10

15

20

25

A decade of glaciological and meteorological observations in the

Arctic (Werenskioldbreen, Svalbard)

Dariusz Ignatiuk!, Malgorzata Blaszczyk?, Tomasz Budzik®, Mariusz Grabiec!, Jacek A. Janial, Marta
Kondracka!, Michat Laska®, Lukasz Malarzewski?, L.ukasz Stachnik?

University of Silesia in Katowice, Katowice, 40-007, Poland
University of Wroctaw, Wroctaw, 50-137, Poland

Correspondence to: Dariusz Ignatiuk (dariusz.ignatiuk@us.edu.pl)

Abstract. The warming of the Arctic climate is well documented, but the mechanisms of Arctic amplification are still not fully
understood. Thus, monitoring of glaciological and meteorological variables and the environmental response to accelerated
climate warming must be continued and developed in Svalbard. Long-term meteorological observations carried out in situ on
glaciers in conjunction with glaciological monitoring are rare in the Arctic and significantly expand our knowledge about
processes in the polar environment. This study presents glaciological and meteorological data collected in 2009-2020 in
southern Spitsbergen (Werenskioldbreen). The meteorological data are comprised of air temperature, relative humidity, wind
speed, shortwave and longwave upwelling and downwelling radiation on 10 minutes, hourly and daily resolution (2009-2020).
The snow dataset includes 49 data records from 2009-2019 with the snow depth, snow bulk density and SWE (snow water
equivalent) data. The glaciological data consist of seasonal and annual surface mass balance measurements (point and glacier-
wide) for 2009-2020. The paper also includes modelling of the daily glacier surface ablation (2009-2020) based on the
presented data. The datasets are expected to serve as local forcing data in hydrological and glaciological models and validation
of calibration of remote sensing products. The datasets are available from the Polish Polar Database (https://ppdb.us.edu.pl/)
and Zenodo (https://doi.org/10.5281/zenodo.6528321, Ignatiuk, 2021a; https://doi.org/10.5281/zen0d0.5792168, Ignatiuk,
2021b).

1 Introduction

Long-term meteorological observations carried out in situ on glaciers in conjunction with glaciological monitoring are rare in
the Arctic and may be used to expand knowledge about processes in the polar environment. Terrestrial meteorological
monitoring alone does not always adequately address the needs of numerical modelling as well as validation and calibration
of satellite products regarding glaciers (Pelliccotti et al., 2014; Gabbi et al., 2017). The warming of the Arctic climate is well
documented, but the mechanisms of Arctic amplification are still not fully understood (IPCC, 2019). Both, climate and ocean
variables have fluctuated in Svalbard in the last decades (Nordli et al., 2014; Schuler et al., 2014; Isaksen et al., 2016;
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Vikhamar-Schuler et al., 2016; Walczowski et al., 2017; Osuch and Wawrzyniak, 2017; Ferland et al., 2020; Wawrzyniak and
Osuch, 2020), which causes progressive and ongoing changes in the cryosphere (Btaszczyk et al., 2013; Wawrzyniak et al.,
2016; Box et al., 2018; Grabiec et al., 2018; Nuth et al., 2019; van Pelt et al., 2019; Schuler et al., 2020; Btaszczyk et al. 2021;).
According to the data published in by SIOS data access portal (https://sios-svalbard.org/) and Meteorological bulletin
Spitsbergen-Hornsund (https://hornsund.igf.edu.pl/weather/) 2020 was the year with the warmest summer in the history of
instrumental observations in Svalbard (the mean JJA- June/July/August temperature was 7.2°C, about 3°C above the
climatological normal at the Svalbard Airport meteorological station). In Hornsund the same summer months mean was 4.8°C
(only 1.2°C higher than the local normal). The highest air temperature since the beginning of measurements was recorded on
July 25th, 2020: 21.7°C and 16.5°C at Svalbard Airport and the Polish Polar Station in Hornsund, respectively. Moreover, in
2019 the sea ice area on the Arctic Ocean reached the second minimum extent in the history of satellite measurements since
1979 (Yadav et al., 2020). While the summer of 2021 was colder and the minimal Arctic sea ice extent significantly larger,
acceleration of the climate warming trend is proved despite interannual variations (Hanssen-Bauer et al., 2019). Such
acceleration causes significant changes in the cryosphere of Svalbard and is particularly reflected in the faster melting of
glaciers and thawing of the permafrost (Schuler et al., 2020, Christiansen et al., 2021). It also stimulates faster energy and mass
exchange between the atmosphere, cryosphere and ocean. The above examples of transition in air temperature, sea ice extent
or glacier and permafrost melting demonstrate regional differences in climate warming and subsequently response of other
environmental components. Therefore, monitoring of such parameters and the environmental response to climate change is
recommended to be carried out in Svalbard, where climate warming is one of the most dynamic (Nordli et al., 2014; Isaksen
et al., 2016). Long-term observations allow for better quantification of observed changes and facilitate their more profound
understanding. This study presents the unique Arctic glaciological and meteorological data collected in 2009-2020 in southern

Spitsbergen.

2 Study Area

Werenskioldbreen is a well-studied, polythermal glacier located in South Spitsbergen (Figure 1)) (Baranowski, 1982; Pilli et
al., 2003; Grabiec et al.., 2012; Ignatiuk et al., 2014; Stachnik et al., 2016a; Stachnik et al., 2016b; Sutowicz et al., 202 0). This
valley-type glacier covered an area of 27.1 km? in 2008 (Ignatiuk et al., 2014) and 25.7 km? in 2017 (current study) in a
catchment area of 44 km?. Werenskioldbreen is divided by a medial moraine into south-eastern part Slyngfjellbreen and the
northern part Skilryggbreen accumulation area (Figure 1). The glacier’s forefield is closed by a distinct arc of the ice-cored
terminal moraine with one river gorge. Such a hydrological system allows the glacier basin to be treated as a well-defined
research laboratory for many hydrological and interdisciplinary studies (Majchrowska et al., 2015; Stachnik et al., 2016b;
Lepkowska and Stachnik, 2018; Gwizdata et al., 2018; Stachnik et al., 2019; Osuch et al., 2022). The glacier is situated 15 km

to the north from the Polish Polar Station Hornsund. The Stanistaw Baranowski Spitsbergen Polar Station (University of
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Wroctaw), a small field station is located at the southern edge of the Werenskioldbreen terminal moraine. Both facilities greatly

simplify the accessibility and logistics of research and monitoring projects.

506900 508900 510900 512P00

356?000
T
8560000

855?000 855?000
T
8558000

8556000

855?000
T
8554000

855?000
T
8552000

506000 508000 510000 512000

Figure 1: Location of mass-balance stakes (1-9) in 2009-2020 and the automatic weather station (AWS) on Werenskioldbreen
(background: GeoEye, 2010/08/10)

3 Instruments and methodology:
3.1 Meteorological monitoring

The automatic weather station (AWS) is located at an altitude of 380 m above sea level (Figure 1), close to the average
equilibrium line altitude (ELA) for the years 1959 — 2008 (Noél et al, 2020). The station was installed on the glacier on 15
April 2010. The AWS was mounted on a long steel mast placed in the ice drilling hole (ca. 6 m deep). In the following years,
as ablation progressed, the sensors were lowered or the mast was replaced with a new one in close proximity to the original
location. The recording of variables (air temperature, humidity, wind speed, shortwave and longwave radiation) has started on
17 April 2010 (Table 1). The Kipp & Zonnen CNR4 consists of two CM3 pyranometers, two CG3 pyrgeometers and
temperature sensors (PT100). Pyranometers (180° solid angle) have a glass dome and measure radiation in the range from 300
to 2 800 nm. One of the pyranometers directed upwards measures downwelling radiation, and the second one directed
downwards measures solar radiation reflected from the earth's surface (upwelling radiations). Pyrgeometers (180°-150° solid

angle), has silicone windows, which allow radiation measurements in the range from 4500 nm to 42000 nm. Like the
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pyranometers, the pyrgeometers point in opposite directions (upwards and downwards). One of the pyrgeometers measures
the long-wave radiation coming from the atmosphere, the second one the long-wave radiation from the ground surface. In
2016, the AL100R cup anemometer was replaced with the Gill WindSonic sensor, which allowed for measuring wind speed.

Damaged sensors were replaced during the spring or autumn service to maintain data continuity.

Table 1. Automatic weather station (AWS) sensors specification (Werenskioldbreen, Svalbard). All sensors were set in the

spring so that they were about 1.5 meters above the snow surface, height has been varied during the season.

Period of operation

Variable Sensor/producer Operating range Accuracy (percent of gaps in
dataset)
107/Campbell - £0°C +0.2 °C (over range O ... 0412010 0512016 (6%)
i -35 ... + 50° - ()
Alr temperature Scientific 50°C)
HMP155 80 60°C + Accuracy at —80 ... +20 05/2016 — 12/2019 (60%)
i -80 ... + 60° o R - ()
Air temperature (PT100)/Vaisala C (0.226 - 0.0028

x temperature) °C

+2.5% (10% — 90% RH) ;

. - HOBO / ONSET
0, - 0,
Relative humidity COMPUTER 0...100% RH 5% (below 10% and above 03/2011 - 09/2011 (0%)
90%)
+2% (0 —90% RH) 05/2016 — 08/2019 (55%)
Relative humidity HMP45AC / Vaisala 0...100%
+3% (90 — 100% RH)
ALOORIV +£0.1m/s (0.3-10ms?);
ector
Wind speed Inst X 0..75ms? +1% (10 -55ms?); 09/2010 — 05/2016 (14%)
nstruments
+2% (>55ms?t)
Radiation L
- shortwave: Pyranometer: Uncertainty in
downwelling Shortwave: daily total < 5%
and . 300 -2 800 nm Pyrgeometer: Uncertainty in
i CNR4 /Kipp&Zonen . 09/2010 — 05/2016 (1%)
upwelling
longwave: Longwave: daily total < 10%
downwelling 4500 —-42 000 nm | £ 6% (-40 — 80°C)
and +25 W m?at 1000 W m?
upwelling
Datalogger gg:ggg’c Campbell -40 — 50°C 04/2010 — 05/2020 (-)
':;Tj;%’;a?;dn zsiigﬁimpbe" 05-10m + 1 cm or 0.4% 9/2010 — 12/2019 (-)

In the 2010/2011 season, measurement recording t by the logger was performed every 1 min. Due to high energy demand

during the polar night, the sampling time was changed to an instantaneous measurement every 10 minutes. Calibration and
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testing of sensors were performed regularly during spring expeditions based on the infrastructure of the Polish Polar Station
Hornsund.

3.2 Glaciological monitoring

In 2009-2010, nine mass-balance stakes were installed on the Werenskioldbreen. The locations have been chosen to cover the
elevation range from 117 m a.s.l. to 515 m a.s.| to create altitudinal profiles along the northern and southern tributaries of the
glacier (Figure 1).

The stakes, 6 to 8 meters long, were embedded in the glacier by a steam drilling rig or by Kovacs Ice Coring System (ICS).
The mass-balance stakes were measured twice a year (spring-autumn, 2009-2013) during the winter maximum accumulation
(April-May) and at the end of the ablation season (September-October) or once a year (at spring, since 2014). The measure of
winter accumulation was determined during the spring campaigns. The properties of snow cover (bulk snow density, snow
depth, SWE) were measured in snow pits (a 100 cm® snow gauge by Winter Engineering was used to determine the snow
density of subsequent layers) or shallow core boreholes (ICS). During the measurements, repeated soundings of the snow depth
were also performed with avalanche probes. In the absence of the autumn campaign, boreholes have been drilled near each
stake in order to accurately determine the amount of summer ablation and possible summer accumulation. Measurements
during the autumn campaign did not always take place after or at the end of the ablation season. This was due to the logistics
of the expeditions and the extension of the ablation season. In the case of availability of data from the SR50A sensor, ablation
or accumulation corrections were also made if the winter or summer season ended later than the date of field observations.
Some of the ablation stakes have been damaged every few years. They have been broken by wind, polar bears, melt out from
the ice or been buried by snow. The network of ablation stakes was supplemented and renovated during maintenance visits.
Unfortunately, recent years have resulted in large gaps in measurements due to the pandemic travel restrictions (years 2020

and 2021). Detailed information on the temporal availability of glaciological data is presented in Table 2.

Table 2. Overview of mass balance and snow cover measurements on ablation stakes and infrastructure maintenance in years
2009-2020 on Werenskioldbreen (Svalbard), where: S — spring campaign (winter balance, April-May), A — autumn campaign
(summer balance, August-September, can be performed next year spring), X — lack of stake, SP — snow pit (SWE data), KD —
ICS drilling (SWE data).

Stake no. 1 2 (+AWS) 3 4 5 6 7 8 9
Coordinate
s é;Jl\-ll—)M N8556724; NB554930: N8558594; N8557076; N8554448; N8556047; N8555045; N8553738; N8555956;
hei h]t E512219; E510423- 3é 4 E510423; E5100481; E509786; E508243; E507837; E507697; E506449;
o 515 ' 471 302 308 188 199 277 120
(geoid
EGM_96)
2009 S, A, SP, S, A, SP, S, A, SP, S, A SP, S, A SP, S, A, SP, S, A, SP, S, A, SP, X
2010 S, A, SP, S, A S, A, S, A S, A SP, S, A, S, A, SP, S, A, S, A, SP,
2011 S, A, SP, S, A, S, A, SP, S, A, SP, S, A, S, A, S, A SP, S, A, SP, S, A,
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2012 S, A S, A SP, S-X, A S-X, A S-X, A S,A S,A SP S, A S, A

2013 S-X, AX, X, S,KD.A S, KD, A S-X, AX, S, KD, A S, SP, S, KD, S-X, A
2014 S, A, SP, X, S, A S, A S, A-X, SP S,A S, A SP, S, A S, A-X
2015 S, A-X, SP, X, S, A S A S, A, SP S, A S, A S, A-X S, A-X, SP
2016 S, A-X, KD, X, KD S, A S, A S-X, AX, S, A-X S, A S, A S-X, A-X
2017 S, A X, KD, S, A, KD S, A, KD S, A KD X, A S, A KD, S, A S, A-X, KD,
2018 S-X, A, KD, X, KD, S, A, KD S, A KD S, A X, S, A, KD, X, S, A, KD,
2019 X, KD X, KD S-X, S, A S, KD, A X, X, KD, X, S, A, KD,
2020 S X S S S X S, X S,

Based on the data collected, the following glaciological variables are available: seasonal and annual point and glacier-wide
surface mass balance, snow depth, bulk snow density and SWE at the measuring points.

The analyses of the glacier's surface mass balance excepted field measurements were based on altitude zones determined from
digital elevation models (DEM). Two DEMs with geoidal height (EGMZ2008) were used, one generated from SPOT image
acquired on 1 September 2008 (Ignatiuk et al., 2014) for years 2008 — 2019 and Pleiades high-resolution images taken on 20
August 2017 (Btaszezyk et al., 2019) for year 2020.

4 Meteorological observations
4.1 Air temperature and radiation

The air temperature data forms the most homogeneous series for 2010-2016 (Figure 2a). In 2017-2020 the data gaps were
already significant due to a series of failures of the instruments. Also, for 2010-2016, net radiation balance data (short- and

long-wave radiation) are available (Figure 2b,c). In 2017-2020, radiation data included only downwelling shortwave radiation.
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Figure 2: Time series of meteorological variables from 2010 to 2016 on Werenskioldbreen, including daily average air temperature
(a), hourly average shortwave radiation (b) and hourly average longwave radiation (c) for downwelling (black line) and upwelling
(red line) radiation.

For years with full data continuity (Figure 2a), air temperature monthly and yearly averages were calculated and then compared
with the data from the Polish Polar Station Hornsund (Wawrzyniak and Osuch, 2020). The average difference in the annual
temperature (2011, 2012, 2014, 2015) between glacier (380 m a.s.l.) and the Polish Polar Station Hornsund (8 m a.s.l.) was -
2.7°C , which gives an average temperature lapse rate 0.72/100 m (annual values varies from 0.55 to 0.80). We have calculated
the significance of the trend presented in this study using the non-parametric modified Mann — Kendall test (Hamed and Rao,
1998) with considering the effect of autocorrelation of time series. The slope of the trend was calculated using Sen’s method
(Sen, 1968). The test indicated the statistically significant increasing temperature trend in the period 2010-2016 (with the
significance level alfa = 0.05 and p-value = 0.036) taking into account the 12-month seasonality the Sen’s slope was 0.02.

Gaps in the data were filled based on the relations between air temperature measured on the PPS in Hornsund and air
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temperature on the WRN glacier (R? = 0.96). According to the Wawrzyniak & Osuch (2019) estimated slope of trend for air
temperature between 1979-2018 at the Hornsund station was estimated as 1.14° C per decade. Increasing distance between the
glacier surface and the sensors during the season is affecting on the air temperature measurements. Periodic measurements of
the vertical temperature gradient between 0.5 and 4 m carried out at the AWS indicate that the air temperature in the
atmospheric boundary layer changes by about 0.2°C per 1 m during the ablation season. Downwelling shortwave radiation
reaches its maximum during the middle of the polar day (June). Its annual course is governed by the occurrence of polar day
and night, while its daily course is governed the height of the sun above the horizon. The reflected shortwave radiation
(upwelling) is a function of the surface albedo. In the spring and early summer, we observed the highest values of reflected
radiation due to the presence of snow cover on the glacier. In the further part of the ablation season (July-August), we noticed
a sudden decrease in reflected radiation (Figure 2b) as a result of the disappearance of snow cover at the measurement site
(AWS) and the appearance of glacial ice on the surface. The decrease in upwelling shortwave radiation can be slight (e.g.
2012) when the melting of snow cover occurs mainly as a result of surface ablation or abrupt (e.g. 2015) when significant
rainfall led to a sudden change in the albedo on the glacier. The maximum values of downwelling/upwelling longwave radiation
(Figure 2c) usually occurred in summer and autumn. The values in winter and spring are lower, which in general shows similar
patterns with the seasonal variations in air temperature. The values above 316 W m2 of outgoing longwave radiation may be
caused by the presence of the water under the station or the presence of sediment or cryoconite. Both of these situation were
observed at AWS. In the he view of the CNR4 sensor (1800), there is also a mast with a logger, sensors and a solar panel, what
cause distorts of the observations. These problems are difficult to eliminate. Assuming the homogeneity of the surface around

AWS, increasing the distance of the CNR4 sensor from the glacier surface should not affects its measurements.

4.2 Other variables

The AWS measured relative humidity, wind speed, ablation and accumulation of snow (for the time span see Table 1). These
sensors were installed at the station depending on the needs of the ongoing projects. Not all of them could be connected to the
datalogger at the same time. Servicing only once a year, causing a higher failure rate for these sensors. Therefore, the data
obtained for these variables are not continuous and not homogenous for the entire observation period. Nevertheless, these data
are available and are of great value for solving specific scientific problems like rain on snow events (Lupikasza et al., 2019)

or supplying data to other models (Dacaux et al., 2019).

5 Glaciological observations
5.1 Point ablation and accumulation

Measurements on mass-balance stakes (Figure 1, Table 2) were performed in accordance with the recommendations and
guidelines contained in the Glossary of Glacier Mass Balance and Related Terms (Cogley et al., 2011). After Cogley et al.
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(2011) it was assumed that accumulation is always positive, while ablation is negative. Therefore, the calculation of the point
mass balance is Eq. (1):

b,=¢, +a,=b, +b;=c,+a,+c +as, 1)
where: ba — annual balance at a point, ca — annual accumulation, aa — annual ablation, bw — winter balance, bs — summer
balance, cw — winter accumulation, aw — winter ablation, cs — summer accumulation, as — summer ablation

A method of determining point mass balance on the glacier surface includes measurements at stakes and in snow pits or
boreholes. The high of each stake above snow/ice is measured twice in the maximum of winter accumulation and at the end of
the summer ablation. The measurements also include depth probing and density sampling of the snow and firn (see section
5.2). They are made at single points, the results from a number of points being extrapolated and integrated to yield the surface
mass balance over the entire glacier (Cogley et al., 2011; see section 5.3). The error of point mass balance was estimated using
the total differential function using general equation:

Af(xy, X, . Xy) = \/(;—;)2 (Ax,)% + (aa—xfz)z (Axp)2 + .+ (%)2 (Ax,)? @)

Where: Af, Ax — error of the variable, af/oxn - partial derivative, x,, x,, ... x,, — variables.

Base on the eq. (2) we’ve calculated the error of winter, summer and annual point surface mass balance using equations:
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Figure 3: Winter and summer balance at the point on 1-9 mass-balance stakes in years 2009-2020 For the location/elevation of the
stake see Figure 1 and Table 2. Stakes have been lined up according to a height above sea level.

The dataset includes point winter and summer mass balance measurements on mass-balance stakes in 2009-2020 and the
calculated point annual mass balance. The data allow the analysis of the spatial and seasonal variability of accumulation and
ablation at points on the glaciers at different altitudes. The analysis of the winter balance (Figure 3) shows the interannual
fluctuations in snow accumulation in the entire altitude profile of the glacier. The analysis of point winter balance shows the
smallest interannual fluctuations on the glacier snout (stake 9) and in the sheltered upper glacier cirque (stake 8). In the case
of the point summer balance, the greatest interannual changes are observed in the middle zone of the glacier (200 — 400 m
a.s.l.). This is due to a longer ablation period and higher temperatures not previously recorded at these altitudes. The variability
of the annual surface mass balance is dominated by the summer surface mass balance (Jstby et al., 2011; Grabiec et al., 2012;
Van Pelt et al., 2019).
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Figure 4: Examples of winter, summer and annual point mass balance on Werenskioldbreen (season 2010/2011). Whiskers show an
error (total differential function).

Each of the balance years can be considered separately (Figure 4). Winter accumulation in the analysed period was generally
low. The last significant accumulation on Werenskioldbreen took place in 2011. A slight accumulation in the highest parts of
the glacier was also observed in 2013, 2015 and 2020. Observations from 2020, however, may be biased by unqualified
substitutive observers due to the pandemic situation. In all other years, the ELA was above the highest monitored stake, no 1
(Table 2). The data on point mass balance components are crucial for calculations of the glacier-wide surface mass balance.
These data have very high importance for different modelling purposes, e.g. hydrology and glacier drainage modelling, total

water discharge from the glacier, sea level rise models and validation of remote sensing products.
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5.2 Snow Water Equivalent (SWE)

In the years 2009-2019, 49 samplings (shallow drilling or snowpits) were made on the glacier during the spring measurement
campaigns in order to determine the bulk snow density, and thus SWE. In the case of snowpit measurements, the density was
measured for each homogeneous layer. The bulk snow density for the snow profile was then averaged weighted by layer

thickness.

Whereas the bulk snow density during the drilling of snow cores was calculated based on the length and weight of each core

in the profile. SWE is calculated based on the following equation (Sturm et al. 2010):

SWE = h ;’—w (3)
ASWE = SWE (%)2 + (Api)2 @)

Where: hs — snow depth [m] , ps — bulk snow density [kg m™] , pw —density of water [Lkg m™], Ahs— error of the snow depth
[0.01 m], A ps— error of the bulk snow density [10 kg/m®].

The average density of snow cover ranges from 386 to 447 kg m (Table 3). The highest snow density values were noted in
2012. They are related to the extremely warm conditions in the winter season 2011/2012 with the heavy rainfall (Lupikasza et
al., 2019) during the winter and caused probably by the inflow of warm Atlantic water (the fjords of south-west Spitsbergen

did not freeze).

Table 3. Average snow depth and bulk snow density based upon data from sampling points (snow pits and drilling cores) on
Werenskioldbreen in years 2009-2019.

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Numberof g 3 5 2 6 3 3 2 6 4 7
sampling
Average

snowdepth 179 190 165 135 106 173 157 190 164 153 160
[m]
Average
bulk snow
density
[kg/m’]
Avarange
SWE [m 077 081 068 061 052 068 061 079 071 064 065
w.e.]

434 415 412 447 386 391 387 407 427 419 410

11
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Figure 5: Relationship between SWE and snow depth (a) and SWE and elevation m a.s.l. (b). Whiskers show an error (total
differential function, eq.4).

SWE values show a very high correlation with the snow depth (R? = 0.96, Figure 5a) and lower correlation with the altitude
above sea level (R? = 0.62, Figure 5b). Uszczyk et al. (2019) found the relationship between the bulk snow density and the
snow depth on Hansbreen located next to Werenskioldbreen. It was observed that the bulk snow density increases with snow
depth. The long-term data collected on Werenskioldbreen has not confirmed this correlation. In fact, in some seasons it is the
opposite, i.e. thinner snow cover in the lower zones of the glacier has the highest bulk snow density. Seasonal variability can
be explained by various meteorological conditions during the accumulation season. The differences between Werenskioldbreen
and Hansbreen can most likely be explained by different orographic conditions and exposure, which affects snow blowing and

snow deposition.

5.3 Glacier-wide surface mass balance

While the mass balance is measured on many glaciers, the data series rarely exceeds 10 years (Schuler et al., 2020). Multi-
year data series, such as those from Werenskioldbreen, represent a unique value for tracking long-term changes in the Arctic
environment. Calculation of the mass balance was based on point winter and summer balance analyses and digital elevation
models. The point measurements are extrapolated over the glacier surface determining the balance as a function of altitude and
averaging them, using the weights determined from the distribution of the glacier surface as a function of altitude (Cogley et

al., 2011). The error was estimated using the total differential function.

12



240

245

250

255

3.0

y=-0.01x + 0.77 y =-0.02x - 0.82 y =-0.02x - 1.58
R2=0.04 R2z=0.02 R*=0.01

-
wn

e
o

'
-
(9)]

(IR N RN N NRN W Ssscssssnsne ssssevcecsssboccss ®eeesrssscssscessscssnrs

Surface mass balance [m w.e.]

w
o

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

mwinter balance  Wsummer balance  Enetbalance ®** trendlines

Figure 6: Annual surface mass balance and its components of Werenskioldbreen in 2009-2020. Blue bars - winter mass balance, red
bars - summer mass balance, green bars - net mass balance. The results for 2019 may be understated (field measurements performed
by the non-expert crew).

The largest fluctuations are observed in the summer balance, which depends on the interannual changes in the duration of the
positive air temperatures and thus the length of the ablation season. The winter balance shows greater stability, however, over
the decade, the amount of snow accumulation is downward. This entails a negative trend in the surface mass balance of
Werenskioldbreen (Figure 6). Based on the trend lines, it can be concluded that acceleration of mass loss decreases by 0.09 m
w.e. per decade, while the summer balance decreases by -0.14 mw.e. for a decade. This gives us an acceleration of the ablation
by 0.23 m w.e. for a decade on Werenskioldbreen.

The significance of the trends using the non-parametric modified Mann — Kendall test (Hamed and Rao, 1998) showed there
is no statistically significant trend in 2009-2020 (o = 0.05). The Sen’s slope was -0.01, -0.12 and -0.02 for winter, summer and
annual glacier-wide mass balance respectively. Hagen et al. (2012) shown that it is impossible to give any trend for the glacier
mass balance data for so short time period.

Grabiec etal. (2012) have used monthly values of air temperature and precipitation from the meteorological station at Hornsund
and the reanalysis ERA-40 data to hindcast the mass balance of Werenskioldbreen for the years 1959-2002. The average
correlation coefficient of the modelled and observed mass balance in the 5 seasons (1994, 1999-2002) was 0.67
(meteorological data) and 0.70 (ERA-40). The average glacier-wide winter surface mass balance for 1959-2002, according to
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the model, was 0.81 m water equivalent (w.e.) (ERA-40 data) and 0.87 m w.e. (meteorological data) which, compared to the
last decade (average winter glacier-wide surface mass balance 0.72 mw.e.), decreased by 7 and 13% respectively. The glacier-
wide summer surface mass balance decreased from -1.23 m w.e. in 1959-2002 to -1.68 m w.e. in 2009-2020 (37%) in
comparison to the meteorological model and from -1.14 m w.e. in 1959-2002 (47%) for the ERA-40 data model. Detailed
analysis of glacier-wide summer surface mass balance data from modelling (1979-2005) and observations (2009-2020) shows
an increase in the average 10-year glacier-wide summer surface mass balance from -1.16 m w.e. in 1979-1988, through -1.35
and -1.55 in 1989-1998 and 1999-2005, respectively, to -1.68 in 2009-2020. A natural consequence of increasing the glacier-
wide summer surface mass balance is also a much more negative average annual glacier-wide surface mass balance in the last
decade (-0.97 m w.e.) compared to the years 1959-2002 (-0.35 m w.e. for the meteorological data model and -0.34 m w.e. for
ERA-40 data model).

5.4 Daily surface ablation

The influence of air temperature on the glacier surface ablation has been the subject of numerous studies. The coefficient of
determination between the annual ablation and the sum of positive daily air temperature was calculated as 0.96 (R?) by
Braithwaite and Olsen (1989). High correlation is caused by the strong dependence between the air temperature and the
components of the energy balance (Hock, 2003). Ohmura (2001) presented the physical basis for the application of temperature
ablation models, the relationship between air temperature and long-wave radiation of the atmosphere, sensible heat and incident
short-wave radiation. The basic temperature ablation model is given by the equation (Braithwaite, 1995):

n .M =DDFY™, T*At, (5)
DDF = =2 ©6)
where T+ — sum of positive air temperatures [K] during the same period of n time steps At [h], DDF — the degree-day factor in
mm d*K*, Mm - measured ablation [m] , M — melting [m w.e.], o — density [kg m™]. Melting is assumed to be zero when the
air temperature is < 0°C.

On the basis of glaciological and meteorological data collected on Werenskioldbreen, daily surface ablation for May -
November 2009-2020 was calculated (Figure 7). In the case of gaps in meteorological data collected by the AWS on
Werenskioldbreen, data from the Polish Polar Station located 16 km south-east were used (Wawrzyniak and Osuch, 2020).

Linear regression was used to fill the gaps (R® 0.96).
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Figure 7: Cumulative ablation [106 m?] in May — November (2009 — 2020) for Werenskioldbreen.

Seasonal sums of surface ablation oscillate between about 23.7 + 1.7 (2019) and 64.2 + 4.5-106 m® (2013), with an average of
44.7 £3.1-106 m® for 2009-2020. The value in 2019 may be underestimated due to problems with field measurements caused
by the pandemic travel restrictions. The length of the ablation season determines meltwater runoff volumes. It varied in the
analysed period from 134 days in 2014 to 203 days in 2016 (the average for 2009-2020 was 163 days). The surface ablation is
affected by the decrease in the number of sunny days and the increase of days with precipitation and cloud cover (Wawrzyniak
and Osuch, 2020). The amount of water produced by surface ablation is the largest component of the total runoff from the

catchment but precipitation can also be an important element of the water balance (Majchrowska et al., 2015).

6 Quality control and data processing

Data quality assurance includes additional measurements and calibration of equipment performed during the observation
period and post-processing of the collected data. The analysis differed for the meteorological data constituting the time series
and for the glaciological data.

The first stage of quality control for meteorological data consisted in visualizing each of the measurement series and reviewing
the disrupted data caused by interruptions in the operation of sensors. Due to its location, the automatic measurement station
(AWS) operating on Werenskioldbreen could not be maintained with high frequency. As a result, there were periodic problems
with the power supply as well as with the freezing of some sensors. Power shortages manifested themselves in the
disappearance of measurements and the occurrence of isolated measurements, the correctness of which could not be confirmed,
and therefore they were removed. Similarly, malfunctioning of sensors manifested in 'blocking' the measurement at one value

for a longer time. It mainly concerned wind speed measurements. As such values are unnatural, they were identified as
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erroneous and removed from the set during visual inspection. The next stage of the control was the identification of individual
measurements where the values were too different compared with the previous and following measurements and that did not
fit in the short-term trend. These data spikess were averaged with respect to adjacent measurements. It mainly concerned air
temperature and humidity records, where such spikes are believed to be artefacts. Similarly, the analysis of the measurement
series was performed in terms of unnatural values, i.e. values exceeding the permissible variability of the relative humidity or
air temperature. These were a few cases. In these situations, such values were eliminated or averaged over adjacent
measurements. In the last step, the same variables were compared with records from other weather stations in Svalbard. Air
temperature time series have been tested with observations at the Polish Polar Station Hornsund (Wawrzyniak and Osuch,
2020). Mainly, the correlations of the variability of parameters were checked in comparison to the stations accepted as
reference. Nevertheless, it should be remembered that even in the case of close points, this correlation does not have to be high
or consistent due to the specificity of these stations, i.e. different shading conditions, ground, topography or exposure.
Analysis of collected data revealed some imperfections in 10-minutes measurements of the air humidity. There have been
some measurements that slightly exceeded the value of 100%. In this case, one of two procedures was undertaken. If the
neighbouring measurements to the questionable record show high air humidity — the exceeding value was reduced to 100%. If
the neighbouring measurements to the questionable measurement show low air humidity the value was averaged from these
neighbouring measurements.

A separate analysed issue is the variability/fluctuation of measurements in this 10-minute series. A series of unjustified peaks
in the measured values were identified, with a relatively small variability of the parameters recorded by the sensors earlier and
later. The sites for this potential correction were searched for when reviewing the series on the chart. At the time of identifying
such a value, the variability of consecutive measurements was analysed. 12 measurements were analysed before the
guestioned measurement (= 2 hours). In this situation, when these fluctuations exceeded 2 standard deviations of the variability,
they were averaged with the direct measurements before and after the questioned measurement. When more than 3 standard
deviations of the measurements assessed according to this criterion were registered, directly after each other, they were
completely removed and marked in the published files by missing values (described in the attributes of NetCDF files). This
procedure was used for both air humidity and temperature. The tested measurements were compared, if possible, with their
counterparts measured at the station in Hornsund, for similar dynamics of variation, which could justify a similar dynamics of
variability in the published measurement series. When a large dynamics of the variability of the measured parameters were
identified in both locations, the criterion of 3 standard deviations was used instead of the previously described 2SD.
Unfortunately, the conditions of the measuring station in Hornsund are very different from the location on the glacier. For this
reason, the direct possibility of comparing measurements between these locations may be limited only to the analysis of short-
term trends and dynamics of the variability of both air temperature and humidity. The stations differ in height above sea level,
distance from the sea, and the ground on which they are located.
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In the case of wind measurements, the most common problem was the one resulting from the sensor icing, which manifested
itself in recording the same value over a longer period. The only possible correction here was to remove erroneous values
throughout the occurrence.

In the case of radiation measurements, the fewest corrections were made as these sensors proved to be the most reliable. The
introduced corrections concerned only sporadic jumps in the measured parameters. However, in this case, due to the large
impact of cloudiness on the measured parameters, which may be marked in the measurements, only the evident cases were
removed or averaged with such fluctuations. Jumps of single measurements against a background of relatively low long-term
variability were identified as such cases.

Measurement series prepared and tested in such a way were used to calculate series with an hourly and daily
resolution (24h). The series was created as a result of averaging or summing up depending on the parameter under
development.

Glaciological data are not collected automatically in large amounts but are based on single, unique observations
that must be made with great care as they are not possible to repeat or relate to observations from other areas.
Each measurement of the ablation stake was performed twice. If the funnel melts in ice or snow around the stake,
the measurement was made to the theoretical flat surface joining the edges of the funnel. In the event of a stake
skewing, its total length was measured and then, if possible, the stake was replaced with a new one. Measurements
of the snow depth, apart from making snow pits or shallow drilling, were always verified by taking 2-3
measurements with an avalanche probe. In order to obtain comparable measurements of bulk snow density (and
SWE) these measurements were performed with two different methods (snow pit and shallow drilling), and a series
of parallel measurements were performed showing that the difference in the calculated SWE does not exceed 5%.
In order to obtain the most accurate data from the ICS drill, the quality of the obtained ice and snow cores was
checked in order to determine the precise diameter of the obtained cores.

The obtained point and glacier-wide surface mass balance calculations were compared with the data published by
the World Glacier Monitoring Service (https://wgms.ch) for other glaciers on Svalbard in order to verify the
consistency of trends (Schuler et al., 2020). Data on surface ablation in seasons where it was possible were
controlled by comparison with the data collected by the SR50 (sonic ranger) sensor, which was also used to verify
the duration of the ablation season. The glaciological data were saved in the CSV files.

The quality of DEM generated from the SPOT images in 2008 was validated with the height of stakes on
Werenskioldbreen (Ignatiuk et al., 2014). The median value and standard deviation of the accuracy of the DEM were -0,85 m
and 2.2 m, respectively. Validation of the DEM generated from Pleiades images taken in 2017 was based on stake positions
over neighbouring Hansbreen (Btaszczyk et al. 2019). The median value and standard deviation of DEM accuracy were -0,36

mand 0.24 m, respectively.
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7. Dataset structure

Prepared measurement series were saved in the NetCDF (Network Common Data Form) format and placed on the server
supporting OPeNDAP (www.ppdb.us.edu.pl). The choice of this type of file is due to its universal nature. NetCDF files are in
line with the modern trend of storing and publishing measurement series meeting the FAIR data principles. The collections are
compliant with Unidata's Attribute Convention for Dataset Discovery (ACDD-1.3) and Climate and Forecast (CF) Conventions
(CF-1.8). The Attribute Convention for Dataset Discovery identify and define a list of NetCDF global attributes recommended
for describing a NetCDF dataset to discovery systems such as Digital Libraries. Software tools can use these attributes for
extracting metadata from datasets, and exporting to Dublin Core, DIF, ADN, FGDC, ISO 19115 etc. metadata formats. The
CF metadata conventions are designed to promote the processing and sharing files created with the NetCDF API. The
conventions define metadata that provide a definitive description of what the data in each variable represents and the spatial
and temporal properties of the data. This enables users of data from different sources to decide which quantities are comparable
and facilitates building applications with powerful extraction, regridding, and display capabilities. The CF convention includes
a standard name table, which defines strings that identify physical quantities. Global Attributes of prepared NetCDF files
comply with the recommendations of The Arctic Data Center (ADC) which is a service provided by the Norwegian
Meteorological Institute (MET) (https://adc.met.no/node/4).

All ACDD 1.3 Variable Attributes recommended were used. They were supplemented with the so-called _Fill\VValue = -999.9
indicating data gaps and valid_max and valid_min describing the natural and allowed variability of these parameters in the
measurement area. All measurement parameter names follow Climate and Forecast (CF) Standard Name Table version 77
which was available on the day when the dataset was published.

The keywords wvocabulary used is consistent with the Global Change Master Directory (GCMD) Keywords
(https://earthdata.nasa.gov/earth-observation-data/find-data/idn) developed for 20 years by The National Aeronautics and
Space Administration (NASA)/gecmd-keywords) which are a hierarchical set of controlled Earth Science vocabularies that help
ensure Earth science data, services, and variables are described in a consistent and comprehensive manner and allow for the

precise searching of metadata and subsequent retrieval of data, services, and variables.

8. Data availability

The data is stored in two repositories that provide long-term availability, open access, DOI and license according to the FAIR
principles: Zenodo (www.zenodo.org):

meteorological data: https://doi.org/10.5281/zenod0.6528321 (lgnatiuk, 2021a), glaciological data:
https://doi.org/10.5281/zenod0.5792168 (lgnatiuk, 2021b). During the review of the article, successive versions of the data

were corrected and updated (versions 1-4). The final version of the datasets for meteorological data is version 4 and for
glaciological data is version 1.
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and Polish Polar Database (https://ppdb.us.edu.pl/):

Air temperature:

https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search:jsessionid=7 AOC3C8EAEA1B8F61D8F0B57177B7098#/metadata/
abcbbecf-97f0-4dca-b597-2fa3438f43ab

Relative humidity:

https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7 AOC3C8EAEA1B8F61D8F0B57177B7098#/metadata/
bdd6b724-d75¢c-49a1-83c6-eb2007107cde

Wind speed:

https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7 AOC3C8EAEA1B8F61D8F0B57177B7098#/metadata/
dOad64ab-ad70-43d7-9383-8a9213e6c40f

Shortwave flux:

https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;:jsessionid=7 AOC3C8EAEA1B8F61D8FOB57177B7098#/metadata/
12ed9717-8cd7-4583-b2c6-089d50e6ad61

https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7 AOC3C8EAEA1B8F61D8FOB57177B7098#/metadata/
fa3bd41b-dfbb-49e8-bdf6-7c56e9bb902f

Longwave flux:

https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search;jsessionid=7 AOC3C8EAEA1B8F61D8F0B57177B7098#/metadata/
9309a6b1-663c-4227-9eb6-39761¢1d868d

https://ppdb.us.edu.pl/geonetwork/srv/pol/catalog.search:jsessionid=7 AOC3C8EAEA1B8F61D8F0B57177B7098#/metadata/
5aa3b739-af33-4e57-bf68-7a8757985b2d

In addition, the glacier mass balance data are stored in the World Glacier Monitoring Service database
(dx.doi.org/10.5904/wgms-fog-2021-05, WGMS, 2021) and INTAROS Data Catalogue (https://catalog-
intaros.nersc.no/dataset/glacier-mass-balance-werenskioldbreen).

All the data are also available through the Svalbard Integrated Arctic Earth Observing System (SIOS) data access portal
(https://sios-svalbard.org/metsis/search).

9 Summary

This paper has presented details of the glaciological and meteorological dataset (2009-2020) from the Werenskioldbreen
(Svalbard). The meteorological dataset includes 10 minutes, hourly and daily air temperature, relative humidity, short- and
long-wave radiation, and wind speed. The glaciological dataset includes point surface mass balance (winter, summer, net),
snow depth, bulk density, and snow water equivalent (SWE) for the mass-balance stakes, annual glacier-wide surface mass
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balance and modelled daily surface ablation. These data allow observations of the rapid changes taking place in the Arctic. In
particular, they allow determining the rate of climate change directly on glaciers. Werenskioldbreen mass loss is accelerating
at a rate of -0.23 m w.e. for a decade. These observation data have been already used to assess the hydrological models and
glaciological studies. The objective of releasing these data is to improve the usage of this data to calibration and validation of
the remote sensing products, models as well as to increase data reuse (Moholdt et al., 2010; Moller et al., 2011; Claremar et
al., 2012; Ostby et al., 2014; Btaszczyk et al., 2019).
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