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Abstract. Artificial impervious surface area (ISA) documents the human footprint. Accurate, timely, and detailed ISA datasets 

are therefore essential for global climate change studies and urban planning. However, due to the lack of sufficient training 

samples and operational mapping methods, global ISA datasets at a 10-m resolution are still lacking. To this end, we proposed 10 

a global ISA mapping method leveraging multi-source geospatial data. Based on the existing satellite-derived ISA maps and 

crowdsourced OpenStreetMap (OSM) data, 58 million training samples were extracted via a series of temporal, spatial, spectral, 

and geometric rules. We then produced a 10-m resolution global ISA dataset (GISA-10m) from over 2.7 million Sentinel 

optical and radar images on the Google Earth Engine platform. Based on test samples that are independent of the training set, 

GISA-10m achieves an overall accuracy of greater than 86%. In addition, the GISA-10m dataset was comprehensively 15 

compared with the existing global ISA datasets, and the superiority of GISA-10m was confirmed. The global road area was 

further investigated, courtesy of this 10-m dataset. It was found that China and the US have the largest areas of ISA and road. 

The global rural ISA was found to be 2.2 times that of urban while the rural road area was found to be 1.5 times larger than 

that of the urban regions. The global road area accounts for 14.2% of the global ISA, 57.9% of which is located in the top ten 

countries. Generally speaking, the produced GISA-10m dataset and the proposed sampling and mapping method are able to 20 

achieve rapid and efficient global mapping, and have the potential for detecting other land covers. It is also shown that global 

ISA mapping can be improved by incorporating OSM data. The GISA-10m dataset could be used as a fundamental parameter 

for Earth system science, and will provide valuable support for urban planning and water cycle study. The GISA-10m can be 

freely downloaded from http://doi.org/10.5281/zenodo.5791855 (Huang et al, 2021). 

1 Introduction 25 

The land dominated by humans has expanded rapidly over the past decades (Friedl et al., 2010), resulting in a large amount of 

terrestrial surface that is covered by impervious surfaces (Gong et al., 2020a). Impervious surfaces are mainly composed of 

artificial materials, such as gravel, glass, asphalt, and metals (Tian et al., 2018). Such impervious surfaces prevent or decelerate 

water infiltration, while also blocking evapotranspiration, which affects the terrestrial water cycle and thermal environment 

(Qin et al., 2018; Yang et al., 2019). With more attention now being paid to the impact of urban sprawl on the global climate 30 
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environment (United Nations, 2016), the global monitoring of impervious surface area (ISA) can depict the anthropic 

implications on the water cycle, land cover, and biodiversity (Ji et al., 2020; Qin et al., 2017). In addition, ISA morphology is 

also an important parameter for urban planning, socio-economics, and population studies (Voss, 2007). In summary, accurate 

and timely monitoring of global ISA dynamics is important for urban habitability (Herold et al., 2006), sustainable development 

(Dewan and Yamaguchi, 2009), and terrestrial ecosystem services (Goetz et al., 2003). 35 

Global ISA monitoring via satellite remote sensing data has long been conducted. Early efforts usually focused on global ISA 

mapping using coarse-resolution data, e.g., Defense Meteorological Satellite Program (DMSP) and Moderate Resolution 

Imaging Spectroradiometer (MODIS) data (Friedl et al., 2010; You et al., 2021). With the free availability of Landsat data and 

the advances in geospatial cloud platforms (e.g., Google Earth Engine, GEE), recent studies have focused on global annual 

ISA mapping at a 30-m resolution (Gong et al., 2020b; Gorelick et al., 2017; Liu et al., 2020c; Woodcock et al., 2008). For 40 

instance, Huang et al. (2021b) generated the annual Global Impervious Surface Area (GISA) dataset covering 1972 to 2019 

using over three million Landsat images. Although efforts have been made in global ISA monitoring, few studies have focused 

on global ISA mapping at a 10-m resolution. Recently, Corbane et al. (2021) generated the Global Human Settlement Layer 

2018 (GHSL 2018) dataset using Sentinel-2 composites and a convolutional neural network model. However, GHSL 2018 

focuses more on human settlements and lacks depiction of ISA, such as transportation facilities. In addition to these thematic 45 

datasets, ISA has also been documented in land-cover products. For example, Gong et al. (2019) generated the Finer Resolution 

Observation and Monitoring of Global Land Cover map for 2017 at a 10-m resolution (FROM_GLC10) using Sentinel-2 

images. However, the accuracy of ISA in the land-cover datasets may not be sufficient to meet the needs of global climate 

change studies and urban planning (Gong et al., 2020b). Therefore, there is an urgent need for 10-m global ISA thematic 

datasets, to support various fine-scale applications. 50 

Synthetic aperture radar (SAR) performs well in the case of ISA mapping due to its clear response to high-rise buildings and 

its ability to penetrate clouds (e.g., Sentinel-1) (Zhang et al., 2014). SAR data have the potential to reduce the common false 

alarms that come from optical images, such as bare soil, but SAR systems can be affected by complex terrain and shadows. 

Therefore, the existing studies have investigated the combination of radar and optical data to improve ISA mapping. For 

example, Zhang et al. (2020) combined Landsat 8 and Sentinel-1 data to produce a 30-m global ISA dataset (the Global Land 55 

Cover with Fine Classification System, GLCFCS). Similarly, Marconcini et al. (2020) used Landsat 8 and Sentinel-1 data to 

outline the world settlement footprint (World Settlement Footprint, WSF), based on  support vector machine classifiers. 

Although the current studies have demonstrated the effectiveness of combining multi-source (e.g., radar and optical) remote 

sensing data for ISA mapping, they have usually focused on regional or national scales (Lin et al., 2020). In addition, combining 

data with different resolutions for ISA mapping can increase the uncertainty of the results. In particular, both Zhang et al. 60 

(2020) and Marconcini et al. (2020) generated global ISA (or settlement) datasets using Landsat 8 and Sentinel-1 data, but 

their resolutions were different, at 30 m and 10 m, respectively (Table 1). Generally speaking, 10-m global ISA mapping based 

on multi-source remote sensing data (e.g., Sentinel-1 and 2) has been insufficiently investigated in the current literature (Table 

1). 
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Table 1. The existing global ISA datasets. 65 

Name and abbreviation Data and time 

span 

Nominal 

resolution 

Source of training 

sample 

Classification method and 

strategy 

Type 

definition 

Global Impervious Surface Area 

30 m, GISA (Huang et al., 2021) 

Landsat;  

1972–2019 

30 m MODIS land cover, 

Climate Change Initiative 

land cover, GHSL, 

FROM_GLC 

Random forest classifier via 

hexagonal partitioning 

Artificial 

impervious 

surface 

Global Artificial Impervious 

Area, GAIA (Gong et al., 2020b) 

Landsat;  

1985–2018 

30 m Visual interpretation An exclusion-inclusion 

approach via 3.5° grid 

Artificial 

impervious 

area 

Global Annual Urban 

Dynamics, GAUD (Liu et al., 

2020c) 

Landsat;  

1985–2015 

30 m GAIA, GHSL, global 

urban land, global urban 

footprint 

Random forest classifier via 

1° grid; temporal 

segmentation 

Urban extent 

Global Human Settlement Layer 

2018, GHSL 2018 (Corbane et 

al., 2021) 

Sentinel-2;  

2018 

10 m Microsoft building 

footprint, Facebook 

settlement, European 

settlement map, GHSL 

Convolutional neural 

network model within 

Universal Transverse 

Mercator zones 

Human 

settlement 

Finer Resolution Observation 

and Monitoring of Global Land 

Cover, FROM_GLC 10 (Gong et 

al., 2019) 

Sentinel-2;  

2017 

10 m Visual interpretation Random forest classifier Impervious 

surface 

World Settlement Footprint, 

WSF2015 (Marconcini et al., 

2020) 

Landsat 8, 

Sentinel-1; 

2015 

10 m Thresholding for spectral 

index, radar, and slope 

data 

SVM classifier via 1° grid Human 

settlement 

Global Land Cover with Fine 

Classification System, GLCFCS 

(Zhang et al., 2020) 

Landsat 8, 

Sentinel-1; 

2015 

30 m GlobeLand30 Random forest classifier via 

5° grid 

Impervious 

surface 

Global Impervious Surface Area 

10 m, GISA-10m (this study) 

Sentinel-1, 

Sentinel-2; 

2016 

10 m GISA, OSM 

GlobeLand30, 

FROM_GLC10  

Random forest classifier via 

hexagonal partitioning 

Artificial 

impervious 

surface 

From the perspective of the global ISA mapping methods, supervised classification has been widely employed (Table 1). The 

quality of the training samples is the major factor affecting the classification results (Foody, 2009). Visual interpretation and 

automatic extraction from the existing datasets are two common ways to generate training samples. Visually interpreted 

samples are usually accurate but labor-intensive. Therefore, they are often used for classification at a regional scale (Yang et 

al., 2020). On the other hand, samples generated from the existing datasets have been shown to be efficient for global ISA 70 

mapping in recent years (Marconcini et al., 2020; Zhang et al., 2020). In fact, ISA samples are typically diverse, as their 

response to the different sensors varies with the materials, geometry, atmospheric conditions, and viewing angles. Therefore, 

accurate and sufficient samples are required to address the above issue for the purpose of consistent ISA mapping at a global 

scale. Given the higher spatial resolution (10 m) of the Sentinel satellites, it remains challenging to obtain high-quality and 

adequate training samples for 10-m global ISA mapping. 75 

In general, due to the difficulty of collecting training samples and the limitation of the computational and storage capacity 

required to deal with massive data, efficient methods and accurate datasets for 10-m resolution global ISA mapping are lacking. 

Therefore, in this study, we proposed a global ISA mapping method that leverages multi-source geospatial data to map the 10-

m global impervious surface area (GISA-10m). To the best of our knowledge, this is the first global 10-m ISA map based on 
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Sentinel-1 and 2 data. Specifically, by combining multi-source remote sensing data and crowdsourced OpenStreetMap data, 80 

we developed a sample generation method involving a series of temporal, spatial, spectral, and geometric rules to collect 

training samples with a global coverage. Furthermore, an adaptive hexagonal partitioning strategy was introduced for multi-

source feature extraction and classification. Finally, the accuracy of the GISA-10m dataset was assessed using three 

independent sample sets. Meanwhile, we also compared GISA-10m with the existing datasets, to better reflect its quality, and 

the ISA distribution in the global urban and rural regions was analyzed. In particular, the global road ISA was further extracted 85 

and investigated. Ablation experiments were also conducted to demonstrate the feasibility of OSM data in global ISA mapping. 

2 Data 

2.1 Remote sensing data 

Sentinel-2 optical data and Sentinel-1 SAR data were used in the GISA-10m mapping. Sentinel-2 is a high-resolution 

multispectral imaging mission operated by the European Space Agency (ESA) Copernicus program. The first Sentinel-2 90 

satellite (Sentinel-2A) has been acquiring high-resolution Earth observation data since June 2015, consisting mainly of four 

10-m resolution visible and near-infrared (NIR) bands, six 20-m resolution red-edge and short-wave infrared (SWIR) bands, 

and three 60-m bands (Drusch et al., 2012; Zhang et al., 2018). After testing and adjustment, a complete global coverage was 

obtained for the Sentinel-2 satellite in 2016 (Fig. S2). Therefore, we used all the available Level-1C top of atmosphere (TOA) 

reflectance data acquired in 2016 for the 10-m ISA mapping. Systematic radiometric calibration and geometric and terrain 95 

correction have already been performed for the Level-1C TOA data by ESA. Clouds and shadows were removed via the quality 

band to obtain cloud-free pixels. 

The Sentinel-1A satellite was launched in April 2014, carrying a C-band SAR instrument. After the launch of Sentinel-1B in 

2016, the two satellites now have a return visit period of six days at the equator. We used all the available Ground Range 

Detected (GRD) images acquired under Interferometric Wide (IW) mode, with a spatial resolution of 10 m. The boundary 100 

noise removal, thermal noise removal, radiometric calibration, and terrain correction were conducted on the GEE platform, 

with the same processing tools as the Sentinel-1 Toolbox. Sentinel-1 data in both ascending and descending orbit were 

considered. For the locations where two orbits were available, only the descending data were used, to avoid the terrain 

distortion caused by the combination of two orbits (Veloso et al., 2017). In total, over 2.7 million Sentinel images were used 

to cover the global terrestrial surface (Fig. S2). 105 

2.2 Volunteered geographic information data 

Volunteered geographic information (VGI) is geographic information that is created, edited, and updated by volunteers 

(Goodchild, 2007). The well-known OpenStreetMap (OSM) VGI project provides online maps that can be edited and used by 

everyone. Since its launch in 2004, OSM has been updated and maintained by over seven million volunteers (Haklay and 

Weber, 2008). OSM has been used for positioning and navigation (Fonte et al., 2020), urban modeling (Goetz, 2013), and 110 



5 

 

land-cover mapping (Tian et al., 2019). In fact, over 600 million buildings and roads have been tagged in the OSM database 

(https://taginfo.openstreetmap.org/keys, last accessed: 17 Aug 2021). These data should be important reference data for ISA 

mapping but, unfortunately, in the current literature, they have seldom been used for ISA mapping at the global scale. Therefore, 

we used the OSM data as a source of training samples for the GISA-10m mapping. Specifically, we extracted the buildings 

and road networks as potential training samples from the OSM Planet data built on January 2, 20171. 115 

2.3 Existing ISA datasets 

We compared GISA-10m with the existing ISA datasets, i.e., GISA, GAIA, GAUD, WSF2015, FROM_GLC10, GLCFCS, 

and GHSL 2018 (Table 1). GISA, GAIA, and GAUD are Landsat-derived annual global ISA datasets for the time periods of 

1972–2019, 1985–2018, and 1985–2015, respectively. GHSL 2018 is a global settlement layer based on a Sentinel-2 composite, 

where a convolutional neural network model was used to estimate the settlement probability (Corbane et al., 2021). WSF2015 120 

and GLCFCS are global ISA datasets based on Landsat 8 and Sentinel-1 data. Marconcini et al. (2020) collected the samples 

for WSF2015 based on a set of spectral and topographic rules, and Zhang et al. (2020) derived the samples for GLCFCS from 

GlobeLand30. . Gong et al. (2019) generated the 10-m FROM_GLC10 using Sentinel-2 data and random forest classifiers. It 

should be noted that these datasets differ in their mapping purposes and their definitions of the land-cover categories. For 

instance, GHSL 2018 and WSF2015 focus on human settlements, while GAUD delineates urban extent (Table 1). The GISA-125 

10m dataset generated in this study reflects the ISA generated by human activities, including all kinds of human settlements, 

transportation facilities, industries, and mining locations, courtesy of the employment of the high spatial resolution satellite 

data. Therefore, artificial impervious surfaces and human settlements were treated as ISA in this study. 

 

Figure 1. The flowchart for GISA-10m mapping. 130 

                                                           
1 https://planet.openstreetmap.org/planet/2017/planet-170102.osm.bz2, last accessed: 13 Mar 2021 



6 

 

3 Methodology 

The main objectives of this study were to: 1) investigate 10-m global ISA mapping (GISA-10m) by combining Sentinel-1 and 

2 images with other geographic information; and 2) analyze the distribution of urban and rural ISA at a 10-m resolution. The 

flowchart for GISA-10m mapping is shown in Fig. 1, including training sample generation, multi-source feature construction, 

RF classification, accuracy validation, and dataset comparison. Based on the satellite-derived ISA maps and the VGI data (i.e., 135 

OpenStreetMap), we proposed a rule-based approach to automatically generate global training samples. Using more than 2.7 

million Sentinel images on the GEE, multi-source features were constructed and fed into the RF classifier to obtain the mapping 

results. The accuracy of the GISA-10m was assessed by visual interpretation and third-party samples. To better evaluate the 

performance of GISA-10m, we compared it with the current state-of-the-art global ISA datasets (Table 1). Finally, the 

distribution of ISA over urban and rural regions was analyzed. 140 

3.1 Global ISA mapping using multi-source geospatial data 

3.1.1 Sample collection 

In the case of large-scale supervised classification, both the quantity and quality of samples are important (Foody and Arora, 

1997). ISA is a highly variable object, and its attributes in the Sentinel-2 multispectral images are related to materials, viewing 

angles, and atmospheric conditions, while its response to the Sentinel-1 SAR instrument depends on dielectric properties, 145 

geometry, and surface roughness. Hence, a large number of training samples were required to address the afore-mentioned 

challenges that would be encountered at the global scale. Training samples are usually acquired by means of visual 

interpretation or automatic extraction from the existing datasets. However, the visual interpretation methods are labor- and 

time-intensive, even for small regions. Therefore, at a large scale, training samples are usually extracted from the existing 

datasets with similar temporal and spatial coverages. However, the sample quality is affected by the quality of the datasets . 150 

Theoretically, samples extracted from a single dataset will result in more errors and uncertainties, while multi-source data can 

improve the reliability of the training samples (Huang and Zhang, 2013). We therefore proposed to collect global training 

samples by incorporating the existing ISA datasets and the crowdsourced OSM database. To distinguish the two types of ISA 

samples, we named the ISA samples extracted from the existing satellite-derived ISA datasets as ISARS and those extracted 

from the OSM as ISAOSM. 155 

The existing ISA datasets generally cover a broad terrestrial surface, but they differ in terms of their definition, spatial 

resolution, and temporal coverage. In this study, the GISA, FROM_GLC10, and GlobeLand30 products were chosen to extract 

the training samples, for the following reasons: 1) the GISA is aimed at mapping the global ISA, which is consistent with 

GISA-10m; 2) the team behind the GlobeLand30 employed extensive visual interpretation to detect artificial surfaces, which 

can effectively reduce the false alarms from other datasets, i.e., GISA and FROM_GLC10 (Chen et al., 2015); and 3) the 160 

definition of FROM_GLC10 (impervious surfaces) is consistent with that of GISA-10m, and its spatial resolution is also 10 m. 
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The GHSL 2018, WSF2015, and GAUD were not considered since they aim to outline human settlements or urban extent 

(Table 1). We then collected the eligible training samples according to the following rules.  

(1) Temporal rule: The GISA is a global ISA dataset covering 1972–2019, so we selected its results for 2016 to match the 

Sentinel data used in this research. GlobeLand30 documents global land cover for 2000, 2010, and 2020, so the 2010 map was 165 

chosen in this study. Although the 2020 map is more recent than the 2016 map, it contains ISA that was built after 2016, 

making it unsuitable for the GISA-10m mapping. Although there is a six-year gap between GlobeLand30 and the other datasets 

(i.e., GISA and FROM_GLC10), we adopted the commonly used assumption that the transition from ISA to non-impervious 

surface area (NISA) rarely happens (Gong et al., 2020b; Huang et al., 2021, 2022), so that the GlobeLand30 for 2010 could be 

used for the GISA-10m mapping. The following spatial and spectral rules were used to remove the possible errors. 170 

(2) Spatial rule: We first checked the class labels of the three datasets at each pixel. If these labels were the same (i.e., ISA), 

the pixel was taken as a potential ISARS sample. The incorporation of multiple datasets can effectively reduce the errors that 

exist in a single dataset. In addition, we filtered out the edge pixels in each dataset to reduce the uncertainty, since they were 

more likely to be mixed pixels. Edge pixels were defined as the outermost pixels of each ISA patch. We removed the edge 

pixels in each dataset, and then selected their ISA intersection as potential training samples. In this way, the errors contained 175 

in the non-edge pixels in the 30-m resolution data (e.g., mixed pixels) could be removed by the edge pixels in the 10-m 

resolution data. 

(3) Spectral rule: After the above steps, a small amount of errors may still remain in the current samples. Hence, we applied 

the spectral rule to remove these erroneous samples. Specifically, we measured the Mahalanobis distance between each ISARS 

sample to the spectral average of each hexagon (the mapping unit adopted in this study), and filtered out the samples with a 180 

distance greater than μ + δ (where μ and δ represent the mean and standard deviation, respectively) (Huang et al., 2021). 

Vegetation and water bodies are common sources of false alarms in the existing datasets (Fig. 2a and b). However, these errors 

often account for a relatively small proportion, and they can be effectively identified and reduced by the spectral rule. It can 

be seen in Fig. 2 that most of the water bodies and vegetation (the red rectangles in Fig. 2) were successfully removed from 

the initial ISARS training samples.  185 
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Figure 2. Examples of the initial and filtered ISARS training samples from the city of Wuhan in China (30.625382° N, 114.392682° 

E). The purple in the close-up maps represents the samples. 

We extracted the ISAOSM samples from the OSM buildings and roads through the following rules. 

(1) Temporal rule: We chose the OSM data built on January 2, 2017, in terms of the time of GISA-10m. This version of the 190 

OSM data was employed to ensure that the buildings and roads were constructed in 2016 or before, and hence were suitable 

for the 2016 ISA mapping. 

(2) Geometric rule: A natural way to extract training points from OSM data is to generate random points within the building 

or road polygons (Liu et al., 2020a). However, random points may contain erroneous or mixed pixels. Such problems can be 

mitigated by applying negative buffers to the polygons (Liu et al., 2020a). However, this approach is very time-consuming 195 

when applied to global ISA mapping, especially given the more than 200 million buildings in the OSM database. Therefore, 

in this study, we extracted the geometric center of a building polygon as an ISAOSM sample, which was more efficient than 

buffering or random points. Notably, although we could filter out the erroneous buildings using attribute tags (e.g., dams, 

swimming pools, playgrounds), the geometric center of a building was not always an ISA sample. Hence, we further required 

that the geometric center must be contained by the building. As in Fig. 3a and b, the incorrect building geometric centers (e.g., 200 

the vegetation and water, as indicated by the yellow points) were successfully identified and removed by the geometric rule. 

In addition, we excluded buildings with an area of less than 100 m2 (approximately a Sentinel pixel), to ensure the reliability 

of the samples. This is because a training sample extracted from the geometric center may be NISA when the area of the 

building is smaller than a Sentinel pixel.  

Compared with the widely used 30-m Landsat data, the high-resolution Sentinel data allow a better delineation of roads. We 205 

thereby also extracted ISAOSM samples from the OSM road networks. The OSM roads usually consist of centerlines rather than 
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boundaries. Therefore, we extracted the center point of each road, rather than its geometric center, as the road ISA samples. 

Given that the width of low-grade roads may be less than 10 m (i.e., a Sentinel pixel), we kept only the main roads (highway 

= “primary”). 

 210 

Figure 3. Examples of the initial and filtered ISAOSM training samples from the city of Wuhan in China (30.530202° N, 114.356287° 

E). The yellow points in the close-up maps represent the errors recognized by (a)–(b) the geometric rule and (c)–(d) the spectral rule.  

(3) Spatial rule: Given the uneven spatial distribution of OSM data (Tian et al., 2019), we applied the spatial rule to balance 

the distribution at the global scale. Specifically, for hexagons with more than 10,000 OSM records (i.e., buildings and roads), 

we randomly selected 10 000 records as initial samples. The dilution of OSM data can significantly reduce the subsequent 215 

computational cost. In the field of supervised classification, the diversity of the samples is important for the generalization 

ability of the classification model (Huang and Zhang, 2013). Considering that ISAOSM can overlie with ISARS, we removed the 

ISAOSM samples intersected with the ISARS sample pool, to increase the diversity and reduce the redundancy of the ISA samples. 

(4) Spectral rule: Although OSM uses humans as sensors, ISAOSM samples can still contain erroneous points, such as vegetation 

and water bodies, in addition to roads. As shown in Fig. 3c and d, the yellow points satisfy the temporal, spatial, and geometric 220 

rules, but they are actually vegetation. Hence, we applied the spectral rule to filter out these erroneous points. Specifically, the 

ISAOSM samples whose modified normalized difference water index (MNDWI) or normalized difference vegetation index 

(NDVI) value was larger than μ+δ were removed (μ and δ represent the mean and standard deviation of the indices, 

respectively), as these points were more likely to be vegetation or a water body (Huang et al., 2021). 

After obtaining the ISA candidate samples, we randomly selected 2500 ISARS and ISAOSM samples, respectively, within each 225 

hexagon as the final ISA training samples (see Section 5.3 for details). It can be seen that the generated ISA samples cover a 

broad terrestrial surface, especially in India and China, where a large number of small villages are found (Fig. 4). 
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Figure 4. Global distribution of ISA training samples. The number of samples was counted within 0.5° spatial grid. 230 

On the other hand, NISA (non-ISA) training samples are also important for accurate ISA mapping. We used the three existing 

datasets (i.e., GISA 30 m, FROM_GLC10, GlobeLand30) and the OSM to generate the NISA samples. Firstly, we took the 

intersection of the NISA regions in the three datasets as the initial NISA sample pool: 

𝑁𝐼𝑆𝐴 = 𝑁𝐼𝑆𝐴𝐺𝐼𝑆𝐴 ∩ 𝑁𝐼𝑆𝐴𝐺𝑙𝑜𝑏𝑒𝐿𝑎𝑛𝑑30 ∩ 𝑁𝐼𝑆𝐴𝐹𝑅𝑂𝑀_𝐺𝐿𝐶10 − 𝐼𝑆𝐴𝑂𝑆𝑀                                                                                      (1) 

For GlobeLand30 and FROM_GLC10, NISA is defined as all the land-cover types other than ISA. We masked the initial 235 

NISA sample pool using the OSM buildings and roads to suppress the errors in the existing global datasets. To this end, we 

used the OSM version built in December 20202, which documents more buildings and road networks than the 2017 version. 

In addition, we buffered the OSM roads with a 30-m buffer to mitigate the errors. Subsequently, 30,000 points were randomly 

selected in each hexagon as NISA samples. The distance between each NISA sample was kept larger than 200 m, to ensure 

the diversity and irrelevance. Finally, we extracted 58 million training samples (51,674,533 NISA samples and 6,897,378 ISA 240 

samples) for the GISA-10m mapping.  

 

 

 

 245 

 

 

                                                           
2 https://planet.openstreetmap.org/planet/2020/planet-201207.osm.bz2, last accessed: 13 Mar 2021 
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Table 2. The multi-source features used for the GISA-10m mapping. 

Type Features Description Dimension Source 

Spectrum Blue, green, red, red edge 1, red edge 2, 

red edge 3, NIR, red edge 4, SWIR 1, 

and SWIR 2 

50th percentile value of the reflectance derived from all 

the available Sentinel-2 images 

10 Sentinel-2  

Normalized 

indices 

Index1, Index2, Index3, Index4, Index5, 

Index6, Index7, Index8, Index9, Index10, 

Index11, Index12, Index13, Index14, 

Index15 

Normalized indices derived from the spectral bands 

described above. The indices were calculated as: 

Index1=NI (NIR, blue), Index2=NI (NIR, green),  

Index3=NI (NIR, red), Index4=NI (NIR, red edge 1),  

Index5=NI (NIR, red edge 2), Index6=NI (NIR, red edge 3), 

Index7=NI (NIR, red edge 4), Index8=NI (SWIR 1, blue), 

Index9=NI (SWIR 1, green), Index10=NI (SWIR 1, red),  

Index11=NI (SWIR 1, NIR), Index12=NI (SWIR 2, blue),  

Index13=NI (SWIR 2, green), Index14=NI (SWIR 2, red), 

Index15=NI (SWIR 2, NIR),  

where NI represents the function (b1−b2) / (b1+ b2), and 

b1 and b2 denote two spectral bands 

15 Sentinel-2 

SAR VV, VH Temporal mean VV and VH backscatter coefficients of 

the Sentinel-1 images 

2 Sentinel-1 

Temporal 

statistics 

NDVI_Std, MNDWI_Std, NDBI_Std, 

NDVIMax, VV_Std, VH_Std 

Standard deviation of NDVI, MNDWI, NDBI, VV and 

VH backscatter coefficients; maximum NDVI of the year 

5 Sentinel-1 & 

Sentinel-2 

Texture Contrast, dissimilarity, entropy, IDM, 

ASM 

The GLCM texture derived from the NIR band of the 

Sentinel-2 data, including entropy, dissimilarity, contrast, 

angular second moment (ASM), and inverse difference 

moment (IDM) 

5 Sentinel-2 

Topography Elevation, slope, and aspect Slope and aspect calculated from the elevation 3 SRTM & 

GMTED 

3.1.2 Multi-source feature extraction 

The dedicated image pyramid of the GEE platform enabled us to perform pixel-wise feature extraction (Gorelick et al., 2017). 250 

Therefore, based on all the available Sentinel data for 2016, we constructed a set of spectral, phenological, textural, SAR, and 

topographical features with the temporal composite method (Table 2). This approach used all the available data, and at the 

same time allowed us to reduce the feature dimension, preserve the temporal information, and minimize the effects of clouds 

and shadows (Yang and Huang, 2021). Firstly, we used the spectral signatures provided by the Sentinel-2 data to extract the 

ISA in the visible, red-edge, NIR, and infrared bands (Table 2). Moreover, considering that spectral indices can increase the 255 

differences between land covers, we also extracted a series of normalized spectral indices to enhance the discriminative ability 

between ISA and NISA (Yang and Huang, 2021) (Table 2). These indices were built according to the following criteria: 1) 

they were mainly constructed by the NIR and SWIR bands, due to their better atmospheric transmission (Huang et al., 2021; 

Yang and Huang, 2021); and 2) each index contained at least one 10-m band (i.e., visible and NIR bands), to ensure the spatial 

resolution of the features.  260 
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The complex spectral and spatial characteristics in urban environments increase the difficulty of ISA mapping. In this regard, 

textural features are usually employed to depict the spatial information of urban ISA (Huang and Zhang, 2013). To further 

exploit the textural information for the ISA mapping, we computed the gray-level co-occurrence matrix (GLCM) via the NIR 

band, to depict the spatial information of urban ISA. Owing to the high redundancy among GLCM measurements (Clausi, 

2002), we chose the contrast, dissimilarity, entropy, inverse difference moment (IDM), and angular second moment (ASM) 265 

for the texture extraction (Rodriguez-Galiano et al., 2012). The window size for the GLCM measurements was set to 7 × 7 as 

this is suitable for urban classification with an image resolution from 2.5 to 10 m (Puissant et al., 2005). In addition, we 

averaged the GLCM from different directions (0, 45, 90, and 135°) to maintain the rotational invariance (Rodriguez-Galiano 

et al., 2012). 

Given that the spectra and backscatter of some NISA (e.g., vegetation and water bodies) vary throughout time, the phenological 270 

information derived from the multi-temporal spectral and SAR data was utilized to depict the temporal fluctuations. We 

calculated the maximum NDVI as well as the standard deviation of the NDVI (Tucker, 1979), MNDWI (Xu, 2006), and 

normalized difference built-up index (NDBI) (Zha et al., 2003), to further enhance the temporal information. These temporal 

characteristics are useful in identifying NISA with temporal fluctuations. For example, the spectra of fallow cropland and ISA 

are similar, and even SAR data may not separate them well. However, the NDVI of cropland can describe the changes of crop 275 

growth, and hence its standard deviation can be used to distinguish between ISA and cropland. In addition, to increase the 

robustness of these temporal features, Sentinel-2 data from two adjacent years were also considered. 

SAR data have the potential to reduce the false alarms caused by bare soil in optical images, and are more sensitive to buildings. 

In addition, SAR signals can penetrate clouds. Therefore, in this study, SAR data were combined with optical data for the ISA 

mapping. Specifically, the vertical-vertical (VV) polarization and the vertical-horizontal (VH) polarization backscatter 280 

coefficients from the Sentinel-1 images were selected. Based on all the available Sentinel-1 data, the annual mean and standard 

deviation of the VV and VH backscatter coefficients were calculated by the temporal composite method: 

𝜎𝑚𝑒𝑎𝑛 =  
1

𝑛
∑ 𝜎𝑖

𝑛
𝑖=1                                                                                                                                                                      (2)  

𝜎𝑠𝑡𝑑 = √
∑ (𝜎𝑖−𝜎𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

𝑛
                                                                                                                                                             (3) 

where 𝑛 denotes the total number of Sentinel-1 observations within a year, and 𝜎𝑖 represents the ith backscatter coefficient 285 

observation in the year. The temporal composite method can reduce the speckle noise in SAR imagery (Lin et al., 2020), while 

the annual standard deviation can reflect the temporal information. Topography-related features are also necessary for ISA 

mapping, in order to reduce the confusion between complex terrain and buildings. For instance, topographical features can 

help to distinguish steep hills from buildings (Gamba and Lisini, 2013). Specifically, we used Shuttle Radar Topographic 

Mission (SRTM) digital elevation model (DEM) data in the areas below 58° latitude and Global Multi-resolution Terrain 290 

Elevation Data 2010 (GMTED2010) in the areas above 58° (Huang et al., 2021). Finally, a total of 41 features were constructed 

from the 2.7 million Sentinel images (2,613,180 Sentinel-2 and 122,156 Sentinel-1) and DEM data.  
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3.1.3 Hexagon-based adaptive random forest classification 

When dealing with global land-cover classification, the global terrestrial surface is usually divided into homogeneous sub-

regions according to criteria such as climate, land cover, or administrative regions (Goldblatt et al., 2018). For global ISA 295 

mapping, regular square grids are commonly used (Table 1), such as 1° and 5° grids (e.g., WSF2015 and GLCFCS). In this 

study, we divided the terrestrial surface into 2° hexagonal grid cells (Fig. 1), due to the symmetry and invariance (You et al., 

2021). Furthermore, there were no gaps or overlaps between hexagons, and the distance between adjacent hexagon centers 

was approximately equal (Richards et al., 2000). 

The RF classifier has been widely used in global ISA mapping, due to its robustness to erroneous samples, flexibility with 300 

high-dimensional data, and tolerance to noise (Bauer and Kohavi, 1999; Wulder et al., 2018) (Table 1). The RF classifier 

utilizes ensemble learning to obtain predictions by voting on categories through multiple decision trees (Breiman, 2001). Each 

tree uses a random subset of the input features to increase the generalization ability. In addition, trees are grown from different 

subsets of training data (i.e., bagging or bootstrapping), to increase the diversity (Rodriguez-Galiano et al., 2012). RF has been 

shown to outperform other classifiers when dealing with large-scale and high-dimensional data (Goldblatt et al., 2016). The 305 

ability of RF to handle multi-source data also makes it convenient when dealing with Sentinel radar and optical data. Therefore, 

together with the afore-mentioned multi-source features and global training samples, the RF classifier was used for the GISA-

10m mapping. As suggested by Yang and Huang (2021), the number of trees was set to 200. We divided the global terrestrial 

surface into 1,808 hexagons, and a local RF model was built for adaptive ISA classification in each hexagon. Therefore, a total 

of 1,808 RF models were built. In terms of the features used to train each tree, the random forest uses a random subset of 310 

features to reduce the correlation between trees. In general, the diversity of the trees can be increased when fewer features are 

used for training each tree (Breiman, 2001). In the GISA-10m mapping, we set the number of features used for each tree to the 

square root of the total number of features, as suggested by Liu et al. (2020b). 

3.2 Accuracy assessment 

The test samples for GISA-10m included: 1) visually interpreted samples via Google Earth; 2) test samples extracted from 315 

ZiYuan-3 (ZY-3) built-up datasets (Liu et al., 2019); and 3) building samples located in arid areas.  

(1) As suggested by Stehman and Foody (2019), we used cluster sampling to collect the visually interpreted test samples. The 

primary sampling unit involved 59 grid cells with a side length of 1°, which were randomly selected based on population, 

ecoregion, and urban landscape (the red squares in Fig. 5). The secondary sampling unit included the random samples within 

each grid cell. In such a way, samples from different urban sizes and densities were considered for the validation. Specifically, 320 

in each grid cell, we randomly selected 100 ISA and 100 NISA points to test their accuracy. An equal allocation of ISA and 

NISA test samples could reduce the bias of the accuracy assessment, and hence allow for a more accurate estimation of the 

user’s accuracy (Olofsson et al., 2014; Stehman, 2012). By referring to high-resolution Google Earth images, a pixel (10 m × 

10 m) was labeled as ISA if more than half of its area was covered by ISA; otherwise, it was identified as NISA. As can be 
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seen in Fig. 5, the test samples involved not only high-density ISA samples from urban areas, but also a large number of low-325 

density samples from suburban and rural regions. Finally, a total of 11,800 test samples were obtained. 

(2) Liu et al. (2019) proposed a multi-angle built-up index to extract built-up areas from ZY-3 images covering 45 global cities, 

which obtained an overall accuracy (OA) of greater than 90%. The multi-angle ZY-3 images depict the three-dimensional and 

vertical structure of buildings, which is more effective and accurate than planar feature extraction for detecting built-up areas. 

Given the higher spatial resolution (2 m) and better accuracy of the ZY-3 global built-up dataset, we extracted test samples 330 

from it for the year of 2016 (Huang et al., 2021a; Liu et al., 2019). A sample (10 m × 10 m) was labeled as ISA if more than 

50% of its area was classified as ISA in the ZY-3 dataset, while the NISA samples were those with no built-up pixels in the 

area (Huang et al., 2021a). For each city, the number of samples was proportional to the area of the ZY-3 image, and the ratio 

of ISA and NISA test samples was consistent with the ratio of the built-up and non-built-up classes (Huang et al., 2021a). In 

this way, we obtained 47,216 NISA samples and 21,152 ISA samples (the green dots in Fig. 5) from 24 cities in the ZY-3 335 

built-up dataset. 

(3) Considering the difficulty of ISA extraction in arid regions (Tian et al., 2018), we paid special attention to the accuracy 

assessment in the arid regions. To this end, we visually interpreted 5,385 building pixels in these regions. A total of 25 photo 

interpreters were recruited for this task by referring to the Google Earth images. These samples were then further checked by 

three experts. The arid regions were defined according to the “deserts and xeric shrublands” biome in Olson et al. (2001).  340 

Based on the three groups of test samples aforementioned, the accuracy of GISA-10m was assessed using the OA, kappa, 

producer’s accuracy (PA), user’s accuracy (UA), and F1-score (the harmonic mean of the PA and UA). Seven existing global 

ISA datasets were used for the inter-comparison with GISA-10m, i.e., GHSL 2018, GLCFCS, WSF2015, FROM_GLC10, 

GISA, GAUD, and GAIA (Table 1). The three groups of test samples mentioned above were used to assess and compare the 

accuracy of these products. 345 
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Figure 5. Global distribution of the test samples and grid used in this study, including (1) 59 grids for visual interpretation, (2) ZY-

3 reference set covering 23 cities, and (3) 5,385 building samples in the arid regions. The arid regions were extracted from “deserts 

and xeric shrublands” biome in Olson et al. (2001). The inner graph shows the ISA density within the 0.5-km buffer for the ISA test 350 
samples. 

 

 

Figure 6. Box plots of the overall accuracy for GISA-10m and existing datasets in the six continents. 
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4 Results 355 

4.1 Accuracy assessment of GISA-10m 

4.1.1 Global scale 

The accuracy assessment based on the visually interpreted samples is shown in Table 3. GISA-10m exhibits the highest OA 

of 86.06%, representing an increase in OA of +2.73%, +3.73%, and +2.3% over GHSL 2018, GLCFCS, and WSF2015, 

respectively (Table 3). The kappa of GISA-10m is 0.7165, which exceeds WSF2015, FROM_GLC10, and GAIA by 0.052, 360 

0.1774, and 0.2039, respectively. GISA-10m also shows a higher accuracy than the 30-m resolution datasets (i.e., GISA, 

GAUD, GAIA), which suggests a better delineation of global ISA, due to the higher resolution. Fig. 6 summarizes the results 

of the accuracy assessment at the continent level, with the average and standard deviation of the OA for each continent shown 

in the box plots. Overall, GISA-10m exhibits a stable performance for each continent, with an average OA of more than 85%. 

Specifically, Oceania and South America show the best OAs of 87.25% and 87.08%, followed by Europe (86.45%) and Asia 365 

(85.85%). The results also show that the average OA of GISA-10m exceeds that of the existing datasets in Africa, North 

America, and Europe. In addition, it is apparent that the performance of GHSL 2018 and GLCFCS is relatively unstable in 

South America and North America, respectively. 

 

Table 3. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples between GISA-10m and the existing 370 
ISA datasets. OA represents the overall accuracy.  

Global 

Visually interpreted samples (n = 10800)  ZY-3 samples (n = 68368) 

OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

  OA (%) Kappa F1-score 

of ISA (%) 

F1-score of  

NISA (%) 

GISA-10m 86.06 0.7165  83.65 88.55  86.25  0.6664  76.25  90.32  

GHSL 2018 83.33 0.6540  78.66 86.89  84.53  0.6401  75.27  88.74  

GLCFCS  82.33 0.6336  77.57 85.96  84.56  0.6280  73.68  89.08  

WSF2015 83.76 0.6645  79.68 87.06  85.44  0.6664  77.35  89.27  

FROM_GLC10  78.16 0.5391  69.65 83.39  83.66  0.6082  72.39  88.39  

GISA  78.84 0.5532  70.65 83.88  85.63  0.6627  76.65  89.63  

GAUD  77.36 0.5185  67.46 83.01  85.59  0.6549  75.70  89.76  

GAIA  77.05 0.5126  67.13 82.77  84.23  0.6381  75.39  88.40  

 

GISA-10m obtains the best OA of 86.25% on the ZY-3 samples, outperforming GHSL 2018, GLCFCS, and WSF2015 by 

1.72%, 1.69%, and 0.81%, respectively. The ZY-3 images employed by Liu et al. (2019) covered 45 major global cities, and 

therefore the ZY-3 samples were more inclined to reflect the accuracy in urban regions. Therefore, the accuracy difference 375 

between the various datasets is not significant (Table 3). Due to the relatively coarse resolution, the 30-m datasets usually tend 

to overestimate the ISA extent (Gong et al., 2020b), resulting in a higher UA but lower PA (Table S1). For example, the ISA 
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UA of GISA is slightly higher than that of GISA-10m, but its PA is much smaller (Table S1). However, when the two metrics 

(PA and UA) are considered at the same time (i.e., the F1-score), GISA-10m outperforms GISA. 

4.1.2 Rural, arid, and urban regions 380 

The population of rural regions is comparable to that of urban regions (https://data.worldbank.org/). The existing studies, as 

well as their global ISA datasets, have usually focused on the performance in urban regions, and the accuracy of the rural ISA 

regions has not been sufficiently assessed. Hence, in this study, we paid special attention to the accuracy assessment in the 

global rural regions. Specifically, we divided the GISA-10m into urban and rural regions using the urban boundary defined by 

Li et al. (2020). In fact, due to the random sampling strategy, most of the visually interpreted test samples were located in rural 385 

regions.  

In the case of the visually interpreted samples, GISA-10m exhibits a better OA of 86.19% than GHSL 2018 (84.92%), GLCFCS 

(83.25%), FROM_GLC10 (78.83%), and WSF2015 (83.81%). As regards the three 30-m datasets (i.e., GISA, GAIA, GAUD), 

their ISA accuracy (F1-score) decreases significantly in the rural regions, while the NISA accuracy is relatively stable (Tables 

2–3). Taking a closer look at the PA, it is apparent that the ISA PA decreases by more than 15% for all three 30-m datasets 390 

(Table S2), which suggests that there are more omission errors in the rural regions (Fig. 12b). This demonstrates the deficiency 

of the 30-m datasets in depicting rural ISA, and also reflects the importance of 10-m global ISA mapping. 

 

Table 4. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples in rural regions between GISA-10m 

and the existing ISA datasets. OA represents the overall accuracy. 395 

Rural regions 

Visually interpreted samples (n = 9547)  ZY-3 samples (n = 43950) 

OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

  OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

GISA-10m 86.19  0.6794  77.96  90.48   90.85  0.4768  52.46  94.94  

GHSL 2018 84.92  0.6297  73.34  89.88   88.95  0.4656  52.82  93.74  

GLCFCS  83.25  0.5871  70.15  88.72   89.46  0.4261  48.33  94.13  

WSF2015 83.81  0.6012  71.17  89.12   89.37  0.4514  51.05  94.04  

FROM_GLC10  78.83  0.4485  57.08  86.24   88.59  0.3884  45.08  93.63  

GISA  77.87  0.4082  52.53  85.80   89.83  0.3954  44.66  94.40  

GAUD  76.38  0.3516  46.13  85.05   89.70  0.3199  36.35  94.40  

GAIA  75.41  0.3213  43.05  84.49   88.93  0.3611  41.85  93.88  

 

 

 

 

 400 
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Table 5. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples in arid regions between GISA-10m 

and the existing ISA datasets. OA represents the overall accuracy. 

Arid Region 

Visually interpreted samples (n=1020)  ZY-3 samples (n=10827) 

OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

  OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

GISA-10m 86.67  0.7358  86.05  88.22   89.64  0.7296  79.95  93.01  

GHSL 2018 86.57  0.7336  86.06  87.99   85.13  0.5817  67.68  90.34  

GLCFCS  82.16  0.6454  80.32  84.46   85.14  0.6232  72.45  89.82  

WSF2015 82.45  0.6516  80.95  84.56   88.37  0.6881  76.53  92.27  

FROM_GLC10  76.27  0.5271  70.97  80.59   84.06  0.5755  68.18  89.37  

GISA  80.20  0.6058  76.89  83.39   87.72  0.6795  76.23  91.72  

GAUD  77.06  0.5424  71.88  81.20   88.66  0.6894  76.37  92.54  

GAIA  77.45  0.5506  72.84  81.35   85.78  0.6317  72.79  90.37  

 

Furthermore, we also focused on the accuracy assessment in arid regions. In general, the OA of GISA-10m is higher than that 

of the existing datasets (Table 5). Although its ISA UA does not always outperform the other datasets, GISA-10m achieves 405 

the highest PA (Table S4). Specifically, GISA-10m exhibits a notably higher ISA PA than GLCFCS, FROM_GLC10, GISA, 

GAUD, and GAIA (Table S3), indicating its superior ability to detect ISA in arid regions (Fig. 7). Moreover, the accuracy of 

these global ISA products was assessed using the manually and randomly chosen rural building samples (see Section 3.2). It 

can be found that GISA-10m detects 15% more buildings in arid regions than FROM-GLC10, GAUD, and GAIA (Table S5), 

which further verifies its superior performance in describing rural ISA. 410 

In the case of urban regions, GISA-10m exhibits a satisfactory result, with an OA similar to that of the global assessment 

(Table S4). Note that urban ISA only accounts for one-third of global ISA, while nearly 70% of ISA is located in suburban 

and rural regions. The existing datasets show relatively more ISA omissions in rural and arid regions, suggesting that global 

ISA mapping at a 10-m resolution (e.g., GISA-10m) is necessary. Moreover, we divided the visually interpreted samples 

located in cities into three levels (i.e., small, medium, and large cities) to assess the accuracy of GISA-10m for cities of different 415 

scales, i.e., Level 1 (population < 250,000), Level 2 (250,000 to 1,000,000), and Level 3 (>1,000,000) (Yang et al., 2019). The 

OA of GISA-10m across the three levels of cities is 85.35%, 87.43%, and 85.42%, respectively (Table S6). These results 

indicate that the performance of GISA-10m in different scales of cities is stable, and the results are also close to the global 

assessment result (OA of 86.06%). 

 420 
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 425 

Figure 7. Comparison of the GISA-10m and the other datasets over arid regions in: (a) Kabul, Afghanistan; (b) Mashhad, Iran; (c) 

Buraidah, Saudi Arabia; (d) Ashkhabad, Turkmenistan. The illustration is of Sentinel-2 images with a false-color combination (R: 

NIR, G: red, B: green) to enhance the ISA. 
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4.2 Global ISA distribution 

4.2.1 Urban and rural ISA  430 

Based on the GISA-10m, we analyzed the global ISA distribution at a 10-m scale (Fig. S1). Global ISA is mainly distributed 

in Asia (41.43%), North America (20.59%), and Europe (18.93%), followed by Africa (9.78%) and South America (7.50%). 

It is found that 67% of global ISA is located in the Eastern Hemisphere, while 85% of ISA is distributed to the north of the 

equator. Rural ISA is more scattered than urban ISA (Fig. S1), and is mainly located in Asia (42.84%), Europe (19.49%), and 

North America (16.51%). Asia has the largest urban ISA, which is more than twice that of Europe. Although North America 435 

only accounts for 20% of global ISA, its urban ISA takes up more than 29% of the global total. Taking a closer look at the 

ratio of rural and urban ISA (Table 6), it can be seen that rural ISA is 2.2 times larger than urban ISA. At the continental level, 

Africa possesses the highest “rural-to-urban ratio”, which is likely related to its large population but relatively poor economy. 

Table 6. Impervious surface area derived from GISA-10m in the six continents. 

ISA Europe Africa S. America Oceania N. America Asia Global 

Total (105 km2) 1.88 (18.93%) 0.97 (9.78%) 0.75 (7.50%) 0.18 (1.76%) 2.05 (20.59%) 4.12 (41.43%) 9.94 (100%) 

Rural (105 km2) 1.33 (19.49%) 0.78 (11.43%) 0.55 (8.11%) 0.11 (1.62%) 1.13 (16.51%) 2.93 (42.84%) 6.84 (100%) 

Urban (105 km2) 0.55 (17.69%) 0.19 (6.16%) 0.19 (6.17%) 0.07 (2.07%) 0.92 (29.56%) 1.19 (38.35%) 3.10 (100%) 

Rural/urban 2.42  4.08  2.89  1.73  1.22  2.46  2.20  

 440 

At the country scale, China and the US account for 33% of global ISA. Together with Russia, Brazil, India, Japan, Indonesia, 

France, Canada and Germany, these ten countries account for 58% of the world ISA. The urban ISA of the top ten countries 

(US, China, Russia, Brazil, Japan, India, Mexico, France, Germany, and the United Kingdom) makes up 69% of the global 

total, while the top ten countries in terms of rural ISA (China, US, Russia, Brazil, India, Indonesia, Japan, France, Canada, and 

Germany) account for only 54% of the total. In Africa, the Republic of South Africa has much more urban ISA than the other 445 

countries. However, Nigeria has a comparable rural ISA to South Africa (~7738 km2). China ranks first in terms of rural ISA, 

most of which is located in the North China Plain (Fig. s3b). Indonesia also possesses a lot of rural ISA, since it ranks sixth 

for rural ISA but only sixteenth for urban ISA. 

 

 450 
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Figure 9. Examples of road area derived from GISA-10m and OSM in Toyama (Japan), Detroit (US), Chengdu (China), and Riyadh 

(Saudi Arabia). 

4.2.2 Global road area 

Roads are major anthropic footprints, so we attempted to analyze the global road area based on GISA-10m, courtesy of its high 

spatial resolution. Firstly, the road networks were extracted from the OSM database, and then the ISA regions in the GISA 10-455 

m data within a 10-m buffer of the road networks were identified as road areas (Fig. 9). The results show that 82.84% of the 

global road area is located in Asia (30.74%), North America (27.17%), and Europe (24.92%), while the remaining 17.16% is 

found in South America (8.26%), Africa (7.47%), and Oceania (1.44%). Although Asia far exceeds the other continents with 

regard to ISA and rural road area, it possesses a smaller urban road area than North America. China and the US have the largest 

road area, together accounting for 29% of the global total, followed by Brazil, Japan, Russia, Germany, India, France, Indonesia, 460 

and Mexico. The top ten countries have more than half of the global road area. The global road area accounts for 14.18% of 

the global ISA, and the rural road area is 1.5 times larger than the urban road area (Table 7). However, it should be noted that 

these estimates might be biased owing to the incompleteness of the OSM data. In addition, narrow roads might be partly 

detected or missed, due to the limitation of the spatial resolution. 

Table 7. Statistics for the road area derived from GISA-10m and OSM in the six continents. 465 

Road Europe Africa S. America Oceania N. America Asia Global 

Total (104 km2) 3.51 (24.92%) 1.05 (7.47%) 1.16 (8.26%) 0.20 (1.44%) 3.83 (27.17%) 4.34 (30.74%) 14.10 (100%) 

Rural (104 km2) 2.27 (26.88%) 0.71 (8.43%) 0.75 (8.88%) 0.11 (1.26%) 1.84 (21.73%) 2.77 (32.82%) 8.45 (100%) 

Urban (104 km2) 1.24 (21.99%) 0.34 (6.03%) 0.42 (7.34%) 0.10 (1.70%) 2.00 (35.29%) 1.56 (27.65%) 5.66 (100%) 

Rural/Urban 1.82  2.09  1.81  1.10  0.92  1.77  1.49  

5 Discussions 

5.1 Inter-comparison with the existing datasets  

To further validate the performance of GISA-10m, we compared it with the existing state-of-the-art global datasets, i.e., three 

10-m resolution datasets (WSF2015, GHSL 2018, FROM_GLC10) and four 30-m resolution datasets (GLCFCS, GAUD, 

GAIA, GISA). Their spatial agreement with GISA-10m was measured by the linear fit of the ISA fraction, including metrics 470 

such as the correlation coefficient and root-mean-square error (RMSE). Attention was also paid to the performance of the 

different products in urban and rural regions, for a comprehensive assessment. Considering the different spatial resolutions, 

the ISA fraction was calculated within the 0.05° spatial grid. 
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 475 

Figure 10. Scatterplots of the urban and rural ISA fraction between GISA-10m with GHSL, WSF, FROM_GLC10, GLCFCS, GAUD, 

GAIA, and GISA, respectively. The ISA fraction was calculated within a 0.05° × 0.05° spatial grid. 

In general, GISA-10m exhibits a high agreement (0.777 < R2 < 0.892) with these existing datasets over urban regions. In the 

case of GHSL 2018 and FROM_GLC10, their fitted lines with GISA-10m are closer to the 1:1 line in the high fraction regions 

(Figs. 10a and c). As shown in Fig. 11, GHSL 2018 and GISA-10m are generally similar in the dense urban areas (e.g., the 480 

urban cores in Fig. 11), but GHSL 2018 tends to overestimate ISA in the low-density residential areas (Fig. 11c). The fitted 

lines for GLCFCS and WSF2015 are above the diagonal (slope greater than 1 and intercept greater than 0) in both the high 

and low ISA fraction regions, possibly due to their overestimation. For instance, in the case of Cairo (Fig. 11b), WSF2015 

shows significant overestimation, but the other datasets better depict the residential areas. According to Marconcini et al. 

(2020), the overestimation of WSF2015 may be related to the employment of the coefficient of variation (COV), which reduces 485 

the omissions in the rural regions, but at the same time leads to overestimation of the ISA extent. The fitted lines for the three 

30-m resolution datasets (i.e., GISA, GAIA, GAUD) are all above the diagonal (Fig. 10e–g), suggesting that they detect more 

urban ISA than GISA-10 m. However, in the 30-m resolution datasets, vegetation alongside roads or buildings is often 

identified as ISA, due to the issue of mixed pixels (Gong et al., 2020b). From this perspective, the results of GISA-10m appear 
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more reliable, due to its higher spatial resolution. For instance, in the case of Johannesburg and Los Angeles (Fig. 11c and d), 490 

GAIA and GAUD exhibit false alarms in both residential and industrial areas, but these errors are significantly reduced in 

GISA-10m, due to the superior discriminative ability of the 10-m Sentinel data. 

 

Figure 11. Comparison between GISA-10m and the seven datasets over urban regions in: (a) Suzhou, China; (b) Cairo, Egypt; (c) 

Johannesburg, South Africa; (d) Los Angeles, US. The Sentinel-2 images were composited in a false-color combination (R: NIR, G: 495 
red, B: green). 
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On the other hand, the agreement between GISA-10m and the existing datasets is slightly lower in rural regions (0.5099 < R2 

< 0.6525). The fitted slopes between the three 30-m datasets (i.e., GISA, GAIA, GAUD) and GISA-10m in the rural regions 

are all less than one. This phenomenon can be attributed to the finer spatial resolution of GISA-10m, which detects more rural 

ISA than the 30-m datasets (Fig. 12b and d). As for GLCFCS and WSF2015, they possess more rural ISA than GISA-10m 500 

(Fig. 10i and k), which could be attributed to their overestimation. For example, in Fig. 12a and c, GLCFCS and WSF2015 

fail to identify the vegetation in the village. FROM_GLC10 appears more consistent with GISA-10m (see the sample from the 

US in Fig. 12d), but it tends to underestimate the rural ISA (see Fig. 12a–c). GHSL 2018 and GISA-10m show high agreement 

in rural regions. However, GHSL 2018 is aimed at outlining human settlements, while GISA-10m is focused on artificial ISA 

(including buildings, parking lots, roads).  505 
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Figure 12. Comparison between GISA-10m and the seven datasets over rural regions in: (a) China (126.348044° E, 45.269079° N); 

(b) Uzbekistan (60.573313° E, 41.461425° N); (c) Côte d’Ivoire (5.853317° W, 6.820244° N); (d) the US (90.210747° W, 39.950221° 

N). The illustration is of Sentinel-2 images with a false-color combination (R: NIR, G: red, B: green) to enhance the ISA. 

The differences between GHSL 2018, WSF2015, and GISA-10m were further analyzed by taking Beijing and Washington as 510 

examples. In Fig. 13, the overlapping parts between these datasets are marked in different colors, and the regions where the 

three datasets all agree are shown in gray. In both examples, WSF2015 and GHSL 2018 tend to overestimate the ISA extent 
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(Fig. 13b), and they wrongly identify vegetation as ISA in the low-density residential areas (Fig. 13h). In particular, GHSL 

2018 successfully detects the roads in Beijing, but fails in Washington (see the purple color in Fig. 13). This may be related to 

the fact that GHSL 2018 uses different sources of training samples in different regions (Corbane et al., 2021). Although 515 

WSF2015 generally obtains similar results to GISA-10m, its detected roads may stem from the overestimation of building 

boundaries. For instance, WSF2015 ignores the airport runways in the example of Beijing (Fig. 13d). In the case of Washington, 

WSF2015 is less capable of delineating scattered buildings than GISA-10m and GHSL 2018 (Fig. 13f), possibly because it 

also incorporates the 30-m Landsat data in the ISA detection. It should be mentioned that GHSL 2018 estimates the probability 

of human settlement, and hence different thresholds could yield different results. Small thresholds are suitable for capturing 520 

scattered settlements, but could result in false alarms. In this study, we chose 0.2 as the threshold, as suggested by Corbane et 

al. (2021). 
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Figure 13. Illustration of WSF2015, GHSL 2018, and GISA-10m in (i) Beijing and (ii) Washington. Regions where the three datasets 525 
all agree are shown in gray.  
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5.2 Importance of multi-source features 

In this study, we developed a global ISA mapping method that incorporates spectral, SAR, and temporal information extracted 

from multi-source Sentinel data. To illustrate the importance of multi-source features in global ISA mapping, we selected 30 

hexagons in terms of the global urban ecoregions (Schneider et al., 2010). Urban ecoregions are defined with reference to 530 

biomes, urban landscapes, and economic levels. In each ecoregion, we randomly selected two grid cells, with a population of 

greater or less than 5 million, respectively (Fig. S1). The “snow and ice” ecoregion was not considered. Feature contribution 

estimated by the RF classifier was employed to analyze the relative importance of the multi-source features (Pflugmacher et 

al., 2014). The different color schemes in Fig. 14 indicate the different types of features. For instance, the blue denotes SAR 

features while the green represents the spectral indices. The results indicate that the feature importance varies in the different 535 

regions. For example, SAR features are more effective in the temperate grassland of the Middle East and Asia (53N_75E and 

50N_39E), while phenological features have more influence in the deciduous forest of Siberia (65N_125E). In particular, SAR 

features play a more important role in the more populated regions, e.g., in the temperate forest of North America and Europe 

as well as the temperate grassland of the Middle East and Asia (Fig. 14). 

 540 

Figure 14. Relative importance of the multi-source features in 30 randomly selected grids located in different urban ecoregions. The 

labels on the right denote the grid ID and total population. Dis, IDM, and ASM represents the dissimilarity, angular second moment, 

and inverse difference moment, respectively. 

It is worth noting that although high-rise ISA (e.g., buildings) tends to have higher radar backscatter, the importance of the 

SAR features is not always the highest. For example, in the hexagon of central US (45N_96W), the SAR features play a less 545 

significant role than the temporal metrics. In contrast, the spectral indices and phenological information are more effective in 
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this region. For example, as shown in Fig. S5 (red squares), in the residential area, the buildings are often surrounded by dense 

shrubs, which can reduce the double bounce scattering. Therefore, the spectral and phenological features have a higher 

importance since they can better distinguish vegetation from non-vegetation. A similar situation occurs in a desert area 

(26N_45E), where the SAR features cannot distinguish ISA from NISA effectively, due to the complex topography. In this 550 

case, the spectral indices and textures are more effective (Fig. 14). However, SAR features are still very important for global 

ISA mapping, especially for identifying rural buildings (Zhang et al., 2020). Therefore, in this study, we used multi-source 

features and hexagon-based adaptive RF models to ensure that the most suitable features were chosen for the different regions. 

5.3 Impact of the training sample size and tree number 

Based on the afore-mentioned randomly selected 30 hexagons in different urban ecoregions, we investigated the relationship 555 

between the training sample size and the accuracy (Fig. S1). For each hexagon, we fixed the number of NISA samples to 

30,000 and changed the number of ISARS and ISAOSM samples. Specifically, we first randomly selected 1,000 ISARS, 1,000 

ISAOSM, and 2,000 NISA samples from the candidate pool (see Section 3.1.1) as the test samples and used the remaining ones 

for the training. We randomly selected 50 ISARS and 50 ISAOSM samples as the initial training samples and, subsequently, in 

an iterative manner, 400 ISARS and ISAOSM samples were randomly selected from the pool and added to the training samples 560 

to train the RF classifier. It can be observed that all the hexagons reach saturation with 2500 ISARS and ISAOSM samples (Fig. 

S6). Therefore, in this research, we set the number of ISARS, ISAOSM, and NISA samples to 2500, 2500 and 30,000, respectively. 

We also analyzed the effect of the tree number on the accuracy of global ISA mapping, using the 30 afore-mentioned mapping 

grid cells from global urban ecological regions. The results show that the OA is low and unstable when the number of trees is 

less than 20 (Fig. S7). As the number of trees increases, the mapping accuracy increases and then stabilizes around 200 trees. 565 

Therefore, we used 200 trees for each RF model in GISA-10m.  

5.4 Advantages of locally adaptive RF classification 

We used two hexagons located in China (CHN) and Saudi Arabia (SA) to demonstrate the advantages of the adaptive RF 

classification. Although China and Saudi Arabia are both located in Asia, their urban landscapes and architectural styles are 

significantly different, due to their differences in climate, environment, and culture. In this experiment, we migrated the 570 

training samples from one hexagon to classify the other one. For example, training samples collected in SA were used to 

classify the hexagon of China. The accuracy of each hexagon was evaluated by the visually interpreted samples inside it. The 

results show that the OA decreases by 34% when the SA samples are applied to CHN (written as SA-to-CHN). Similarly, the 

OA is substantially reduced by 23% by the transfer of CHN-to-SA. Furthermore, the local samples always outperform the 

migrated ones (see Table S7), which verifies the necessity of locally adaptive classification strategies in global ISA mapping. 575 

Furthermore, a locally adaptive model is more sensitive to the sample quality than a global model (Radoux et al., 2014), which 

further shows the necessity and effectiveness of the local classification strategy. 
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5.5 Influence of the sources of training samples 

In this section, the effects of the training sample sources, i.e., the remote sensing dataset (ISARS) and the OSM database 

(ISAOSM), were investigated. Various combinations of the ISARS and ISAOSM training samples were tested at the global scale 580 

using the visually interpreted samples from Section 3.2 (Table S8). In general, it can be found that using both sources yields 

the most accurate results, which shows the effectiveness and necessity of incorporating training samples from both remote 

sensing and crowdsourced OSM data. By further checking the UA and PA of ISA, it can be seen that using both sample sources 

significantly improves the PA and reduces the ISA omissions, since the combination of ISARS and ISAOSM strengthens the 

diversity of the training samples. Similarly, it is also found that the multi-source samples significantly raise the PA of NISA 585 

and lower its commission error.  

Given that geographic bias in the spatial distribution of OSM data can affect the mapping results (Zacharopoulou et al., 2021), 

we applied temporal and spatial rules to mitigate the effect of the difference of the spatial distribution. In addition, a spectral 

rule was used to remove potential errors in the OSM-derived training samples (i.e., ISAOSM). In fact, more than 82% of the 

OSM ways are buildings and highways, whose total number exceeds 700 million (https://taginfo.openstreetmap.org/keys, last 590 

accessed: 20 June 2022). Therefore, OSM data provide a reference for large-scale ISA mapping, but have rarely been employed 

in global ISA mapping. We calculated the OA for the test grid cells where the number of ISAOSM training samples was less 

than or larger than 2500 (i.e., the recommended size of training sample in Section 5.3). The results show that the accuracy of 

these regions is similar to the global accuracy (Table S9). This phenomenon demonstrates the stable performance of GISA-

10m. Moreover, global ISA mapping using only ISAOSM training samples shows a relatively stable accuracy across the 595 

continents (Fig. S8), suggesting that the refined OSM buildings and roads can reduce the impact of their uneven spatial 

distribution. This can be attributed to the rule-based method we implemented that improved the reliability and spatial 

consistency of ISAOSM. In addition, the collaboration of ISAOSM improves the OA of global ISA mapping by 3% (Table S8), 

indicating the feasibility of OSM data in enhancing the performance of global ISA mapping, after a series of refinements. 

Overall, although the spatial distribution of the OSM data is uneven, we tried to balance its spatial distribution through a series 600 

of rules, and incorporated multi-source geospatial data (e.g., satellite-derived datasets) to reduce the impact of geographical 

bias on GISA-10m. 

6 Data availability 

The GISA-10m dataset generated in this study is available in the public domain at http://doi.org/10.5281/zenodo.5791855 

(Huang et al, 2021). The Sentinel data were acquired from the GEE (available at code.earthengine.google.com, last accessed: 605 

August 6, 2021). The GHSL data were provided by the Joint Research Centre at the European Commission (available at 

https://ghsl.jrc.ec.europa.eu/datasets.php, last accessed: December 19, 2021). WSF was provided by the German Aerospace 

Center (https://doi.org/10.6084/m9.figshare.c.4712852, Marconcini et al., 2020).The GlobeLand30 and GAUD were 

downloaded from the websites of the National Geomatics Center of China (available at http://www.globallandcover.com/, last 
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accessed: August 6, 2021) and Sun Yat-sen University (available at https://doi.org/10.6084/m9.figshare.11513178.v1, Liu et 610 

al., 2020b). The FROM_GLC10, global urban boundaries, and GAIA were provided by Tsinghua University (available at 

http://data.ess.tsinghua.edu.cn, last accessed: August 6, 2021). The GISA was provided by the Institute of Remote Sensing 

Information Processing at Wuhan University (available at https://zenodo.org/record/5136330, Huang et al., 2021a). The 

GLCFCS was provided by the Aerospace Information Research Institute at the Chinese Academy of Sciences (available at 

https://zenodo.org/record/4280923, Zhang et al., 2021). The Planet files were download from the OpenStreetMap website 615 

(available at https://planet.openstreetmap.org, last accessed: December 19, 2021). 

7 Conclusion 

In this study, we proposed a global ISA mapping method and produced a 10-m global ISA dataset (GISA-10m). To the best 

of our knowledge, this is the first global 10-m resolution ISA dataset based on Sentinel-1 and 2 data. To this end, a global 

training sample generation method was introduced based on a series of temporal, spatial, spectral, and geometrical rules, and 620 

58 million training samples were generated from the existing global ISA datasets and VGI data (i.e., OSM). On the basis of 

the 2.7 million Sentinel images available on the GEE platform, multi-source features were constructed, including spectral, 

textural, SAR, and temporal metrics. The global terrestrial surface was divided with hexagons, and the results were obtained 

by a series of RF classifiers. In particular, the mapping was conducted adaptively for each hexagon, by considering the 

difficulty and diversity for the global ISA detection. The OA of GISA-10m exceeded 86%, based on a set of independent test 625 

samples. The inter-comparison between the different global ISA datasets confirmed the superiority of the results obtained in 

this study. Based on the GISA-10m dataset, the ISA distribution at the global, continental, and country levels was investigated 

and compared. In addition, the global ISA distribution was compared between rural and urban areas. In particular, for the first 

time, courtesy of the high spatial resolution, the global road ISA was further identified and its distribution was discussed.  

The GISA-10m dataset could be used for global climate change studies and urban planning. The proposed rule-based sample 630 

generation method could also be applied for the global mapping of other land-cover categories. For example, the millions of 

cropland and forest tags in the OSM database could facilitate global high-resolution cropland and forest mapping. The ISA 

mapping method via multi-source geospatial data presented in this paper could also be improved by incorporating additional 

data sources, such as building footprints from Microsoft and Facebook (Corbane et al., 2021). In the future, we plan to extend 

the temporal coverage of GISA-10m and reveal the global ISA dynamics at the 10-m resolution.  635 
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