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Abstract. Artificial impervious surface area (ISA) documents the human footprints. Accurate, timely, and detailed ISA 

datasets are therefore essential for global climate change studies and urban planning. However, due to the lack of sufficient 

training samples and operational mapping methods, global ISA datasets at a 10-m resolution areis still lacking. To this end, 10 

we proposed a global ISA mapping method leveraging multi-source geospatial data. Based on the existing satellite-derived 

ISA maps and the crowdsourceding OpenStreetMap (OSM) data, 58 million training samples were extracted via a series of 

temporal, spatial, spectral, and geometric rules. We then produced a 10-m resolution global ISA dataset (GISA-10m) 

Combinedfrom with over 2.7 million Sentinel optical and radar images on the Google Earth Engine platform, we produced the 

10 m global ISA dataset (GISA-10m). Based on the test samples that are independent ofto the training set, GISA-10m embraced 15 

achieves an overall accuracy of greater than 86%. In addition, the GISA-10m dataset was comprehensively compared with the 

existing global ISA datasets, and the superiority of GISA-10m was confirmeddemonstrated. The global road area was further 

discussed investigated, by courtesy of this 10-m dataset. It was found that China and the USnited States embraced have the 

largest areas of ISA and road area. The global rural ISA was found to be 2.2 times that of urban while the rural road area was 

found to be 1.5 times larger than that of the urban regions. The global road area accountsed for 14.2% of the global ISA, 57.9% 20 

of which iswas located in the top ten countries. Generally speaking, the produced GISA-10m dataset and the proposed sampling 

and mapping method are able to achieve rapid and efficient global mapping, and have the potential for detecting other land 

covers. It was also indicatedis also shown that global ISA mapping can be improved by incorporating OSM data. The GISA-

10m dataset couldan be used as a fundamental parameter for Earth system science, and will provide valuable support for urban 

planning and water cycle study. The GISA-10m can be freely downloaded from http://doi.org/10.5281/zenodo.5791855 25 

(Huang et al, 2021). 

1 Introduction 

The land dominated by humans has expanded rapidly over the past decades (Friedl et al., 2010), resulting in a large amount of 

terrestrial surface that is covered by impervious surfaces (Gong et al., 2020a). Impervious surfaces ISAare is mainly composed 

of artificial materials, such as gravel, glass, asphalt, and metals (Tian et al., 2018). Such impervious surfacesISA  prevents or 30 
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decelerates water infiltration, while also blockings evapotranspiration, which affects the terrestrial water cycle and thermal 

environment (Qin et al., 2018; Yang et al., 2019). With more attention attracted now being paid to the impact of urban sprawl 

on the global climate environment (United Nations, 2016), the global monitoring of impervious surface area  (ISA) wouldcan 

depict the anthropic implications on the water cycle, land cover, and biodiversity (Ji et al., 2020; Qin et al., 2017). In addition, 

ISA morphology is also an important parameter for urban planning, socio-economics, and population studies (Voss, 2007). In 35 

summary, accurate and timely monitoring of global ISA dynamics is valuable important for urban habitability (Herold et al., 

2006), sustainable development (Dewan and Yamaguchi, 2009), and terrestrial ecosystem services (Goetz et al., 2003). 

GThe global ISA monitoring via satellite remote sensing data has long been conductedrecognized. Early efforts usually focused 

on global ISA mapping using coarse-resolution data, e.g., DMSP (Defense Meteorological Satellite Program (DMSP) and 

MODIS (Moderate Resolution Imaging Spectroradiometer (MODIS) data (Friedl et al., 2010; You et al., 2021). With the free 40 

availability of Landsat data and the advances in geospatial cloud platforms (e.g., Google Earth Engine, GEE), recent studies 

have focused on global annual ISA mapping at a 30- m resolution (Gong et al., 2020b; Gorelick et al., 2017; Liu et al., 2020c; 

Woodcock et al., 2008). For instance, Huang et al. , (2021b) generated the global annual Global Impervious Surface Area (ISA 

dataset GISA) dataset (Global Impervious Surface Area) fcoveringrom 1972 to 2019 using over three million Landsat 

imagesdata. Although efforts have been paid to themade in global ISA monitoring, few studies have focused on global ISA 45 

mapping at a 10-m resolution. Recently, Corbane et al., (2021) generated the Global Human Settlement Layer 2018 (GHSL 

2018) dataset using Sentinel-2 composites and a convolutional neural networknetwork models. However, GHSL 2018 focusesd 

more on human settlements and lacks depiction of ISA, such as transportation facilities. In addition to these thematic datasets, 

ISA haswas also been documented in land- cover products. For example, Gong et al., (2019) obtained generated thea land 

cover map FROM_GLC10 (10-m Finer Resolution Observation and Monitoring of Global Land Cover map) for 2017 at a 10-50 

m resolution (FROM_GLC10) using Sentinel-2 images. However, the accuracy of ISA in the land- cover datasets may not be 

sufficient to meet the needs of global climate change studies studies and urban planning  (Gong et al., 2020b). Therefore, there 

is an urgent need for 10- m global ISA thematic datasets, are in urgent need to support various fine-scale applications. 

Synthetic aperture radar (SAR) performs well in the case of ISA mapping due to its clear response to high-rise buildings and 

its ability to penetrate clouds (e.g., Sentinel- 1) (Zhang et al., 2014). SAR data have theis potential tofor reduceing the common 55 

false alarms that comederived from the optical images, such as bare soil, but SAR systems it can be affected by complex terrain 

and shadows. Therefore, the existing studies literatures have investigateded the combinationllaboration of radar and optical 

data to improve ISA mapping. For example, Zhang et al., (2020) combined Landsat 8 and Sentinel-1 data to produce a 30-m 

global ISA dataset (the Global Land Cover with Fine Classification System, GLCFCS). Similarly, Marconcini et al., (2020) 

used Landsat -8 and Sentinel-1 data to outline the world settlement footprint (World Settlement Footprint, WSF), based on  60 

support vector machine classifiers. Although the current studies have demonstrated the effectiveness of combining multi-

source (e.g., radar and optical) remote sensing data for ISA mapping, they have usually focused on regional or national scales 

(Lin et al., 2020). In addition, combining data with different resolutions for ISA mapping canmay increase the uncertainty of 

the results. In particular, both Zhang et al., (2020) and Marconcini et al., (2020) generated global ISA (or settlement) datasets 
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by using Landsat -8 and Sentinel-1 data, but their resolutions were different, at 30  mm and 10  m, respectively (Table 1). 65 

Generally speaking, 10-m global ISA mapping based on the multi-source remote sensing data (e.g., Sentinel-1 and 2) hasve 

been insufficiently investigated in the current literature (Table 1). 

Table 1. The existing global ISA datasets. 

Name and abbreviation Data and time 

span 

Nominal 

resolution 

Source of training 

sample 

Classification method and 

strategy 

Type 

dDefinition 

Global Impervious Surface Area 

30 m, GISA (Huang et al., 2021) 

Landsat;  

1972–—2019 

30  m MODIS land cover, 

Climate Change Initiative 

land cover, GHSL, 

FROM_GLC 

Random forest classifiers 

via hexagonal partitioning 

Artificial 

impervious 

surface 

Global Artificial Impervious 

Area, GAIA (Gong et al., 2020b) 

Landsat;  

1985–—2018 

30  m Visual interpretation An exclusion-iInclusion 

approach via 3.5° grid 

Artificial 

impervious 

area 

Global Annual Urban 

Dynamics, GAUD (Liu et al., 

2020c) 

Landsat;  

1985–—2015 

30  m GAIA, GHSL, global 

urban land, global urban 

footprint 

Random forest classifiers 

via 1° grid; temporal 

segmentation 

Urban extent 

Global Human Settlement Layer 

2018, GHSL 2018 (Corbane et 

al., 2021) 

Sentinel-2;  

2018 

10  m Microsoft building 

footprint, Facebook 

settlement, European 

settlement map, GHSL 

Convolutional neural 

network models within 

Universal Transverse 

Mercator zones 

Human 

settlement 

Finer Resolution Observation 

and Monitoring of Global Land 

Cover, FROM_GLC 10 (Gong et 

al., 2019) 

Sentinel-2;  

2017 

10  m Visual interpretation Random forest classifiers Impervious 

surface 

World Settlement Footprint, 

WSF2015 (Marconcini et al., 

2020) 

Landsat -8, 

Sentinel-1; 

2015 

10  m Thresholding for spectral 

index, radar, and slope 

data 

SVM classifiers via 1° grid Human 

settlement 

Global Land Cover with Fine 

Classification System, GLCFCS 

(Zhang et al., 2020) 

Landsat -8, 

Sentinel-1; 

2015 

30  m GlobeLand30 Random forest classifiers 

via 5° grid 

Impervious 

surface 

Global Impervious Surface Area 

10  m, GISA-10m (this study) 

Sentinel-1, 

Sentinel-2; 

2016 

10  m GISA, OSM 

GlobeLand30, 

FROM_GLC10  

Random forest classifiers 

via hexagonal partitioning 

Artificial 

impervious 

surface 

From the perspective of the global ISA mapping methods, supervised classification has been widely employed (Table 1). The 

quality of the training samples is the major factor affecting the classification results (Foody, 2009). Visual interpretation and 70 

automatic extraction from the existing datasets are two common methods ways to generate training samples. Visually -

interpreted samples are usually accurate but labour-intensivelabor-intensive.. TTherefore, theyit areis often used for 

classifications at a regional scale (Yang et al., 2020). On the other hand, samples generated from the existing datasets have 

been proved shown to be efficient for global ISA mapping in recent years (Marconcini et al., 2020; Zhang et al., 2020). In fact, 

ISA samples are typically diverse, as their response to the different sensors varies with the materials, geometry, atmospheric 75 

conditions, and viewing angles. Therefore, accurate and sufficient samples are required to address the above issue for the 

purpose of consistent ISA mapping at athe global scale. Given the higher spatial resolution (10  m) of the Sentinel satellites, it 

remains challenging to obtain high-quality and adequate training samples for 10-m global ISA mapping. 
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In general, due to the difficulty of collecting training samples and the limitation of the computational and storage capacity 

required to deal with the massive data, efficient methods and accurate datasets regarding for 10- m resolution global ISA 80 

mapping are lacking. Therefore, in this study, we proposed a global ISA mapping method that leverages multi-source 

geospatial data to map theping 10-m global impervious surface area (GISA-10m). To the best of our knowledge, this iwas the 

first global 10- m ISA mapping based on SentienlSentinel-1 and 2 data. Specifically, by combining the multi-source remote 

sensing data and the crowdsourceding OpenStreetMap data, we proposed developed a sample generation method involving a 

series of temporal, spatial, spectral, and geometric rules to collect training samples with a global coverage. BesidesFurthermore, 85 

an adaptive hexagonal partitioning strategy was used introduced for multi-source feature extraction and classification. Finally, 

the accuracy of the GISA-10m dataset was assessed usingby three independent sample sets. Meanwhile, we also compared the 

GISA-10m with the  existing datasets, to better reflect its quality, and the ISA distribution in the global urban and rural regions 

was analysedanalyzed. In particular, the global road ISA was further extracted and discussedinvestigated. Ablation 

experiments were alsofurther conducted to demonstrate the feasibility of OSM data in global ISA mapping. 90 

2 Data 

2.1 Remote sensing data 

Sentinel-2 optical data and Sentinel-1 SAR data were used in the GISA-10m mapping. Sentinel-2 is a high-resolution 

multispectral imaging mission operateding by the European Space Agency (ESA) Copernicus program. The first Sentinel-2 

satellite (Sentinel-2A) has been acquiring high-resolution Earth observation data since June 2015, consisting mainly of four 95 

10-m resolution visible and near-infrared (NIR) bands, six 20-m resolution red-edge and short-wavewave infrared (SWIR) 

bands, and three 60-m bands (Drusch et al., 2012; Zhang et al., 2018). After testinged and adjustmented, a complete global 

coverage was obtained for the Sentinel-2 satellite in 2016 (Fig. S2). Therefore, we used all the available Level-1C top of 

atmosphere (TOA) reflectance data acquired in 2016 for theour 10-m ISA mapping. SThe systematic radiometric calibration 

and, geometric and terrain correction have already been performed for the Level-1C TOA data by the ESA. Clouds and 100 

shadows were removed via the quality band to obtain cloud-free pixels. 

The Sentinel-1A satellite was launched ion April 2014, carrying a C-band SAR instrumentsynthetic aperture radar. After the 

launch of Sentinel-1B in 2016, the two satellites now haved a return visit period of six days at the equator. We used all the 

available Ground Range Detected (GRD) images acquired under Interferometric Wide (IW) mode, with a spatial resolution of 

10  m. The boundary noise removal, thermal noise removal, radiometric calibration, and terrain correction has beenwere 105 

conducted onby the GEE platform, with the same processing tools as the Sentinel-1 Toolbox. Sentinel-1 data in both ascending 

and descending orbit were considered. For the places locations where two orbits were available, only the descending data 

wereas used, to avoid the terrain distortion caused by the combination of two orbits (Veloso et al., 2017). In total, over 2.7 

million Sentinel images were used to cover the global terrestrial surface (Fig. S2). 
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2.2 Volunteered geographic information data 110 

Volunteered geographic information (VGI) is the geographic information that iwas created, edited, and updated by volunteers 

(Goodchild, 2007). The well-known VGI project, OpenStreetMap (OSM) VGI project, provides online maps that can be edited 

and used by everyone. Since its launch in 2004, OSM has been updated and maintained by over seven million volunteers 

(Haklay and Weber, 2008). OSM has been used for positioning and navigation (Fonte et al., 2020), urban modeling (Goetz, 

2013), and land-cover mapping (Tian et al., 2019). In fact, over 600 million buildings and roads havewere been tagged in the 115 

OSM database (https://taginfo.openstreetmap.org/keys, last accessed: 17 Aug 2021). These data should be important reference 

data for ISA mapping, but, unfortunately, in the current literature, they have seldom been used for ISA mapping at the global 

scale. Therefore, we used the OSM data as a source of the training samples for the GISA-10m mapping. Specifically, we 

extracted the buildings and road networks as potential training samples from the OSM Pplanet data built on January 2, 20171. 

2.3 Existing ISA datasets 120 

We intercompared GISA-10m with the existing ISA datasets, i.e., including GISA, GAIA, GAUD, WSF2015, FROM_GLC10, 

GLCFCS, and GHSL2018GHSL 2018 (Table 1). GISA, GAIA, and GAUD are Landsat-derived annual global ISA datasets 

for the time periods of 1972–-2019, 1985–-2018, and 1985–-2015, respectively. GHSL2018GHSL 2018 is a global settlement 

layer based on a Sentinel-2 composite, where a convolutional neural network model was used to estimate the settlement 

probability (Corbane et al., 2021). WSF2015 and GLCFCS are global ISA datasets based on Landsat 8 and Sentinel-1 data. 125 

Marconcini et al. (2020) collected the samples for WSF2015 based on a set of spectral and topographic rules, and Zhang et al. 

(2020) derived the samples for GLCFCS from GlobeLand30. WSF2015 collected samples based on a set of spectral and 

topographic rules, and GLCFCS derived samples from GlobeLand30 (Marconcini et al., 2020; Zhang et al., 2020). Gong et 

al., (2019) generated the 10-m global land cover product FROM_GLC10 using Sentinel-2 data and random forest classifiers. 

It should be noted that these datasets were different forin their mapping purposes and their  the definitionss of the land- cover 130 

categories and mapping purposes. For instance, GHSL2018GHSL 2018 and WSF2015 focused on human settlements, while 

GAUD delineatesd urban extent (Table 1). TIn this study, he GISA-10m dataset generated in this study monitoredreflects the 

ISAimpervious surface area (ISA) generated by human activities, including all kinds of human settlements, transportation 

facilities, industries, and mining locationsplaces, by courtesy of the employment of the high spatial resolution satellite data. 

Therefore, artificial impervious surfaces and human settlements were treated as ISA in this paperstudy. 135 

                                                           
1 https://planet.openstreetmap.org/planet/2017/planet-170102.osm.bz2, last access: 13 Mar 2021 



6 

 

 

Figure 1. The flowchart for GISA-10m mapping. 

3 Methodology 

The main objectives of this study were to: 1) investigate the 10-m global ISA mapping (GISA-10m) by combining Sentinel-1 

and -2 images with other geographic information; and 2) analyseanalyze the distribution of urban and rural ISA at a 10-m 140 

resolution. The flowchart for GISA-10m mapping iwas shown in Fig. 1, including training sample generation, multi-source 

feature construction, random forest RF classification, accuracy validation, and dataset comparison. Based on the satellite-

derived ISA maps and the VGI data (i.e., OpenStreetMap), we proposed a rule-based approach to automatically generate global 

training samples. Using more than 2.7 million Sentinel images on the GEE, multi-source features were then constructed and 

fed into the random forest RF classifier to obtain the mapping results. The accuracy of the GISA-10m was assessed by visually 145 

-interpretationed and the third-party samples. To better evaluate the performance of GISA-10m, we compared it with the 

current state-of-the-art global ISA datasets (Table 1). Finally, the distribution of ISA over urban and rural regions was 

analysedanalyzed. 

3.1 Global ISA mapping using multi-source geospatial data 

3.1.1 Sample collection 150 

In the case of large-scale supervised classification, both the quantity and quality of samples are important (Foody and Arora, 

1997). ISA is a highly variable object, and its attributes in the Sentinel-2 multispectral images are related to materials, viewing 

angles, and atmospheric conditions, while its response to the Sentinel-1 SAR instrument depends on dielectric properties, 

geometry, and surface roughness. Hence, a large number of training samples were required to address the afore-mentioned 

challenges that would be encountered at the global scale. Training samples awere usually acquired by means of visual 155 
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interpretation or automatic extraction from the existing datasets. However, tThe visual interpretation methods awere 

labourlabor- and time- intensive, even for small regions. Therefore, at a large scale, training samples awere usually extracted 

from the existing datasets with similar temporal and spatial coverages. However, the sample quality iwas affected by the quality 

of the datasets used. Theoretically, samples extracted from a single dataset willmay result in more errors and uncertainties, 

while multi-source datasets can improve the reliability of the training samples (Huang and Zhang, 2013). We thereforeus 160 

proposed to collect global training samples by incorporating the existing ISA datasets and the crowdsourceding OSM database. 

To concisely distinguish the two types of ISA samples, we named the ISA samples extracted from the existing satellite-derived 

ISA datasets as ISARS and those extracted from the OSM as ISAOSM. 

The existing ISA datasets generally covered a broad terrestrial surface, but they were different in terms of their definitions, 

spatial resolutions, and temporal coverage. In this study, the GISA, FROM_GLC10, and GlobeLand30 products were chosen 165 

to extract the training samples, due tofor the following reasons: 1) the GISA is aimed at mapping the global impervious surface 

areaISA, which  wias consistent with GISA-10m; 2) the team behind the GlobeLand30 employed extensive visual 

interpretation to detect artificial surfaces, which can effectively reduce the false alarms from other datasets, i.e., GISA and 

FROM_GLC10 (Chen et al., 2015); and 3) tThe definition of FROM_GLC10 (impervious surfaces) iwas also consistent with 

that of GISA-10m, and its spatial resolution iwas also 10  m. The GHSL 2018, WSF2015, and GAUD were not considered 170 

since they aimed to outline human settlements or urban extents (Table 1). We then collected the eligible training samples 

according to the following rules.  

(1) Temporal rule: The GISA iwas a global ISA dataset coveringduring 1972–2019, soand we selected its results forof 2016 

to match the time when Sentinel data was used in this research. GlobeLand30 documentsed global land cover map for 2000, 

2010, and 2020, soand here, the 2010 map was chosen in this study. Although the 2020 map iwas more recent than theo 2016 175 

map, it containsed ISA that was built after 2016, making it unsuitable for the GISA-10m mapping. Although there is a six-year 

gap between GlobeLand30 and the other datasets (i.e., GISA and FROM_GLC10),. wWe adopted the commonly used 

assumption that the transition from ISA to non-impervious surface area (NISA) rarely happensed (Gong et al., 2020b; Huang 

et al., 2021, 2022), so that the GlobeLand30 for 2010 couldan be used for the GISA-10m mapping. The following spatial and 

spectral rules were used to remove the possible errors. 180 

(2) Spatial rule: We first checked the class labels of the three datasets at each pixel. If these labels were the same (i.e., ISA), 

the pixel was taken as a potential ISARS sample. The incorporationcollaboration of multiple datasets can effectively reduce the 

errors that existed in a single dataset. In addition, we filtered out the edge pixels in each dataset to reduce the uncertainty, since 

they were more likely to be mixed pixels.  Edge pixels were defined as the outermost pixels of each ISA patch. We removed 

the edge pixels in each data set, and then selected their ISA intersection as potential training samples. In this way, the errors 185 

contained in the non-edge pixels in the 30-m resolution data (e.g., mixed pixels) couldan be removed by the edge pixels in the 

10-m resolution data. 

(3) Spectral rule: After the above steps, there may still be a small amount of errors may still remain  in the current samples. 

Hence, we applied the spectral rule to remove these erroneous samples. Specifically, we measured the 
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mahalanobisMahalanobis distance between each ISARS sample to the spectral average of each hexagon (the mapping unit 190 

adopted in this study), and filtered out the samples with a distance greater than μ + δ (where μ and δ represents the mean and 

standard deviation, respectively) (Huang et al., 2021). Vegetation and water bodies awere common sources of false alarms in 

the existing datasets (Figs. 2a and &b). However, these errors often accounted for a relatively small proportion, and they can 

be effectively identified and reduced by the spectral rule. It can be seen in Fig. 2 that most of the water bodies and vegetation 

(e.g.the red rectangles in Fig. 2) were successfully removed from the initial ISARS training samples.  195 

 

Figure 2. EThe examples of the initial and filtered ISARS training samples from the city ofin Wuhan in China city (30.625382° N, 

114.392682° E). The purple in the close-up maps represents the samples. 

On the other hand, Wwe extracted the ISAOSM samples from the OSM buildings and roads through the following rules. 

(1) Temporal rule: We chose the OSM data built on 2 January 2, 2017, in terms of the time of GISA-10m. This version of the 200 

OSM data was employed to ensure that the buildings and roads were constructed in 2016 or before, and hence, it waswere 

suitable for the 2016 ISA mapping. 

(2) Geometric rule: A natural way to extract training points from OSM data iwas to generate random points within the building 

or road polygons (Liu et al., 2020a). However, random points may contain erroneous or mixed pixels. Such problems can be 

mitigated by making applying negative buffers to the polygons (Liu et al., 2020a). However, this approach iwas very time-205 

consuming when applied to global ISA mapping, especially given the more than 200 million buildings in the OSM database. 

Therefore, in this study, we extracted the geometric center of a building polygon as an ISAOSM sample, which was more 

efficient than buffering orand random points. Notably, although we couldan filter out the erroneous buildings using attribute 

tags (e.g., dams, swimming pools, playgrounds), the geometric center of a building was not always an ISA sample. Hence, we 

further required that the geometric center must be contained by the building. As in Figs. 3a and &b, the incorrect building 210 
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geometric centers (e.g., the vegetation and water, as indicated by the yellow points) were successfully identified and removed 

by the geometric rule. In addition, we excluded buildings with an area of less than 100  m2 (approximately~ a Sentinel pixel), 

to ensure the reliability of the samples. This is bBecause athe training sample extracted from the geometric center may be 

NISA, when the area of thea building is smaller than a Sentinel pixel.  

Compared with the widely used 30-m Landsat data, the high-resolution Sentinel data promotes allow a better delineation of 215 

roads. We thereby also extracted ISAOSM samples from the OSM road networks. The OSM roads usually consisted of 

centerlines rather than boundaries. Therefore, we extracted the center point of each road, rather than its geometric center, as 

the road ISA samples. Given that the width of low-grade roads may be smaller less than 10  m (i.e., a Sentinel pixel), we kept 

only the main roads (highway = “"primary”"). 

 220 

Figure 3. Examples of the initial and filtered ISAOSM training samples from the city ofin Wuhan in China city (30.530202° N, 

114.356287° E). The yellow points in the close-up maps represent the errors recognized by (a)–(-b) the geometric rule and (c)–(-d) 

the spectral rules.  

(3) Spatial rule: Given the uneven spatial distribution of OSM data (Tian et al., 2019), we then applied the spatial rule to 

balance theits distribution at the global scale. Specifically, for hexagons with more than 10,000 OSM records (i.e., buildings 225 

and roads), we randomly selected 10 ,000 records as initial samples. The dilution of OSM data can significantly reduce the 

subsequent computational cost. In addition, considering that ISAOSM could overlie with ISARS, we removed the ISAOSM samples 

that were intersected with ISARS. In the field of supervised classification, the diversity of the samples iwas important for the 

generalization ability of the classification model (Huang and Zhang, 2013). Considering that ISAOSM canould overlie with 

ISARS, we removed the ISAOSM samples intersected with the ISARS sample pool, to increase the diversity and reduce the 230 

redundancy of the ISA samples. 
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(4) Spectral rule: Although OSM uses humans as sensors, ISAOSM samples canmay still contain erroneous points, such as 

vegetation and water bodies,y beside in addition to roads. As shown in Figs. 3c and &d, the yellow points satisfyied the 

temporal, spatial, and geometric rules, but they awere actually vegetation. Hence, we applied the spectral rule to filter out these 

erroneous pointsm out. Specifically, the ISAOSM samples whose MNDWI (modified normalized difference water index 235 

(MNDWI) or NDVI (normalized difference vegetation index (NDVI)) value wass larger than μ+δ were removed (μ and δ 

represent the mean and standard deviation of the indices, respectively), as these points were more likely to be vegetation or a 

water body (Huang et al., 2021). 

After obtaining the ISA candidate samples, we randomly selected 2,500 ISARS and ISAOSM samples,, respectively, within each 

hexagon as the final ISA training samples (see Section 5.3 for details). It can be seen that theour generated ISA samples cover 240 

aed broad terrestrial surface, especially in India and China, where a large number of small villages are foundgather (Fig. 4). 
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Figure 4. Global distribution of ISA training samples. The number of samples was counted within 0.5º° spatial grid. 

On the other hand, NISA (non-ISA) training samples awere also important for accurate ISA mapping. We used the three 245 

existing datasets (i.e., GISA 30 mm, FROM_GLC10, GlobeLand30) and the OSM to generate the NISA samples. Firstly, we 

took the intersection of the NISA regions in the three datasets as the initial NISA sample pool: 

𝑁𝐼𝑆𝐴 = 𝑁𝐼𝑆𝐴𝐺𝐼𝑆𝐴 ∩ 𝑁𝐼𝑆𝐴𝐺𝑙𝑜𝑏𝑒𝐿𝑎𝑛𝑑30 ∩ 𝑁𝐼𝑆𝐴𝐹𝑅𝑂𝑀_𝐺𝐿𝐶10 − 𝐼𝑆𝐴𝑂𝑆𝑀                                                                                      (1) 

For GlobeLand30 and FROM_GLC10, NISA iwas defined as all the land- cover types other than ISA. We then masked the 

initial NISA sample pool using the OSM buildings and roads to suppress the errors in the existing global datasets. To this end, 250 

here we used the OSM version built in December 20202, which documentsed more buildings and road networks than the 2017 

version. BesidesIn addition,, we buffered the OSM roads with a 30- m buffer to better mitigate the errors. Subsequently, 30,000 

points were randomly selected in each hexagon as NISA samples. The distance between each NISA sample was kept larger 

than 200  m, to ensure theits diversity and irrelevance. Finally, we extracted 58 million training samples (51,674,533 NISA 

samples and 6,897,378 ISA samples) for the GISA-10m mapping.  255 

 

 

 

 

Table 2. The multi-source features used for the GISA-10m mapping. 260 

Type Features Description Dimension Source 

                                                           
2 https://planet.openstreetmap.org/planet/2020/planet-201207.osm.bz2, last accessed: 13 Mar 2021 
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Spectrum Blue, green, red, red edge 1, red edge 2, 

red edge 3, NIR, red edge 4, SWIR 1, 

and SWIR 2 

50th percentile value of the reflectance derived from all 

the available Sentinel-2 images 

10 Sentinel-2  

Normalized 

indices 

Index1, Index2, Index3, Index4, Index5, 

Index6, Index7, Index8, Index9, Index10, 

Index11, Index12, Index13, Index14, 

Index15 

Normalized indices derived from the spectral bands 

describedpted above. The indices weare calculated as: 

Index1=NI (NIR, blue), Index2=NI (NIR, green),  

Index3=NI (NIR, red), Index4=NI (NIR, red edge 1),  

Index5=NI (NIR, red edge 2), Index6=NI (NIR, red edge 3), 

Index7=NI (NIR, red edge 4), Index8=NI (SWIR 1, blue), 

Index9=NI (SWIR 1, green), Index10=NI (SWIR 1, red),  

Index11=NI (SWIR 1, NIR), Index12=NI (SWIR 2, blue),  

Index13=NI (SWIR 2, green), Index14=NI (SWIR 2, red), 

Index15=NI (SWIR 2, NIR),  

where NI represents the function (b1−- b2) / (b1+ b2), 

and b1 and b2 denote two spectral bands 

15 Sentinel-2 

SAR VV, VH Temporal mean VV and VH backscatter coefficients of 

the Sentinel-1 images 

2 Sentinel-1 

Temporal 

statistics 

NDVI_Std, MNDWI_Std, NDBI_Std, 

NDVIMax, VV_Std, VH_Std 

Standard deviation of NDVI, MNDWI, NDBI, VV and 

VH backscatter coefficients; mMaximum NDIVI of the 

year 

5 Sentinel-1 & 

Sentinel-2 

Texture Contrast, dissimilarity, entropy, IDM, 

ASM 

The GLCM texture derived from the NIR band of the 

Sentinel-2 data, including entropy, dissimilarity, contrast, 

angular second moment (ASM), and inverse difference 

moment (IDM) 

5 Sentinel-2 

Topography Elevation, slope, and aspect Slope and aspect calculated from the elevation 3 SRTM & 

GMTED 

3.1.2 Multi-source feature extraction 

The dedicated image pyramid of the GEE platform enabled us to perform pixel-wise feature extraction (Gorelick et al., 2017). 

Therefore, based on all the available Sentinel data forin 2016, we constructed a set of spectral, phenological, texturale, SAR, 

and topographical features with the temporal composite method (Table 2). This approach used all the available data, and at the 

same time allowed us to reduce the feature dimension, preserve the temporal information, and minimize the effects offrom 265 

clouds and shadows (Yang and Huang, 2021). Firstly, we used the spectral signatures provided by the SentienlSentinel-2 data 

to extract the ISA in the visible, red-edge, near-infraredNIR, and infrared bands (Table 2). Moreover, considering that spectral 

indices canould increase the differences between land covers, we also extracted a series of normalized spectral indices to 

enhance the discriminativeon ability between ISA and NISA (Yang and Huang, 2021) (Table 2). These indices were built 

according to the following criteria: (1) tThey were mainly constructed by near-infrared the (NIR) and short-wave infrared 270 

(SWIR) bands, due to their better atmospheric transmission (Huang et al., 2021; Yang and Huang, 2021); and (2) eEach index 

contained at least one 10-m band (i.e., visible and NIR bands), to ensure the spatial resolution of the features.  

The complex spectral and spatial characteristics in urban environments increase the difficulty of ISA mapping. In this regard, 

texturale features are usually employed to depict the spatial information of urban ISA (Huang and Zhang, 2013). To further 
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exploit the textural information for the ISA mapping, we computed the gray-level co-occurrence matrix (GLCM) via the NIR 275 

band, to depict the spatial information of urban ISA. Owing to the high redundancy among GLCM measurements (Clausi, 

2002), we chose the contrast, dissimilarity, entropy, IDM (inverse difference moment (IDM), and ASM (angular second 

moment (ASM) for the texture extraction (Rodriguez-Galiano et al., 2012). The window size for the GLCM measurements 

was set to 7 × 7 as thisit iwas suitable for urban classification with an image resolution from 2.5 to 10  m (Puissant et al., 2005). 

BesidesIn addition, we averaged the GLCM from different directions (0, 45, 90, and 135°) to maintain the rotational invariance 280 

(Rodriguez-Galiano et al., 2012). 

Given that the spectra and backscatter of some NISA (e.g., vegetation and water bodies) vary throughout time, the phenological 

information derived from the multi-temporal spectral and SAR data wais utilized to depict the temporal fluctuations. We 

calculated the maximum NDVI as well as the standard deviation of the NDVI (Tucker, 1979), MNDWI (Xu, 2006), and NDBI 

(normalized difference built-up index (NDBI) (Zha et al., 2003), to further enhance the temporal information. These temporal 285 

characteristics awere useful in identifying NISA with temporal fluctuations. For example, the spectra of fallow cropland and 

ISA awere similar, and even SAR data may not well separate them well. However, the NDVI of cropland can describe the 

changes of crops growth, and hence, its standard deviation can be used to distinguish between ISA and cropland. In addition, 

to increase the robustness of these temporal features, Sentinel-2 data from adjacent two adjacent years were also 

includedconsidered. 290 

SAR data have theis potential tofor reduceing the false alarms caused by bare soil in optical images, and areit is more sensitive 

to buildings. In addition, it is ableSAR signals canto penetrate clouds. ThereforeSo, in this study, SAR data wereit was 

combined with optical data for the ISA mapping. Specifically, the VV (vertical-vertical (VV) polarization) and VH the 

(vertical-horizontal (VH) polarization) backscatter coefficients from the SentienlSentinel-1 images were selected. Specifically, 

Bbased on all the available SentienlSentinel-1 data, the annual mean and standard deviation of the VV and VH backscatter 295 

coefficients were calculated by the temporal composite method: 

𝜎𝑚𝑒𝑎𝑛 =  
1

𝑛
∑ 𝜎𝑖

𝑛
𝑖=1                                                                                                                                                                      (2)  

𝜎𝑠𝑡𝑑 = √
∑ (𝜎𝑖−𝜎𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

𝑛
                                                                                                                                                             (3) 

where 𝑛 denotes the total number of Sentinel-1 observations within a year, and 𝜎𝑖 represents the ith backscatter coefficient 

observation in the year. The temporal compositemean method can reduce the speckle noise in the SAR imagerys (Lin et al., 300 

2020), while the annual standard deviation can reflect the temporal information. Topography-related features are also necessary 

for ISA mapping, in order to reduce the confusion between complex terrain and buildings. For instance, topographical features 

canould help to distinguish steeply hills from buildings (Gamba and Lisini, 2013). Specifically, we used SRTM (Shuttle Radar 

Topographic Mission (SRTM) digital elevation model (DEM) data in the areas below 58° latitude and GMTD2010 (Global 

Multi-resolution Terrain Elevation Data 2010 (GMTED2010) in the areas above 58° (Huang et al., 2021). Finally, a total of 305 

41 features were constructed fromon the 2.7 million Sentinel images (2,613,180 Sentinel-2 and 122,156 Sentinel-1) and DEM 

data.  
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3.1.3 Hexagon-based adaptive random forest classification 

When dealing with global land- cover classification, the global terrestrial surface iwas usually divided into homogeneous sub-

regions according to criteria such as climate, land cover, or administrative regions (Goldblatt et al., 2018). For global ISA 310 

mapping, regular square grids awere commonly used (Table 1), such as 1° and 5° grids (e.g., WSF2015 and GLCFCS). Herein 

In this study, we divided the terrestrial surface into 2° hexagonal grid cellss (Fig. 1), due to theits symmetry and invariance 

(You et al., 2021). BesidesFurthermore, there were no gaps or overlaps between hexagons, and the distance between adjacent 

hexagon centers was approximately equal (Richards et al., 2000). 

The Random forest (RF) classifier has been widely used in global ISA mapping, due to its robustness to erroneous samples, 315 

flexibility withto high-dimensional data, and tolerance to noise (Bauer and Kohavi, 1999; Wulder et al., 2018) (Table 1). The 

RF classifierIt utilizes ensemble learning to obtain predictions by voting on categories through multiple decision trees (Breiman, 

2001). Each tree uses a random subset of the input features to increase the generalization ability. In addition, trees are grown 

from different subsets of training data (i.e., bagging or bootstrapping), to increase the diversity (Rodriguez-Galiano et al., 

2012). RF has been proved shown to outperform other classifiers when dealing with large-scale and high-dimensional data 320 

(Goldblatt et al., 2016). The flexibility ability of RF to handle multi-source data also makes it convenient for us towhen dealing 

with Sentinel radar and optical data. Therefore, together with the afore-mentioned multi-source features and global training 

samples, the RF classifier was used for the GISA-10m mapping. As suggested by Yang and Huang, (2021), the number of 

trees was set to 200. We divided the global terrestrial surface using into 1,808 hexagons, where and a local RF model was built 

for adaptive ISA classification in each hexagon. Therefore, a total of 1,808 RF models were built. In terms of the features used 325 

to train each tree, the random forest uses a random subset of features to reduce the correlation between trees. In general, the 

diversity of the trees can be increased when fewer features are used for training each tree (Breiman, 2001). In the GISA-10m 

mapping, we set the number of features used for each tree to the square root of the total number of features, as suggested by 

Liu et al., (2020b). 

3.2 Accuracy assessment 330 

The test samples forof GISA-10m included: (1) visually interpreted samples via Google Earth;, (2) test samples extracted from 

the ZiYuan-3 (ZY-3) built-up datasets (Liu et al., 2019);, and (3) building samples located in the arid areas.  

(1) As suggested by Stehman and Foody (2019), we used cluster sampling to collect the visually -interpreted test samples. The 

primary sampling unit involved 59 grid cellss with a side length of 1°, which wereas randomly selected based on population, 

ecoregion, and urban landscape (the red squares in Fig. 5). The secondary sampling unit included the random samples within 335 

each grid cell. In such a way, samples from different urban sizes and densities were considered for the validation. Specifically, 

in each grid cell, we randomly selected 100 ISA and 100 NISA points to test their accuracy. An equal allocation of ISA and 

NISA test samples could reduce the bias of the accuracy assessment, and hence allow for a more accurate estimatione of the 

user’'s accuracy (Olofsson et al., 2014; Stehman, 2012). By referring to the high-resolution Google Earth images, a pixel 
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(10 mm × 10 mm) was labeledled as ISA if more than half of its area was covered by ISA;, otherwise, it was identified as 340 

NISA. As can be seen fromin Fig. 5, the test samples involved not only high-density ISA samples fromin urban areas, but also 

a large number of low-density samples fromin suburban and rural regions. Finally, a total of 11,800 test samples were obtained. 

(2) Liu et al., (2019) proposed a multi-angle built-up index to extract built-up areas from ZY-3 images covering 45 global 

cities, which obtainedith an overall accuracy (OA) of greater than 90%. The multi-angle ZY-3 images depicted the three-

dimensional and vertical structure of buildings, which wisere more effective and accurate than the planar feature extraction for 345 

detecting built-up areas. Given the higher spatial resolution (2  m) and better accuracy of the ZY-3 global built-up dataset, we 

extracted test samples from it forin the year of 2016 (Huang et al., 2021a; Liu et al., 2019). A sample (10 mm × 10 mm) was 

labeledled as ISA if more than 50% of its area was classified as ISA in the ZY-3 dataset, while the NISA samples were those 

with no built-up pixels in the area (Huang et al., 2021a). For each city, the number of samples was proportional to the area of 

the ZY-3 image, and the ratio of ISA and NISA test samples was consistent with the ratio of the built-up and non-built-up 350 

classes (Huang et al., 2021a). In this way, we obtained 47,216 NISA samples and 21,152 ISA samples (the green dots in Fig. 

5) from 24 cities in the ZY-3 built-up dataset. 

(3) Considering the difficulty of ISA extraction in the arid regions (Tian et al., 2018), we paid special attention to the accuracy 

assessment in the arid regions. To this end, we visually interpreted 5,385 building pixels in these regions. A total of 25 photo 

interpreters were recruited for this task by referring to the Google Earth images. These samples were then further checked by 355 

three experts. The arid regions were defined according to the “"dDeserts and xXeric sShrublands”" biome in Olson et al., 

(2001).  

Based on the three groups of test samples aforementioned, the accuracy of GISA-10m was assessed using theby overall 

accuracy (OA), kappa, producer’'s accuracy (PA), user’'s accuracy (UA), and F1-sScore (the harmonic mean of the PA and 

UA). Besides, Sseven existing global ISA datasets were used for the inter-comparison with GISA-10m, including i.e., GHSL 360 

2018, GLCFCS, WSF2015, FROM_GLC10, GISA, GAUD, and GAIA (Table 1). The three groups of test samples mentioned 

above were used to assess and compare the accuracy of these products. 
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Figure 5. Global distribution of the test samples and grid used in this study, including (1) 59 grids for visual interpretation, (2) ZY-365 
3 reference set covering 23 cities, and (3) 5,385 building samples in the arid regions. The arid regions were extracted from “"dDeserts 

and xXeric sShrublands”" biome in Olson et al., (2001). The inner graph shows theed ISA density within the 0.5- km buffer for theof 

ISA test samples. 

 

 370 

Figure 6. Box plots of the overall accuracy for GISA-10m and existing datasets in the six continents. 
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4 Results 

4.1 Accuracy assessment of GISA-10m 

4.1.1 Global scale 

The accuracy assessment based on the visually -interpreted samples iswere shown in the Table 3. GISA-10m exhibitsed the 375 

highest OA of 86.06%, with representing an increase in OA of +2.73%, +3.73%, and +2.3%, respectively, overwith respect to 

GHSL 2018, GLCFCS, and WSF2015, respectively (Table 3). The k Kappa of GISA-10m iwas 0.7165, which exceedsed the 

WSF2015, FROM_GLC10, and GAIA by 0.052, 0.1774, and 0.2039, respectively. Alongside, GISA-10m also showsed a 

higher accuracy thanas to the 30- m resolution datasets (i.e., GISA, GAUD, GAIA), which suggestsed a better delineation of 

global ISA, due to theits higher resolution. Fig. 6 summarizesd the results of the accuracy assessment at the continent level, 380 

with the average and standard deviation of the OA for each continent shown in the box plots. In generalOverall, GISA-10m 

exhibits aed stable performance for each continent, with an average OA of more than 85%. Specifically, Oceania and South 

America obtained show the best OAs of 87.25% and 87.08%, followed by Europe (86.45%) and Asia (85.85%). The results 

also showed that the average OAoverall accuracy of GISA-10m exceeds that ofed the existing datasets in Africa, North 

America, and Europe. In addition, it was foundis apparent that the performance of GHSL 2018 and GLCFCS waiss relatively 385 

unstable in South America and North America, respectively. 

 

Table 3. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples between GISA-10m and the existing 

ISA datasets. OA represents the overall accuracy.  

Globale 

Visually interpreted samples (n = 10800)  ZY-3 samples (n = 68368) 

OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

  OA (%) Kappa F1-score 

of ISA (%) 

F1-score of  

NISA (%) 

GISA-10m 86.06 0.7165  83.65 88.55  86.25  0.6664  76.25  90.32  

GHSL 2018 83.33 0.6540  78.66 86.89  84.53  0.6401  75.27  88.74  

GLCFCS  82.33 0.6336  77.57 85.96  84.56  0.6280  73.68  89.08  

WSF2015 83.76 0.6645  79.68 87.06  85.44  0.6664  77.35  89.27  

FROM_GLC10  78.16 0.5391  69.65 83.39  83.66  0.6082  72.39  88.39  

GISA  78.84 0.5532  70.65 83.88  85.63  0.6627  76.65  89.63  

GAUD  77.36 0.5185  67.46 83.01  85.59  0.6549  75.70  89.76  

GAIA  77.05 0.5126  67.13 82.77  84.23  0.6381  75.39  88.40  

 390 

GISA-10m obtainsed the best OA of 86.25% on the ZY-3 samples, outperforming GHSL2018GHSL 2018, GLCFCS, and 

WSF2015, by 1.72%, 1.69%, and 0.81%, respectively. The ZY-3 images employed by Liu et al., (2019) covered 45 major 

global cities, and therefore the ZY-3 samples were more inclined to reflect the accuracy in urban regions. Therefore, the 

accuracy difference between the various datasets iwas not significant (Table 3). Due to the relatively coarser resolution, the 
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30- m datasets usually tended to overestimate the ISA extent (Gong et al., 2020b), resulting in a higher UA but lower PA 395 

(Table S1). For example, the ISA UA of GISA iwas slightly higher than that of GISA-10m, but its PA iwas much smaller than 

the latter (Table S1). However, when the two metrics (PA and UA) awere considered at the same time (i.e., the F1-sScore), 

GISA-10m outperformsed GISA. 

4.1.2 Rural, arid, and urban regions 

The population of rural regions is comparable to that of urban regions (https://data.worldbank.org/). The eExisting studies, as 400 

well as their global ISA datasets, have usually focused on the performance in urban regions, andbut the accuracy of the rural 

ISA regions has not been sufficiently assessed. Hence, in this study, we paid special attention to the accuracy assessment in 

the global rural regions. Specifically, we divided the GISA-10m into urban and rural regions using the urban boundary defined 

by Li et al., (2020). In fact, due to the random sampling strategy, most of the visually -interpreted test samples were located in 

rural regions.  405 

In the case of the visually -interpreted samples, GISA-10m exhibitsed a better OA of 86.19% thanagainst the GHSL2018GHSL 

2018 (84.92%), GLCFCS (83.25%), FROM_GLC10 (78.83%), and WSF2015 (83.81%). As regards the three 30-m datasets 

(i.e., GISA, GAIA, GAUD), their ISA accuracy (F1-score) decreasesd significantly in the rural regions, while the NISA 

accuracy iwas relatively stable (Tables 2–&3). TakingHaving a closer look at the PA, it is apparentone can notice that the ISA 

PA decreases by more than 15% for all the three 30-m datasets (Table S2), which suggests thated there areir more omission 410 

errors in the rural regions (Fig. 12b). This demonstratesed the deficiency of the 30-m datasets in depicting rural ISA, and also 

reflectsed the importance of 10-m global ISA mapping. 

 

Table 4. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples in rural regions between GISA-10m 

and the existing ISA datasets. OA represents the overall accuracy. 415 

Rural regions 

Visually interpreted samples (n = 9547)  ZY-3 samples (n = 43950) 

OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

  OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

GISA-10m 86.19  0.6794  77.96  90.48   90.85  0.4768  52.46  94.94  

GHSL 2018 84.92  0.6297  73.34  89.88   88.95  0.4656  52.82  93.74  

GLCFCS  83.25  0.5871  70.15  88.72   89.46  0.4261  48.33  94.13  

WSF2015 83.81  0.6012  71.17  89.12   89.37  0.4514  51.05  94.04  

FROM_GLC10  78.83  0.4485  57.08  86.24   88.59  0.3884  45.08  93.63  

GISA  77.87  0.4082  52.53  85.80   89.83  0.3954  44.66  94.40  

GAUD  76.38  0.3516  46.13  85.05   89.70  0.3199  36.35  94.40  

GAIA  75.41  0.3213  43.05  84.49   88.93  0.3611  41.85  93.88  
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 420 

Table 5. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples in arid regions between GISA-10m 

and the existing ISA datasets. OA represents the overall accuracy. 

Arid Region 

Visually interpreted samples (n=1020)  ZY-3 samples (n=10827) 

OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

  OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

GISA-10m 86.67  0.7358  86.05  88.22   89.64  0.7296  79.95  93.01  

GHSL 2018 86.57  0.7336  86.06  87.99   85.13  0.5817  67.68  90.34  

GLCFCS  82.16  0.6454  80.32  84.46   85.14  0.6232  72.45  89.82  

WSF2015 82.45  0.6516  80.95  84.56   88.37  0.6881  76.53  92.27  

FROM_GLC10  76.27  0.5271  70.97  80.59   84.06  0.5755  68.18  89.37  

GISA  80.20  0.6058  76.89  83.39   87.72  0.6795  76.23  91.72  

GAUD  77.06  0.5424  71.88  81.20   88.66  0.6894  76.37  92.54  

GAIA  77.45  0.5506  72.84  81.35   85.78  0.6317  72.79  90.37  

 

Furthermore, we also focused on the accuracy assessment in arid regions. In general, the OA of GISA-10m iwas higher than 

that of the existing datasets (Table 5). Although its ISA UA doesid not always outperform the other datasets, GISA-10m 425 

achievesd the highest PA among the existing ones (Table S3S4). Specifically, GISA-10m exhibitsed a notably higher ISA PA 

compared tothan GLCFCS, FROM_GLC10, GISA, GAUD, and GAIA (Table S3), indicating its better superior ability toof 

detecting ISA in arid regions (Fig. 7). Moreover, the accuracy of these global ISA products was assessed using theour manually 

and randomly chosen rural building samples (see Section 3.2). It can be found that GISA-10m detectsed 15% more buildings 

in arid regions with respect tothan FROM-GLC10, GAUD, and GAIA (Table S4S5), which again further verifiesd its 430 

bettersuperior performance in describing rural ISA. 

In the case of urban regions, GISA-10m exhibits aed satisfactory result, with an OAoverall accuracy similar to that of the 

global assessment (Table 6S4). Note that urban ISA only accounts for one-third of global ISA, while nearly 70% of ISA iwas 

located in suburban and rural regions. The eExisting datasets showed relatively more ISA omissions in rural andor arid regions, 

suggesting that global ISA mapping at a 10-m resolution (e.g., GISA-10m) is necessary. Moreover, we divided the visually -435 

interpreted samples located in cities into three levels (i.e., small, mediumiddle, and largebig cities) to assess the accuracy of 

GISA-10m over for cities ofwith different scales, i.e.,: Level 1 (population < 250,000), Level 2 (250,000 to 1,000,000), and 

Level 3 (>1,000,000) (Yang et al., 2019). It was found that Tthe OAoverall accuracy of GISA-10m across the three levels of 

cities iwas 85.35%, 87.43%, and 85.42%, respectively (Table S5S6). These results indicated that the performance of GISA-

10m in different scales of cities iwas stable, and was the results are also close to theits global assessment result (OA of 86.06%). 440 
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Table 6. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples in urban regions 445 

between GISA-10m and the existing ISA datasets. OA represents the overall accuracy. 

Urban Regions 

Visually interpreted samples (n=2253)  ZY-3 samples (n=24418) 

OA (%) Kappa F1-score of 

ISA (%) 

F1-score of  

NISA (%) 

  OA (%) Kappa F1-score 

of ISA (%) 

F1-score of  

NISA (%) 

GISA-10m 85.49  0.30  91.93  38.26   77.96  0.52  82.71  69.61  

GHSL 2018 76.61  0.20  86.02  31.41   76.56  0.47  82.38  64.99  

GLCFCS  78.43  0.18  87.51  27.96   75.75  0.48  80.98  66.55  

WSF2015 83.58  0.23  90.73  32.76   78.36  0.49  84.64  63.38  

FROM_GLC10  75.32  0.21  85.15  31.66   74.78  0.45  80.35  64.80  

GISA  82.96  0.24  90.41  33.15   78.09  0.49  84.25  63.98  

GAUD  81.49  0.22  89.49  31.06   78.20  0.50  84.07  65.48  

GAIA  84.02  0.20  91.07  29.57   75.77  0.41  83.30  55.83  
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Figure 7. Comparison of the GISA-10m and the other datasets over arid regions in: (a) Kabul, Afghanistan; (b) Mashhad, Iran; (c) 

Buraidah, Saudi Arabia; (d) Ashkhabad, Turkmenistan. The illustration is of Sentinel-2 images with a false-color combination (R: 450 
NIR, G: rRed, B: gGreen) to enhance the ISA. 
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4.2 Global ISA distribution 

4.2.1 Urban and rural ISA  

Based on the GISA-10m, we analyzed the global ISA distribution at a 10-m scale (Fig. S1). Global impervious surface areaISA 

iwas mainly distributed in Asia (41.43%), North America (20.59%), and Europe (18.93%), followed by Africa (9.78%) and 455 

South America (7.50%). It iwas found that 67% of global ISA iwas located in the Eastern Hemisphere, while 85% of ISA iwas 

distributed toin the north of the equator. Rural ISA iwas more scattered than urban ISA (Fig. S1), and ist was mainly located 

in Asia (42.84%), Europe (19.49%), and North America (16.51%). Asia embraced has the largest urban ISA, which is more 

than twice that ofas Europe. Although North America only accountsed for 20% of global ISA, its urban ISA takesook up more 

than 29% of the global total. Taking a closer look at the ratio of rural and urban ISA (Table 76), one can seeit can be seen that 460 

rural ISA iswere 2.2 times larger than the urban ISA. At the continental level, Africa possessesd the highest “"rural-to-urban 

ratio”", which may beis likely related to its large population but relatively poor economy. 

Table 76. Impervious surface area derived from GISA-10m in the six continents. 

ISA Europe Africa S. America Oceania N. America Asia Globale 

Total (105 km2) 1.88 (18.93%) 0.97 (9.78%) 0.75 (7.50%) 0.18 (1.76%) 2.05 (20.59%) 4.12 (41.43%) 9.94 (100%) 

Rural (105 km2) 1.33 (19.49%) 0.78 (11.43%) 0.55 (8.11%) 0.11 (1.62%) 1.13 (16.51%) 2.93 (42.84%) 6.84 (100%) 

Urban (105 km2) 0.55 (17.69%) 0.19 (6.16%) 0.19 (6.17%) 0.07 (2.07%) 0.92 (29.56%) 1.19 (38.35%) 3.10 (100%) 

Rural/uUrban 2.42  4.08  2.89  1.73  1.22  2.46  2.20  

 

At the country scale, China and the United States (US) embracedaccount for 33% of global ISA. Together with Russia, Brazil, 465 

India, Japan, Indonesia, France, Canada and Germany, these ten countries accounted for 58% of the world ISA. The urban ISA 

owned byof the top ten countries (US, China, Russia, Brazil, Japan, India, Mexico, France, Germany, and the United Kingdom) 

took makes up 69% of the global total, while the top ten countries in terms of rural ISA (China, US, Russia, Brazil, India, 

Indonesia, Japan, France, Canada, and Germany) accounted for only 54% of the total. In Africa, the Republic of South Africa 

hasd much more urban ISA than the other countries. However, Nigeria has ashowed comparable rural ISA to the South Africa 470 

(~7738 km2). China ranksed first in terms of rural ISA, most of which iwas located in the North China Plain (Fig. 9Bs3b). 

Indonesia also possessesd a lot of much rural ISA, since it ranksed sixth forin the rural ISA but its urban ISA only ranked 

sixteenth for urban ISA. 
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Figure 9. Urban and rural ISA at the country scale based on GISA-10m. 475 

 

 
Figure 109. Examples of road area derived from GISA-10m and OSM in the Toyama (Japan), Detroit (US), Chengdu (China), and 

Riyadh (Saudi Arabia). 
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4.2.2 Global road area 480 

Roads are major anthropic footprints, so we attempted to analyseanalyze the global road area based on GISA-10m, by courtesy 

of its high spatial resolution. Firstly, the road networks were extracted from the OSM database, and then, the ISA regions in 

the GISA 10-m data within a 10-m buffer of the road networks were identified as the road areas (Fig. 109). The rResults 

showed that 82.84% of the global road area iss located in Asia (30.74%), North America (27.17%), and Europe (24.92%), 

while the remaining 17.16% was owned byis found in South America (8.26%), Africa (7.47%), and Oceania (1.44%). Although 485 

Asia far exceedsed the other continents with regard toing ISA and rural road area, it possessesd lessa smaller urban road area 

than North America. China and the US haved the largest road area, together accounting for 29% of the global total, which were 

followed by Brazil, Japan, Russia, Germany, India, France, Indonesia, and Mexico. The top ten countries have owned more 

than half of the global road areas. The global road area accountsed for 14.18% of the global ISA, and the rural road area iwas 

1.5 times larger than the urban road area (Table 87). However, it should be noted that these estimates might be biased owing 490 

to the incompleteness of the OSM data. In addition, narrow roads might be partly detected or missed, due to the limitation of 

the spatial resolution. 

Table 87. Statistics for the road area derived from GISA-10m and OSM in the six continents. 

Road Europe Africa S. America Oceania N. America Asia Global 

Total (104 km2) 3.51 (24.92%) 1.05 (7.47%) 1.16 (8.26%) 0.20 (1.44%) 3.83 (27.17%) 4.34 (30.74%) 14.10 (100%) 

Rural (104 km2) 2.27 (26.88%) 0.71 (8.43%) 0.75 (8.88%) 0.11 (1.26%) 1.84 (21.73%) 2.77 (32.82%) 8.45 (100%) 

Urban (104 km2) 1.24 (21.99%) 0.34 (6.03%) 0.42 (7.34%) 0.10 (1.70%) 2.00 (35.29%) 1.56 (27.65%) 5.66 (100%) 

Rural/Urban 1.82  2.09  1.81  1.10  0.92  1.77  1.49  

5 Discussions 

5.1 Inter-comparison with the existing datasets  495 

To further validate the performance of GISA-10m, we compared it with a series ofthe existing state-of-the-art global datasets, 

including i.e., three 10-m resolution datasets (i.e. WSF2015, GHSL2018GHSL 2018, FROM_GLC10) and four 30-m 

resolution datasets (i.e. GLCFCS, GAUD, GAIA, and GISA). Their spatial agreements with GISA-10m wasere measured by 

the linear fit of the ISA fraction, including metrics such as the correlation coefficient and root- mean- square error (RMSE). 

Attention was also paid to their performance of the different productss in urban and rural regions, for a comprehensive 500 

assessment. Considering their differentce of spatial resolutions, the ISA fraction was calculated within the 0.05° spatial grid. 
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Figure 1110. Scatterplots of the urban and rural ISA fraction between GISA-10m with GHSL, WSF, FROM_GLC10, GLCFCS, 

GAUD, GAIA, and GISA, respectively. The ISA fraction was calculated within a 0.05° ×by 0.05° spatial grid. 505 

In general, GISA-10m exhibits aed high agreement (0.777 < R2 < 0.892) with these existing datasets over urban regions. In 

the case of GHSL 2018 and FROM_GLC10, their fitted lines with GISA-10m awere closer to the 1:1 line in the high fraction 

regions (Figs. 11a 10a and &c). As shown in the Fig. 1211, GHSL 2018 and GISA-10m awere generally similar in the dense 

urban areas (e.g., the urban cores in Fig. 1211), but GHSL 2018 tendsed to overestimate ISA in the low-density residential 

areas (Fig. 12c11c). The fitted lines for GLCFCS and WSF2015 awere above the diagonal (slope greater than 1 and intercept 510 

greater than 0) in both the high and low ISA fraction regions, possibly owing due to their overestimations. For instance, in the 

case of Cairo (Fig. 12b11b), WSF2015 showsed significant overestimation,s but the other datasets better depicted the 

residential areas. According to Marconcini et al., (2020), the overestimations of the WSF2015 may be related to the 

employment of the coefficient of variation (COV), which reducesd the omissions in the rural regions, but at the same time 

leads to overestimations of the ISA extent. The fitted lines for the three 30-m resolution datasets (i.e., GISA, GAIA, GAUD) 515 

awere all above the diagonal (Fig. 11e10e–-g), suggesting that they detected more urban ISA than GISA-10 m. However, in 

the 30-m resolution datasets, vegetation alongside roads or buildings iwas often identified as ISA, due to the issue of mixed 
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pixels (Gong et al., 2020b). From this perspective, the results of GISA-10m seem appear more reliable, due to its higher spatial 

resolution. For instance, in the case of Johannesburg and Los Angeles (Fig. 12c 11c and &d), GAIA and GAUD exhibited 

false alarms in both residential and industrial areas, but these errors awere significantly reduced in GISA-10m, due to the 520 

superiorbetter discriminativeon ability of the 10-m Sentinel data. 

 

Figure 1211. Comparison betweenof the GISA-10m and the seven datasets over urban regions in: (a) Suzhou, China; (b) Cairo, 

Egypt; (c) Johannesburg, South Africa; (d) Los Angeles, USthe United States. The Sentinel-2 images were composited in athe false-

color combination (R: NIR, G: rRed, B: gGreen). 525 
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On the other hand, the agreement between GISA-10m and the existing datasets iwas slightly lower in rural regions (0.5099 < 

R2 < 0.6525). The fitted slopes between the three 30-m datasets (i.e., GISA, GAIA, GAUD) and GISA-10m in the rural regions 

awere all less than one. This phenomenon can be attributed to the finer spatial resolution of GISA-10m, which detectsed more 

rural ISA than the 30-m datasets (Figs. 13b 12b and &d). As forto GLCFCS and WSF2015, they possessed more rural ISA 

than GISA-10m (Fig. 11i 10i and &k), which couldmay be attributed to their overestimations. For example, in Figs. 13a 12a 530 

and &c, GLCFCS and WSF2015 failed to identify the vegetation in the village. FROM_GLC10 seemed appears more 

consistent with GISA-10m (see the sample from theof US in, Fig. 13d12d), but it tendsed to underestimate the rural ISA (see 

Figs. 13a12a–-c). GHSL 2018 and GISA-10m showed high agreement in the rural regions. However, GHSL 2018 is aimed 

atto outlininge human settlements, while GISA-10m is focused on artificial ISA (including buildings, parking lots, roads).  
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 535 

Figure 1312. Comparison of thebetween GISA-10m and the seven datasets over rural regions in: (a) China (126.348044° E, 45.269079° 

N);, (b) Uzbekistan (60.573313° E, 41.461425° N);, (c) Côte d’'Ivoire (5.853317° W, 6.820244° N);, (d) the USnited States (90.210747° 

W, 39.950221° N). The illustration is of Sentinel-2 images with a false-color combination (R: NIR, G: rRed, B: gGreen) to enhance 

the ISA. 

The differences between GHSL 2018, WSF2015, and GISA-10m were further analysedanalyzed by taking Beijing and 540 

Washington as examples. In Fig. 1413, the overlapping parts between these datasets awere marked in different colors, and the 

regions where the three datasets all agreed awere shown in gray. In both examples, WSF2015 and GHSL2018GHSL 2018 
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tended to overestimate the ISA extent (Fig. 14b13b), and. tThey wrongly identifyied vegetation as ISA in the low-density 

residential areas (Fig. 14h13h). In particular, GHSL2018GHSL 2018 successfully detects theed roads in Beijing, but failsed 

in Washington (see the color of purple color in Fig. 1413). This may be related to the fact that GHSL2018GHSL 2018 usesd 545 

different sources of training samples in different regions (Corbane et al., 2021). Although WSF2015 generally obtainsed 

similar results towith GISA-10m, its detected roads may stem from the overestimation of building boundaries. For instance, 

WSF2015 ignoresd the airport runways in the example of Beijing (Fig. 14d13d). In the case of Washington, WSF2015 iwas 

less capable of delineating scattered buildings than GISA-10m and GHSL2018GHSL 2018 (Fig. 14f13f), possibly because it 

also incorporatesd the 30-m Landsat data in the ISA detection. It should be mentioned that GHSL2018GHSL 2018 estimatesd 550 

the probability of human settlement, and hence, different thresholds could yield different results. Small thresholds awere 

suitable for capturing scattered settlements, but could result in false alarms. In this study, we chose 0.2 as the threshold, as 

suggested by Corbane et al., (2021). 
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 555 

Figure 1413. IThe illustration of WSF2015, GHSL2018GHSL 2018, and GISA-10m in (i) Beijing and (ii) Washington. Regions where 

the three datasets all agreed awere shown in gray.  
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5.2 Importance of multi-source features 

In this studypaper, we proposeddeveloped a global ISA mapping method that incorporatesd spectral, SAR, and temporal 

information extracted from multi-source Sentinel data. To illustrate the importance of multi-source features in the global ISA 560 

mapping, we selected 30 hexagons in terms of the global urban ecoregions (Schneider et al., 2010). Urban ecoregions awere 

defined with reference to biomes, urban landscapes, and economic levels. In each ecoregion, we randomly selected two grid 

cellss, with atheir population of greater or less than 5 million, respectively (Fig. S1). The “"snow and ice”" ecoregion was not 

considered. Feature contribution estimated by the RF classifier was employed to analyze the relative importance of the multi-

source features (Pflugmacher et al., 2014). The dDifferent color schemes in Fig. 15 14 indicated the different types of features. 565 

For instance, the color of blue denotesd SAR features while the green representsed the spectral indices. The results indicated 

that the feature importance variesd in the different regions. For example, SAR features awere more effective in the temperate 

grassland of the Middle East and Asia (53N_75E and 50N_39E), while phenological features haved more influence in the 

deciduous forest of Siberia (65N_125E). In particular, SAR features played a more important role in the more populated 

regions, e.g., in the temperate forest of North America and Europe as well as the temperate grassland of the Middle East and 570 

Asia (Fig. 1514). 

 

Figure 1514. Relative importance ofof the  multi-source features in the 30 randomly selected grids located in different urban 

ecoregions. The labels on the right denote the grid ID and total population. The Dis, IDM, and ASM represents the dissimilarity, 

angular second moment, and inverse difference moment, respectively. 575 

It is worth noting that although high-rise ISA (e.g., buildings) tendsed to have higher radar backscatters, the importance of the 

SAR features iwas not always the highest. For example, in the hexagon of central US (45N_96W), the SAR features played a 
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less significant role than the  temporal metrics. In contrast, the spectral indices and phenological information awere more 

effective in this region. For example, as shown in Fig. S4 S5 (red squares), in the residential area, the buildings awere often 

surrounded by dense shrubs, which canmay shrinkreduce the double bounce scattering. Therefore, the spectral and 580 

phenological features have ad higher importance since they can better distinguish vegetation from non-vegetation. A similar 

situation occursred in a desert area (26N_45E), where the SAR features canould not distinguish ISA from NISA effectively, 

due to the complex topography of mountains. In this case, the spectral indices and textures awere more effective (Fig. 1514). 

However, SAR features awere still very important for global ISA mapping, especially for identifying rural buildings (Zhang 

et al., 2020). Therefore, in this study, we used multi-source features and hexagon-based adaptive RFrandom forest models to 585 

ensure that the most suitable features were chosen for the different regions. 

5.3 Impact of the training sample size and tree number 

Based on the afore-mentionedmentioned randomly selected 30 hexagons in different urban ecoregions, we investigated the 

relationship between the training sample size and the accuracy (Fig. S1). For each hexagon, we fixed the number of NISA 

samples to 30,000 and changed the number of ISARS and ISAOSM samples. Specifically, we first randomly selected 1,000 ISARS, 590 

1,000 ISAOSM , and 2,000 NISA samples from the candidate pool (see Section 3.1.1) as the test samples and used the remaining 

ones for the training. We randomly selected 50 ISARS and 50 ISAOSM samples as the initial training samples, and, subsequently, 

in an iterative manner, 400 ISARS and ISAOSM samples were randomly selected from the pool and added to the training samples 

to train the RF classifier. It can be observed that all the hexagons reached saturation with 2,500 ISARS and ISAOSM samples 

(Fig. S5S6). Therefore, in this research, we set the number of ISARS, ISAOSM, and NISA samples to 2,500, 2,500 and 30,000, 595 

respectively. 

We also analyzed the effect of the tree number on the accuracy of global ISA mapping, using the 30 afore-mentionedmentioned 

mapping grid cellss from global urban ecological regions. The results showed that the OAoverall accuracy iwas low and 

unstable whenile the number of trees iwas less than 20 (Fig. S6S7). As the number of trees increasesd, the mapping accuracy 

increasesd and then stabilizesd around 200 trees. Therefore, we used 200 trees for each RFrandom forest model in GISA-10m.  600 

5.4 Advantages of locally adaptive RF classification 

We used two hexagons located in China (CHN) and Saudi Arabia (SA) to demonstrate the advantages of the adaptive 

RFrandom forest classification. Although China and Saudi Arabia are both located in Asia, their urban landscapes and 

architecturale styles are significantly different, due to their differences in climate, environment, and culture. In this 

experimentsection, we migrated the training samples from one hexagon to classify the other one. For example, training samples 605 

collected in the SA wereas used to classify the hexagon of China. The accuracy of each hexagon was evaluated by the visually 

-interpreted samples inside it. It was found thatThe results show that the OA decreasesd by 34% when the SA samples arewas 

applied to CHN (written as SA-to-CHN). Similarly, the OA iwas substantially reduced by 23% by the transfer of CHN-to-SA. 

Furthermore, we found thatthe local samples always outperformed the migrated ones (see Table 9S7), which verifiesd the 
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necessity of locally and adaptive classification strategies in the global ISA mapping. FurthermoreBesides, athe locally adaptive 610 

model is more sensitive to the sample quality compared to thethan a global model (Radoux et al., 2014), which further showsed 

the necessity and effectiveness of the local classification strategy. 

Table 9. Results of quantitative accuracy assessment for China (CHN) and Saudi Arabia (SA) based on local and transferred samples. 

OA denotes the overall accuracy.  

 
Saudi Arabia  China 

OA (%) Kappa F1-score of 

ISA (%) 

F1-score of 

NISA (%) 

 OA (%) Kappa F1-score of 

ISA (%) 

F1-score of 

NISA (%) 

ISA_SA & NISA_SA 93.00 0.8599  92.39  93.95   79.50  0.5915  77.60  81.86  

ISA_SA & NISA_CN 53.00 0.7253  65.44  26.77   55.00  0.5233  4.35  70.59  

ISA_CN & NISA_SA 70.50 0.8396  53.23  78.55  48.00  0.6251  63.38  10.53  

ISA_CN & NISA_CN 50.50 0.0846  64.77  16.95   89.00  0.7778  86.90  91.30  

5.5 Influence of the sources of training samples 615 

In this section, the effects of the training sample sources, i.e., from the remote sensing dataset (ISARS) and the OSM database 

(ISAOSM), were investigated. Various combinations of the ISARS and ISAOSM training samples were tested at the global scale 

using the visually -interpreted samples from Section 3.2 (Table 10S8). In general, it can be found that using both sources 

yieldsed the most accurate results, which showsed the effectiveness and necessity of incorporatiincorporating on of training 

samples from both remote sensing and crowdsourceding OSM data. By further checking the UA and PA of ISA, one it can be 620 

seen that using both sample sources significantly improvesd the PA and reducesd the ISA omissions, since the combination of 

ISARS and ISAOSM strengthensed the diversity of the training samples. Similarly, it iswas also found that the multi-source 

samples significantly raised the PA of NISA and lowered its commission error.  

Table 10. Results of global accuracy assessment for ISARS and ISAOSM sample. OA denotes the overall accuracy, while PA and UA 

indicate the user's accuracy and the producer's accuracy, respectively. 625 

Source of training sample OA (%) Kappa F1-score of 

ISA (%) 

F1-score of 

NISA (%)  

UA of ISA 

(%) 

PA of ISA 

(%) 

UA of NISA 

(%) 

PA of NISA 

(%) 

NISA+ISARS+ISAOSM 86.06  0.7165  83.65  88.55  86.13  81.30  86.01  91.25  

NISA+ISARS 80.24  0.5871  73.85  84.63  88.16  63.54  76.73  94.35  

NISA+ISAOSM 82.99  0.6500  78.96  86.34  86.24  72.81  81.17  92.23  

Given that geographic bias in the spatial distribution of OSM data can may affect the mapping results (Zacharopoulou et al., 

2021), we applied temporal and spatial rules to mitigate the effect of the difference of the spatial distribution. In addition, a 

spectral rule was used to remove potential errors in the OSM-derived training samples (i.e., ISAOSM). In fact, more than 82% 

of the OSM ways are buildings and highways, whose total number exceeds 700 million (https://taginfo.openstreetmap.org/keys, 

last accessed: 20 June 2022). Therefore, OSM data provides a reference for large-scale ISA mapping, but haveit has rarely 630 

been employed in global ISA mapping. We calculated the OAoverall accuracy for the test grid cellss where the number of 

ISAOSM training samples wasere less than or larger than 2500 (i.e., the recommended size of training sample in Section 5.3). 
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The results showed that the accuracy of these regions iwas similar to the global accuracy (Table 11S9). This phenomenon 

demonstratesd the stable performance of GISA-10m. Moreover, global ISA mapping using only ISAOSM training samples 

shows aed relatively stable accuracy across the continents (Fig. S7S8), suggesting that the refined OSM buildings and roads 635 

can reduce the impact of their uneven spatial distribution. This can be attributed to the rule-based method we implemented that 

improved the reliability and spatial consistency of ISAOSM. In addition, the collaboration of ISAOSM improvesd the OAoverall 

accuracy of global ISA mapping by 3% (Table 10S8), indicating the feasibility of OSM data in enhancing the performance of 

global ISA mapping, after a seriest of refinements. Overall, although the spatial distribution of the OSM data is uneven, we 

tried to balance its spatial distribution through a series of rules, and incorporated multi-source geospatial data (e.g., satellite-640 

derived datasets) to reduce the impact of geographical bias on GISA-10m. 

Table 11. Results of quantitative accuracy assessment for test grids with the number of ISAOSM training samples less or 

more than the recommended size. OA represents the overall accuracy. 

Type of test grids OA (%) Kappa F1-score of ISA (%) F1-score of NISA (%) 

#ISAOSM  < 2500 85.61 0.7021 81.79 89.01 

#ISAOSM  > 2500 86.23 0.7218 84.32 88.35 

All of the above 86.06 0.7165  83.65 88.55 

6 Data availability 

The GISA-10m datasetproduct generated in this study is available in the public domain at 645 

http://doi.org/10.5281/zenodo.5791855 (Huang et al, 2021). The Sentinel data were acquired from the GEE (available at 

code.earthengine.google.com, last accessed: 6 August 6, 2021). The GHSL data wereas provided by the Joint Research Centre 

at the European Commission (available at https://ghsl.jrc.ec.europa.eu/datasets.php, last accessed: 19 December 19, 2021). 

WSF was provided by the German Aerospace Center (https://doi.org/10.6084/m9.figshare.c.4712852, Marconcini et al., 

2020).The GlobeLand30 and GAUD were downloaded from the websites of the National Geomatics Center of China (available 650 

at http://www.globallandcover.com/, last accessed: 6 August 6, 2021) and Sun Yat-sen University (available at 

https://doi.org/10.6084/m9.figshare.11513178.v1, Liu et al., 2020b). The FROM_GLC10, global urban boundaries, and GAIA 

were assessed from theprovided by Tsinghua University (available at http://data.ess.tsinghua.edu.cn, last accessed: 6 August 

6, 2021). The GISA was provided by the Institute of Remote Sensing Information Processing at Wuhan University (available 

at https://zenodo.org/record/5136330, Huang et al., 2021a). The GLCFCS was provided by the Aerospace Information 655 

Research Institute at the Chinese Academy of Sciences (available at https://zenodo.org/record/4280923, Zhang et al., 2021). 

The Pplanet files were download from the website of OpenStreetMap website (available at https://planet.openstreetmap.org, 

last accessed: 19 December 19, 2021). 
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7 Conclusion 

In this study, we proposed a global ISA mapping method and produced athe 10-m global ISA dataset (GISA-10m). To the best 660 

of our knowledge, this is the first global 10-m resolution ISA datasetmap based on SentienlSentinel-1 and 2 data. To this end, 

a global training sample generation method was proposed introduced based on a series of temporal, spatial, spectral, and 

geometrical rules, and 58 million training samples were generated from the existing global ISA datasets and the social 

sensingVGI data (i.e., OSM). On the basis of the 2.7 million Sentinel images available oin the GEE platformoogle Earth Engine 

(GEE), multi-source features were constructed, including spectral, texturale, SAR, and temporal metrics. The global terrestrial 665 

surface was divided with hexagons, and the results were obtained by a series of RF classifiers. In particular, the mapping was 

conducted adaptively for each hexagon, by considering the difficulty and diversity for the global ISA detection. The OAoverall 

accuracy of GISA-10m exceeded 86%, based on a set of independent test samples. The inter-comparison between the different 

global ISA datasets showed confirmed the superiority of theour results obtained in this study. Based on the GISA-10m dataset, 

the ISA distribution at the global, continental, and country levels was discussed investigated and compared. In addition, the 670 

global ISA distribution was compared between rural and urban areas. In particular, for the first time, by courtesy of the high 

spatial resolution, the global road ISA was further identified and its distribution was discussed.  

The GISA-10m dataset couldan be used for global climate change studies and urban planning. TheOur proposed rule-based 

sample generation method couldan also be applied for the global mapping of other land- cover categories. For example, the 

millions of cropland and forest tags in the OSM database couldan facilitate global high-resolution cropland and forest mapping. 675 

The ISA mapping method via multi-source geospatial data presented in this paper couldan also be improved by incorporating 

additional data sources, such as building footprints from Microsoft and Facebook (Corbane et al., 2021). In the future, we plan 

to extend the temporal coverage of GISA-10m and reveal the global ISA dynamics at the 10-m resolution.  
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