ indicates the mean formal error of the RGP NRT solutions (in meters). The comparisons

show: mean differences (RGP NRT minus RGP daily/GIPSY repro1), standard deviation of differences and the number of points (NP). The

RGP daily data sampling is 1 hour and the GIPSY repro1 sampling is 5 min.

ZTD NRT.1 NRT.2 NRT.3 NRT.4 NRT.5 NRT.6 

Sigma (m)  0.0034  0.0034  0.0036  0.0040  0.0046  0.0061 

Compared to RGP daily (1-hourly) 

Mean diff. (m) -0.0406 -0.0314 -0.0190 -0.0076  0.0018  0.0076 

Std. Diff. (m)  0.0169  0.0127  0.0103  0.0094  0.0104  0.0129 

NP 1436 1437 1438 1439 1440 1438 

Compared to GIPSY repro1 (5-min) 

Mean diff. (m) -0.0360 -0.0243 -0.0123 -0.0016  0.0066  0.0108 

Std. Diff. (m)  0.0154  0.0126  0.0107  0.0102  0.0111  0.0131 

NP 5733 5737 5741 5745 5743 5724 

       

IWV NRT.1 NRT.2 NRT.3 NRT.4 NRT.5 NRT.6 

Compared to RGP daily (1-hourly) 

Mean diff. (kg m-2) -6.58 -5.10 -3.08 -1.24  0.29  1.23 

Std. Diff. (kg m-2)  2.73  2.06  1.67  1.52  1.69  2.08 

NP 1434 1435 1436 1437 1438 1437 

Compared to GIPSY repro1 (5-min) 

Mean diff. (kg m-2) -6.13 -4.24 -2.29 -0.55  0.77  1.46 

Std. Diff. (kg m-2)  2.48  2.03  1.74  1.66  1.82  2.14 

NP 5727 5731 5735 5739 5738 5720 
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Table 3. Similar to Table 2, but for RGP daily, GIPSY rapid and GIPSY repro1 results, for stations BCON and BCOS. The leftmost part

shows ZTD results and the rightmost shows IWV results.

ZTD BCON BCOS  IWV BCON BCOS 

RGP_daily.vs.GIPSY_rapid 

Mean diff. (m) 0.0021 0.0011 Mean diff. (kg m-2) -0.390 -0.550 

Std. Diff. (m) 0.0058 0.0057 Std. Diff. (kg m-2)  1.000  1.000 

NP 1440 1440 NP 1438 1438 

RGP_daily.vs.GIPSY_repro1 

Mean diff. (m) 0.0024 0.0013 Mean diff. (kg m-2) 0.085 -0.085 

Std. Diff. (m) 0.0058 0.0057 Std. Diff. (kg m-2) 0.955  0.942 

NP 1440 1440 NP 1438 1438 

GIPSY_rapid.vs.GIPSY_final 

Mean diff. (m) 0.0003 0.0003 Mean diff. (kg m-2) 0.055 0.048 

Std. Diff. (m) 0.0008 0.0008 Std. Diff. (kg m-2) 0.129 0.129 

NP 17275 17280 NP 17275 17280 

GIPSY_rapid.vs.GIPSY_repro1 

Mean diff. (m) 0.0003 0.0002 Mean diff. (kg m-2) 0.473 0.463 

Std. Diff. (m) 0.0018 0.0017 Std. Diff. (kg m-2) 0.468 0.480 

NP 17268 17272 NP 17266 17264 

GIPSY_final.vs.GIPSY_repro1 

Mean diff. (m) -0.0001 -0.0001 Mean diff. (kg m-2) 0.418 0.415 

Std. Diff. (m)  0.0016  0.0016 Std. Diff. (kg m-2) 0.450 0.461 

NP 17266 17272 NP 17266 17264 
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Table 4. Separation of bias (mean) and random errors (one standard deviation) of IWV differences into contributions from ZTD differences,

ZHD differences, and K differences, for two operational data streams (RGP daily and GIPSY rapid) and the reprocessed stream (GIPSY

repro1). The three streams involve different auxiliary data for the ZTD to IWV conversion from PTU, TUV, and ERA5. See text for more

details.

ZTD data Auxiliary 
data 

Contribution to bias 
(kg m-2) 

Contribution to random error 
(kg m-2) 

  ZTD ZHD K  total ZTD ZHD K total 

RGP_daily - GIPSY_rapid PTU - TUV   0.34   0.29 - 0.44 - 0.39 0.92 0.36 0.17 0.99 

RGP_daily - GIPSY_repro1 PTU - ERA5   0.39 - 0.13 - 0.44   0.08 0.94 0.08 0.18 0.95 

GIPSY_rapid - GIPSY_repro1 TUV - ERA5 - 0.02 - 0.43   0.00   0.41 0.28 0.36 0.06 0.46 
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Table 5. Pairwise comparison of IWV estimates from GNSS station BCON (GPS), HATPRO MWR, Vaisala RS41 radiosondes released

from the BCO (RS BCO), operational radiosondes released from Grantley Adams International Airport (RS GA), and ERA5 reanalysis. The

HATPRO data set has been separated in two parts, before and after the 27 January when the system was fixed for an instrumental failure. For

each period the data from all sources have been time-matched.

Comparison Mean diff. 
(kg m-2) 

Std. Diff. 
(kg m-2) 

Slope Offset 
(kg m-2) 

R NP 

Period 1 January – 29 February 2020 

BCO – GPS    1.60 0.85 1.06 - 0.21 0.99 60 

GA – GPS  - 1.26 1.59 0.99 - 1.17 0.96 60 

ERA5 – GPS - 1.02 1.64 0.93   1.27 0.96 60 

GA – BCO  - 2.86 1.84 0.94 - 0.65 0.95 60 

ERA5 – BCO  - 2.62 1.91 0.92   0.37 0.96 60 

ERA5 – GA    0.24 1.57 0.98   1.02 0.96 60 

Period 1 January – 27 January 2020 

HATPRO – GPS  - 1.00 1.76 1.23 - 8.81 0.98 14 

HATPRO – BCO  - 2.36 1.15 1.11 - 6.18 0.99 14 

HATPRO – GA  - 0.16 2.59 1.16 - 5.38 0.92 14 

HATPRO – ERA5  - 0.13 2.09 1.18 - 5.91 0.96 14 

Period 28 January – 15 February 2020 

HATPRO – GPS   2.08 0.83 1.13 - 1.96 0.99 36 

HATPRO – BCO    0.53 0.77 1.06 - 1.50 0.99 36 

HATPRO – GA  3.26 1.69 1.11 - 0.28 0.95 36 

HATPRO – ERA5  2.97 1.65 1.14 - 1.74 0.96 36 
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Table 6. Upper part: number of cases over the five sites of interest in the Caribbean Arc in January and February 2020 for each cloud

organisation type, Fish, Flower, Gravel and Sugar, or lack thereof, according to the classification of (Stevens et al., 2020). The cases were

identified by visual inspection of the MODIS Aqua and Terra visible images at 1330 and 1030 local equator crossing time available

from NASA WorldView (https://worldview.earthdata.nasa.gov/, last access: 29 January 2021). Lower part: mean and standard deviation of

GNSS-derived IWVs associated with Fish, Gravel, Flowers and clear conditions.

Station 
St Croix 
(CRO1) 

Guadeloupe 
(LDIS) 

Martinique 
(FFT2) 

Barbados 
(BCOS) 

Grenade 
(GRE1) 

Cloud organisation type 

Fish 20 19 10 13 14 

Flowers 2 8 9 6 6 

Gravel 26 19 23 23 27 

Sugar 3 0 3 2 6 

Clear 10 12 13 14 5 

IWV mean and standard deviation (kg m-2) 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Fish 38.0 4.6 35.1 3.5 38.3 4.0 37.3 4.8 40.5 4.3 

Flowers 32.3 1.9 34.2 3.6 34.4 5.1 32.9 5.0 33.1 6.7 

Gravel 30.9 2.9 30.9 2.1 31.4 3.5 31.5 3.7 33.1 4.6 

Clear 29.7 6.7 30.1 4.4 32.1 7.3 32.4 6 33.2 5.2 
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Table 7. Significance of differences in the means of IWV samples using a Student’s t-test across all stations. ‘Yes’ means that the means are

statistically different at the level 0.05.

 Fish Gravel Flowers Clear 

Fish  Yes No Yes 

Gravel Yes  No No 

Flowers No No  No 

Clear Yes No No  
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Appendix A: Updated refractivity coefficients and their uncertainty

The calculation of ZHD and κ(Tm) from Eq. (2) and (4) involves refractivity coefficients k1, k2, and k3, and specific gas

constants for dry air and water vapour (Rd and Rv), with k′2 = k2 − k1 × (Rd/Rv). The specific gas constants that we used

hereafter are Rd = 287.001 J K−1 kg−1 for dry air (which includes an updated mixing ratio of 408 ppm for CO2) and Rv =

461.522 J K−1 kg−1 (Kestin et al., 1984).805

Many authors published refractivity coefficients from experimental work performed between the 1950s and the 1970s. Smith

and Weintraub (1953) compiled and averaged the early measurements, and Hasegawa and Stokesberry (1975) compiled and

characterized a significantly larger number of experimental results. Thayer (1974) developed an alternative and hybrid approach

which includes measurements extrapolated from optical frequencies. Bevis et al. (1994) revisited the data used by Hasegawa

and Stokesberry (1975) and determined a new set of average values and associated uncertainties. Finally, Rueger (2002) pro-810

posed a new set of „best average“ coefficients after reassessing the data set used by Bevis et al. (1994). While there has been

a broad consensus on the value of k1 among previous authors, Rueger’s new k1 coefficient is 0.115 % larger than previous

values. The impact on ZHD would be an increase of about 2.6 mm at mean sea level (i.e. a bias in IWV of −0.4 kgm−2).

The impact is also significant on the determination of bending angles from GNSS radio-occultation measurements as discussed

by Healy (2011). The latter author examined the origin of the increase in Rueger’s k1 and identified two obvious reasons: a815

numerical inconsistency in the value of 0 °C = 273 K instead of 273.15 K and neglecting CO2 in the gas mixture composing

the dry air in many previous studies. Healy (2011) highlights that although Rueger’s estimate of k1 appears to be more robust

and defendable than the previous values, it also has one significant caveat as it does not account for non-ideal gas effects.

According to the significant work done by Rueger (2002) in re-assessing past measurements and re-evaluating the refractivity

coefficients we believe that his results are the more accurate to date and will use them along with a correction for the non-ideal820

gas effects, as suggested by Healy (2011), and an update for present CO2 content.

We start with Rueger (2002)’s ’best average’ coefficients k′1=77.6681 K hPa−1, k2=71.2952 K hPa−1, k3=375463 K2 hPa−1,

k4=133.4800 K hPa−1, where k4 is the refractivity constant for CO2 and k′1 it the refractivity constant for dry air without CO2.

Using a present day CO2 mixing ratio of rc=408 ppm, k′1 and k4 can be summed together to form k1, the refractivity constant

for dry air including CO2, k1 = k′1 ·(1−rc)+k4 ·rc, to give k1 = 77.6909 K hPa−1. The last step is correcting for the non-ideal825

gas effects using the compressibility factor given by Owens (1967), i.e. 1/Zd = 1.000588 for dry air at 273.15 K and 1013.25

hPa, and 1/Zw = 1.000698 for water vapour at 293.15 K and a partial pressure of 13.33 hPa (the conditions of measurements

of refractivity used by Rueger (2002)). Finally, the updated refractivity coefficients become:

k1 = 77.6452± 0.0094 K hPa−1

k2 = 71.2± 1.3 K hPa−1830

k3 = (3.7520± 0.0076) · 105 K2 hPa−1

where we included the uncertainties evaluated by Rueger (2002). If we assume that these uncertainties are fair estimates of

the true absolute accuracy of the coefficients, the uncertainty in the IWV estimates due to k1, k2, and k3, would be: 0.04, 0.03,
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and 0.06 kgm−2, respectively, under the average conditions of EUREC4A (IWV = 32 kgm−2). The systematic bias due to the

uncertainty in the refractivity coefficients is thus extremely small. However, using the new estimates can make some systematic835

difference compared to those used in past studies.

Figure A1 compares the new refractivity coefficients to those from Thayer (1974) and Bevis et al. (1994), which are the

two most widely used data sources in GNSS meteorology, and those from Rueger (2002) (without the compressibility factor

correction and assuming a CO2 mixing ratio of 375 ppm). It is seen that the k1 from Rueger is about 0.09 K hPa−1 larger than

Thayer (1974) and Bevis et al. (1994) and that the new value differs only by 0.04 K hPa−1 from the latter which represents840

a ZHD difference of 1.22 mm and a IWV difference of -0.19 kgm−2 (the negative sign is because a larger ZHD correction

decreases the IWV estimate). The new value for k2 is in agreement with Bevis et al. (1994) and Rueger (2002), but this

coefficient has anyway a small weight in the final IWV estimate. The new value for k3 is in good agreement with Rueger

(2002) and to a lesser extent with Thayer (1974) and Bevis et al. (1994) from which it differs by -0.2399 and +0.1301 ·105

K2 hPa−1, respectively, leading to a small fractional change in IWV of -0.64 % (-0.20 kgm−2) and +0.35 % (+0.11 kgm−2),845

where the IWV biases in kgm−2 are computed assuming a mean value of IWV = 32 kgm−2.

In conclusion, based on the differences between published refractivity coefficients and their uncertainties, we consider that

the uncertainty in the absolute IWV values (i.e. the possible bias) retrieved from GNSS during EUREC4A due to these coeffi-

cients is at the level of ± 0.2 kgm−2.
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Figure A1. Comparison of refractivity coefficients from various authors: 1=Thayer (1974), 2=Bevis et al. (1994), 3=Rueger (2002), 4=this

study.
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Table A1. List of Digital Object Identifiers associated with the Unavco GNSS stations from which RINEX data have been used in this study.

Station ID DOI

agpr https://doi.org/10.7283/T5NC5ZZJ

airs https://doi.org/10.7283/T53B5XGJ

aopr https://doi.org/10.7283/T5HX1B1R

cn00 https://doi.org/10.7283/T5FN14GQ

empr https://doi.org/10.7283/T5930S05

gre1 https://doi.org/10.7283/T5BC3WZ5

igpr https://doi.org/10.7283/T5WW7GF4

nwbl https://doi.org/10.7283/T5ZK5F13

olvn https://doi.org/10.7283/T5Q23XMD

p780 https://doi.org/10.7283/T54X55T3

pdpr https://doi.org/10.7283/T51N7ZX1

prsn https://doi.org/10.7283/T55D8QM9

rdon https://doi.org/10.7283/T5W37TFB

sab1 https://doi.org/10.7283/633E-1497

sab2 https://doi.org/10.7283/TH2E-EQ61

seus https://doi.org/10.7283/RFYY-MM87

seut https://doi.org/10.7283/A49V-Z691

stvi https://doi.org/10.7283/T5QN653K

trnt https://doi.org/10.7283/T5K935W2

ttuw https://doi.org/10.7283/T5TQ5ZTR
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