
Responses to CC1: 

 

The authors create a high-resolution precipitation oxygen isoscape dataset for China by fusing eight iGCMs 

simulations and in-situ observations based on data fusion and bias correction techniques. I appreciate the 

authors’ great efforts to develop such a dataset, but I am quite dubious about the general content, and have 

large concerns about the novelty and quality of the dataset. 

 

Re: We would like to thank the reviewer for the time taking in reviewing our manuscript and providing 

constructive comments. Following these suggestions, we have carefully revised the manuscript, especially 

for the validation of the dataset’s quality, adding more details and enriching the results. Below please find 

our point-by-point responses to these comments. 

 

My main concerns are: 

 Data-quality and novelty: 

It feels like a direct comparison of five commonly used fusion methods for developing a high-resolution 

dataset in China, without any new advanced fusion methods. Furthermore, the quality of the developed 

dataset is still questionable and unreliable due to its poor and insufficient present form. It seems to me that 

the intended novelty might be a high-resolution dataset. 

 

Re: We would like to thank the reviewer for the insightful comments. We agree with the reviewer that there 

is indeed no new fusion method developed in this study. However, the main objective of this study is not to 

develop a new fusion method, but to use an appropriate combination of multiple methods to develop a high-

resolution isoscape with a long time period for the region of China, since the observations and climate model 

simulations have various time periods and lengths. Based on the availability of observed and simulated 

dataset, multiple suitable methods were first compared and the most appropriate ones were used for each 

time periods This is a first attempt using a hybrid/mixed approach to develop such a dataset in China, which 

is the best existing dataset so far in the country and is of great importance in providing a data foundation for 

the study of complex hydrological and climatic systems. 

The fusion and bias correction methods in the study have been widely used, even though they were not 

used in the field of stable isotopes. This study first compared the performance of these methods to find the 

best combination to build the dataset. The results showed that the CNN fusion method consistently performed 

the best for all sub-regions in China, and two bias correction methods (LS and DT) showed similar 

performance. The combination of the CNN fusion and bias correction methods is satisfactory to develop a 

high-resolution isoscape with a long time period. In other words, in order to maximize the utilization of 

available data, the CNN fusion method was used for the common period of all climate simulation and 

observations, while the bias correction methods were used for the periods with only one or two climate 

simulations, and with no observations. Considering China is a large country with various climatic conditions 

and complex terrain, the selected methods may also be able to be applied to other regions of the world. 

Definitely, we agree with the reviewer that the dataset quality is the primary concern, and the quality 

was not meticulously presented in the original manuscript. In the revision of this manuscript, following the 

reviewers’ specific comments, a comprehensive assessment of the dataset at a finer scale was conducted. 

Specifically, the dataset was evaluated with respect to reproducing the time-series of in-situ observations at 

station scale, as well as the spatial pattern for each month. The results show that the in-situ observations were 

reasonably represented by the isoscape time series for all stations. The correlation coefficients between the 



isoscape simulations and observations are larger than 0.8 for 73% of the stations and larger than 0.9 for 49% 

of the stations. The root mean square errors between the isoscape simulations and observations are smaller 

than 20‰ for 78% of the stations and less than 15‰ for 56% of the stations. From the monthly spatial 

distribution of isotopes, CNN fusion simulations also capture the spatial pattern of observations most 

accurately. All results showed that the isoscape dataset is of high quality. The detailed results can be found 

in the responses to specific comments below. 

 

The methods used to develop the dataset are unclear and not robust. For example, the sensitivity of model 

parameters are not evaluated and discussed; thus, the results are not robust. Why does CNN perform much 

better? Why is it set to a three-layer structure model? The observed data covers a short period and is not 

sufficient to train the model. 

 

Re: We agree with the reviewer that the description of methods is not clear enough in the original manuscript. 

With strong abilities for generalization and information synthesis, neural networks can well coordinate 

various input information and deal with complex nonlinear relations (Hsu et al., 1995; Oyebode and Stretch, 

2019). Then, they have been widely used in various fields (Reichstein et al., 2019). In particular, CNN 

performs exceptionally well because it has the ability to extract local features, and can grasp local correlation 

and spatial invariance well. These have also been proved in many literatures (Sadeghi et al., 2020; Jiang et 

al., 2021). 

The structure and parameters of these neural network methods were carefully considered and validated. 

Considering that previous studies (e.g. Zhang and Wallace, 2015; Taylor et al., 2021; Mboga et al., 2017; 

Bengio, 2012) on parameter sensitivity of neural networks have shown similar results, we determined the 

parameter selection scheme based on these studies and used a hierarchical stepwise search method to 

determine parameter values. Specifically, the parameters were divided into three parts, structural parameters, 

sensitive algorithm parameters and other algorithm parameters, and then determined step by step. At each 

step, we tested the performance of all parameter combinations using the grid search method. Referring to 

previous studies (e.g. Xue et al., 2021; Wu et al., 2020; Langford et al., 2017; Chen et al., 2022), we 

considered some conventional parameter settings (such as filters are usually set to the power of 2). The details 

of parameter selection are shown in Table 1 (taking CNN as an example). Furthermore, when structural 

parameter values produced similar performance, we chose the simpler structure (i.e., the one with fewer 

parameters) to avoid overfitting. When algorithm parameter values produced similar performance, we chose 

the one that is more efficient for computing. 

 

Table 1. Details of the parameter selection in Convolutional Neural Network (CNN). 

Steps Parameters Range tested Selected 

Step 1. Structural parameters 
Convolutional layers 1, 2, 3 2 

Dense layers 1, 2 1 

Step 2. Sensitive algorithm parameters 

Learning rate 0.0001-0.005 0.001 

Batch size 10-50 50 

Filter size 3, 4, 5 3 

Step 3. Other algorithm parameters 

Filters 8, 16, 32 8/32 

Dense neurons 8, 16, 32 32 

Dropout rate 0.1-0.3 0.1 

Activation ReLU, TanH ReLU 



 

We also agree with the reviewer that the time period of observed data is short for some stations. However, 

the monthly data were used in our study. More importantly, to partly solve the problem of short period, the 

data fusion and bias correction were conducted at the regional scale for a specific season to include several 

stations for training the neural network models and bias correction methods. In other words, the training of 

model was not conducted for each individual station. This ensures that the model was well trained with 

enough samples. Moreover, considering the lack of observed data for training, we chose the simple structure 

to make the network not deep and the results desirable. For example, we chose the 1D convolutional neural 

network because of its advantages for data scarcity (Kiranyaz et al., 2021). 

Overall, the evaluation of the isoscape dataset show that the dataset quality is excellent (Figs. 1-2 

and Tables 2-3), further proving the structure and parameters of the CNN fusion method are appropriate. 

Definitely, the models might perform even better if more observations were included. But then again, the 

lack of observations is the main motivation to develop this dataset to fill the data gaps both in space and time, 

as we were attempted to maximize the utilization of available data from all observations and climate model 

simulations to provide best available dataset to date. 

All above information will be added in the discussion of the revised manuscript. 
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Using the interpretations of spatial pattern at the seasonally averaged scale (1969-2007) and the temporal 

pattern at the regional scale to validate the effectiveness and reliability of the data is not persuasive. Why 

not give us a comprehensive assessment at finer scale, such as time-series comparisons between the gridded 

simulations (50km) and in-situ observations at each station, and spatial patterns for each month. Without 

these comprehensive evaluations at finer scale, I am quite dubious about the data-quality and usefulness of 

this data set. 

 

Re: Thanks lot for the insightful suggestions. Following the reviewer’s comments, a comprehensive 

assessment of the dataset at the finer scale was conducted and included in the revision. Specifically, the 

dataset was evaluated with respect to reproducing the time-series of in-situ observations at station scale, as 

well as the spatial pattern for each month. The detailed procedures are presented as follows. 

To evaluate the dataset for all stations, the correlation coefficient (CC) and root mean square error 

(RMSE) were calculated for δ18Op series between observations and raw iGCM simulations, and between 

observations and built isoscape for all stations over the common period (Tables 2-3). The results show that 

the built isoscape performs excellent for the vast majority of stations, with larger CCs and smaller RMSEs 

than iGCM simulations. Specifically, the CCs between the isoscape simulations and observations are larger 

than 0.8 for 73% of the stations and larger than 0.9 for 49% of the stations. The RMSEs between the isoscape 

simulations and observations are smaller than 20‰ for 78% of the stations and less than 15‰ for 56% of the 

stations. 

To further demonstrate the dataset quality, two stations with appropriate length of observation were 

randomly selected for each sub-region. Totally, 12 stations were selected. The time series of δ18Op were 

plotted for observations, iGCM simulations, and the generated isoscape (Fig. 1). As can be seen from Fig. 1, 

the variations of δ18Op are very consistent between the generated isoscape and observations, and the isoscape 

performs much better than raw iGCM simulations. In particular for the period before 2007, the CNN model 

integrates the advantages of various simulations and captures most features of the observed data. These 

results generally prove that the generated isoscape is reliable. 

Fig. 2 further shows the monthly spatial distribution of observed, newly generated, and better-

performing simulated δ18Op for their common period (i.e. 1979-2007). The spatial pattern presented by the 

built isoscape shows the best consistency with the observations. The strength of the CNN model has been 

demonstrated, which can make good use of the advantages of each simulation to accurately capture the 

characteristics of observations. For example, the LMDZ nudged model shows a strong ability to reproduce 

the spatial distribution of δ18Op for the eastern region in summer and autumn, but a slightly poor performance 

in the Qinghai-Tibet Plateau. The built isoscape combines LMDZ nudged with GISS nudged and LMDZ 

zoomed simulations, which show reasonably performance for the Qinghai-Tibet Plateau, and well reproduces 

the spatial distribution of δ18Op for mainland China. 



In addition, based on suggestions from other reviewers, we will introduce some physical-based ancillary 

data in the fusion, such as elevation and meteorological data, to refine our dataset. Taking into account the 

effects of elevation and meteorological factors on precipitation isotopes might make our dataset more reliable. 

From above analyzes, we are very confident that the generated isoscape is of high quality, and will 

be widely used in the future. All above results will be added in the revised manuscript. 

 

 The presentation of dataset. 

Introduction: The section of Introduction is not well written, and lacks to interconnect of the data it shares to 

and to show how it is valuable in relation to the Earth’s system. For example, readers should have a clear 

understanding of the motivation of this study, the purpose of creating such a dataset, which can be seen from 

a literature review of precipitation oxygen isoscape in hydrological and biogeochemical cycles. Then, 

followed by a detailed description of the available datasets, we could not find any description of the 

previously evaluated performance of iGCMs simulation in the Introduction. A description of the data-fusion 

method should also be added. 

 

Re: We agree with the reviewer that the Introduction has a large room to be improved. We will revise the 

introduction as suggested, and some of the following information will be added in the Introduction of the 

revised manuscript. 

“Taking advantage of the fact that isotope composition varies sensitively with environmental conditions, 

environmental isotopes play an important role in the identification and characterization of the Earth’s systems 

processes (Bowen, 2010). The study of the hydrologic cycle is one of the most important applications of 

stable isotopes. Firstly, the isotope composition of water is a powerful tracer of water sources. In the process 

of moisture transport, the isotope composition changes with atmospheric processes, which can reflect 

moisture contribution (Gibson et al., 2005; Galewsky et al., 2016; Ansari et al., 2020). In addition, for surface 

runoff, soil water and groundwater, the isotope composition can also reflect the water source, infiltration 

mechanism and evaporation consumption of each system (Zhang et al., 2021; McGuire et al., 2002; Gazis 

and Feng, 2004; Chen et al., 2004). Secondly, isotope composition can also reveal the hydrological processes 

that cannot be achieved by other methods (Bowen et al., 2019). For example, evaporation processes can be 

better diagnosed in dual hydrogen/oxygen (H/O) or triple oxygen isotope (18O-17O-16O) datasets, which can 

be used to quantify the effect of raindrop re-evaporation on atmospheric water balance (Worden et al., 2007; 

Froehlich et al., 2008). Thirdly, isotopes can be incorporated into surface hydrology models as diagnostic 

tools. The isotope composition of evapotranspiration, soil moisture, and runoff can be predicted by 

incorporating the isotope cycle, thus the distribution of isotopic variation in evapotranspiration and runoff 

can be better understood (Fekete et al., 2006). What’s more, isotope composition can quantify evaporation 

rates, which is useful for understanding water balance and climate change from catchment to continental 

scales (Bowen, 2010). Precipitation isotopes can also be used to estimate the precipitation isotopic lapse rate 

by establishing relationships with climatic elements or elevation, so as to study paleoclimate and 

paleoelevation based on isotopes (Rowley and Garzione, 2007; Johnson and Ingram, 2004). 

The international observation of stable isotopes in precipitation began in the 1950s, and the Global 

Network of Isotopes in Precipitation (GNIP) established in 1961 provide first-hand data for the study of 

stable isotopes in precipitation. Since then, Austria (Austrian Network of Isotopes in Precipitation, ANIP, 

Kralik et al., 2003), the United States (United State Network of Isotopes in Precipitation, USNIP, Lynch et 

al., 1995), Switzerland (Swiss National Network for the Observation of Isotopes in the Water Cycle, NISOT, 

Schürch et al., 2003), Canada (Canadian Network of Isotopes in Precipitation, CNIP, Frits et al., 1987) and 



other countries have also established their national networks, which provide strong data support for 

promoting and deepening the study of stable precipitation isotope. 

The establishment of the isotope observation network in China was relatively late. Before 1985, GNIP 

had only one station in Hong Kong of China, and it was not until 1985 that more stations were selected for 

inclusion in GNIP. Due to the scarcity of stations on the Tibetan Plateau, the Chinese Academy of Sciences 

(CAS) launched the Tibetan Plateau Network of Isotopes in Precipitation (TNIP) in 1991 (Yu et al., 2016). 

However, most Chinese stations in GNIP stopped monitoring in the early 2000s (Zhang and Wang, 2016), 

and until 2004 only one station remained. In order to continue the systematic study, the CAS established the 

Chinese Network of Isotopes in Precipitation (CHNIP) based on the Chinese Ecosystem Research Network 

(CERN) in 2004 (Song et al., 2007). 

The stable isotopes in precipitation can also be simulated by isotope-equipped general circulation 

models (iGCMs). In contrast to observations, iGCMs can provide time-continuous and space-regular isotope 

data. Joussaume et al. (1984) incorporated the fractionation process of water stable isotope into GCM for the 

first time. They used the GCM of the Laboratoire de Météorologie Dynamique (LMD) to simulate the 

distribution of global water stable isotope, and the relationship between simulated precipitation oxygen 

isotope and meteorological elements was in good agreement with the measured results. Since then, an 

increasing number of GCMs have incorporated isotope cycles, for example, the ECHAM4 developed by the 

Max Planck Institute for Meteorology (MPI) in Germany, the GISS E developed by the NASA Goddard 

Institute for Space Studies (GISS) in the United States, the HadAM3 developed by the Hadley Centre for 

Climate Prediction and Research in the United Kingdom, the LMDZ4 developed by the Laboratoire de 

Météorologie Dynamique in France, and the MIROC32 developed by the Center for Climate System 

Research (CCSR) of the University of Tokyo in Japan, etc. 

On the basis of these, the comparison and evaluation of iGCMs in simulating isotopes have been 

conducted in many studies. Yoshimura et al. (2003) indicated that due to the limitation of spatial and temporal 

resolution, iGCMs are poor in simulating the short-term (days) variability of stable isotopes in precipitation, 

while they are good at the monthly or annual scale. Conroy et al. (2013) evaluated the spatio-temporal pattern 

of precipitation isotope variability in the tropical Pacific for iGCM simulations, and found that models 

nudged by reanalysis wind have a certain effect on precipitation isotope values, and the performance of 

models varies with regions. Zhang et al. (2012) selected four iGCMs to evaluate the average precipitation 

isotopic composition in East Asia. The results showed that the characteristics of measured values were well 

reproduced by iGCM simulation, but the simulated values were all lower in the inland areas at middle and 

high latitudes, and the amount effect in arid areas was incorrectly simulated. Wang et al. (2015) verified 

iGCM-simulated stable isotopes in precipitation in arid Central Asia. In general, the seasonality of stable 

isotopes in precipitation could be well simulated, but the values of oxygen isotopes were higher in summer 

and lower in winter, lower in the eastern section and higher in the western section. Che et al. (2016) concluded 

that LMDZ nudged has the best comprehensive performance by comparing the simulated values of different 

models with the measured values of GNIP in China. In terms of altitude effects, CAM and GISS E perform 

better, while in terms of continental effects, GISS E and LMDZ free performs better. 

To comprehensively consider the error characteristics and advantages of different sources of data to 

reduce the uncertainty, data fusion is usually used. One of the common methods for data fusion is to use in-

situ observations as baselines to correct estimates from other sources. Several data fusion methods such as 

cokriging (Krajewski, 1987), probability matching (Rosenfeld et al., 1994), statistical objective analysis 

(Pereira et al., 1998), Bayesian correction (Todini, 2001), probability density function–optimal interpolation 

(Shen et al., 2014), and variational (Bianchi et al., 2013) are usually used to fuse in-situ observation 



information. The key of these methods is to deal with the estimation errors directly based on weighted average, 

regression analysis, filtering analysis and other mathematical approaches. In contrast, neural network 

methods have stronger learning and generalization abilities, and have advantages in discovering complex 

relationships in data and processing large amounts of data (LeCun et al., 2015). So far, the neural network 

was mainly applied to precipitation data fusion in the field of hydrology but very little in isotopic hydrology. 

For example, Turlapaty et al. (2010) used Artificial Neural Network to fuse various satellite precipitation 

products, and found the fusion performance was statistically superior to each individual dataset for all seasons. 

Sun and Tang (2020) combined information from satellite precipitation products and reanalysis data in 

Central Texas, U.S., by using an attention-based deep convolutional neural network (AU-Net), and found the 

Au-net models have achieved varying degrees of success under different climatic conditions. Wu et al. (2020) 

combined Convolutional Neural Network with Long Short-Term Memory Network to fuse the TRMM 

satellite data, thermal infrared images of Gridded satellite, rain gauge data and elevation data. The results 

showed that this method can improve the accuracy of original TRMM data in China, even for regions with 

different precipitation intensities or sparse gauges.” 
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Data set and study area: Please add more details about the in-situ data (e.g., time-series of available in-situ 

data, number of data points at each station) in the supplementary material to justify the machine learning. 

For better visualization, a mesh of the iCGMs could be added in Fig.1. 

 

Re: As suggested, a table (Table 4) will be added in the supplementary material to describe the details of the 

in-situ data, and a mesh of the built isoscape will be added in Fig.1 in the revised manuscript. 

 

Methodology: This section is not well written, and should be clarified. For example, did you correct for 

iGCMs simulation bias at grid scale (grid by grid) or regional scale (using all gauges and all iGCMs within 

a specific region). How do these methods generate 50 km simulations from various iGCMs with different 

spatial resolutions? 

 

Re: Thanks for the detailed comments. Generally, the generation of isoscape can be divided into five steps. 

(1) Prior to generating the dataset, a simple but robust inverse distance weighting (IDW) method (Camera et 

al., 2014) was used to interpolate all iGCM simulations to observation stations. (2) Three neural network data 

fusion and two bias correction methods were trained using observations and iGCM simulations for all months 

within a season and all stations within a sub-region. In other words, observed and simulated monthly isotopes 

within a season and all stations within a region were used to train the data fusion and bias correction methods. 

This ensures that the model was well trained with enough samples. (3) The performance of each model was 

evaluated for the validation period by the cross-validation method to find the optimal data fusion and bias 

correction methods. (4) All iGCM simulations were interpolated to the LMDZ4 zoomed grid with a spatial 



resolution of approximately 50 km by the IDW method. (5) The optimal trained model and bias correction 

methods were applied to all grid points within a region and all months within a season. Since the length of 

iGCM simulations is not identical, the optimal combination of data fusion and bias correction methods were 

used to generate the isoscape for a long period. In other words, for the common period of observations and 

iGCM simulations, the optimal data fusion method (i.e. CNN) was used, while for the period with no 

observations, the bias correction methods were used. 

All above descriptions will be added in the revised manuscript. 

 

References: 

Camera, C., Bruggeman, A., Hadjinicolaou, P., Pashiardis, S., and Lange, M. A.: Evaluation of interpolation techniques for the 

creation of gridded daily precipitation (1× 1 km2); Cyprus, 1980–2010, Journal of Geophysical Research: Atmospheres, 

119, 693-712, https://doi.org/10.1002/2013JD020611, 2014. 

 

Results and discussion: see above comments. Many published ESSD papers have demonstrated the 

uncertainties, limitations, advantages and 1-3 specific applications (for validation, evaluation, and analysis) 

of their dataset, which are also highly recommended for your paper. 

 

Re: Thanks for suggestions. As suggested, we will add all relevant information to the revised manuscript. 

(1) Uncertainties 

In the original manuscript, the uncertainty was partly analyzed, but not comprehensive. The plotted +/- 

one standard deviation in Figs. 5-6 shows the dispersion degree of the evaluation metrics (CC and RMSE) 

for the simulated results of all bias correction and data fusion methods over 100 trials. The standard deviations 

of CC and RMSE calculated by LS and DT corrected simulations are smaller, while those calculated by BP, 

LSTM and CNN fused simulations are larger. The standard deviation of CC and RMSE calculated by the 

CNN fused simulations is the smallest among fusion methods. It can be considered that LS and DT correction 

methods show smaller uncertainties in CC and RMSE than the BP, LSTM and CNN fusion methods. CNN 

fusion methods show smaller uncertainties than the other two fusion methods. 

In the revised manuscript, an uncertainty analysis for the use of data fusion methods was further 

analyzed. Specifically, the CNN method was taken as an example to analyze the uncertainty derived from 

model structure, model parameters and training samples for fusing isotope in South China (SC) over summer 

(JJA). For the model structure, a different number of convolution layers were selected, because the model is 

very sensitive to the number of convolution layers (Mboga et al., 2017). For model parameters, three 

parameters, namely learning rate, batch size and filter size, were selected based on previous sensitivity studies 

(Zhang and Wallace, 2015; Taylor et al., 2021; Mboga et al., 2017; Bengio, 2012). Commonly-used values 

for each parameter were selected to form twelve groups of parameter setting schemes. For the training sample, 

five different training-test sets were randomly generated. To sum up, the modelling combination scheme for 

uncertainty analysis is shown in Table 5. 

A variance decomposition method (Song et al., 2020; Bosshard et al., 2013) was used to calculate the 

uncertainty contribution for these three sources as well as their interactions. The correlation coefficient (CC) 

and root mean square error (RMSE) were used as the evaluation criteria. Then, all the combination schemes 

were trained and the evaluation criteria were calculated, which was repeated 30 times for each combination. 

Results shows that the accuracy (i.e. standard error) of CC and RMSE are respectively 0.0025 and 0.0127‰. 

The relative contribution of each source to the total uncertainty is shown in Fig. 3. As can be seen, there is 

little difference in the relative contribution of uncertainty sources between the two evaluation criteria. Model 



parameters have the greatest contribution to the total uncertainty with the contribution being more than 50%, 

while the contribution of training samples is the least, which is less than 1%. These results indicate that the 

model is robust and not very dependent on training data. 

 

Table 5. The modeling combination scheme of uncertainty calculation. 

Model structure Model parameters 

Training samples Number of 

convolutional layer 
Learning rate Batch size Filter size 

1 0.0005 20 3 

Samples 1-5 2 0.001 50 4 

3 0.002   

 

 

Figure 3. The relative contribution of each source to the total uncertainty. 

 

(2) Advantages and limitations 

The generated isoscape dataset has high spatio-temporal resolution and a long series covering 1870-

2017. Compared with the existing iGCMs, the isoscape has high quality and stability for a large region in 

China at the monthly scale. Benefiting from the characteristics of optimal neural network and bias correction 

methods, the isoscape makes full use of observations to integrate the advantages of various iGCMs. In other 

words, by using the combination of data fusion and bias correction methods, all observations and iGCM 

simulations were used to the utmost extent to ensure the highest accuracy throughout the entire time period. 

The uncertainty analysis show that the CNN model is not dependent on specific training samples and has a 

strong generalization ability, while the bias correction methods have commonly used in climate change 

studies. Moreover, the hybrid generation method of the isoscape has the characteristics of high accuracy and 

simplicity, which can be easily extended to the generation of isoscape datasets in other regions. However, it 

should be noted that the isoscape may be more reliable for the common periods of most iGCMs (1969-2007), 

but mediocre for other periods. What’s more, affected by the data quality and representativeness of 

observation stations, the accuracy of the isoscape in some regions still needs to be improved. It is believed 

that this problem will be solved as observed data become more abundant. 

 

(3) Applications 



The isoscape is very useful for tracking moisture sources and quantifying moisture contributions. For 

example over East Asia, where the length of observed isotope data are short, or over the Tibetan Plateau, 

where data are unevenly distributed, the influence of climate change on moisture source and contribution can 

be studied based on this long series precipitation isoscape. The isoscape can also be used to calibrate climate 

models through data assimilation. For example, the precipitation isoscape can be combined with the physical 

constraints of regional climate models to reconstruct hydrological and climatic elements such as water vapor 

and precipitation. It can be a useful attempt to advance the study of climatic and hydrological data. 
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For above reasons, I do not support its publication in the ESSD, without advanced approach or 

comprehensive evaluations of dataset at finer scale. Anyway, I still look forward to seeing the reviewers’ 

comments and editor’s decision. 

 

  



 

Figure 1. Time-series comparisons of δ18Op among the built isoscape, iGCM simulations, and in-situ observations 

at selected stations in each sub-region. 
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Table 2. Correlation coefficient (CC) metrics of δ18Op series between observations and iGCM simulations and the 

built isoscape at all stations. 

Subregion Station Isoscape CAM GISSf GISSn HadAM LMDZf LMDZn LMDZz MIROC 

NE Changchun 0.93 0.80 0.74 0.77 0.64 0.68 0.86 0.63 0.68 

NE Haerbin 0.89 0.38 0.33 0.66 0.36 0.45 0.53 0.47 0.46 

NE Qiqihar 0.97 0.71 0.63 0.78 0.58 0.74 0.81 0.79 0.68 

NE Changbaishan 0.69 / 0.46 0.60 / 0.59 0.72 0.51 0.58 

NE Sanjiang 0.97 / 0.46 0.51 / 0.55 0.63 0.65 0.38 

NE Hailun 0.93 / 0.74 0.73 / 0.72 0.76 0.74 0.69 

NE Shenyang 0.28 / 0.02 0.13 / -0.25 0.18 -0.09 0.05 

NC Jinzhou 0.82 -0.19 0.03 0.34 0.30 0.42 0.48 -0.46 0.25 

NC Shijiazhuang 0.95 0.33 0.28 0.33 0.22 0.31 0.55 0.27 0.32 

NC Taiyuan 0.98 0.17 0.27 -0.16 -0.38 -0.12 -0.09 -0.14 0.27 

NC Tianjin 0.95 0.43 0.51 0.29 0.41 0.43 0.66 0.12 0.40 

NC Xian 0.92 0.12 -0.02 0.41 -0.23 0.20 0.59 0.30 0.41 

NC Yantai 0.95 0.18 0.07 0.46 0.23 0.16 0.48 -0.27 0.23 

NC Zhengzhou 0.91 0.07 0.18 0.49 0.00 0.22 0.56 0.08 0.39 

NC Beijing 0.68 / 0.75 0.23 / 0.78 0.74 0.60 0.80 

NC Fengqiu 0.90 / 0.05 0.77 / 0.26 0.66 0.09 0.20 

NC Yucheng 0.72 / 0.28 0.30 / 0.25 0.54 0.08 0.47 

NC Changwu 0.90 / -0.36 0.50 / -0.02 0.69 0.10 0.07 

SC Changsha 0.91 0.45 0.50 0.69 0.16 0.56 0.76 0.62 0.53 

SC Chengdu 0.87 0.43 0.17 0.67 -0.05 0.39 0.68 0.66 0.52 

SC Guilin 0.94 0.59 0.55 0.86 0.43 0.71 0.79 0.79 0.71 

SC Guiyang 0.95 0.31 0.46 0.75 0.25 0.54 0.78 0.82 0.55 

SC Kunming 0.97 0.55 0.62 0.82 0.47 0.65 0.86 0.66 0.68 

SC Liuzhou 0.87 0.53 0.52 0.74 0.49 0.64 0.74 0.72 0.71 

SC Wuhan 0.92 0.37 0.25 0.64 0.09 0.36 0.70 0.64 0.51 

SC Zunyi 0.91 0.29 0.41 0.76 0.24 0.54 0.80 0.79 0.51 

SC Yingtan 0.63 / 0.07 0.35 / 0.31 0.22 0.42 0.18 

SC Taoyuan 0.83 / 0.53 0.82 / 0.56 0.76 0.78 0.40 

SC Qianyanzhou 0.87 / 0.12 0.59 / 0.40 0.63 0.59 0.54 

SC Huitong 0.81 / 0.45 0.77 / 0.69 0.80 0.78 0.45 

SC Yanting 0.71 / 0.32 0.43 / / / 0.72 / 

SC Heshang 0.77 / / / / / / 0.73 / 

SC Changsha 0.82 / / / / / / 0.79 / 

SE Fuzhou 0.89 0.24 0.09 0.50 0.24 0.23 0.37 0.52 0.33 

SE Guangzhou 0.90 0.36 0.60 0.60 0.47 0.61 0.58 0.44 0.44 

SE Hong Kong 0.80 0.61 0.60 0.79 0.64 0.68 0.78 0.64 0.62 

SE Nanjing 0.96 0.25 0.37 0.62 0.31 0.34 0.73 0.35 0.24 

SE Changshu 0.91 / 0.29 0.79 / 0.41 0.74 0.73 0.13 

SE Dinghushan 0.45 / 0.39 0.69 / 0.97 1.00 0.49 1.00 

SE Ailaoshan 0.97 / 0.66 0.87 / 0.70 0.83 0.14 0.80 

SE Guangzhou 0.74 / 0.47 0.84 / 0.91 0.83 0.64 0.77 

SE Yongan 0.43 / / / / / / 0.35 / 

SE Xishuangbanna 0.96 0.53 0.82 0.85 / 0.57 0.78 0.68 0.78 

SE Guangzhou 0.77 / 0.51 0.83 / 0.79 0.76 0.73 0.64 

TP Lhasa 0.94 0.19 0.39 0.59 0.37 0.13 0.13 0.19 0.20 



Subregion Station Isoscape CAM GISSf GISSn HadAM LMDZf LMDZn LMDZz MIROC 

TP Lhasa 0.78 / 0.58 0.59 / 0.36 0.19 0.27 0.45 

TP Haibei 0.87 / 0.24 0.30 / 0.64 0.50 0.43 0.40 

TP Maoxian 0.58 / -0.39 0.48 / 0.07 0.66 0.45 0.13 

TP Gonggashan 0.71 / 0.10 0.68 / 0.32 0.62 0.69 0.36 

TP Delingha 0.98 0.27 0.45 0.75 0.75 0.80 0.85 0.80 0.73 

TP Nagqu 0.92 0.17 0.16 0.64 0.15 0.15 0.06 0.46 0.40 

TP Yushu 0.81 0.00 -0.12 0.37 -0.11 0.18 0.28 0.46 0.29 

TP Gaize 0.96 0.34 0.03 0.44 -0.06 0.36 0.37 0.43 0.18 

TP Shiquanhe 0.79 -0.33 0.25 0.35 -0.06 0.46 0.35 0.43 0.04 

TP Lhasa 0.94 0.37 0.63 0.74 0.45 0.45 0.40 0.42 0.56 

TP Dingri 0.89 -0.08 0.61 0.18 0.71 -0.33 0.44 0.37 0.35 

TP Nyalam 0.92 0.40 0.46 0.69 -0.06 0.48 0.32 0.35 0.48 

TP Tuotuohe 0.94 0.18 0.10 0.64 0.44 0.66 0.67 0.67 0.48 

TP Baidi 0.84 / 0.51 0.62 / 0.29 0.47 0.44 0.49 

TP Dui 0.87 / 0.56 0.53 / 0.34 0.28 0.39 0.43 

TP Taxkorgen 0.97 0.19 0.70 0.79 / 0.80 0.82 0.83 0.70 

TP Wengguo 0.87 / 0.66 0.57 / 0.29 0.53 0.63 0.56 

TP Lulang 0.80 / 0.45 0.76 / 0.63 0.62 0.68 0.27 

TP Nuxia 0.59 / -0.21 0.79 / / / 0.49 / 

TP Yeniugou 0.84 / 0.88 0.83 / / / 0.88 / 

NW Baotou 0.93 0.43 0.52 0.51 0.39 0.43 0.60 0.28 0.46 

NW Hetian 0.96 0.49 0.52 0.82 0.55 0.81 0.89 0.88 0.82 

NW Lanzhou 0.94 0.18 0.22 -0.07 0.53 0.60 0.60 0.45 0.61 

NW Wulumuqi 0.97 0.40 0.67 0.76 0.76 0.78 0.86 0.87 0.73 

NW Yinchuan 0.95 0.43 0.58 0.34 0.45 0.62 0.76 0.75 0.63 

NW Zhangye 0.96 0.35 0.59 0.57 0.62 0.80 0.83 0.79 0.76 

NW Fukang 0.94 / 0.75 0.78 / 0.87 0.88 0.86 0.84 

NW Cele 0.90 / -0.38 0.66 / 0.59 0.79 0.72 0.55 

NW Linze 0.93 / 0.68 0.67 / 0.78 0.79 0.68 0.81 

NW Shapotou 0.48 / 0.14 0.20 / 0.30 0.30 -0.10 0.17 

NW Ansai 0.73 / -0.06 0.53 / -0.04 0.66 0.00 0.33 

NW Erdos 0.19 / 0.01 0.70 / 0.33 0.13 0.17 -0.54 

NW Naiman 0.88 / 0.62 0.64 / 0.55 0.42 0.75 0.11 

 

  



Table 3. Root mean square error (RMSE, ‰) metrics of δ18Op series between observations and iGCM simulations 

and the built isoscape at all stations. 

Subregion Station Isoscape CAM GISSf GISSn HadAM LMDZf LMDZn LMDZz MIROC 

NE Changchun 7.47 11.50 14.71 14.98 17.35 16.14 11.45 22.16 13.80 

NE Haerbin 8.31 20.78 24.55 31.03 22.20 20.36 16.32 23.95 20.69 

NE Qiqihar 13.67 38.19 43.10 34.59 50.34 39.30 33.69 38.38 38.57 

NE Changbaishan 31.87 / 47.09 46.38 / 22.75 18.46 45.71 21.93 

NE Sanjiang 9.31 / 34.13 33.77 / 31.78 24.98 24.61 29.68 

NE Hailun 16.44 / 26.52 32.42 / 27.26 26.73 26.57 26.28 

NE Shenyang 20.70 / 24.61 20.10 / 22.11 12.67 33.25 17.39 

NC Jinzhou 5.46 10.88 8.25 6.59 7.97 6.56 6.68 21.52 11.30 

NC Shijiazhuang 15.12 56.29 49.40 45.68 40.41 44.44 36.17 83.95 52.45 

NC Taiyuan 5.37 22.94 23.43 24.56 20.93 19.33 20.78 33.76 19.09 

NC Tianjin 9.34 31.11 25.51 24.90 25.79 24.63 18.78 54.64 31.35 

NC Xian 10.27 40.99 35.42 32.86 32.12 28.35 20.92 30.46 26.61 

NC Yantai 5.84 19.21 21.43 18.19 18.76 20.83 17.23 36.96 24.88 

NC Zhengzhou 10.99 36.21 32.11 23.59 26.80 25.12 20.52 42.04 23.46 

NC Beijing 28.37 / 20.28 27.08 / 14.61 14.19 29.14 10.71 

NC Fengqiu 10.03 / 22.74 17.20 / 18.24 14.66 27.88 19.44 

NC Yucheng 13.78 / 21.10 19.83 / 17.29 15.57 31.43 15.38 

NC Changwu 13.79 / 40.64 37.52 / 21.68 13.69 31.02 28.30 

SC Changsha 9.74 21.83 23.99 22.08 27.34 19.65 15.59 19.36 19.72 

SC Chengdu 16.55 56.26 56.99 62.06 39.34 29.57 25.76 26.21 43.54 

SC Guilin 10.18 24.79 24.69 19.40 29.09 21.52 19.23 18.46 21.60 

SC Guiyang 9.14 31.95 26.87 23.28 30.90 25.78 19.23 22.24 25.05 

SC Kunming 16.06 47.73 44.50 44.59 44.75 47.67 40.91 47.68 45.03 

SC Liuzhou 11.06 20.81 19.86 16.67 21.12 18.23 16.09 17.71 16.44 

SC Wuhan 7.79 19.69 24.96 19.37 24.38 20.34 15.64 16.61 17.62 

SC Zunyi 13.82 38.47 33.45 31.05 34.47 28.45 21.06 22.14 28.87 

SC Yingtan 17.72 / 22.76 25.17 / 13.90 19.02 22.05 14.57 

SC Taoyuan 11.19 / 17.54 15.16 / 13.78 11.46 14.23 16.38 

SC Qianyanzhou 7.51 / 20.86 18.09 / 14.37 13.41 13.93 13.33 

SC Huitong 12.06 / 18.17 15.19 / 10.52 9.30 14.60 15.35 

SC Yanting 21.13 / 31.54 33.49 / / / 20.09 / 

SC Heshang 20.75 / / / / / / 21.97 / 

SC Changsha 19.15 / / / / / / 21.62 / 

SE Fuzhou 10.88 27.18 28.32 22.42 27.09 28.15 25.79 21.75 25.71 

SE Guangzhou 6.39 15.12 10.76 10.91 16.41 11.04 13.11 17.21 13.25 

SE Hong Kong 38.15 43.96 47.98 34.52 50.52 42.01 32.63 45.53 40.70 

SE Nanjing 6.91 22.14 19.21 17.01 23.01 25.58 20.30 22.12 24.79 

SE Changshu 3.50 / 9.88 5.73 / 14.49 10.67 6.84 11.59 

SE Dinghushan 22.85 / 15.51 14.40 / 3.71 1.20 22.44 5.39 

SE Ailaoshan 6.46 / 20.21 15.92 / 27.27 24.72 33.50 25.93 

SE Guangzhou 20.37 / 16.56 9.74 / 5.71 6.20 23.52 6.89 

SE Yongan 15.83 / / / / / / 16.42 / 

SE Xishuangbanna 9.26 20.69 19.55 16.55 / 32.37 29.43 28.11 32.21 

SE Guangzhou 11.43 / 16.95 11.17 / 9.01 8.77 12.06 9.43 

TP Lhasa 16.48 45.39 48.24 40.56 42.23 50.30 53.37 43.84 46.20 



Subregion Station Isoscape CAM GISSf GISSn HadAM LMDZf LMDZn LMDZz MIROC 

TP Lhasa 24.27 / 30.61 30.51 / 34.27 37.35 36.78 30.10 

TP Haibei 11.23 / 38.38 45.39 / 21.11 19.96 33.95 29.98 

TP Maoxian 13.61 / 25.84 29.51 / 13.38 9.50 15.67 12.89 

TP Gonggashan 27.37 / 26.75 31.77 / 26.49 24.21 30.24 23.97 

TP Delingha 14.94 87.68 127.83 113.21 53.20 40.92 35.78 85.71 71.41 

TP Nagqu 16.24 40.61 42.90 35.18 25.44 61.90 62.31 40.53 35.25 

TP Yushu 11.73 32.84 50.28 37.89 13.08 31.88 29.51 20.69 29.43 

TP Gaize 13.95 44.70 72.06 53.95 31.61 51.14 50.41 40.32 47.10 

TP Shiquanhe 20.98 37.84 33.23 32.83 30.81 50.83 49.15 35.91 51.55 

TP Lhasa 22.86 48.17 51.15 47.12 41.72 75.87 79.16 57.43 61.10 

TP Dingri 9.82 20.02 17.23 25.29 13.54 41.22 40.39 20.09 39.40 

TP Nyalam 22.22 44.29 48.22 37.36 65.87 56.07 58.01 52.53 64.70 

TP Tuotuohe 22.46 84.32 112.41 78.12 48.50 56.33 55.78 45.39 60.21 

TP Baidi 12.24 / 21.66 20.40 / 33.47 32.83 23.63 36.25 

TP Dui 17.57 / 28.75 28.00 / 43.04 43.72 34.06 44.76 

TP Taxkorgen 12.64 13.27 44.91 48.34 / 31.72 30.37 32.65 34.84 

TP Wengguo 10.97 / 15.37 17.58 / 29.67 29.66 19.67 31.43 

TP Lulang 39.66 / 29.51 25.03 / 27.43 26.70 44.52 22.53 

TP Nuxia 25.64 / 10.31 14.28 / / / 24.23 / 

TP Yeniugou 16.60 / 30.61 37.42 / / / 16.30 / 

NW Baotou 11.33 50.59 42.77 38.48 43.78 32.82 24.41 60.87 40.64 

NW Hetian 19.61 60.60 67.10 77.90 76.83 36.28 31.10 61.56 38.01 

NW Lanzhou 10.60 55.48 53.01 65.13 28.74 24.34 23.92 38.27 42.90 

NW Wulumuqi 17.15 66.80 59.34 69.90 63.51 55.43 44.56 69.41 49.72 

NW Yinchuan 8.14 38.30 33.31 35.84 27.23 21.02 18.36 33.55 29.89 

NW Zhangye 20.80 84.71 91.43 93.86 53.70 40.24 37.27 65.15 64.30 

NW Fukang 17.91 / 35.66 46.33 / 23.33 21.36 40.93 23.37 

NW Cele 8.46 / 49.74 52.79 / 18.44 17.65 32.59 25.31 

NW Linze 16.52 / 48.37 51.71 / 21.65 21.60 47.16 30.30 

NW Shapotou 18.98 / 41.20 52.35 / 14.44 16.28 41.61 23.84 

NW Ansai 18.09 / 38.55 32.02 / 24.17 13.92 37.28 23.82 

NW Erdos 14.76 / 22.65 20.64 / 7.69 9.35 24.33 11.91 

NW Naiman 12.76 / 13.85 13.75 / 12.61 12.42 36.06 14.49 

 

  



 

Figure 2. Spatial distributions of δ18Op in each month for the period of 1979-2007 as obtained from observations 

(circles), the built isoscape (left column), and better-performing iGCMs (right three columns). 

  



 

Figure 1. Spatial distributions of δ18Op in each month for the period of 1979-2007 as obtained from observations 

(circles), the built isoscape (left column), and better-performing iGCMs (right three columns). 

  



Table 4. Detailed information and sources for each observation site. 

Subregion Site Latitude Longitude Altitude (m) Period Data volume Data source 

NE Changchun 43.90 125.22 237 1999-2001 22 GNIP 

NE Haerbin 45.68 126.62 172 1986-1997 35 GNIP 

NE Qiqihar 47.38 123.92 147 1988-1992 50 GNIP 

NE Changbaishan 42.40 128.11 738.1 2005-2010 72 CHNIP 

NE Sanjiang 47.35 133.30 55 2005-2007 24 CHNIP 

NE Hailun 47.45 126.93 236 2005-2009 32 CHNIP 

NE Shenyang 41.52 123.37 49 2005-2010 33 CHNIP 

NC Jinzhou 41.13 121.10 66 1987-1989 12 GNIP 

NC Shijiazhuang 38.03 114.42 80 1985-2003 146 GNIP 

NC Taiyuan 37.78 112.55 778 1986-1988 20 GNIP 

NC Tianjin 39.10 117.17 3 1988-2001 64 GNIP 

NC Xian 34.30 108.93 397 1985-1992 60 GNIP 

NC Yantai 37.53 121.40 47 1986-1991 44 GNIP 

NC Zhengzhou 34.72 113.65 110 1985-1992 57 GNIP 

NC Beijing 39.96 115.43 1248 2005-2010 44 CHNIP 

NC Fengqiu 35.01 114.33 67.5 2005-2007 22 CHNIP 

NC Yucheng 36.83 116.57 22 2005-2008 27 CHNIP 

NC Changwu 35.24 107.68 1200 2005-2009 32 CHNIP 

SC Changsha 28.20 113.07 37 1988-1992 57 GNIP 

SC Chengdu 30.67 104.02 506 1986-1998 67 GNIP 

SC Guilin 25.07 110.08 170 1983-1990 92 GNIP 

SC Guiyang 26.58 106.72 1071 1988-1992 58 GNIP 

SC Kunming 25.02 102.68 1892 1986-2003 152 GNIP 

SC Liuzhou 24.35 109.40 97 1988-1992 53 GNIP 

SC Wuhan 30.62 114.13 23 1986-1998 50 GNIP 

SC Zunyi 27.70 106.88 844 1986-1992 74 GNIP 

SC Yingtan 28.12 116.56 45 2005-2010 56 CHNIP 

SC Taoyuan 28.93 111.44 106 2005-2010 47 CHNIP 

SC Qianyanzhou 26.44 115.03 76.4 2005-2007 33 CHNIP 

SC Huitong 26.85 109.61 541 2005-2010 48 CHNIP 

SC Yanting 31.27 105.46 420 2009-2010 18 CHNIP 

SC Heshang 30.45 110.42 270 2011-2018 80 Wang et al. (2020) 

SC Changsha 28.25 112.55 37 2010-2017 95 Zhang (2019) 

SE Fuzhou 26.08 119.28 16 1985-1992 71 GNIP 

SE Guangzhou 23.13 113.32 7 1986-1989 30 GNIP 

SE Hong Kong 22.32 114.17 66 1961-2018 549 GNIP 

SE Nanjing 32.18 118.18 26 1987-1992 58 GNIP 

SE Changshu 31.33 120.42 3.1 2005-2006 21 CHNIP 

SE Dinghushan 23.16 112.55 90 2005-2010 24 CHNIP 

SE Ailaoshan 24.55 101.03 2481 2005-2007 28 CHNIP 

SE Guangzhou 23.13 113.32 7 2007-2014 94 Yang 

SE Yongan 28.89 120.85 23 2014-2018 34 Chen (2020) 



Subregion Site Latitude Longitude Altitude (m) Period Data volume Data source 

SE Xishuangbanna 21.93 101.27 750 2002-2004 33 Liu et al. (2007) 

SE Guangzhou 23.15 113.35 39 2007-2009 34 Xie et al. (2011) 

TP Lhasa 29.70 91.13 3649 1986-1992 42 GNIP 

TP Lhasa 29.41 91.21 3688 2005-2009 32 CHNIP 

TP Haibei 37.56 101.31 3280 2005-2009 23 CHNIP 

TP Maoxian 31.70 103.90 1826 2005-2009 22 CHNIP 

TP Gonggashan 29.58 102.00 2950 2005-2010 52 CHNIP 

TP Delingha 37.37 97.37 2981 1992-2006 115 TNIP 

TP Nagqu 31.48 92.07 4508 1999-2005 59 TNIP 

TP Yushu 33.02 97.02 3682 2000-2004 37 TNIP 

TP Gaize 32.30 84.07 4430 1998-2005 45 TNIP 

TP Shiquanhe 32.50 80.08 4278 1999-2002 24 TNIP 

TP Lhasa 29.70 91.13 3658 1994-2006 85 TNIP 

TP Dingri 28.65 87.12 4330 2000-2006 21 TNIP 

TP Nyalam 28.18 85.97 3810 1996-2006 78 TNIP 

TP Tuotuohe 34.22 92.43 4533 1991-2005 104 TNIP 

TP Baidi 29.12 90.43 4430 2004-2007 22 TNIP 

TP Dui 28.58 90.53 5030 2004-2007 24 TNIP 

TP Taxkorgen 37.77 75.27 3100 2003-2005 22 TNIP 

TP Wengguo 28.90 90.35 4500 2004-2007 14 TNIP 

TP Lulang 29.77 94.73 3330 2007-2014 79 Yang 

TP Nuxia 29.47 94.65 2920 2009-2014 43 Yang 

TP Yeniugou 38.46 99.54 3320 2008-2009 13 Zhao et al. (2011) 

NW Baotou 40.67 109.85 1067 1986-1992 61 GNIP 

NW Hetian 37.13 79.93 1375 1988-1992 47 GNIP 

NW Lanzhou 36.05 103.88 1517 1985-1999 41 GNIP 

NW Wulumuqi 43.78 87.62 918 1986-2003 131 GNIP 

NW Yinchuan 38.48 106.22 1112 1988-2000 30 GNIP 

NW Zhangye 38.93 100.43 1483 1986-2003 86 GNIP 

NW Fukang 44.29 87.93 460 2005-2009 47 CHNIP 

NW Cele 37.02 80.73 1306 2005-2007 13 CHNIP 

NW Linze 39.35 100.13 1375 2005-2009 28 CHNIP 

NW Shapotou 37.28 105.00 1350 2005-2010 28 CHNIP 

NW Ansai 36.86 109.32 1083 2005-2010 46 CHNIP 

NW Erdos 39.49 110.19 1270 2006-2009 11 CHNIP 

NW Naiman 42.93 120.70 363 2005-2010 28 CHNIP 

 


