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Abstract. The China-Pakistan Economic Corridor (CPEC) is one of flagship projects of the 19 
One Belt One Road Initiative, which faces threats from mountain disasters in the high altitude 20 
region, such as glacial lake outburst floods (GLOFs). An up-to-date high-quality glacial lake 21 
dataset with critical parameters (e.g. lake types), which is fundamental to flood risk 22 
assessments and predicting glacier-lake evolutions, is still largely absent for the entire CPEC. 23 
This study describes a glacial lake dataset in 2020 for CPEC at 10-30 m resolution, which 24 
was produced from both Landsat and Sentinel optical images as well as glacial lake 25 
inventories in 1990 and 2000 from Landsat observation, using an advanced object-oriented 26 
mapping method associated with rigorous visual inspection workflows. The results show that 27 
Landsat derived 2234 glacial lakes in 2020, covering a total area of 86.31±14.98 km2 with a 28 
minimum mapping unit of 5 pixels (4500 m2), whereas Sentinel derived 7560 glacial lakes in 29 
2020 with a total area of 103.70±8.45 km2 with a minimum mapping unit of 5 pixels (500 m2). 30 
The discrepancy implies that there is a significant quantity of small glacier lakes not 31 
recognized in existing glacial lake inventories and a more thorough inclusion of them require 32 
future efforts using higher resolution data. The total number and area of glacial lakes from 33 
consistent 30 m resolution Landsat images remain relatively stable despite a slight increase 34 
from 1990 to 2020. A range of critical attributes have been generated in the dataset, including 35 
lake types of two classification systems and mapping uncertainty estimated by an improved 36 
equation. This comprehensive glacial lake dataset has potentials to be widely applied in 37 
studies on glacial lake-related hazards and glacier-lake interactions, and is freely available at 38 
https://doi.org/10.12380/Glaci.msdc.000001 (Lesi et al., 2022).  39 

1 Introduction 40 

Glaciers in High-mountain Asia (HMA) play a crucial role in regulating climate, supporting 41 

ecosystems, modulating the release of freshwater into rivers, and sustaining municipal water 42 

supplies (Wang et al., 2019; Viviroli et al., 2020), agricultural irrigation, and hydropower 43 

generation (Pritchard, 2019; Nie et al., 2021). Most HMA glaciers are losing mass in the 44 

context of climate change (Brun et al., 2017; Shean et al., 2020; Bhattacharya et al., 2021; 45 

Maurer et al., 2019), therefore, unsustainable glacier melt is reducing the hydrological role of 46 

glaciers and impacting downstream ecosystem services, agriculture, hydropower and other 47 

socioeconomic values (Nie et al., 2021). The present and future glacier changes also alter the 48 

frequency and intensity of glacier-related hazards, such as glacier lake outburst floods 49 

(GLOFs) (Nie et al., 2018; Zheng et al., 2021; Rounce et al., 2020), and rock and ice 50 

avalanches (Shugar et al., 2021). The increasing frequency of GLOFs has been observed in 51 

the Karakoram and Himalaya (Nie et al., 2021), and the increasing risk of GLOFs is 52 

threatening existing and planned infrastructures in the mountain ranges, such as hydropower 53 

plants, railways, and highways.  54 

A large number of major infrastructure construction projects for the One Belt One Road 55 
Initiative (BRI) play a fundamental role in strengthening the interconnection of infrastructure 56 
between countries and promoting international trade and investment (Battamo et al., 2021; Li 57 
et al., 2021). Taking the Karakoram Highway for example, it is a unique land route to link 58 
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China and Pakistan. The China-Pakistan Economic Corridor (CPEC) is one of the BRI 59 
flagship projects, originating from Kashgar of the Xinjiang Uygur Autonomous region, China 60 
and extending to Gwadar Port, Pakistan (Ullah et al., 2019; Yao et al., 2020). The northern 61 
section of the CPEC passes through Pamir, Karakoram, Hindu Kush and Himalaya mountains 62 
where glacier-related hazards such as GLOFs are frequent and severe (Hewitt, 2014; Bhambri 63 
et al., 2019), threatening the existing, under-construction and planned infrastructure projects. 64 
Understanding the risk posed by GLOFs is a critical step to disaster prevention for 65 
infrastructures across the CPEC (Figure 1). 66 

Glacial lake inventories with a range of attributes benefit risk assessment and disaster 67 
reduction related to GLOFs, and contribute to predicting glacier-lake evolution under climate 68 
change (Nie et al., 2017; Brun et al., 2019; Liu et al., 2020; Maurer et al., 2019). Remote 69 
sensing is the most viable way to map glacial lakes and detect their spatio-temporal changes 70 
in the high-elevation zones where in situ accessibility is extremely low (Huggel et al., 2002; 71 
Quincey et al., 2007). Studies in glacial lake inventories using satellite observations have 72 
been heavily conducted at regional scales recently, such as in the Tibetan Plateau (Zhang et 73 
al., 2015), the Himalaya (Gardelle et al., 2011; Nie et al., 2017), the HMA (Chen et al., 2021; 74 
Wang et al., 2020), the Tien Shan (Wang et al., 2013) and the northern Pakistan (Ashraf et al., 75 
2017). However, the latest glacial lake mapping in 2020 is still absent along the CPEC. 76 
Among existing studies, Landsat archival images are the most widely used due to their 77 
multi-decadal record of earth surface observations, reasonably high spatial resolution (30 m), 78 
and publicly available distribution (Roy et al., 2014). Freely available Sentinel-2 satellite 79 
images show a better potential than Landsat in glacial lake mapping and inventories due to 80 
their higher spatial resolution (10 m) and a global coverage, but have only been available 81 
since late 2015 (Williamson et al., 2018; Paul et al., 2020). Glacial lake inventories using 82 
Sentinel images are relatively scarce at regional scales, and studies of the latest glacial lake 83 
mapping as well as comparisons of glacial lake datasets derived from Sentinel and Landsat 84 
observations are still lacking.  85 

Discrepancies between various glacial lake inventories (Zhang et al., 2015; Shugar et al., 86 
2020; Chen et al., 2021; Wang et al., 2020) result from differences in mapping methods, 87 
minimum mapping units, definition of glacial lakes, time periods, data sources and other 88 
factors. For example, manual vectorization method was widely adopted at the earlier stage for 89 
its high accuracy. However, it is time-consuming associated with high labor intensity and is 90 
only practical at regional scales (Zhang et al., 2015; Wang et al., 2020). Automated and 91 
semi-automated lake mapping methods, such as band ratio and object-oriented classification 92 
(Gardelle et al., 2011; Zhang et al., 2018; Nie et al., 2017), have been developed to improve 93 
the efficiency of glacial lake inventories, although artificial modification is unavoidable to 94 
assure the quality of lake data impacted by cloud cover in optical images, mountain shadows, 95 
seasonal snow cover and frozen lake surfaces (Sheng et al., 2016; Wang et al., 2017; Wang et 96 
al., 2018). Type classification of glacial lakes provides a crucial attribute for glacier-lake 97 
interactions and risk assessment (Emmer and Cuřín, 2021). Glacier lakes in currently 98 
available datasets have been traditionally categorized by their spatial relationship with 99 
upstream glaciers (Gardelle et al., 2011; Chen et al., 2021; Wang et al., 2020), and 100 
classification attributes considering the formation mechanism and the properties of dams are 101 
rare or incomplete in the CPEC (Li et al., 2021; Yao et al., 2018). Therefore, an up-to-date 102 
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Karakoram (5818 glaciers with a total area of 14,067.52 km2) (RGI Consortium, 2017). Most 121 
glaciers in the western Himalaya and eastern Hindu Kush are losing mass in the context of 122 
climate change (Kääb et al., 2012; Yao et al., 2012; Shean et al., 2020; Brun et al., 2017; 123 
Hugonnet et al., 2021), whereas the glaciers in the eastern Karakoram and Pamir have shown 124 
unusually little changes, including unchanged, retreated, advanced and surged glaciers (Nie et 125 
al., 2021; Brun et al., 2017; Shean et al., 2020; Kääb et al., 2012; Hewitt, 2005; Bolch et al., 126 
2017). The spatially heterogeneous distribution and changes of glaciers are primarily 127 
explained as a result of differences in the dominant precipitation-bearing atmospheric 128 
circulation patterns that include the winter westerlies the Indian summer monsoon, their 129 
changing trends and their interactions with local extreme topography (Azam et al., 2021; Nie 130 
et al., 2021; Yao et al., 2012).  131 

3 Data sources 132 

Both Landsat and Sentinel images have been employed to map glacial lakes between 1990 133 
and 2020 in the CPEC (Figure 2). A total number of 98 Landsat Thematic Mapper (TM), 134 
Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) images with a 135 
consistent spatial resolution of 30 m were downloaded from the United States Geological 136 
Survey Global Visualization Viewer (GloVis, https://glovis.usgs.gov/app/) to be used to create 137 
glacial lake inventories in 1990, 2000 and 2020. High-quality Landsat images around 2010 138 
are insufficient to cover the entire study area, so we had to give up glacial lake mapping in 139 
2010 as a result of Landsat 7’s scan-line corrector errors and significant cloud covers. In 140 
addition, 40 Sentinel-2 images were downloaded from Copernicus Open Access Hub 141 
(https://scihub.copernicus.eu/) to produce the 10-m resolution glacial lake inventory in 2020.  142 

Cloud and snow covers heavily affect the usability of optical satellite images (Wulder et 143 
al., 2019) and their availability in the entire study area, so we took advantage of the images 144 
acquired before and after each of the baseline years 1990, 2000 and 2020 to construct the 145 
glacial lake inventories. To minimize the impact of intra-annual changes of glacial lakes, 146 
most of used images (85% for Sentinel and 82% for Landsat) were acquired from August to 147 
October in the given baseline year with cloud coverage of <20% for each image. For some 148 
specific scenes where cloud cover exceeded the threshold of 20%, we selected more than one 149 
image to remedy the effect of cloud contamination (Nie et al., 2010; Nie et al., 2017; Jiang et 150 
al., 2018).  151 

Other datasets used include the Randolph Glacier Inventory version 6.0 (Pfeffer et al., 152 
2014; RGI Consortium, 2017) and the Glacier Area Mapping for Discharge from the Asian 153 
Mountains (GAMDAM) glacier inventory (Sakai, 2019). These two glacier datasets were 154 
used to determine glacial lake attributes. The Shuttle Radar Topography Mission Digital 155 
Elevation Model (SRTM DEM) at a 1-arc second (30 m) resolution (Jarvis et al., 2008) was 156 
employed to extract the altitudinal characteristics of the glacial lakes. The absolute vertical 157 
accuracy of the SRTM DEM is 16 m (90%) (Farr et al., 2007; Rabus et al., 2003). We also 158 
applied other published glacial lake datasets for comparative analysis. They include the 159 
glacial lake inventories of HMA in 1990 and 2018 downloaded from 160 
http://doi.org/10.12072/casnw.064.2019.db (Wang et al., 2020), the Third Pole region in 1990, 161 
2000 and 2010 publicly shared at http://en.tpedatabase.cn/ (Zhang et al., 2015), the Tibet 162 
Plateau from 2008 to 2017 accessed at https://doi.org/10.5281/zenodo.3700282 (Chen et al., 163 
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1996). The NDWI uses the green and near infrared bands and is calculated by the following 194 
equation: 195 

ܫܹܦܰ ൌ ௗಸೝିௗಿೃ
ௗಸೝାௗಿೃ

		                           (1) 196 

where the green band and near infrared band were provided by both Landsat and Sentinel 197 
multispectral images.  198 

Specifically, the method automatically generated the histogram of NDWI in each 199 
user-defined region of interest. The NDWI threshold that separates lake surface from land 200 
was interactively determined by screening the NDWI histogram against the lake region in the 201 
imagery (Nie et al., 2020; Wang et al., 2012). This way, the determined NDWI threshold can 202 
be well-tuned to adapt various spectral conditions of the studied glacier lakes. The raster lake 203 
extents segmented by the thresholds were then converted to vector polygons. We first 204 
completed the glacial lake inventory in 2020 using this interactive mapping method, and the 205 
2020 inventory was then used as a reference to facilitate the lake mapping for other periods.  206 

The minimum mapping unit (MMU) was set to 5 pixels for both Landsat (0.0045 km2) and 207 
Sentinel-2 images (0.0005 km2) in this study. MMU determines the total number and area of 208 
glacial lakes in the dataset, and varies in the previous studies, such as 3 pixels (Zhang et al., 209 
2015), 9 pixels (Chen et al., 2021), or 55 pixels (Shugar et al., 2020) for Landsat images for 210 
various objectives and spatial scales. While a smaller threshold leads to a large quantity of 211 
lakes mapped, it also generates larger mapping noises or uncertainties. Considering this 212 
signal-noise balance and our focus on identifying prominent glacier lake dynamics in the 213 
study area, we opted to use 5 pixels as the minimum mapping unit for both Landsat and 214 
Sentinel-2 images. 215 

Several procedures were taken to assure the quality assurance and quality control for lake 216 
mapping, including 1) visual inspection and modification for each lake based on Landsat, 217 
Sentinel-2 and Google Earth high-resolution images overlaying preliminarily lake boundary 218 
extraction at the given time period; 2) time series check for Landsat-derived glacial lake 219 
datasets from 1990 and 2020, and cross-check between Landsat and Sentinel-2-derived lake 220 
dataset in 2020 to reduce errors of omission and commission; 3) topological validation of 221 
glacial lake mapping, such as repeated removal, elimination of small sliver polygons; and 4) 222 
logical check for lake types between two classification systems of glacial lakes. False lake 223 
extents resulting from cloud or snow cover, lake ice, and topographic shadows (Nie et al., 224 
2020; Nie et al., 2017) and were modified using alternative images acquired in adjacent years. 225 
Those procedures were time-consuming, but helped to minimize the effect of cloud and snow 226 
covers, lake mapping errors, and to maximize the quality of the produced lake product and 227 
the derived glacial lake changes.  228 

4.3 Classification of glacial lakes 229 

Two glacial lake classification systems (GLCS) have been established based on relationship 230 
of interaction between glacial lakes and glaciers as well as lake formation mechanism and 231 
dam material properties. In the first GLCS (GLCS1), glacial lakes were classified into four 232 
types based on their spatial relationship to upstream glaciers: supraglacial, proglacial, 233 
unconnected-glacier-fed lakes, and non-glacier-fed lakes according to Gardelle et al. (2011). 234 
Alternatively, combining the formation mechanism of glacial lakes and the properties of 235 
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Orbital number of the image source was filled with the corresponding satellite image, with 258 
the codes expressed as “PxxxRxxx” or “Txxxxx”, where P and R indicate the path and row 259 
for Landsat image and T represents the tile of Sentinel image associated with 5 digits code of 260 
military grid reference system. Area and perimeter were automatically calculated based on 261 
glacial lake extents. Lake types were attributed using the characterization and interpretation 262 
marks described in Section 4.3. Mapping uncertainty was estimated using our modified 263 
equation which will be introduced in section 4.5 and supplementary tutorial. Located country, 264 
sub-basin and mountain range of each glacial lake was identified by overlapping the 265 
geographic boundaries of countries, basins and mountain ranges. 266 
Table 3. Classification system of glacial lake types according to the formation mechanism of glacial lakes 267 
and dam material properties. 268 

Field Name Type Description Note 

FID or 

OBJECTID 

Object ID Unique code of glacial lake Number 

Shape Geometry Feature type of glacial lake Polygon 

Latitude String Latitude of the centroid of glacial lake 

polygon 

Degree minute second  

Longitude String Longitude of the centroid of glacial lake 

polygon 

Degree minute second  

Elevation Double Altitude of the centroid of glacial lake 

polygon 

Unit: meter above sea level 

IMGSOURCE String Path and row numbers for Landsat image 

based on World Reference System 2 or Tile 

number for Sentinel image based on military 

grid reference system 

PxxxRxxx or Txxxxx 

ACQDATE String Acquisition date of source image YYYYMMDD 

GLCS1 String The first classification system of glacial lakes 

based on relationship of interaction between 

glacial lakes and glaciers 

Supraglacial, Proglacial, 

Unconnected-glacier-fed, 

None-glacier-fed 

GLCS2 String The second classification system of glacial 

lakes based on lake formation mechanism and 

dam material properties 

Supraglacial, 

End-moraine-dammed, 

Lateral-moraine-dammed, 

Glacial erosion and 
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Field Name Type Description Note 

Ice-blocked 

Basin String Basin name where glacial lake locates in  

Mountains String Mountain name where glacial lake locates in  

Country String Country name where glacial lake locates in  

Perimeter Double Perimeter of glacial lake boundary Unit: meter 

Area Double Area of glacial lake coverage Unit: square meter 

Uncertainty Double Uncertainty of glacial lake mapping estimated 

based on modified Hanshaw’s equation 

(2014).  

Unit: square meter 

Operator String Operator of glacial lake dataset Muchu, Lesi 

Examiner String Examiner of glacial lake dataset Yong, Nie 

 269 

4.5 Improved uncertainty estimating method 270 

We modified Hanshaw’s (2014) equation that had been used to calculate lake-area mapping 271 
uncertainty. Lake perimeter and displacement error are widely used to estimate the 272 
uncertainty of glacier and lake mapping from satellite observation. Hanshaw and Bookhagen 273 
(2014) proposed an equation to calculate the error of area measurement by the number of 274 
edge pixels of the lake boundary multiplied by half of a single pixel area. The number of edge 275 
pixels is simply calculated by the perimeter divided by the grid size. The equation is 276 
expressed as below:  277 

ሻߪሺ1ݎݎݎܧ ൌ


ீ
ൈ 0.6872 ൈ

ீమ

ଶ
                                (2) 278 

ܦ ൌ
ாሺଵఙሻ


ൈ 100%																																																																		 (3) 279 

Where ܩ is the cell size of the remote sensing imagery (10 m for Sentinel-2 image and 30 m 280 
for Landsat image). ܲ is the perimeter of individual glacial lake (m), and the revised 281 
coefficient of 0.6872 was chosen assuming that area measurement errors follow a Gaussian 282 
distribution. Relative error (ܦ) was calculated by equation 3, in which A is the area of an 283 
individual glacial lake. 284 

In the original equation 2, the number of edge pixels varies by the shape of lake and is 285 

indicated by 


ீ
 . However, the pixels in the corner are double counted (Figure 3). The total 286 

number of repeatedly calculated edge pixels equals the number of inner nodes. Therefore, we 287 

adjusted the calculation of the actual number of edge pixels as the maximum of edge pixels (


ீ
) 288 

subtracting the number of inner nodes. Accordingly, the equation of uncertainty estimation 289 
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In the GLCS1, unconnected-glacier-fed lakes have the largest increase in number, followed 386 
by proglacial and non-glacier-fed lakes, whereas supraglacial lakes decreased by 62 in count. 387 
Proglacial lakes expanded by 1.24 km2 (equaling an increase of 26% in proglacial lakes), 388 
contributed one third of the total area increase. Supraglacial lakes decreased by 0.85 km2 in 389 
area whereas the areas of unconnected-glacier-fed and non-glacier-fed lakes remained stable 390 
as a result of disconnections from glaciers (Figure 7). 391 

In the GLCS2, end moraine-dammed lakes increased by 2.48 km2 and contributed most of 392 
the glacier lake area expansion, whereas supraglacial, ice-blocked and later moraine-dammed 393 
lakes decreased slightly in both number and area. Glacial erosion lakes accounted for the 394 
maximum percentage (about 66% for both count and area) in each time period and remained 395 
stable (Figure 8). 396 

Spatially, glacial lake changes in number and area vary among different mountain ranges 397 
and basins between 1990 and 2020 in the study area. Glacial lakes across the west Himalaya 398 
and Hindu Kush increased both in number and area between 1990 and 2020 whereas the total 399 
number of glacial lakes decreased in the Karakoram, Pamir and Tien Shan of study area 400 
(Table 4). The total area of glacial lakes continued to increase in the Hindu Kush, but 401 
decreased between 1990 and 2000 and increased between 2000 and 2020 in the Himalaya. 402 
The total number of glacial lakes continuously decreased in the Pamir and Tien Shan in the 403 
past three decades but increased at the first stage and decreased after in the Karakoram. The 404 
total area of glacial lakes persistently grew in the Pamir whereas fluctuated in the Tien Shan 405 
and Karakoram.  406 

The total numbers of glacial lakes in Shingo, Shigar and Shyok basins were stable (Figure 407 
9a and b); however, the areal changes were less so, including being stable for Shingo, 408 
decreasing for Shigar, and increasing for Shyok. The total number of glacial lakes increased 409 
in the basins of Astor, Gilgit and Taxkorgan, whereas the total area of glacial lakes remained 410 
stable in Astor and Gilgit basins and decreased in Taxkorgan basin. The total numbers of 411 
Kashgar and Hunza basins decreased, whereas the total area of glacial lakes remained stable 412 
in Kashgar and increased in the Hunza basin.  413 
 414 
Table 4. Distributions in count and area (km2) of glacial lakes among mountain ranges within the study area. 415 
Source and year Tien Shan Karakoram Pamir Hindu Kush Himalaya Total 

Landsat in 1990 10 (0.12) 370 (11.11) 178 (13.73) 780 (28.33) 816 (31.81) 2154 (85.10)

Landsat in 2000 7 (0.11) 393 (11.76) 163 (13.96) 792 (28.50) 829 (31.77) 2184 (86.10)

Landsat in 2020 5 (0.17) 334 (10.10) 182 (14.14) 835 (29.25) 878 (32.65) 2234 (86.31)

Sentinel in 2020* 11 (0.21) 479 (11.69) 262 (15.71) 880 (34.96) 959 (33.39) 2591 (95.96)

*Note: Glacial lake greater than 4500 m2 are calculated for Sentinel-2 derived dataset in order to be in line with Landsat 416 
derived dataset. 417 

5.2 Glacier lake distribution observed from Sentinel-2 418 

Sentinel-derived results shows that there are 7,560 glacial lakes (103.70±8.45 km2) in 2020 419 
across the entire CPEC (Table 5) under a minimum mapping unit of 5 pixels (500 m2). 420 
Similar to the pattern from Landsat mapping, the lake abundance extracted from Sentinel 421 
images is inversely related to lake size (following a typical Pareto distribution). The smallest 422 
size class (0.0005-0.0045 km2) contains the maximum lake count (4,969) but the least lake 423 
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area (7.73±2.62 km2) (Table 5), which is not available in the Landsat-derived lake data due to 424 
a coarser spatial resolution. In each size class, there are also a higher number of larger glacial 425 
lakes from Sentinel than that from Landsat images. The discrepancy is mainly attributed to 426 
inconsistency of image acquisition dates and spatial resolutions. 427 
 428 
Table 5. Count and area of glacial lakes mapped from Sentinel and Landsat images in 2020 between 429 
various size classes 430 

Lake size  

km2 

Glacial lakes from Sentinel

count (km2) 

Glacial lakes from Landsat

count (km2) 

Overlap 

% (%) 

0.0005-0.0045 4969（7.73±2.62） — — 

0.0045-0.05 2182（35.52±3.72） 1870（31.47±9.57） 85.70 (88.60) 

0.05-0.1 237（16.37±0.89） 204（14.07±2.18） 86.08 (85.95) 

0.1-0.2 122（16.88±0.68） 115（15.91±1.83） 94.26 (94.25) 

≥0.2 50（27.20±0.54） 45（24.86±1.40） 90.00 (91.40) 

Total 7560（103.70±8.45） 2234（86.31±14.98） — 

 431 
Compared with our Landsat-based product, glacial lakes from Sentinel-2 have similar 432 

distribution characteristics (Figure 9c and d) among mountain ranges, basins, types and 433 
altitudinal locations (Figure 10); meanwhile, a larger quantity of glacier lakes, with more 434 
accurate boundaries and a greater total lake area, were generated from Sentinel-2 images. 435 
Taking altitudinal distribution for example, the number and size of glacial lakes in the study 436 
area appear follow a normal distribution against elevation for both Sentinel-2 and Landsat 437 
derived products (Figure 10). The elevation of all glacial lakes mapped in 2020 based on 438 
Sentinel-2 images ranged from 2500 m to 5750 m (a.s.l.), with 89.58% between 3600 m and 439 
5100 m and a mean altitude of 4421 m. The peak number appears between 4500 m and 4550 440 
m whereas the maximum area emerges between 4250 m and 4300 m. The anomalously large 441 
area between 3600 and 3650 m shows up in Fig. 10b because of several disproportionally 442 
large lakes. Although Landsat derived lakes show a similar distribution pattern to Sentinel 443 
derived lakes, the lake count and area in each altitudinal band are greater in the Sentinel 444 
product due to the improved spatial resolution and image quality. 445 
 446 
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shown include supraglacial (a), glacier-fed moraine-dammed (b), unconnected glacial erosion lake without 462 
glacier melt supply (c) and glacier-fed moraine-dammed (d). 463 
 464 

Spatial resolution of satellite images plays a primary role in the discrepancies in count and 465 
area of glacial lakes extracted from Landsat (30 m) and Sentinel (10 m) observations. Due to 466 
a finer spatial resolution, Sentinel images can extract more glacial lakes and more accurate 467 
extents than those from Landsat images. We set the same 5 pixels as the minimum mapping 468 
unit for both Landsat and Sentinel images, which corresponds to a minimum area of 0.0045 469 
km2 and 0.0005 km2, respectively. The minimum mapping area results in generating nearly 470 
5000 more lakes from Sentinel images than from Landsat images, causing the greatest 471 
discrepancy in number of the two glacial lake products (Table 5), such as Figure 12a. 472 
Meanwhile, Sentinel images are able to depict boundaries of glacial lake with a lower 473 
uncertainty (Figure 12b-d). For example, some small islands and narrow channels (Figure 12b 474 
and c) were mapped from Sentinel imagery that are unable to be detected in Landsat imagery.  475 

Different acquisition dates between Sentinel and Landsat images also contribute to the 476 
discrepancy of those two glacial lake datasets. Acquiring same-day images from the two 477 
sensors were not always possible due to the impacts of cloud contaminations, topographic 478 
shadows, snow cover and revisit periods (Williamson et al., 2018; Paul et al., 2020). Glacial 479 
lakes are changing temporally in the context of climate and glacier changes, taking 480 
supraglacial lakes for example that evolve dramatically in a short period (Figure 12e). Despite 481 
our efforts of leveraging all available high-quality images, the overlap of acquisition dates 482 
between Landsat and Sentinel images for the same location is relatively low in this study area, 483 
and the consequential temporal gaps led to a difference in the number and area of the derived 484 
glacial lakes.  485 

Displacement between images also resulted in a certain degree of discrepancy between 486 
Landsat and Sentinel derived glacial lakes. All images used in this study have been 487 
orthorectified, but we still find that a few Sentinel images were not well matched with 488 
Landsat images, leading to the discrepancy between the two glacial lake datasets (Figure 12f). 489 
We manually georeferenced the shifted images to minimize the difference between Sentinel 490 
and Landsat derived glacial lakes (Figure 12f). Original geo-referencing accuracy is 491 
approximate half of one pixel for Landsat and Sentinel image, and this displacement likely 492 
contributes a minor error to glacial lake changes at various time periods. Although we could 493 
not eliminate this intrinsic error, the error has been considered in the uncertainty assessment 494 
of our glacial lake mapping. 495 
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al., 2020) whereas our data show a more stable change between 1990 and 2020. One possible 517 
reason is that manually delineating glacial lakes twice by different operators during Wang’s 518 
lake mapping (2020) exacerbates the errors of mapping. Another reason is that their data 519 
contains landslide-dammed lakes that fluctuate greatly with time and expanded recently. One 520 
example is the Attabad Lake (Located at 36°18'22.33"N, 74°49'34.36"E).  521 

 522 
Table 6. Comparison of different glacial lake datasets sourced from Landsat images in the study area. 523 
Acquisition  

year (period) 

Method MMU  

m2 (pixels) 

Count  

(km2) 

Overlap  

% (%) 

Reference 

1990 (1988-1993) Manual 5400 (6) 1720 (89.68±13.69） 69.17 (76.33) Wang et al., 2020 

1990 (1990-1999) Automated 50000 (55) 145 (20.28） 6.27 (21.66) Shugar et al., 2020

1990 (1989-1992) Manual 2700 (3) 622 (51.93±10.15） 27.72 (39.94) Zhang et al., 2015 

1990 (1989-1994) Automated & Manual 4500 (5) 2154 (85.10±14.66） — This study 

2000 (1999-2001) Manual 2700 (3) 724 (61.41±11.91） 31.91 (46.97) Zhang et al., 2015 

2000 (2000-2004) Automated 50000 (55) 155 (22.35） 6.78 (23.72) Shugar et al., 2020

2008 Automated & Manual 8100 (9) 1067 (65.45） 44.14 (53.58) Chen et al., 2021 

2000 (1996-2004) Automated & Manual 4500 (5) 2184 (86.10±14.83） — This study 

2018 (2017-2018) Manual 5400 (6) 1956 (102.46±15.48） 74.57 (85.63) Wang et al., 2020 

2015 (2015-2018) Automated 50000 (55) 148 (21.45） 6.27 (22.97) Shugar et al., 2020

2017 Automated & Manual 8100 (9) 1063 (63.23） 45.21 (57.78) Chen et al., 2021 

2020 (2016-2020) Automated & Manual 4500 (5) 2234 (86.31±14.98） — This study 

Note: MMU represents minimum mapping units.  524 

 525 
The second highest overlapping rate is approximate 55% in area with Chen’s data in 2008 526 

and 2017 (Chen et al., 2021). However, the overlapping rate in number is nearly 45% due to 527 
their larger minimum mapping unit (9 pixels). Similarly, a minimum mapping unit of 55 528 
pixels (50000 m2) in Shugar et al.’s, dataset (2020) led to the lowest overlap with less than 24% 529 
in area. Zhang’s dataset shows fewer glacial lakes in 1990 and 2000 even with a smaller 530 
minimum mapping unit of 3 pixels (Zhang et al., 2015). By inspecting their dataset, we 531 
attributed this anomalous discrepancy to a range of glacial lakes that were missed during their 532 
manual delineation as a result of insufficient high quality images in the earlier Landsat era. 533 
Our Landsat derived glacial lake dataset has been visually cross-checked over three time 534 
periods after the step of object-based automated lake mapping, and also been visually 535 
validated by Sentinel-2 derived glacial lakes. Through this series of quality assurance, we aim 536 
at delivering one of the most reliable multi-decadal glacial lake products for this study area.  537 

Other factors, such as minimum mapping units, definition of glacial lakes and study areas, 538 
image quality and acquisition dates, mapping methods and quality assurance workflow, might 539 
also lead to the discrepancies between the glacial lake datasets. Despite such discrepancies, 540 
an increasing number of publically-shared datasets benefit potential users to select the most 541 
suitable one for their objectives. Herein, we provide an up-to-date glacial lake dataset derived 542 
from both Landsat and Sentinel observations, which further promoted the capacity of GLOFs 543 
risk assessment and predicting glacier evolutions in the context of climate change. 544 
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6.3 Limitation and updating plan 545 

We would like to acknowledge several limitations of our glacier lake dataset, largely due the 546 
availability of high quality satellite images in the study area and inadequate field survey data 547 
(Wang et al., 2020; Chen et al., 2021). First, it is unlikely to collect enough good-quality 548 
images within one calendar year for the entire study area due to high possibility of cloud or 549 
snow covers. Even though an capacity of repetitive observations for Landsat8 OLI and 550 
Sentinel-2 increased (Williamson et al., 2018; Paul et al., 2020; Roy et al., 2014; Wulder et 551 
al., 2019), the 2020 glacial lake dataset has to employ images acquired in other years besides 552 
2020. Most images used from Landsat and Sentinel platforms were imaged in autumn, and 553 
some images taken between April and July and in November also were employed. 554 
Distribution and changes in glacial lakes primarily represent the characteristics between 555 
August and October. Glacial lakes evolve with time and space (Nie et al., 2017), and subtle 556 
inter- and intra-annual changes (Liu et al., 2020) in glacial lake dataset of each time period 557 
were ignored. Second, field investigation data are limited due to low accessibility of high 558 
mountain environment in the study area, which restrained the accuracy in classifying the 559 
glacial lake types. Although very high-resolution Google Earth images were utilized to assist 560 
in lake type interpretation, occasional misclassification was inevitable. We implemented two 561 
types of classification systems based on a careful utilization of glacier data, DEM, 562 
geomorphological features and expert knowledge. However, the lack of in situ survey 563 
prohibited a thorough validation of the glacial lake types.  564 

7 Data availability 565 

Our glacial lake dataset extracted from Sentinel-2 images in 2020 and Landsat observation 566 
between 1990 and 2020 are available online via the Mountain Science Data Center, the 567 
Institute of Mountain Hazards and Environment, the Chinese Academy of Sciences at 568 
https://doi.org/10.12380/Glaci.msdc.000001 (Lesi et al., 2022). The glacial lake dataset is 569 
provided in both ESRI shapefile format (total size of 22.6 MB) and the Geopackage format 570 
(version 1.2.1) with a total size of 9.2MB, which can be opened and further processed by 571 
open-source geographic information system software such as QGIS. The glacial lake dataset 572 
will be updated using newly collected Landsat and Sentinel images at a five-year interval or 573 
modified according to user feedbacks. The updated glacial lake dataset will continue to be 574 
released freely and publicly on the Mountain Science Data Center sharing platform. 575 

8 Conclusions 576 

Glacial lake inventories of the entire China-Pakistan Economic Corridor in 2020 were 577 
completed based on Landsat and Sentinel-2 images using a human-interactive and 578 
semi-automated mapping method. Both Landsat and Sentinel derived glacial lake datasets 579 
show similar characteristics in spatial distribution and in the statistics of count and area. By 580 
contrast, glacial lake dataset derived from Sentinel-2 images with a spatial resolution of 10 m 581 
has a lower mapping error and more accurate lake boundary than those from 30 m spatial 582 
resolution Landsat images whereas Landsat imagery is more suitable to analyze 583 
spatial-temporal changes at longer time scale due to its long-term archived observation at a 584 
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consistent spatial resolution of 30 m started from around 1990.  585 
Glacial lakes in the study area remain relatively stable with a slight increase in number and 586 

area between 1990 and 2020 according to Landsat observations. Our dataset reveals that 2154 587 
glacial lakes in 1990 covering 85.1±14.66km2 increased to 2234 lakes with a total area of 588 
86.31±14.98km2. The same mapping method and rigorous workflow of quality assurance 589 
and quality control used in this study reduced the error in multi-temporal changes of glacial 590 
lakes.  591 

The Hanshaw’s error estimation method for automated lake mapping was improved by 592 
removing repeatedly calculated edge pixels that vary with lake shape. Therefore, the newly 593 
proposed method reduces the estimated value of uncertainty from satellite observations. 594 

Our glacial lake dataset contains a range of critical parameters that maximize their 595 
potential utility for GLOFs risk evaluation and glacier-lake evolution projection. The dual 596 
classification systems of glacial lake types were developed and are very likely to attract 597 
broader researchers and scientists to use our datasets. In comparison with other existing 598 
glacial lake datasets, our products were created through a thorough consideration of lake 599 
types, cross checks and rigorous quality assurance, and will be updated and released 600 
continuously in the data center of mountain science. As such, we expect that our glacial lake 601 
dataset will have significant values for cryospheric-hydrology research, assessment of 602 
glacier-related hazards and engineering project construction in the CPEC. 603 
 604 
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