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Abstract. Achieving a local understanding of fire regimes requires high resolution, systematic and dynamic databases. High-

quality information can help to transform the evidence into decision-making in the context of rapidly changing landscapes, 20 

particularly considering that geographical and temporal patterns of fire regimes and their trends vary locally over time. 

Global fire scar products at low spatial resolutions are available, but high-resolution wildfire data, especially for developing 

countries, is still lacking. Taking advantage of the Google Earth Engine (GEE) big-data analysis platform, we developed a 

flexible workflow to reconstruct individual burned areas and derive fire severity estimates for all reported fires. We tested  

our approach for historical wildfires in Chile. The result is the Landscape Fire Scars Database, a detailed and dynamic 25 

database that reconstructs 8,153 fires scars, representing 66.6% of the country’s officially recorded fires between 1985 and 

2018. For each fire event the database contains the following information: (i) Landsat mosaic of pre- and post-fire images; 

(ii) the fire scar in binary format; (iii) the remotely sensed estimated fire indexes (NBR, RdNBR), plus two vector files 

indicating (iv) the fire scar perimeter and (v) the fire scar severity reclassification. The Landscape Fire Scars Database for 

Chile and GEE script (JavaScript) are publicly available. The framework developed for the database can be applied 30 

anywhere in the world, the only requirement being its adaptation to local factors such as data availability, fire regimes, land 

cover or land cover dynamics, vegetation recovery, and cloud cover. 
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1 Introduction 

 

Wildfires as a natural phenomenon have been a key component of the terrestrial system for millions of years, shap ing biome 35 

structure and composition, and influencing the Earth’s system cycles. Human activity has dramatically modified natural 

wildfire regimes and is now the main driver of their spatial and temporal patterns (Balch et al., 2017; Bowman et al., 2011). 

The changing fire regime has become an increasing threat to biodiversity (Kelly et al., 2020), agricultural and timber 

production (Stougiannidou et al., 2020; de la Barrera et al., 2018) and rural/peri-urban communities (Radeloff et al., 2018) as 

well as a major contributor to greenhouse gas emissions (Giglio et al., 2013). Recent estimates point to a global mean burned 40 

area of 337 to 423 Mha every year (Giglio et al., 2013, 2018). However, the geographical and temporal patterns of fire 

regimes and their trends over time vary locally depending on the source of ignition (Ganteaume and Syphard, 2018), climate 

characteristics and their changes (Jolly et al., 2015; Duane et al., 2021), predominant land use and land cover (Butsic et al., 

2015), railroad density (Amato et al., 2018) as well as firefighting and fire suppression and prevention capacity (Bowman et 

al., 2011; Moritz et al., 2014). Additionally, each natural or anthropogenic forcing factor differs in its impact on fire regime 45 

attributes (e.g., ignition, severity, burned area, intensity) across multiple spatial and temporal scales worldwide (Ager et al., 

2014; Balch et al., 2017; Fusco et al., 2016). An understanding of fire regimes at a local level requires high resolution, 

systematic and dynamic databases in order to transform the evidence into decision-making in these rapidly changing 

landscapes (Bowman et al., 2020).   

 50 

Remote sensing provides pre-, during, and post-fire biophysical information necessary for conducting fire-risk assessment, 

fire detection and monitoring, assessment of fire impacts, and follow-up of changes in land cover trends after fire occurrence 

(Szpakowski and Jensen, 2019). Recent public datasets and products have enabled a better understanding of global and 

regional wildfire patterns (Giglio et al., 2016, 2018; Schroeder et al., 2014; Lizundia-Loiola et al., 2021). Although the 

principal active fire and burned area products contain information going back to the year 2000 (e.g., MODIS) with a spatial 55 

resolution in the best cases of more than 250 m (Chuvieco et al., 2018), there is still a lack of high-resolution wildfire data, 

especially for developing countries (Chuvieco et al., 2019). Andela et al. (2019) created a global dataset for the period 2003 

to 2016 that estimates the size, duration, and propagation rate of individual wildfires with a spatial resolution of 500 m using 

MODIS products. Likewise, Artés et al., (2019), also using MODIS products, developed a global dataset to analyze fire 

regimes and fire behavior based on ignition dates and daily burned areas for individual wildfires. The large discrepancies 60 

between local and global estimates of burned area occur mostly in the case of fires of less than 100 ha due to detection 

difficulties when using coarse-resolution products (Roteta et al., 2019; Ramo et al., 2021). This constitutes a significant 

barrier to the proper understanding of local wildfire regimes, and highlights the need for a high-resolution wildfire database 

(Chuvieco et al., 2019). Recent efforts using Landsat images have led to the identification of annual burn probabilities per 

pixel from which a database with a 30 m spatial resolution has been constructed that reaches back to the 1980s, but this has 65 

been done only for developed countries such as the USA and Australia (Goodwin and Collett, 2014; Hawbaker et al., 2017). 

Field Code Changed
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However, recent computational advances and the free availability of satellite imagery catalogs provide a promising 

framework for mapping annual burned areas worldwide at a spatial resolution of 30 m with Landsat and at 20 m resolution 

with Sentinel-2, which would be a major step forward in high-resolution wildfire database generation (Long et al., 2019; 

Ramo et al., 2021).  70 

 

In the case of Chile, the fire regime has been described mainly on the basis of the public wildfire database maintained by the 

Chilean Forest Service (CONAF), and with MODIS monthly burned area data used only in the most recent studies (de la 

Barrera et al., 2018; McWethy et al., 2018). Evidence regarding burned areas and fire frequency is derived from data with 

spatial resolutions between 500 m and 5 km (Gómez-González et al., 2019; González et al., 2018). From these large-scale 75 

datasets it has been determined that fire frequency is closely related to human footprint zones such as cities or other densely 

human-populated areas (Gómez-González et al., 2019; McWethy et al., 2018), roads (Miranda et al., 2020) and agricultural 

or industrial forest plantation activities (Gómez-González et al., 2019; McWethy et al., 2018). However, burned area also 

strongly interacts with climatic conditions favorable to the spread of fires, especially warmer and dryer years associated with 

El Niño-Southern Oscillation, wet winters the year previous (Holz et al., 2017; Urrutia-Jalabert et al., 2018) and severe 80 

drought (González et al., 2018). Such conditions have been more prevalent/frequent in recent years, with increasing 

temperatures and a general reduction in precipitation reported for the area since 1980 and a prolonged megadrought since 

2010 (Boisier et al., 2016; Garreaud et al., 2019). Fire ignition near human communities, favorable climatic conditions and a 

lack of landscape or fuel management lead to increased wildfire occurrence (Úbeda and Sarricolea, 2016). However, this 

large-scale understanding may still be insufficient, especially for local applications such as fire spread modeling, fire severity 85 

estimation, landscape planning and design, ecological impacts and ecosystem resilience, or national greenhouse gas emission 

estimation. 

 

An excellent opportunity for developing countries to generate their own local and historical high-resolution databases of 

wildfire scars is provided by Google Earth Engine (GEE) (Long et al., 2019). GEE is an open cloud-computing platform for 90 

geospatial analysis that contains a public catalog of satellite images, topography, land covers and other environmental 

datasets (Gorelick et al., 2017). Taken advantage of this big-data analysis platform, we generate a detailed database of fire 

scars in Chile through the development of a flexible workflow, enabling us to reconstruct individual burned areas and fire 

severity information for all reported historical fires. The result is our Landscape Fire Scars Database for Chile, which along 

with the GEE script (JavaScript) used to generate it are publicly available at 95 

https://www.pangaea.de/tok/6dcc6e08241c5076ef6bff47bbe73014308d4881 and 

https://code.earthengine.google.com/554027d16823525d890ab2f6c45167d9 respectively. This framework could be 

implementable for any geographical area globally, requiring only that it be adapted to local conditions regarding seed data 

availability, fire regimes, land cover or land cover dynamics, vegetation recovery and cloud cover.  

 100 

https://www.pangaea.de/tok/6dcc6e08241c5076ef6bff47bbe73014308d4881
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2 Data and methods 

2.1 Study site 

The approach we developed was applied to central and south-central Chile (29°S-43°5’S), a long stretch of territory 

encompassing ten of the country’s administrative regions (~255,120 kKm2). Fire activity in Chile is concentrated in this 105 

area, where considerable changes in land use and land cover have been observed in recent decades (Miranda et al., 2017), 

associated with increased fire activity (González et al., 2018).  

2.1 Data seeding 

 

To construct our historical database of fire scars, we used a subset of the public wildfire database provided by Corporación 110 

Nacional Forestal (CONAF). This agency records and stores information on all fires (> 0.01 ha) regarding their location, 

date, causes, area affected by land use, date and time of first control and suppression of fire, among other variables. The 

georeferencing system used by CONAF until 2003 assigned each fire to the center of a 1x1 km alphanumeric grid, based on 

the subdivision of 1:50,000 scale maps of the Military Geographic Institute (IGM). After 2003, the location of each fire and 

estimation of their burned area began to be carried out with the help of a Global Positioning System (GPS).  Given the image 115 

availability, quality and spatial resolution of the Landsat programs, we extracted data only for fires with a burned area of 

more than 10 ha between 1985 and 2018 (N: 13,603). The 10 ha cut-off threshold was chosen since those fires represent 

more than 93% of the burned area according to the CONAF official information for 1985-2018 period. In addition, small 

fires are usually confounded with agricultural burning, a traditional cultural practice done by Chilean farmers. The original 

CONAF point dataset is included in our database’s. 120 

 

2.2 Fire scar generation 

 

Our database was generated using JavaScript programming. The detailed workflow of the script developed to create 

individual fire scars is shown in Figure 1. It consists of the following consecutive steps: (i) input data selection and 125 

identification; (ii) pre- and post-fire image elaboration; (iii) index, mask calculation, and vectorization; (iv) spatial and 

spectral filtering; and (v) output data generation and exporting. As noted earlier, we have made the GEE script available to 

all users as a tool that can be adapted to local conditions and used for permanent database updating. The code is available a t 

https://code.earthengine.google.com/554027d16823525d890ab2f6c45167d9.  

 130 

The input data in Step (i) must be in the form of point data with geographic coordinates representing the ignition point or a 

point within the burned area. The points must indicate the fire start date, the fire control date (fire spread ending date) and 

the estimated burned area. In the absence of the last two, we used the fire start date and a fixed burned area of 100 ha as seed 
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values for the initial assessment. The inputted seed data are converted into a list to processed and extracted individual fire 

scars. Around each input point, a circular buffer area is created as a function of the estimated burned area, the precise 135 

dimensions given by  𝐵𝑢𝑓𝑓𝑒𝑟𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑙𝑜𝑔(𝑏𝑢𝑟𝑛𝑒𝑑𝑎𝑟𝑒𝑎) ∗ 2000. Buffer area is explained because we may have only the 

fire's ignition point as a spatial reference. Therefore, it is necessary to explore near this point to find the limits of the fire 

scar. This could be an interactive process depending on the burned area or the shape of the fire scar. 

 

In Step (ii), two image collections (sets of images) are prepared for each wildfire, depending on the fire start date. We use 140 

the atmospherically corrected surface reflectance and orthorectified images from Landsat 5 "LANDSAT/LT05/C01/T1_SR" 

(1984-2013), 7 "LANDSAT/LE07/C01/T1_SR" (1999-) and 8 (2013-) "LANDSAT/LC08/C01/T1_SR", with one image 

collection for a pre-fire condition and another for a post-fire condition, all of which are available in GEE. To avoid conflicts 

in mathematical operations for pre- and post-image collection generation, the date in day/month/year format is converted to 

Unix time format representing the number of milliseconds that have elapsed since January 1970. Based on the fire start and 145 

control dates, the respective image searches for both pre-fire post-fire events are each conducted for a period of 100 days. If 

this proves insufficient to get at least one image, the period can be extended up to two years for a pre-fire event and six 

months for a post-fire event. However, the definition of the maximum period of time must be chosen, taking into account 

local phenology, vegetation recovery, or landscape dynamics, aspects that could change the spectral response of the land 

surface after fire. Pixels of snow, clouds, and cloud shadows are excluded from each image on the basis of the pixel quality 150 

band provided by Landsat and used as a binary mask of good and bad quality of the surface reflectance. For each image 

collection, we applied either the mosaic or the median reducer function to get a unique image of the landscape conditions at 

moments as close as possible before and after a fire event. This can be done by sorting the image by its date, obtaining the 

closer good quality pixels. When mosaic reducer did not provide good quality pixels, we applied the median reducer instead. 

The median method for reducing image collections avoids extreme values by selecting the median value for each pixel. 155 

 

With the final pre- and post-mosaic images thus obtained, in Step (iii) we calculated all of the spectral indices (Table 1) used 

to identify the burned and unburned areas. The most widely used burned area index is the Normalized Burned Ratio (NBR) 

and its multitemporal form, the Delta Normalized Burn Ratio (dNBR) (Lentile et al., 2006; Fassnacht et al., 2021). These 

indexes reduce detection errors caused by shadows, water bodies, agricultural or tree harvesting, flooding and snowmelt 160 

(Chuvieco et al., 2019; Long et al., 2019). Other burned-area indexes have been proposed and a combination of them may 

give the best results, but to discriminate between burned and unburned areas we opted for the Relative Delta Normalized 

Burn Ratio (RdNBR). This index has shown good results in Mediterranean areas (Miller and Thode, 2007). 

 

 165 
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Table 1: Description of spectral indexes and formulas used in the workflow. 170 

 

Step (iv) involved the selection of the RdNBR index value for each wildfire that best captures the burned area based on 

visual interpretation. This is an interactive process (fire by fire) based on visual assessment of the best RdNBR value that 

delimitates each individual fire scar. The raster mask of the burned area was converted to a vector format for spatial and 

spectral filtering (Figure 1). By vectorizing the initially identified burned patches, spatial and spectral information could be 175 

added to each one so that burned and unburned patches could be better distinguished using new criteria. This information 

included the mean NDVI both before and after the fire event, the Near Infrared (NIR) minimum value after the event, and 

each patch’s calculated area. The information added to the initial burned area patches could help to filter misclassified areas 

as burned areas, thus reducing commission errors. We also calculated the NDVI in order to estimate several vegetation 

parameters based on the red and infrared spectral bands (Table 1). The NDVI can be used to represent both the current state 180 

of, and changes over time in, the composition, structure, and phenology of vegetation, as well as plant health and even 

burned vegetation. (Helman, 2018; Pettorelli et al., 2005). Spatial filtering begins by defining an initial search distance to the 

ignition point of 1 km, but it can be interactively defined or modified later. The biggest patch within that distance is then 

identified and a new distance from this patch is defined. Only the patches within this latter distance are considered. In this 

stage, polygons or patches that may cause commission errors are eliminated from the areas counted as burned in the 185 

preliminary mask. They may include (a) water bodies with a pre-fire mean NDVI of less than 0.1; (b) polygons or patches 

for which the pre-fire mean NDVI is less than 0.1 and therefore did not contain vegetation, and other filtering criteria similar 

Index 

Abbreviatio

n Formula 

Usage 

Reference 

Normalized Difference 

Vegetation Index 
NDVI 

𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
 

Detects pre- and post-fire 

vegetation cover (Rouse et al, 1974) 
 

Normalized Burned 

Ratio 
NBR 

𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅2

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅2
 

Detects burned areas 
(Key and Benson, 1999) 

 

Delta Normalized Burn 

Ratio 
dNBR 𝑃𝑟𝑒𝐹𝑖𝑟𝑒𝑁𝐵𝑅 − 𝑃𝑜𝑠𝑡𝐹𝑖𝑟𝑒𝑁𝐵𝑅 

Detects changes in NIR and 

SWIR bands to identify burned 

area and fire severity (Key and Benson, 1999) 

 

Relative Delta 

Normalized Burn Ratio 
RdNBR 

𝑃𝑟𝑒𝐹𝑖𝑟𝑒𝑁𝐵𝑅 − 𝑃𝑜𝑠𝑡𝐹𝑖𝑟𝑒𝑁𝐵𝑅

√𝐴𝐵𝑆(𝑃𝑟𝑒𝐹𝑖𝑟𝑒𝑁𝐵𝑅)
 

Normalization of changes by 

pre-fire vegetation condition (Miller and Thode, 2007) 
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to those proposed by Long et al., (2019). Each polygon or patch satisfies the filter criteria and has a minimum area of 0.3 ha 

is retained. The filter values can be changed to suit local conditions.  

 190 

Finally, in Step (v), once the fire scar is delimited, the event’s severity is calculated from the RdNBR in a continuous raster 

format and categorized based on the ranges proposed by Miller and Thode (2007) (Severity category: Unchanged_<69, Low 

69–315, Moderate 316–640, High >=641). Our database also makes available the pre- and post-fire NBR index for each 

image. Each fire scar and its severity are exported in vector and raster format, together with the multispectral corrected 

Landsat images of pre- and post-fire events and the RdNBR index. The vector data contains information about the fire 195 

record, the calculated area and the spectral responses used for filtering. The output name of each vector and raster file is 

OBJECT (FireScar, Severity, ImgPre, ImgPost and RdNBR) +_ISO-REGION_ID +_u-THRESHOLD RdNBR VALUE 

+_START DATE, where ISO-REGION is the name of the administrative region based on the ISO 3166-2:CL norm, ID is 

the identification number of the evaluated fire, THRESHOLD VALUE is the numerical value of the RdNBR index used to 

separate burned and unburned areas. Finally, START DATE is the date used to find the first image previous to the fire, 200 

which in most cases will be the same as the fire start date in the day/month/year format (e.g., FireScar_CL-

RM_ID1920451_u330_19990215). A detailed description of each variable and its format is included as supplementary 

material in the database metadata.  

 

2.3 Fire scar evaluation   205 

 

We compared our fire scars with those generated by CONAF for the 2015-2016, 2016-2017 and 2017-2018 fire seasons. and 

published in Brull (2018). The author elaborated a manual digitalization of the fire scar perimeters using secondary 

information such as pre- and post-fire Landsat satellite images, dNBR index, Visible Infrared Imaging Radiometer Suite 

(VIIRS) active fire data, and Sentinel 2 images for high-resolution interpretation. The fire perimeters were defined as the 210 

outer limit between the burned and unburned area in the landscape, but the unburned areas inside this perimeter were not 

discounted in the final fire scars. The author generated 194 fire scars, of which 78 coincided with two criteria for making 

comparisons: (i) individual fire scar must be at a distance of at least 300 m of another reported fire by Brull (2018), and (ii) 

the fire have the same name, start date and control of our seed data to avoid confusion. From 194 fire scars collected by Brull 

(2018), 107 were within 300 m from another reported fire, and in nine cases, the name and dates did not match.The author 215 

generated 194 fire scars, of which 78 coincided with .  those we reconstructed and were thus the ones used for making 

comparisons. The mean area of the 78 fire scars was 1,180 ha (min: 200, max: 12,250). In order to avoid confusion between 

fire events, the evaluation carried out for individual fires located at least 300 m from any other scar dating to the same 

season. The evaluation of the 78 fire scars itself was based on the index proposed by Singh et al. (2015) that compares two 

georeferenced polygons using the Closeness Index (D) as formulated in Eq. (1) below:  220 
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𝐷(𝑖, 𝑗) = √(𝑂𝑣𝑒𝑟𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑗))
2
+ (𝑈𝑛𝑑𝑒𝑟𝑆𝑒𝑔𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑗))

2
                                                                         

(1) 

 

where i = reference polygon, j = segment polygon, OverSegmentation (i, j) = 1 −
𝐴intersect(𝑖,𝑗)

𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖)
, UnderSegmentation (i, j) = 225 

1 −
𝐴intersect(𝑖,𝑗)

𝐴𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑗)
, Aintersect (i, j) = common area between segment polygon j and corresponding reference polygon i, 

Areference (i) = Area of reference polygon i, and Asegment (j) = Area of segment polygon j 

 

In order to normalize the values of D, we use the modification form 𝐷𝑛𝑜𝑟𝑚 = 1 − (
𝐷

√(2)
), 

where 𝐷𝑛𝑜𝑟𝑚 is the normalization of D values between 0 (no matching polygons) and 1 (perfectly matching polygons). 230 

 

To assess the accuracy of our framework we include the evaluation of commission and omission error calculated as follow; 

commission error = FP/(FP+TP) and omission error = FN/(FN+TP), where FP is the spatial explicit false positive area of the 

generated fire scar compared with reference polygon of Brull (2018), FN is the false negative area and TP is the true positive 

area.  235 

 

2.4 Database quality control  

 

Even though the data generation process is done with standard and stable GEE scripts, the project's enormous scope could 

lead to involuntary discordances in resulting files. A thorough revision was performed over approximately 140,000 files, 240 

taking into account three major areas: (i) file and layer naming, file readability and type and amount of files per fire scar; (ii) 

geographic locations and burned area related revision; and (iii) dates and season related revision. The approach was to define 

several tests regarding relations between the content and attributes of the files in each area, that the whole dataset should 

comply. The revision scripts were written in Python in the Google Colab environment, having direct access to the Google 

Drive files generated by the GEE process. The tests were written for our resulting database but are generic in most terms and 245 

assumptions and are available at https://github.com/cr2uchile/Quality_Control_FireScarCL. Some of these tests led to human 

revision of the fires, either regenerating them or removing them from the firescar database, and other tests led to automated 

fixes, like name change or attribute column and content changes in the vector files. The resulting database of 8153 fire scar 

complies with the following statements: 

 250 

- All fires have a unique identifier and 17 related files: Two satellite composite raster tif images that cover a domain larger 

than the identified fire scar, that merge pre and a post images ( ImgPreF ..tif, ImgPosF ..tif), three raster tif images with the 

shape of the fire scar that contains: zeroes where there is no fire scar identified and ones where there is (FireScar ..tif);  zeroes 

https://github.com/cr2uchile/Quality_Control_FireScarCL
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where there is no fire scar identified and severity index values (from 1 to 3) to identify the severity where there is a fire scar 

(Severity ..tif) and the RdNBR value (float numbers) for the points where there is a fire scar (RdNBR ..tif). Finally two 255 

vector Shapefile images that contain six files each (.shx, .shp, .dbf, .cpg, .fix, .prj) where one is the vectorized representation 

of (FireScar ..shp) and the other is the vectorized representation of (Severity ..shp) with polygon and attributes information. 

- For each set of resulting fire scar files, the ISO-REGION_ID corresponds to the region assigned by original CONAF point 

dataset, and the START_DATE corresponds to the ignition point assigned by CONAF. This was preserved to better identify 

the resulting fire scars with the seed database.  260 

- All raster tif image files have the same area type and coordinate system. All pre and post-fire tif images have eight readable 

bands. 

- For each fire: the pre and a post-fire tif images have the same width and height dimensions and the exact geographic extent. 

Also, their domain contains the firescar’s ignition point and the resulting raster fire scar tif images (FireScar ..tif, Severity 

..tif,  RdNBR ..tif). The FireScar and Severity vector shapefiles files have consistent values in their attribute tables, and the 265 

amount of polygons of the Severity vector image is equal or more than the amount of polygons of the FireScar vector image. 

The dates in the attributes tables have format YYYY-MM-DD and the texts have UTF-8 encoding. The original fire names 

with accented vowels and ñ, were replaced by the non-accented vowels and n, respectively. 

 

3. Results 270 

 

Using the data for all 12,250 fires recorded by CONAF between 1985 and 2018 with a burned area greater than 10 ha, we 

were able to reconstruct 8,153 fire scars, 66.56% of the total registered fires (Table 2, Figure 1). Suitable images were found 

for 35% of recorded fires for the period 1985-1994, 63% for 1995-2004, 82% for 2005-2014 and 93% for 2015-2018. The 

increasing trend evident in these percentages reflects how image availability has grown over time. Smaller numbers of 275 

suitable images were found for the country's southern regions (Los Ríos and Los Lagos), the wettest and coldest included in 

our study, where cloud cover is continuous for much of the year (Table 2). 

 

Table 2: Regional and temporal distribution of fires and reconstructed fire scars. The administrative regions are those 

included in the study. The number of fires column indicates the total recorded by CONAF for which burned area was over 280 

0.01 ha, Yes is the number of reconstructed fire scars contained in our database, and No is the number of fire scars in the 

database that could not be reconstructed due to the unavailability of satellite images. 

Administrative 

region 

Number 

of fires 

Number 

of fires 

>10ha 

Reconstructed 

fires scars > 10ha 

(%) 

Total fire scars 

1985-2018 1985-1994 1995-2004 2005-2014 2015-2018 

Yes No Yes No Yes No Yes No Yes No 

Coquimbo 1863 238 60.92 145 93 27 51 40 24 38 17 40 1 

Valparaíso 31857 1784 80.38 1434 350 400 160 352 40 425 140 257 10 

Metropolitana 15337 1109 85.75 951 158 208 79 252 42 261 33 230 4 
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Ohiggins 8249 1221 85.09 1039 182 240 93 251 56 365 26 183 7 

Maule 14475 1419 65.89 935 484 103 290 199 118 393 52 240 24 

Ñuble and Bío-

Bío 77704 3248 58.07 1886 1362 124 775 473 375 712 171 577 41 

Araucanía 31306 2369 57.41 1360 1009 30 458 346 356 424 131 560 64 

Los Ríos 3680 339 35.99 122 217 8 154 41 48 33 10 40 5 

Los Lagos 8416 523 53.73 281 242 5 100 53 111 143 27 80 4 

Total 192,887 12,250 66.6 8,153 4,097 1,145 2,160 2,007 1,170 2,794 607 2,207 160 

 

 

The total number of fires >0.01 ha exhibits a positive linear relationship with the total number of fires > 10  ha also recorded 285 

by CONAF between 1985 and 2018 (R2 = 0.86). The number of recorded fires >10 ha and the number of reconstructed fire 

scars per region exhibits the same positive linear relationship (R2 = 0.92), indicating that the distribution of the reconstructed 

data is regionally representative (Table 2, Figure 2). However, the pattern of relationships between recorded fires and 

reconstructed fire scars for the different regions varies from period to period. For 1985-1994 the relationship was weak (R2 = 

0.1) but had strengthened by 1995-2004 (R2 = 0.91), and again for 2005-2014 (R2 = 0.93) and 2015-2018 (R2 = 0.93). The 290 

definitive version of our database is ordered by region and fire season to facilitate exploration and analysis, revealing, fo r 

example, the high levels of fire activity areas near the coastal cities of Valparaíso and Concepción over the various decades 

(Figure 3). 

 

For each of the 8,153 reconstructed fire scars, our database contains the following: (i) a Landsat mosaic of pre- and post-fire 295 

event images (.tif) with eight spectral bands: blue, green, red, NIR, SWIR1 and SWIR2, NDVI and NBR index (Figure 4); 

(ii) the raster of the fire scar in binary format (.tif), where 1 is the burned area and 0 the unburned area (Figure 4); and (iii) 

the RdNBR index, both in continuous values (.tif) and categorized by severity classification level, where 0 is unchanged, 1 is 

low severity, 2 is medium severity and 3 is high severity (Miller and Thode, 2007) (Figure 4). In addition, there are two 

vector files (.shp) containing (iv) the fire scar perimeter and (v) the fire scar severity classification (Miller and Thode, 2007). 300 

Layers of information are assigned to each individual burned patch indicating its size, detected fire start and control dates, 

and spectral data. NBR bands are available for each image to enable reassessment of the fire scar and its severity. A detailed 

description of each variable and its format may be found in the database metadata.  

 

3.1 Fire scar evaluation   305 

 

We evaluated the fire scars reconstructed using our approach by contrasting them with the 78 scars derived from the official 

CONAF data that were suitable for making comparisons. A perfect match could not, of course, be expected given the 

differences in the two methodologies. One particularly crucial difference is that CONAF’s fire scar digitalization includes 

within the fire perimeter for each fire event patches that in fact were not burned. These patches constituted anywhere from 310 
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13.5% to 18.2% of the areas indicated as burned, depending on the fire season (Brull, 2018). Also, CONAF’s digitalization 

was complemented by the agency’s own fieldwork, which improved the detection of low severity fires or surface fire under 

the canopy. Nevertheless, the global accuracy assessment derived from the Closeness Index and calculated as the mean of 

the individual 𝐷𝑛𝑜𝑟𝑚 result in a value of 0.79. Examples of the comparisons of our reconstructed fire scars with CONAF data 

reported by (Brull, 2018) are shown in Figure 4 in together with the respective 𝐷𝑛𝑜𝑟𝑚 index for each case. Finally, we found 315 

a commission error = 7% and an omission error = 28%. 

3.2 Limitations and other observations regarding the Landscape Fire Scars Database 

 

1. Our fire scar dataset does not represent all of the fires recorded in the 1985-2018 period. 

2. The reconstructed fire scars are mainly concentrated in the last 20 years of that period, which may be related to the 320 

improvement over time in image availability.  

3. Remotely sensed fire severity estimates the change in spectral response in the burned area and must be carefully treated in 

the analysis of the fires’ ecological impact. Low severity or surface fire may be underestimated. 

4. Due to the 16-day interval between Landsat images, one fire scar reconstructed from them may represent more than one 

fire event in neighboring areas experiencing multiple fires over that interval, especially in the case of originally independent 325 

fire events that may have merged. Some fire scars in the database may be duplicated if they merged with another fire due to 

their proximity in space and time. We include a notification in the database where this could have happened. 

5. Commission errors may occur due to other land cover changes such as tree plantation clearcutting or harvesting on crops.  

6. In certain cases, the inclusion of additional available images of pre- and post-fire events may help to improve the fire 

scars.   330 

 

4. Data availability  

 

The Landscape fire scars dataset for Chile can be downloaded from the PANGAEA repository at 

https://www.pangaea.de/tok/6dcc6e08241c5076ef6bff47bbe73014308d4881 (Miranda et al., 2022).  335 

 

5. Discussion and conclusions 

 

The creation of our Landscape Fire Scars Database for Chile makes publicly available for the first time a high-resolution 

individual burned area product for the country. The georeferenced database is a multi-institutional effort containing 340 

information on more than 8,000 fires events of more than 10 ha between 1984 and 2018. It contains data on fire scar area, 

perimeter, and severity, which is accessible to the general public for analyzing future changes, improvements and new 

https://www.pangaea.de/tok/6dcc6e08241c5076ef6bff47bbe73014308d4881
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evaluations. Furthermore, the methodology for generating these data was implemented in GEE so that others may replicate 

our approach or apply it to other countries or cases where no openly accessible datasets are available. Public institutions a nd 

researchers can take advantage of this framework to generate long-term time series of fire scars for any years of interest or 345 

just for one particularly significant wildfire. The international community can replicate this workflow using national fire 

occurrence data with the minimum required information or with recently released data on ignition coordinates, date, and fire 

duration for more than 13 million individual fires worldwide that occurred between 2003 and 2016 (Andela et al., 2019). As 

a high-resolution fire scar database, it should be of much help in conducting accurate and systematic evaluations of 

underlying wildfire forces, impacts and recoveries, and delineating populations and biodiversity, public policy and informed 350 

territorial decision making and planning (Chuvieco et al., 2019; Long et al., 2019; Stenzel et al., 2019).    

 

Creating this database based on information distributed over an extensive territory on a national scale using a single method 

presented diverse challenges as regards (i) historical image availability, (ii) land cover and land cover change dynamics, and 

(iii) temporal image resolution and image cloud cover. In what follows, each of these issues is discussed in turn. 355 

 

(i) Historical image availability  

 

GEE (https://earthengine.google.com) provides free online access to original and corrected Landsat program data and 

products. Users do not need to download the images, and the analysis and image modification is also online, powered by 360 

Google servers (Gorelick et al., 2017). Image availability in the Landsat program is rather uneven across countries, with 

those in the developing world generally less well represented in terms of historical records. Nevertheless, the continuity of 

the image time series improves noticeably as the time period in question approaches the present. In the case of Chile, this 

pattern of improvement is clearly evidenced in the fire scare generation success rates we obtained for time periods since the 

mid-eighties (1985-1994: 35%, 1995-2004: 63%, 2005-2014: 82%, 2015-2018: 93%), consistent with the availability of free-365 

cloud pixels for the country (Figure 5). This tendency must be considered when determining the time periods for 

reconstructing a database for any specific region. For example, according to the Landsat Global Archive Consolidation 

updates (Wulder et al., 2016), availability and usable image quality are lower for southern hemisphere high latitude regions 

(Huang et al., 2010; Stillinger et al., 2019; Viale et al., 2019). 

 370 

(ii) Land cover change dynamics 

 

Almost 90% of wildfire ignitions and burned areas worldwide are human-caused (Ganteaume and Syphard, 2018). As a 

result, many of these fires impact the wildland-urban interface, urban and rural settlements and productive regions (e.g., 

agricultural lands, tree plantations). Zones with high rates of land-use or land-cover changes may present some difficulties in 375 

fire scar and severity mapping.  Remotely sensed burn area indexes are based on the abrupt change in the pre-fire spectral 

https://earthengine.google.com/
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band values following a fire event. For example, NBR uses the near-infrared (NIR) and short wave infrared (SWIR) bands as 

proxies of photosynthetic productivity and water content of vegetated areas (Lentile et al., 2006; van Wagtendonk et al., 

2004). Both parameters are affected by fire, so the greater is the temporal difference in the index, the greater was the event’s 

severity. However, the spectral response of those bands may also be influenced by other factors. Forestry activity, especiall y 380 

tree plantation clearcutting, deforestation or harvesting on agricultural land, as well as the drying of annual grassland in the 

summer season, dried meadows, and the cultural practice of burning agricultural wastes may all act to confuse the spectral 

response for a given landscape, assimilating them to wildfire (Ghermandi et al., 2019). Another local consideration is the 

recovery rate of the vegetation. For example, in the tropics recovery is faster than in temperate areas, which could affect 

mapping of burned areas or fire intensity estimation depending on how much time has passed between fire occurrence and 385 

acquisition of a good quality satellite image (Chuvieco et al., 2019). Local topography may also complicate the process of 

distinguishing burned areas in mountain zones due to the increased presence of shadows, fog, or melting snow in cold or 

high-elevation areas (Huang et al., 2010; Stillinger et al., 2019; Viale et al., 2019). Therefore, local experience in landscape 

dynamics and practice is crucial to ensuring the generation of accurate databases and may constitute  a basis for adapting the 

most commonly used burned area indexes to local realities. 390 

 

(iii) Temporal image resolution and image cloud cover 

 

Landsat images are widely used to study land cover changes and trends thanks to their spatial and temporal resolution 

(Soulard et al., 2016). However, the 16-day interval between images could be a major limitation. In regions with high fire 395 

activity, this can make it more difficult to identify individual fire scars and differentiate them from those produced on other 

days at neighboring locations. This means that a single final fire scar may in fact have been created by multiple fire events 

occurring over the 16 days that converged or totally fused. The problem could be mitigated by using Sentinel-2 images (also 

available in GEE) for the earliest fire events given that the Sentinel-2 program is available from middle 2015 with a temporal 

resolution of 5-6 days (starting in 2017) and a pixel size of 10 m and 20 m (e.g. SWIR band), although increasing spatial 400 

resolution may raise another issue in that it could result in underestimation of the influence of dead vegetation shadows on 

the spectral index signals (Fassnacht et al., 2021). The high temporal resolution could also be helpful in zones with high 

cloud cover such as are found in tropical and high latitude or mountain areas (King et al., 2013).  For example, we can 

observe that the Landsat archive in Africa could reduce its number of images with less than 40% of cloud cover in a mean of 

more than 25% with much fewer images in the tropical zone of the Congo Basin (Roy et al., 2010).  405 

 

The RdNBR index is able to differentiate burned area over a diverse range of climate and geographic conditions. No evident 

pattern associated with the latitudinal or vegetation-type change was observed in applying the threshold value to identify 

scars. Different burned-land covers may have variable RdNBR values, but this relationship does not figure among the 

objectives for the present database development. In general, RdNBR performs wells when compared with field plots of 410 
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severity. It is little influenced by the type of forest and is determined mainly by the fraction of consumed canopy cover 

(Cardil et al., 2019; Soverel et al., 2010; Fassnacht et al., 2021), demonstrating the index’s high versatility. Nevertheless, the 

task of assessing the performance of the severity classification is left to users of the database, and will depend on the local 

land cover context and field validations for identification of the best index. Our database does provide the NBR band for the  

images to facilitate comparison and evaluation of the dNBR and RdNBR indices. 415 

 

The importance of the proposed database also stems from its value as a source of input for methods based on artificial 

intelligence (AI) aimed at automating the process of generating new fire scars. AI techniques such as machine learning 

(ML), deep learning (DL), and especially the convolutional neural network (CNN) are increasingly being used for 

classification or object segmentation problems (Alzubaidi et al., 2021). The integration of such methods with remote sensing 420 

data is enabling the development of burned area detection models that use human-delimited wildfire perimeters as their 

training data set. Promising results have been achieved using uni- or multi-temporal images and different types of remote 

sensing data to address the many open challenges in wildfire mapping and monitoring (Hu et al., 2021; Knopp et al., 2020; 

Pinto et al., 2021). 

 425 

In conclusion, this present study makes, we believe, a significant contribution to the development of high-resolution methods 

for mapping fire scars and their temporal and spatial patterns. Our hope is that it will serve as a first step in an ongoing effort 

to build and maintain an extensive, consistent database on forest fires in Chile that will drive scientific research and 

improvements in landscape management. Further study is needed to broaden the current state of knowledge on local 

conditions through standardized field surveys. 430 

 

(iv) Seeding datasets 

 

Studies in Chile have previously evaluated the performance of the global satellite burned area products showing good 

performance. An improvement of thats products can be done using as seed point the fires detected by global datasets in Chile 435 

or another area. Global datasets such as MODIS Collection 6 burned area data MCD64A1 (Giglio et al., 2009), VIIRS active 

fire dataFIRMS (Schroeder,  Wilfrid and Giglio,  Louis, 2018) and Global Fire Atlas (Andela et al., 2019; Giglio et al., 2018) 

can be used for evaluating the performance of our approach in medium and large fires and create new high-resolution 

datasets for mapping fire scars in different ecosystems and land covers. 

 440 
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Figure 1: Detailed workflow for individual fire scar generation in Google Earth Engine. See Table 1 for details on NBR and 

RdNBR. 675 
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 680 

Figure 2: A. Geographic distribution of the fire scar database. B and C show examples of fire activity near the cities of 

Valparaíso and Concepción for different periods. 
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Figure 3: Database content for each reconstructed fire scar. See Table 1 for details on dNBR and RdNBR. Illustrated event is 

from the Maule region occurred in 2014. 685 

 

 

 

Figure 4: Evaluation of the fire scars. Shown are three examples comparing CONAF’s fire scars with the images 

reconstructed using our Landscape Fire Scars Database methodology. See 2.3 Fire scar evaluation section for detailed 690 

description of Dnorm.  
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 695 

Figure 5: Upper panel show available Landsat pixels over study area per each year (1985 – 2018). For the same period, the 

lower panel represent the number of available Free-Cloud Landsat pixels per year. 


