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Abstract. The precipitation oxygen isotopic composition is a useful environmental tracer for climatic and hydrological 

studies. However, the observed precipitation oxygen is limited at both temporal and spatial scales. Isotope-equipped general 

circulation models (iGCMs) can compensate for the temporal and spatial discontinuity of observation networks, but they 

suffer from coarse spatial resolutions and systematic biases. The objective of this study is to build a high-resolution 15 

precipitation oxygen isoscape in China for a period of 148 years by integrating observed and iGCMs-simulated precipitation 

oxygen isotope composition (δ18Op) using data fusion and bias correction methods. The temporal and spatial resolutions are 

month and 50-60 km for the isoscape, respectively. Prior to building the oxygen isoscape, the performance of two bias 

correction methods (BCMs) and three data fusion methods (DFMs) is compared after post-processing of eight iGCM 

simulations. Results show that the outputs of the Convolutional Neural Networks (CNN) fusion method exhibit the strongest 20 

correlation with observations with correlation coefficient mostly larger than 0.8, and the smallest bias with root mean square 

error mostly smaller than 2‰. The other two DFMs also perform slightly better than the two BCMs, which show similar 

performance. Thus, precipitation oxygen isoscape is generated by using the CNN fusion method for the 1969-2007 period in 

which all iGCMs have output and by using the bias correction methods for the remaining years. Based on the precipitation 

oxygen isoscape, the spatiotemporal patterns of δ18Op across China are investigated. The generated isoscape shows similar 25 

spatial and temporal distribution characteristics to observations. In general, the distribution pattern of δ18Op is consistent with 

the temperature effect in northern China, and with the precipitation amount effect in southern China, and be more specific in 

the Qinghai-Tibet Plateau of China. The δ18Op time series mirrors a fluctuating upward trend of the temperature or 

precipitation in most regions of China. The temporal and spatial distribution characteristics of the generated isoscape are 

consistent with the characteristics of atmospheric circulation and climate change, indicating successful assimilation and 30 

extension of the observed precipitation oxygen isotopes in time and space. Overall, the built isoscape is reliable and useful 

for providing strong support for tracking atmospheric and hydrological processes. The dataset is available in Zenodo at 

https://doi.org/10.5281/zenodo.5703811 (Chen et al., 2021). 
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1 Introduction 

Stable oxygen and hydrogen isotopes are the components of water molecules in natural water bodies. The fractionation of 35 

stable isotopes, namely, the distribution of stable isotopes in different ratios between two phases, occurs during each phase 

transition in the water cycle (Dansgaard, 1964). Therefore, stable isotopes are very sensitive to environmental changes and 

can record the internal process of water cycles, providing an effective tracking method in the study of complex hydrological 

and climatic processes (Gibson et al., 2005; Gat, 1996; Galewsky et al., 2016; Ansari et al., 2020). 

The stable isotopes in precipitation are generally obtained from station measurements. In 1961, the International Atomic 40 

Energy Agency (IAEA) and the World Meteorological Organization (WMO) launched the Global Network of Isotopes in 

Precipitation (GNIP). Due to the scarcity of stations on the Tibetan Plateau, the Chinese Academy of Sciences (CAS) 

launched the Tibetan Plateau Network of Isotopes in Precipitation (TNIP) in 1991 (Yu et al., 2016a). However, most Chinese 

stations in GNIP stopped monitoring in the early 2000s (Zhang and Wang, 2016). In order to continue the systematic study, 

the CAS established the Chinese Network of Isotopes in Precipitation (CHNIP) based on the Chinese Ecosystem Research 45 

Network (CERN) in 2004. Due to the difficulty and high cost of measuring precipitation isotope ratios (Allen et al., 2018), 

most of the observed data are short in length. The spatial distribution of observation stations is uneven, with few stations in 

inaccessible areas (Wang et al., 2015). 

The stable isotopes in precipitation can also be simulated by isotope-equipped general circulation models (iGCMs). In 

contrast to observations, iGCMs can provide time-continuous and space-regular isotope data. The general circulation model 50 

(GCM) mainly describes the temporal and spatial changes of physical variables through physical equations, and the essence 

of iGCMs is to introduce the cycle of water stable isotopes into each stage of the water cycle in GCMs (Xi, 2014). Driven by 

the external climate boundary conditions, iGCMs can provide the composition of precipitation stable isotopes by calculating 

the basic mass, momentum, energy and water balance equations of air columns and reasonably parameterizing the basic 

meteorological processes (Sturm et al., 2010). Because the initial conditions, boundary conditions and process parameters of 55 

each model are different, the outputs of each iGCM are various. The Stable Water Isotope Intercomparison Group (SWING) 

and the second phase of SWING have been established to have a comprehensive comparison among different iGCMs and the 

related isotope measurements (Zhang et al., 2012). On this basis, the comparison and evaluation of iGCMs have been 

conducted in many studies (Zhang et al., 2012; Wang et al., 2015; Risi et al., 2012; Che et al., 2016). Even though iGCMs 

have reliable physical bases and can reflect the dynamic characteristics of water stable isotopes, they are computationally 60 

expensive and require thorough validation (Sturm et al., 2010; Galewsky et al., 2016). Moreover, the spatial resolution of 

iGCMs is on the order of hundreds kilometres, which is too coarse to investigate the water cycle for a specific region or 

watershed. Furthermore, outputs of iGCMs are usually subjected to systematic bias when compared with gauged 

observations, and there is no single iGCM that consistently performs better than the others (Zhang et al., 2012; Wang et al., 

2015; Conroy et al., 2013). The use of ensemble mean of multiple iGCMs is a desirable approach for better use of 65 

information available from all iGCMs. 
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Overall, both observations and iGCM simulations have advantages and disadvantages. The effort of constructing a 

database by taking advantages and circumventing disadvantages of both becomes a challenge. Accordingly, in order to make 

full use of the advantages of high quality observations and continuous iGCM simulations, this study aims at constructing a 

high-resolution precipitation oxygen isoscape in mainland China by data fusion and bias correction of iGCM simulations. In 70 

order to determine the best scheme to build the dataset, two bias correction methods (BCMs) and three neural network data 

fusion methods (DFMs) are first compared in terms of bias correcting and fusing iGCM simulations. The new isoscape in 

monthly temporal and approximately 0.5° spatial resolutions is produced by combining the Convolutional Neural Networks 

(CNN) fusion method and bias correction method for the 1870-2017 period. The spatial and temporal distribution 

characteristics of oxygen isotopes in precipitation are then analysed for China. 75 

 

Figure 1. Map of the station locations and topography in mainland China. The dots indicate the distribution of isotope observation 
stations, with different colours representing different sources. The six sub-regions are plotted (NE – Northeast China, NC – North 
China, SC – South China, SE – Southeast China, TP – Tibetan Plateau, NW – Northwest China). 
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2 Study area and data 80 

2.1 Study area 

China is located in the east of Eurasia and on the west coast of the Pacific Ocean. The topography of China generally 

presents three steps descending to the east. The climate is complex and diverse in China. Heavily influenced by the 

continents and oceans, the monsoon climate is significant, especially for the east of China. The spatiotemporal variation of 

precipitation stable isotopes are very complex due to the significant changes in winter and summer circulation (Liu et al., 85 

2014). Mainland China can be geographically classified into three sub-regions, the eastern monsoon region, the arid 

northwest region (NW) and the Qinghai-Tibet Plateau region (TP), according to topography, climate, soil and vegetation. 

According to temperature and precipitation, the eastern monsoon region is further divided into two sub-regions: north (NE 

and NC) and south (SC and SE). In addition, the southern part of the eastern monsoon region is further divided into southeast 

coastal region and inland region, considering the characteristics of observed isotope data. To sum up, the study area is 90 

divided into six sub-regions for our analysis: Northeast China (NE), North China (NC), South China (SC), Southeast China 

(SE), Qinghai-Tibet Plateau (TP) and Northwest China (NW), as shown in Fig. 1. 

2.2 Datasets 

There are 78 oxygen isotope observation stations in the study area (Fig. 1), including 29 GNIP stations (available at 

https://nucleus.iaea.org/wiser), 27 CHNIP stations (Liu et al., 2014), 13 TNIP stations (Yao et al., 2013) and 9 stations from 95 

other sources (mainly from references). Monthly oxygen isotope composition of precipitation (δ18Op) is used for analysis. 

The time span of GNIP data mostly ranges from 1980 to 2000, and the length of the time period is basically 5-15 years. For 

CHNIP, most time periods are about 2-5 years ranging from 2005 to 2010. Most TNIP data were between 1995 and 2005, 

with varying lengths. 

Eight δ18Op spatio-temporal fields simulated by five iGCMs (CAM2, GISS E, HadAM3, LMDZ4 and MIROC32) are used, 100 

which are selected from the SWING2 archive (available at https://data.giss.nasa.gov/swing2/). Six of eight simulations are 

free-running, forced only by observed sea surface conditions. The remaining two (GISS E and LMDZ4) were nudged to 

constrains of large-scale atmosphere circulation, so that the dynamical fields in simulations are close to the observations 

(Yoshimura et al., 2008). In addition to SWING2 simulations, a zoomed simulation by LMDZ4, with the horizontal 

resolution of 50-60km (Risi et al., 2010; Gao et al., 2011) and nudged by reanalyses, is also used. Detailed information about 105 

these iGCMs can be found in Table 1. 

Table 1. Time periods and basic outputs information of selected iGCMs. 

GCM Simulation method 
Horizontal resolution 

(longitude × latitude) 
Time period Key references 

CAM2 Free-running 2.8°  2.8° 1958-2003 Lee et al. (2007) 

GISS E Free-running and  2.5°  2° 1969-2009 Schmidt et al. (2007) 
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GCM Simulation method 
Horizontal resolution 

(longitude × latitude) 
Time period Key references 

nudged by NCEP 

HadAM3 Free-running 3.75°  2.5° 1870-2001 Tindall et al. (2009) 

LMDZ4 

Free-running and  

nudged by ECMWF 
3.75°2.5° 1979-2007 Risi et al. (2010) 

Zoomed  

(nudged by ECMWF) 
50-60 km 1979-2017 Gao et al. (2011) 

MIROC32 Free-running 2.8°2.8° 1979-2007 Kurita et al. (2011) 

 

The time span of the isoscape built in this study covers the union set of all simulations ranging from 1870 to 2017. Since 

the temporal lengths of eight iGCM are not identical, the number of iGCM simulations used to build the isoscape varies. 110 

Specifically, for 1979-2001, a total of eight simulations from all five iGCMs were used; for 2002-2007, six simulations from 

three iGCMs (GISS E, LMDZ4 and MIROC32) were used; and for 1969-1978, four simulations from three iGCMs (CAM2, 

GISS E and HadAM3) were used. For the remaining periods, there is only one simulation or two: for 1958-1968, CAM2 and 

HadAM3 were used; for 1870-1957, HadAM3 was used; and for 2008-2017, LMDZ4 zoomed was used. 

The stable isotope composition of precipitation is expressed in the relative permillage (‰) derived from the standard 115 

sample (Clark and Fritz, 1997) as:  

sample

V-SMOW

1 1 ‰000
R

R


 
   
 

          (1) 

where R  is the ratio of heavier isotope to common isotope (18O/16O), and the subscripts sample and V-SMOW represent 

standard sample and Vienna Standard Mean Ocean Water, respectively. 

3 Methods 120 

3.1 Bias correction methods 

BCMs aim to correct the mean, variance and/or quantile of the climate model time series, so that the corrected model time 

series can better match those of the observations (Maraun, 2013). In this study, two typical methods (i.e. linear scaling (LS) 

and distribution translation (DT)) were used to correct the bias of iGCM at the monthly timescale. These two BCMs can be 

classified into mean-based scaling (i.e. LS) and distribution-based correction (i.e. DT) approaches (Chen et al., 2013). The 125 

mean-based scaling uses a constant correction factor for the entire time series, while the distribution-based approach uses 

correction factors that vary with the quantiles of the distribution (Chen et al., 2016). 

The LS method is the simplest bias correction method. The differences between observations and raw iGCM simulations 

were applied to simulations to obtain the bias-corrected isotope time series for each season and sub-region. Specifically, for a 

particular sub-region, the differences (defined as correction factors) in mean values between observed and simulated isotopes 130 
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were first calculated at the seasonal basis using Eq. (2). The calculated correction factors were then applied to simulated 

isotopes for the entire period using Eq. (3). 

ref ref
obs,s,sr raw,s,srLSR O O              (2) 

cor,s,sr raw,s,sr LSO O R              (3) 

where RLS is the correction factor; the superscript ref represents the reference period; the subscripts obs, raw and cor 135 

represent observations, raw simulations and corrected simulations; and s and sr represent a specific season and a sub-region. 

The implementation of the DT method is similar to the LS method. However, the differences (i.e. correction factors) 

between observed and simulated isotopes were calculated for each of 100 integral percentiles as shown in Eq. (4) – (6), to 

represent the distribution for each season in each sub-region. The correction factors of grid points were obtained by 

interpolating or extrapolating the factors of observation stations using Eq. (5). 140 

ref ref ref
DT obs,q raw,qR O O              (4) 

ref Interpolation/Extrapolation
DT DTR R           (5) 

cor,s,sr raw,s,sr DTO O R              (6) 

where the subscript q is a percentile for a specific season in a sub-region. Other superscripts and subscripts are the same as 

Eq. (2) and (3). 145 

3.2 Neural network data fusion 

The neural network is a kind of mathematical model, which imitate the behaviour characteristics of animal neural network 

and carry out distributed parallel computing (Rumelhart et al., 1994; Krenker et al., 2011). Performing calculations and 

spreading information through large numbers of interconnected neurons, neural networks are often used to describe complex 

relationships between inputs and outputs, or to explore the internal structure and patterns of data (Hsu et al., 1995; French et 150 

al., 1992). In this study, Back Propagation Neural Network (BP), Long Short-Term Memory (LSTM) Neural Network and 

Convolutional Neural Network (CNN) are adopted for data fusion, considering BP's simplicity and practicality, LSTM's 

advantages in time series prediction and CNN's outstanding performance in various fields. The structures of these three 

neural network DFMs are presented in Fig. 2. 

BP, first proposed by Rumelhart et al. (1986), is a multilayer feed-forward network trained by the error back-propagation 155 

algorithm. BP is one of the most widely used neural network models with high simulation accuracy for nonlinear functions. 

The main characteristic of BP is that the input signal is processed layer by layer from the input layer to the hidden layer and 

then to the output layer, and each neuron carries out the weighted sum of the input signal through the activation function. If 

the error between the actual output and the expected output is larger than the set value, the weight and bias of the network 

are continuously corrected by the backpropagation to minimize the loss function. The isotope simulations of iGCMs were 160 

selected as the input of BP and the observations as the expected output to calculate the loss function. The input layer was the 
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corresponding input parameter, and the output layer was the fusion isotope value. The hidden layer had two layers with 16 

and 4 neurons respectively. The activation function was the Rectified Linear Unit (ReLU). The Stochastic Gradient Descent 

(SGD) was used to optimize the loss function iteratively. Mean Square Error (MSE) was chosen as the loss function. The 

maximum number of iterations was 1000, and the training stopped if the loss function did not decrease within 150 epochs. 165 

 

Figure 2. Network structure of BP, LSTM and CNN fusion method. 

LSTM is very efficient for sequential data and is derived from Recurrent Neural Network (RNN) with memory function. 

RNN has a sequential feed-forward connection, so that the information of the past moment can affect the output of the 

present moment (Zhang et al., 2018). The traditional RNN has the problems of vanishing gradient and exploding gradient 170 

(Hochreiter, 1998). To solve these problems, the LSTM Neural Network was proposed (Hochreiter and Schmidhuber, 1997). 

A basic LSTM neuron usually consists of a memory cell and three gates (i.e. input gate, forget gate and output gate). 

Memory cells are used to store past information, realizing long-distance dependent learning of sequence features. The input 

gate determines which inputs are saved to the cell; forget gate determines what information is retained from the previous 
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moment; output gate determines what information needs to be output. In this study, a fully connected layer was added after 175 

three LSTM layers to generate fusion results. The number of neurons in the LSTM layer was set to 8. Dropout layers were 

applied to the three LSTM layers of the network with the probability of 0.1 to make the model more robust. The activation 

function used the most common setting in LSTM, the Hyperbolic Tangent (TanH) function. The optimizer of the model was 

set as the Adaptive Moment Estimation (Adam) algorithm, which performs optimally. Similar to BP, MSE was chosen as the 

loss function. The maximum number of iterations was 1000 with the patience of 100 epochs. 180 

CNN was first proposed by Lecun (1989), for the problem of handwritten digit recognition. CNN combines three 

advantages of local connectivity, weight sharing and pooling. On one hand, it reduces the number of weights, making the 

network easy to optimize. On the other hand, it reduces the complexity of the model and alleviates the overfitting problem. It 

is one of the most widely used neural networks with the best performance. The convolutional layer and pooling layer of the 

hidden layer are the core modules of CNN. The function of the convolutional layer is to extract features of the input data by 185 

convolutional kernels. The pooling layer performs feature selection and information filtering on the feature map output by 

the convolution layer. In this study, CNN was mainly composed of two convolutional layers and pooling layers. The two 

convolutional layers had 8 and 32 convolutional kernels, respectively, and the size of the convolution kernels was 3. The 

pooling layers used the max pooling method, and the pooling size was 2. Two fully connected layers were added at the end 

with 32 and 1 neurons, respectively, to remove the spatial topology and output the results. The convolutional layer and the 190 

fully connected layer were connected by flattening the output of the convolutional layer through the flatten layer. Batch 

normalization layers were inserted into the model to improve the speed, performance and stability of the neural network. 

Dropout layers were also applied with the probability of 0.1. The activation function was the ReLU. The optimizer of the 

model was the Adam, with the loss function of MSE. The maximum number of iterations was 1000 with the patience of 100 

epochs. 195 

3.3 Cross-validation experiments 

In order to make full use of the data and reduce the variation of model accuracy caused by the difference between the 

training set and the test set, K-fold cross-validation was adopted. In the K-fold (K=5 in this study) experiment, the data set 

was randomly divided into K groups, and one of them was used as the test set each time, leaving K-1 groups as the training 

set. To fully consider the variations of random division, K-fold cross-validation was repeated 100 times. 200 

3.4 Generation of isoscape 

The performance of BCMs and DFMs were evaluated by using correlation coefficient (CC) and root mean square error 

(RMSE) as metrics for the common period of 1969-2007. On the basis of the performance comparison, the optimal method 

was selected for each period to generate the oxygen isoscape. For the common period (1969-2007), the isoscape was 

generated using the best-performing methods among BCMs or DFMs; while for the rest periods, only the BCM was used 205 

since there is only one or two simulations. When using the BCM, the ensemble mean of all iGCM simulations and two 
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BCMs were used. To sum up, the generated isoscape presents monthly δ18Op on a 50-60km spatial resolution over mainland 

China for the 1870-2017 period. 

4 Results 

4.1 Evaluation of bias correction and data fusion methods 210 

Prior to applying BCMs and DFMs to build the isoscape, the performance of iGCM simulations was evaluated by comparing 

gauged observations for the 1969-2007 period. Fig. 3 shows the cumulative distribution functions (CDFs) of δ18Op for 

observations and iGCMs simulations in each sub-region. Generally, the CDFs of observed δ18Op can be well represented by 

iGCM simulations for each sub-region, as the observed CDFs distribute in the centre of simulated ones. For specific regions, 

the envelope of CDFs is the narrowest for NE and SE, indicating that iGCMs perform consistently better for these two 215 

regions. For NC, SC and NW, the CDFs of LMDZ4 (free and nudged) simulated δ18Op are relatively close to the 

observations, while other iGCM simulations generally overestimate the δ18Op. For TP, the differences between CDFs of 

observed and simulated δ18Op are the largest, indicating the large variability of δ18Op simulations. This is expected, as 

climate models generally perform worse for TP than other regions (Zhu and Yang, 2020; Su et al., 2013). 

 220 

Figure 3. Cumulative distribution functions of δ18Op for eight iGCM simulations in six sub-regions. 
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Root mean square error (RMSE) and correlation coefficient (CC) were also calculated to evaluate the accuracy of iGCM 

simulated δ18Op. Fig. 4 presents the RMSE and CC for raw iGCM simulations, bias corrected and fused simulations for six 

sub-regions over the validation periods (1979-2001). Generally, DFMs perform better than BCMs, and both perform better 

than raw iGCM simulations. In addition, all the simulations are correlated with the observations with CC ranging between 225 

0.12 and 0.95. 

 

Figure 4. Average correlation coefficient (CC) and root mean square error (RMSE) metrics of raw, bias-corrected and fused δ18Op 
in six sub-regions. 

The CC and RMSE vary considerably for raw iGCM simulations, with CC ranging from 0.12 to 0.83 and RMSE ranging 230 

from 2.0‰ to 9.1‰. The simulations of nudged GISS E and LMDZ4 have the strongest correlation with the observations, 

and their CC is basically above 0.5, ranging from 0.30-0.83. The error of nudged LMDZ4 is the smallest, and its RMSE 

ranges between 2.2‰ and 6.8‰. 

Generally, the performance of LS and DT is similar, even though the LS method performs slightly better than the DT 

method. The CCs range from 0.40 to 0.88 for the LS and DT corrected simulations, with an average increase from 0.52 to 235 

0.64 relative to raw simulations; the RMSEs are between 2.0‰ and 5.7‰, with an average decrease of 23.9%. 

For DFMs, BP and LSTM show similar performance, while CNN performs the best. The CC of CNN-generated 

simulations is all greater than 0.74, increasing from 0.52 to 0.84 on average compared with the raw simulations. The RMSE 

of CNN-generated simulations is all smaller than 4.0‰, showing 48% reduction relative to the raw simulation on average. 
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Fig. 4 shows that CC and RMSE of simulations in different sub-regions are quite different. For all raw, fused, and bias 240 

corrected simulations, CC is smaller for NC and TP while RMSE is larger for TP and NW than other sub-regions. For DFMs, 

especially CNN, the differences of CC and RMSE between different regions are smaller. 

Generally, all simulations perform worse in NC, TP and NW than in other sub-regions. The poor simulation performance 

in NC may be due to complex air mass movements (Yang et al., 2016; Peng et al., 2020a), which are difficult to be 

accurately simulated by iGCMs. The poor simulation performance in TP and NW may be due to the fact that GCMs cannot 245 

accurately describe the atmospheric physical process and simulate precipitation and other meteorological factors in these 

regions (Miao et al., 2012; Jiang et al., 2016; Chen and Frauenfeld, 2014). 

The performance of BCMs and DFMs is also evaluated for three periods (1969-1978, 1979-2001 and 2002-2007) and six 

sub-regions at a seasonal basis. The seasonal average CC and RMSE for two BCMs and three neural network DFMs are 

presented in Figs. 5-6. Generally, all BCMs and DFMs perform very similar for all three periods. 250 

As for CC, the simulations in the northern region (NE, NC, and NW) show strong correlation with observations in spring, 

while those in the southern region (SC, SE) show strong correlation in summer and autumn. The correlation of CNN fusion 

simulations is significantly higher than that of the other methods, with CC being mostly above 0.8. The correlation of LS and 

DT corrected simulations is similar to that of BP and LSTM fusion simulations, with CC being mostly between 0.3 and 0.6, 

varying with sub-regions and seasons. The BP and LSTM fusion methods perform slightly worse in NE, but better in TP and 255 

NW, compared with BCMs. 

As for RMSE, the northern region has a small error of about 2‰ in summer, except for NW with a larger error of 3‰; 

while the southern region shows little seasonal difference in error, only RMSE in SE being slightly larger in autumn and 

winter, mostly ranging between 1‰ and 3‰. On the whole, the DFMs perform better than the two BCMs. The errors of 

CNN simulations are the smallest in all regions and seasons, which are smaller than 4‰ in TP and NW and mostly smaller 260 

than 2‰ in other sub-regions. The errors of BP and LSTM simulations are slightly smaller than those of LS and DT 

simulations. 

From the error bars, the LS and DT methods show smaller uncertainties in CC and RMSE than the BP, LSTM and CNN 

fusion methods. In addition to the uncertainties brought by cross-validation, the simulations of DFMs also show uncertainties 

brought by neural network itself. Generally, CNN fusion simulations show smaller uncertainties than the other two fusion 265 

methods. 

The above results show that the CNN fusion method consistently performs better than the other methods. To further 

confirm this conclusion, scatter plots of fused and corrected against observed δ18Op are presented in Fig. 7 for the 1979-2001 

period. The overall mean CC and RMSE corresponding to the figure are shown in Table 2. It can be seen that the CNN 

fusion method shows a stronger correlation with the observations than the other fusion methods and BCMs. The CNN fused 270 

δ18Op consistently shows the largest CC and smallest RMSE, showing a strong positive linear correlation with the 

observations with CC being almost all larger than 0.85. 
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Figure 5. Seasonal average results of correlation coefficient (CC) metrics for BCMs and DFMs in six sub-regions. The whiskers 275 
denote +/- one standard deviation. 
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Figure 6. Seasonal average results of root mean square error (RMSE) metrics (‰) for BCMs and DFMs in six sub-regions. The 
whiskers denote +/- one standard deviation. 280 
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Figure 7. Scatter plots of seasonal δ18Op from bias-corrected and fused output against observations in six sub-regions. 
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Table 2. Correlation coefficient (CC) and root mean square error (RMSE, ‰) metrics corresponding to the Fig. 7. 285 

Sub-region Season 
LS DT BP LSTM CNN 

CC RMSE CC RMSE CC RMSE CC RMSE CC RMSE 

NE 

SPR 0.788 4.097 0.774 3.837 0.675 4.315 0.802 2.777 0.934 2.349 

SUM 0.362 1.508 0.324 1.537 0.310 1.552 0.329 1.498 0.915 0.730 

AUT 0.559 4.099 0.513 4.258 0.382 4.562 0.333 2.889 0.913 2.091 

WIN -0.018 6.713 -0.018 6.985 0.145 6.073 0.373 4.658 0.936 2.203 

NC 

SPR 0.460 2.766 0.479 2.723 0.447 2.775 0.414 2.943 0.869 1.631 

SUM 0.111 2.420 0.123 2.481 0.300 2.204 0.284 2.150 0.843 1.396 

AUT -0.029 2.797 -0.011 2.795 0.200 2.457 0.268 2.527 0.849 1.422 

WIN 0.311 3.582 0.368 3.477 0.240 3.728 0.086 3.406 0.908 1.679 

SC 

SPR 0.258 2.424 0.297 2.382 0.441 2.061 0.430 2.047 0.808 1.369 

SUM 0.478 2.556 0.474 2.571 0.457 2.583 0.467 2.568 0.895 1.409 

AUT 0.499 2.557 0.539 2.516 0.599 2.351 0.613 2.350 0.895 1.340 

WIN 0.326 2.192 0.330 2.215 0.304 2.191 0.250 2.292 0.795 1.457 

SE 

SPR 0.529 1.607 0.533 1.620 0.540 1.574 0.513 1.522 0.873 0.972 

SUM 0.490 1.663 0.463 1.685 0.526 1.618 0.376 1.677 0.869 1.030 

AUT 0.434 2.806 0.438 2.926 0.488 2.728 0.491 2.810 0.869 1.624 

WIN 0.654 1.956 0.649 1.964 0.606 2.039 0.339 2.114 0.824 1.460 

TP 

SPR 0.549 4.781 0.556 4.986 0.537 4.814 0.481 5.299 0.916 2.409 

SUM 0.145 5.951 0.252 6.099 0.434 5.341 0.551 5.205 0.900 2.691 

AUT 0.121 5.731 0.164 5.921 0.355 5.209 0.315 5.380 0.864 2.852 

WIN 0.649 4.992 0.659 5.024 0.616 5.180 0.526 5.294 0.877 3.305 

NW 

SPR 0.706 3.975 0.661 3.932 0.674 3.872 0.687 3.776 0.920 2.207 

SUM -0.060 3.424 0.171 3.294 0.555 2.718 0.561 2.671 0.896 1.582 

AUT 0.536 3.746 0.481 3.908 0.643 3.440 0.574 3.553 0.929 1.735 

WIN 0.307 5.162 0.291 5.337 0.377 5.070 0.429 4.979 0.913 2.460 

 

4.2 Spatial variability of precipitation oxygen isotope 

Since the above section shows that the CNN method consistently performs better than other methods, it is used to generate 

precipitation oxygen isotopes for the 1969-2007 period with a spatial resolution of 50-60km on latitude and longitude. Fig. 8 

presents the spatial variability of mean δ18Op for observed and fused data for the 1969-2007 period. Generally, the CNN 290 

fused δ18Op shows similar spatial distribution to observations for all four seasons. 

In NE, δ18Op decreases with increasing latitude for all seasons, and its spatial variation is basically parallel to the latitude, 

which reflects the latitude effect (Rozanski et al., 1993). Indeed, most of the water vapour in the atmosphere is formed at low 

latitudes, and Rayleigh distillation continuously depletes the residual water vapour as air masses move toward higher 

latitudes, thus depleting the δ18Op of the residual water vapour and thus of the rain forming in clouds. 295 
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Figure 8. Seasonal averaged observations (a, c, e, and g) and CNN fused simulations (b, d, f, and h) of δ18Op in the mainland China. 

In SC and SE, δ18Op decreases from the southeast coast to inland. This phenomenon is consistent with the continental 

effect. As water vapour transfers from the ocean to the interior of the continent, precipitation is formed along the way. The 
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separation process of heavy isotopes takes place preferentially than that of light isotopes, which leads to the gradual dilution 300 

of heavy isotopes in the cloud, and thus makes the proportion of heavy isotopes in the subsequent precipitation lower. 

The δ18Op in TP is low in general except for the southeast corner, which is mainly due to the special effect of large 

landforms (Zhao et al., 2012). The low δ18Op in TP is mainly due to its high altitude, with an average altitude being above 

4,000m. The moisture in the air mass is gradually removed during the orographic uplift, with heavy isotopes preferred to be 

removed during the condensation process, which leads to the dilution of heavy isotopes in water vapour (Rozanski et al., 305 

1993). Higher δ18Op in the southeast corner of TP indicates closer vapour sources such as the Bay of Bengal and the Arabian 

Sea in the Indian Ocean. Due to the terrain barrier of the Himalayas, most of the water vapour can only pass through its 

southeast corner, along the valley of the major rivers (Nujiang River, Jinsha River, etc.) into the plateau, or through the 

Yarlung Zangbo River valley into the plateau (Araguás-Araguás et al., 1998). 

The δ18Op in NW is lower than that in the southern region, but higher than that in NE and TP. This is because NW is far 310 

away from the ocean and has a dry climate, so the amount of heavy isotope in water vapour from the ocean is limited. 

However, a large part of water vapour to generate precipitation in NW comes from terrestrial evaporation (Li et al., 2016). 

The δ18Op in surface water in the arid area is high, resulting in high δ18Op in evaporation water vapour and heavy isotope 

enrichment in precipitation. Another process is re-evaporation of raindrop in arid climate, enriching heavy isotope in 

precipitation water. Under the joint control of both, the δ18Op in this sub-region varies greatly. In the southern part of the 315 

Taklimakan Desert, Xinjiang, δ18Op is obviously higher. This is because, the Taklimakan Desert is located in the heart of 

Eurasia, and it is surrounded by high mountains and has extremely low rainfall. In the southern part of the desert, there is 

more precipitation in the Kashi-Hotan line, and the water vapour mainly comes from the evaporation of local lakes and rivers, 

so the ratio of isotopes in precipitation is high. 

The seasonality of δ18Op varies in sub-regions and is influenced by various factors. For NE and NC, δ18Op is lower in 320 

winter than in other seasons. NE and NC are influenced by westerly wind and polar continental air mass constantly, with no 

convergence or strong convection with isotope-depleted air mass. Compared with Pacific air mass, westerly wind and polar 

air mass are drier and have higher δ18Op (Tang et al., 2017). The seasonal distribution pattern of δ18Op in NE and NC is 

consistent with the temperature effect (Dansgaard, 1964). Although the amount effect is not significant at the annual scale in 

these regions, it cannot be ignored in the wet season (Yamanaka et al., 2007). In particular, the maximum value of δ18Op is 325 

observed in spring for NC, when a large part of the precipitation vapour comes from local re-evaporation. The temperature 

effect is also reflected in NW. Due to the long-term influence of continental air mass, the temperature difference between 

winter and summer is large, and the δ18Op changes synchronously with temperature in these two seasons. 

For SC and SE, δ18Op is lower in summer than in other seasons. The climate features of SC and SE are related to the deep 

convection driven by the East Asian monsoon (Vuille et al., 2005), which brings water vapour from the Pacific Ocean to 330 

eastern China and dominates the sub-regions in summer. Air masses from the Pacific Ocean are more isotopically depleted 

than those from SC and SE (Zhao et al., 2012; Peng et al., 2020a), so convergence with the Pacific depleted air masses will 

dilute the isotopic content of precipitation in SC and SE. Therefore, although temperature in summer is generally higher, 
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depletion of δ18Op is usually larger during monsoon season than winter season. The effect of surface temperature on isotopic 

fractionation during precipitation is masked by the effect of precipitation amount (Araguás-Araguás et al., 1998). The 335 

temporal distribution pattern of δ18Op in SC and SE is influenced by heavy monsoon precipitation and follows the amount 

effect (Rozanski et al., 1993; Dansgaard, 1964). 

In TP, δ18Op is positively correlated with temperature in the non-monsoon region (northern part of the plateau), with high 

δ18Op in summer and low in winter, reflecting the temperature effect. For the monsoon region (southern part of the plateau), 

δ18Op is high in winter and spring and low in summer and autumn, which is obviously influenced by marine air mass and 340 

shows obvious amount effect. These results are similar to previous studies (Yu et al., 2021; Yao et al., 2013). 

4.3 Temporal variability of precipitation oxygen isotope 

As mentioned earlier, the δ18Op were generated by a combination of bias correction and data fusion method for the 1870-

2017 period. The CNN fusion was used for 1969-2007, and BCMs (mean of LS and DT) was used for the rest of the period. 

Fig. 9 shows the monthly time series of generated δ18Op and their 12-month moving averages for eight sub-regions over the 345 

1870-2017 period. TP is divided into monsoon and non-monsoon regions, according to the research of Yu et al. (2021). In 

our study, the region with significant correlation between δ18Op and temperature is the non-monsoon region, while the rest is 

the monsoon region. The Mann-Kendall tests show that the δ18Op significantly increased in NE and NC for recent 40 years at 

the P=0.01 level. These two regions are consistent with the temperature effect, and it can be inferred that the temperature of 

these sub-regions has a rising trend during this period. This has been proved in many studies. For example, the studies of 350 

Ren et al. (2012) and Ding et al. (2007) have shown that the temperature in China has a rising trend in recent years, 

especially in northeast, north and northwest China. A slight upward trend is also observed in NW from the 1920s to the 

1970s and 1980s to 2000s. The temperature effect is more significant in inland areas at middle and high latitudes. In winter, 

NW is mainly controlled by the westerlies, and the amount effect can be ignored (Yang et al., 2011; Yang et al., 2017). 

Therefore, the temperature effect in NW is more significant in winter. From 2000 to 2012, the δ18Op values in NW showed a 355 

decreasing trend, mainly in winter. Some studies have shown that the temperature in NW during this period is consistent 

with the global land warming hiatus phenomenon, and even shows obvious cooling, especially in winter (Wen et al., 2017; 

Ma et al., 2019). 

The δ18Op in SC presents a gentle upward trend in recent 70 years, indicating that precipitation has a downward trend in 

this period, since the δ18Op conforms to the rule of amount effect in this region. While the δ18Op in SE shows a fluctuating 360 

trend of decline for the past 80 years (significant at 0.05 level), which indicates an upward trend in precipitation. These 

trends are consistent with the existing researches that precipitation increased in the east coast and northwest of China, but 

decreased in southwest, north and northeast (Zhai et al., 2005; Liang et al., 2016). There is no significant trend for δ18Op in 

TP. However, δ18Op shows a significant decreasing trend for the monsoon region of TP over the past 90 years, while it shows 

a significant increasing trend for the non-monsoon region at the significant level of P=0.01. This is because the non-monsoon 365 

region shows temperature effect, while the monsoon region shows amount effect, which is consistent with the increasing 
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trend of temperature and precipitation in the Qinghai-Tibet region for recent years (Yu et al., 2021; Yao et al., 2013). Overall, 

the change trend of temperature and precipitation derived from the isotope effect analysis is consistent with that analysed 

directly using temperature and precipitation data in China. This further proved the reasonable performance of isoscape built 

in this study. 370 

 

Figure 9. Monthly time series of the generated δ18Op (‰) and their 12-month moving average in eight sub-regions from 1870 to 
2017. (g) shows the monsoon region. (h) shows the non-monsoon region. 

5 Data application 

The dataset includes the stable oxygen isotope of precipitation for mainland China over the 1870-2017 period. Since the 375 

observation is limited and climate model simulations have different time durations, the entire duration was constructed by 

using the various methods and datasets for different periods as shown in Fig. 10. 
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Figure 10. The generation mode of dataset in each period. 

Based on this new isoscape, the physical mechanisms driving the spatio-temporal variation of δ18Op can be deeply 380 

explored. This dataset is useful for tracing atmospheric and hydrological processes. For example, it can be used to study the 

effect of meteorological variables and air mass trajectory on stable isotope distribution, and quantify the source and fate of 

moisture (Tian et al., 2007; Peng et al., 2020b; Gao et al., 2011). The data can also help track the water cycle, to assess the 

source of water resources using complementary isotopic data from lakes, rivers and groundwater (Yao et al., 2013; Gao et al., 

2009). The generated dataset is also useful for paleoclimate studies, by studying the relationship between modern isotopes 385 

and meteorological variables (Yu et al., 2016b). When using this dataset, it should be noted that δ18Op for the 1979-2007 

period generated using the CNN fusion method should be more reliable, because the performance comparison for BCMs and 

DFMs show that CNN fusion method performed better than BCMs, and more iGCM simulations were used for data fusion in 

this period that other periods. 

6 Data availability 390 

The generated dataset is available in Zenodo at https://doi.org/10.5281/zenodo.5703811 (Chen et al., 2021). The GNIP data 

can be obtained from the GNIP Database of IAEA/WMO (https://nucleus.iaea.org/wiser). The TNIP data was derived from 

the National Tibetan Plateau Data Centre (DOI: 10.11888/Geogra.tpdc.270940). The detailed information and sources of 

observations from other sources are shown in Table 3. The iGCM data can be downloaded from SWING2 (accessible at 

https://data.giss.nasa.gov/swing2/), where LMDZ4 zoomed data was provided by Dr. Camille Risi at Laboratoire de 395 

Météorologie Dynamique in France. 

Table 3. Detailed information and sources of observations from previous publications in literatures. 

Sub-region Site Latitude Longitude Period Data source 

SC Heshang 30.45 110.42 2011-2018 Wang et al. (2020) 

SC Changsha 28.25 112.55 2010-2017 
Zhou et al. (2019) 

(DOI: 10.17632/975k2wzw3p.1) 

SE Guangzhou 23.13 113.32 2007-2014 
Yang et al. (2017) 

(DOI: 10.11888/AtmosPhys.tpe.249477.db.) 

SE Yongan 28.89 120.85 2014-2018 
Hu et al. (2020) 

(DOI: 10.17632/vndfs3dpyn.1) 

SE Xishuangbanna 21.93 101.27 2002-2004 Liu et al. (2007) 
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Sub-region Site Latitude Longitude Period Data source 

SE Guangzhou 23.15 113.35 2007-2009 Xie et al. (2011) 

TP Lulang 29.77 94.73 2007-2014 
Yang et al. (2017) 

(DOI: 10.11888/AtmosPhys.tpe.249477.db.) 

TP Nuxia 29.47 94.65 2009-2014 
Yang et al. (2017) 

(DOI: 10.11888/AtmosPhys.tpe.249477.db.) 

TP Yeniugou 38.46 99.54 2008-2009 Zhao et al. (2011) 

 

7 Conclusions 

Long-time sequence of δ18Op are of great significance for hydrological and meteorological studies. In view of the lack of 400 

long and reliable δ18Op datasets in China, this study generates a new dataset by integrating multi-iGCM data to overcome the 

limitations of short duration and uneven distribution of observed data. This dataset contains monthly δ18Op over mainland 

China for the 1870-2017 period with a spatial resolution of 50-60 km. The dataset from 1969 to 2007 was generated by using 

the CNN fusion method, when the observed time series and multiple iGCM simulation are available. For other periods, it 

was generated by bias correcting iGCMs simulations. Two BCMs (i.e. LS and DT) with similar performances were used to 405 

produce ensemble mean. Prior to building the isoscape, the performance of two BCMs (LS and DT) and three DFMs (BP, 

LSTM and CNN) were evaluated using RMSE and CC as criteria. The results showed that CNN fusion method consistently 

performed the best for all sub-regions in China, and BP and LSTM fusion methods performed slightly better than LS and DT 

(BCMs). The performance of LS and DT method was similar. In terms of spatial distribution and temporal variability of 

δ18Op, the generated data showed very similar spatial distributions to observations, and the temporal trend of δ18Op was 410 

consistent with the observed changes in precipitation and temperature for different regions in China. All these showed that 

the built isoscape is reliable and useful to extending the time and space of observations in China. 
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