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Abstract. Artificial impervious surface area (ISA) documents human footprints. Accurate, timely, and detailed ISA datasets 

are therefore essential for global climate change and urban planning. However, due to the lack of sufficient training samples 

and operational mapping methods, global ISA mapping datasets at 10-m resolution is still lacking. To this end, we proposed 10 

a global ISA mapping method leveraging multi-source geospatial data. Based on the existing satellite-derived ISA maps and 

the crowdsourcing OpenStreetMap (OSM), 58 million training samples were extracted via a series of temporal, spatial, 

spectral, and geometric rules. Combined with over 2.7 million Sentinel optical and radar images on the Google Earth Engine, 

we produced the 10 m global ISA dataset (GISA-10m). Based on the test samples that are independent to the training set, 

GISA-10m embraced an overall accuracy greater than 86%. In addition, the GISA-10m was comprehensively compared with 15 

the existing global ISA datasets, and the superiority of GISA-10m was demonstrated. The global road area was further 

discussed by courtesy of this 10-m dataset. It was found that China and the United States embraced the largest ISA and road 

area. The global rural ISA was 2.2 times that of urban while rural road area was 1.5 times larger than that of urban region. 

The global road area accounted for 14.2% of the global ISA, 57.9% of which was located in the top ten countries. Generally, 

the produced GISA-10m dataset and the proposed sampling and mapping method are able to achieve rapid and efficient 20 

global mapping, and have potential for detecting other land covers. It was also indicated that global ISA mapping can be 

improved by incorporating refined OSM data. GISA-10m can be used as a fundamental parameter for Earth system science, 

and provide valuable support for urban planning and water cycle study. The GSIA-10m can be freely downloaded from 

http://doi.org/10.5281/zenodo.5791855 (Huang et al, 2021). 

1 Introduction 25 

The land dominated by humans has expanded rapidly over the past decades (Friedl et al., 2010; Goldewijk, 2001), resulting 

in a large amount of terrestrial surface covered by impervious surface area (ISA) (Gong et al., 2020a). ISA is mainly 

composed of artificial materials, such as gravel, glass, asphalt, and metals (Tian et al., 2018). ISA prevents or decelerates 

water infiltration while blocks evapotranspiration, which affects the terrestrial water cycle and thermal environment (Qin et 

al., 2018; Yang et al., 2019). With more attention attracted to the impact of urban sprawl on the global climate environment 30 
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(United Nations, 2016, 2018), the global monitoring of ISA would depict the anthropic implications on the water cycle, land 

cover, biodiversity (Leng et al., 2015; Li et al., 2020a; Qin et al., 2017). In addition, ISA morphology is also an important 

parameter for urban planning, socio-economics and population studies (Voss, 2007). In summary, accurate and timely 

monitoring of global ISA dynamics is valuable for urban habitability (Herold et al., 2006), sustainable development (Dewan 

and Yamaguchi, 2009), and terrestrial ecosystem services (Goetz et al., 2003). 35 

The global ISA monitoring via satellite remote sensing data has long been recognized. Early efforts usually focused on 

global ISA mapping using coarse-resolution data, e.g., DMSP (Defense Meteorological Satellite Program) and MODIS 

(Moderate Resolution Imaging Spectroradiometer) data (Friedl et al., 2010; Huang et al., 2021b; Small et al., 2005). With the 

free availability of Landsat data and advances in geospatial cloud platforms (e.g. Google Earth Engine, GEE), recent studies 

have focused on global annual ISA mapping at 30 m (Gong et al., 2020b; Gorelick et al., 2017; Liu et al., 2020c; Woodcock 40 

et al., 2008). For instance, Huang et al., (2021b) generated the global annual ISA dataset GISA (Global Impervious Surface 

Area) from 1972 to 2019 using over three million Landsat data. Although efforts have been paid to the global ISA 

monitoring, few studies focused on global ISA mapping at 10-m resolution. Recently, Corbane et al., (2021) generated the 

Global Human Settlement Layer (GHSL2018) using Sentinel-2 composites and convolutional neural networks. However, 

GHSL2018 focused more on human settlements and lacks depiction of ISA such as transportation facilities. In addition to 45 

these thematic datasets, ISA was also documented in land cover products. For example, Gong et al., (2019) obtained a land 

cover map FROM_GLC10 (10-m Finer Resolution Observation and Monitoring of Global Land Cover) for 2017 using 

Sentinel-2 images. However, the accuracy of ISA in the land cover datasets may not sufficient to meet the needs of global 

climate change studies and urban planning (Gong et al., 2020b). Therefore, the 10 m global ISA thematic datasets are in 

urgent need to support various fine-scale applications. 50 

Synthetic Aperture Radar (SAR) performs well in the case of ISA mapping due to its clear response to high-rise buildings 

and ability to penetrate clouds (e.g. Sentinel 1) (Zhang et al., 2014). SAR data is potential for reducing the common false 

alarms derived from the optical images, such as bare soil, but it can be affected by complex terrain and shadows. Therefore, 

existing literatures have invested the collaboration of radar and optical data to improve ISA mapping. For example, Zhang et 

al., (2020) combined Landsat-8 and Sentinel-1 data to produce a 30 m global ISA dataset (Global Land Cover Fine 55 

Classification System, GLCFCS). Similarly, Marconcini et al., (2020) used Landsat-8 and Sentinel-1 data to outline the 

world settlement footprint (World Settlement Footprint, WSF) based on support vector machine classifier. Although the 

current studies have demonstrated the effectiveness of combining multi-source (e.g. radar and optical) remote sensing data 

for ISA mapping, they usually focus on regional or national scales (Ji et al., 2020; Lin et al., 2020). In addition, combining 

data with different resolutions for ISA mapping may increase the uncertainty of results. In particular, both Zhang et al., 60 

(2020) and Marconcini et al., (2020) generated global ISA (or settlement) datasets by using Landsat-8 and Sentinel-1 data, 

but their resolutions were different, 30 m and 10 m, respectively (Table 1). Generally, 10-m global ISA mapping based on 

the multi-source remote sensing data (e.g. Sentinel-1 and 2) have been insufficiently investigated in the current literature 

(Table 1). 
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Table 1. The existing global ISA datasets. 

Name and abbreviation Data and time 
span 

Nominal 
resolution 

Source of training 
sample 

Classification method and 
strategy 

Type 
Definition 

Global Impervious Surface Area 
30 m, GISA (Huang et al., 
2021a) 

Landsat;  
1972—2019 

30 m MODIS land cover, 
Climate Change Initiative 
land cover, GHSL, 
FROM_GLC 

Random forest classifiers 
via hexagonal partition 

Artificial 
impervious 
surface 

Global Artificial Impervious 
Area, GAIA (Gong et al., 2020b) 

Landsat;  
1985—2018 

30 m Visual interpretation An exclusion-Inclusion 
approach via 3.5° grid 

Artificial 
impervious 
area 

Global Annual Urban 
Dynamics, GAUD (Liu et al., 
2020c) 

Landsat;  
1985—2015 

30 m GAIA, GHSL, Global 
Urban Land, Global 
Urban Footprint 

Random forest classifiers 
via 1° grid; temporal 
segmentation 

Urban extent 

Global Human Settlement 
Layer, GHSL2018 (Corbane et 
al., 2021) 

Sentinel-2;  
2018 

10 m Microsoft building 
footprint, Facebook 
settlement, European 
settlement map, GHSL 

Convolutional neural 
network models within 
Universal Transverse 
Mercator zones 

Human 
settlement 

Finer Resolution Observation 
and Monitoring of Global Land 
Cover, FROM_GLC 10 (Gong et 
al., 2019) 

Sentinel-2;  
2017 

10 m Visual interpretation Random forest classifiers Impervious 
surface 

World Settlement Footprint, 
WSF2015 (Marconcini et al., 
2020) 

Landsat-8, 
Sentinel-1; 
2015 

10 m Thresholding for spectral 
index, radar and slope data 

SVM classifiers via 1° grid Human 
settlement 

Global Land Cover with Fine 
Classification System, GLCFCS 
(Zhang et al., 2020) 

Landsat-8, 
Sentinel-1; 
2015 

30 m GlobeLand30 Random forest classifiers 
via 5° grid 

Impervious 
surface 

Global Impervious Surface Area 
10 m, GISA-10m (this study) 

Sentinel-1, 
Sentinel-2; 
2016 

10 m GISA, OSM 
GlobeLand30, 
FROM_GLC10  

Random forest classifiers 
via hexagonal partition 

Artificial 
impervious 
surface 

From the perspective of global ISA mapping method, supervised classification has been widely employed (Table 1). The 

quality of training samples is the major factor affecting the classification results (Foody, 2009). Visual interpretation and 

automatic extraction from existing datasets are two common methods to generate training samples. Visually-interpreted 

samples are usually accurate but labour-intensive. Therefore, it is often used for classifications at regional scale (Yang et al., 70 

2020). On the other hand, samples generated from existing datasets have been proved to be efficient for global ISA mapping 

in recent years (Marconcini et al., 2020; Zhang et al., 2020). In fact, ISA samples are diverse, as their response to different 

sensors varies with materials, geometry, atmospheric conditions, and viewing angles. Therefore, accurate and sufficient 

samples are required to address the above issue for the purpose of consistent ISA mapping at the global scale. Given the 

higher spatial resolution (10 m) of the Sentinel satellites, it remains challenging to obtain high-quality and adequate training 75 

samples for 10-m global ISA mapping. 

In general, due to the difficulty of collecting training samples and the limitation of computational and storage capacity to 

deal with the massive data, efficient methods and accurate datasets regarding 10 m global ISA mapping are lacking. 

Therefore, in this study, we proposed a global ISA mapping method that leverages multi-source geospatial data to mapping 
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10-m global impervious surface area (GISA-10m). To our knowledge, this was the first global 10 m ISA mapping based on 80 

Sentienl-1 and 2 data. Specifically, combining the multi-source remote sensing and the crowdsourcing OpenStreetMap data, 

we proposed a sample generation method involving a series of temporal, spatial, spectral, and geometric rules to collect 

training samples with global coverage. Besides, an adaptive hexagonal partition strategy was used for multi-source feature 

extraction and classification. Finally, the accuracy of GISA-10m was assessed by three independent sample sets. Meanwhile, 

we compared the GISA-10m with existing datasets to better reflect its quality, and the ISA distribution in the global urban 85 

and rural regions was analysed. In particular, the global road ISA was further extracted and discussed. Ablation experiments 

were further conducted to demonstrate the feasibility of OSM data in global ISA mapping. 

2 Data 

2.1 Remote sensing data 

Sentinel-2 optical and Sentinel-1 SAR data were used in the GISA-10m mapping. Sentinel-2 is a high-resolution 90 

multispectral imaging mission operating by European Space Agency (ESA) Copernicus program. The first Sentinel-2 

satellite (Sentinel-2A) has been acquiring high-resolution Earth observation data since June 2015, consisting mainly of four 

10-m resolution visible and near-infrared bands, six 20-m resolution red-edge and shortwave infrared bands, and three 60-m 

bands (Drusch et al., 2012; Zhang et al., 2018). After tested and adjusted, complete global coverage was obtained for 

Sentinel-2 satellite in 2016 (Fig. S2). Therefore, we used all available Level-1C top of atmosphere (TOA) reflectance data 95 

acquired in 2016 for our 10-m ISA mapping. The systematic radiometric calibration, geometric and terrain correction have 

been performed for the Level-1C TOA data by the ESA. Clouds and shadows were removed via the quality band to obtain 

cloud-free pixels. 

Sentinel-1A was launched on April 2014, carrying a C-band synthetic aperture radar. After the launch of Sentinel-1B in 2016, 

two satellites had a return visit period of six days at the equator. We used all available Ground Range Detected (GRD) 100 

images acquired under Interferometric Wide (IW) mode, with a spatial resolution of 10 m. The boundary noise removal, 

thermal noise removal, radiometric calibration and terrain correction has been conducted by the GEE with the same 

processing as Sentinel-1 Toolbox. Sentinel-1 data in both ascending and descending orbit were considered. For the places 

where two orbits were available, only the descending data was used to avoid the terrain distortion caused by the combination 

of two orbits (Veloso et al., 2017). In total, over 2.7 million Sentinel images were used to cover the global terrestrial surface 105 

(Fig. S2). 

2.2 Volunteered geographic information 

Volunteered geographic information (VGI) is the geographic information that was created, edited and updated by volunteers 

(Goodchild, 2007). The well-known VGI project, OpenStreetMap (OSM), provides online maps that can be edited and used 

by everyone. Since its launch in 2004, OSM has been updated and maintained by seven million volunteers (Haklay and 110 
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Weber, 2008). OSM has been used for positioning and navigation, urban modelling, and land cover mapping (Fonte et al., 

2020; Goetz, 2013; Tian et al., 2019). In fact, over 600 million buildings and roads were tagged in the OSM data 

(https://taginfo.openstreetmap.org/keys, last access: 17 Aug 2021). These data should be important reference for ISA 

mapping, but unfortunately, in the current literature, they have seldom been used for ISA mapping at the global scale. 

Therefore, we used OSM data as a source of the training samples for the GISA-10m mapping. Specifically, we extracted the 115 

buildings and road networks as potential training samples from the OSM planet data built on January 2, 20171. 

2.3 Existing ISA datasets 

We intercompared GISA-10m with existing datasets, including GISA, GAIA, GAUD, WSF2015, FROM_GLC10, GLCFCS, 

GHSL2018 (Table 1). GISA, GAIA and GAUD are Landsat-derived annual global ISA datasets for the time periods 1972-

2019, 1985-2018 and 1985-2015, respectively (Gong et al., 2020b; Huang et al., 2021a; Liu et al., 2020c). GHSL2018 is a 120 

global settlement layer based on Sentinel-2 composite, where convolutional neural network was used to estimate the 

settlement probability (Corbane et al., 2021).WSF2015 and GLCFCS are global ISA datasets based on Landsat-8Landsat 8 

and Sentienl-1 data. WSF2015 collected samples based on a set of spectral and topographic rules, and GLCFCS derived 

samples from GlobeLand30 (Marconcini et al., 2020; Zhang et al., 2020). Gong et al., (2019) generated the 10-m global land 

cover product FROM_GLC10 using Sentinel-2 data and the random forest classifier. It should be noted that these datasets 125 

were different for the definitions of land cover categories and mapping purposes. For instance, GHSL2018 and WSF2015 

focused on human settlements, while GAUD delineated urban extent (Table 1). In this study, GISA-10m monitored 

impervious surface area (ISA) generated by human activities, including all kinds of human settlements, transportation 

facilities, industries and mining places, by courtesy of the employment of high spatial resolution satellite data. Therefore, 

artificial impervious surface and human settlements were treated as ISA in this paper. 130 

                                                           
1 https://planet.openstreetmap.org/planet/2017/planet-170102.osm.bz2, last access: 13 Mar 2021 
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Figure 1. The flowchart for GISA-10m mapping. 

3 Methodology 

The main objectives of this study were to: 1) investigate the 10m global ISA mapping (GISA-10m) by combining Sentinel-1 135 

and -2 images with other geographic information; and 2) analyse the distribution of urban and rural ISA at 10-m resolution. 

The flowchart for GISA-10m mapping was shown in Fig. 1, including training sample generation, multi-source feature 

construction, random forest classification, accuracy validation and dataset comparison. Based on satellite-derived ISA maps 

and VGI (i.e. OpenStreetMap), we proposed a rule-based approach to automatically generate global training samples. Using 
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more than 2.7 million Sentinel images on the GEE, multi-source features were then constructed and fed to random forest 140 

classifier to obtain the result. The accuracy of GISA-10m was assessed by visually-interpreted and the third-party samples. 

To better evaluate the performance of GISA-10m, we compared it with the current state-of-the-art global ISA datasets (Table 

1). Finally, the distribution of ISA over urban and rural regions was analysed. 

3.1 Global ISA mapping using multi-source geospatial data 

3.1.1 Sample collection 145 

In the case of large-scale supervised classification, both the quantity and quality of samples are important (Foody and Arora, 

1997). ISA is a highly variable object, and its attributes in the Sentinel-2 multispectral images are related to materials, 

viewing angles, and atmospheric conditions, while its response to the Sentinel-1 SAR depends on dielectric properties, 

geometry, and surface roughness. Hence, a large number of training samples were required to address the aforementioned 

challenges that would be encountered at the global scale. Training samples were usually acquired by means of visual 150 

interpretation or automatic extraction from existing datasets. The visual interpretation methods were labour and time 

intensive, even for small regions. Therefore, at a large scale, training samples were usually extracted from existing datasets 

with similar temporal and spatial coverage. However, the sample quality was affected by the quality of the datasets used 

(Jokar Arsanjani et al., 2016; Wessels et al., 2016). Theoretically, samples extracted from single dataset may result in more 

errors and uncertainties, while multi-source datasetsmultiple sources can improve the reliability of training samples (Huang 155 

and Zhang, 2013). We thus proposed to collect global training samples by incorporating existing ISA datasets and 

crowdsourcing OSM. To concisely distinguish the two types of ISA samples, we named the ISA sample extracted from the 

existing satellite-derived ISA dataset as ISARS and those extracted from the OSM as ISAOSM. 

The existing ISA datasets generally covered broad terrestrial surface, but they were different in term of definitions, spatial 

resolutions, and temporal coverage. In this study, GISA, FROM_GLC10, and GlobeLand30 were chosen to extract training 160 

samples due to the following reasons: 1) GISA aimed at mapping global impervious surface area, which was consistent with 

GISA-10m; 2) GlobeLand30 employed extensive visual interpretation to detect artificial surfaces, which can effectively 

reduce false alarms from other datasets, i.e., GISA and FROM_GLC10 (Chen et al., 2015); 3) The definition of 

FROM_GLC10 (impervious surface) was also consistent with GISA-10m and its spatial resolution was 10 m. GHSL2018, 

WSF2015 and GAUD were not considered since they aimed to outline human settlements or urban extents (Table 1). We 165 

then collected the eligible training samples according to the following rules.  

(1) Temporal rule: GISA was a global ISA dataset during 1972–2019, and we selected its result of 2016 to match the time 

when Sentinel data was used in this research. GlobeLand30 documented global land cover map for 2000, 2010 and 2020, and 

here, the 2010 map was chosen. Although the 2020 map was more recent to 2016, it contained ISA that was built after 2016, 

making it unsuitable for GISA-10m mapping. Although there is a six-year gap between GlobeLand30 and other datasets (i.e., 170 

GISA and FROM_GLC10). We adopted the commonly used assumption that the transition from ISA to NISA rarely 
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happened (Gong et al., 2020b; Huang et al., 2021a, 2022; Li and Gong, 2016), so that GlobeLand30 in 2010 can be used for 

GISA-10m mapping. The following spatial and spectral rules were used to remove the possible errors. 

(2) Spatial rule: We first checked the class labels of the three datasets at each pixel. If these labels were the same (i.e. ISA), 

the pixel was taken as a potential ISARS sample. The collaboration of multiple datasets can effectively reduce the errors that 175 

existed in a single dataset. In addition, we filtered out the edge pixels in each dataset to reduce the uncertainty, since they 

were more likely to be mixed pixels.  Edge pixels were defined as the outermost pixels of each ISA patch. We removed the 

edge pixels in each data set, and then selected their ISA intersection as potential training samples. In this way, errors 

contained in non-edge pixels in the 30-m data (e.g., mixed pixels) can be removed by the edge pixels in the 10-m data. 

(3) Spectral rule: After the above steps, there may still be a small amount of errors in the current samples. Hence, we applied 180 

the spectral rule to remove these erroneous samples. Specifically, we measured the mahalanobis distance between each 

ISARS sample to the spectral average of each hexagon (the mapping unit adopted in this study), and filtered out the samples 

with distance greater than μ + δ (μ and δ represents the mean and standard deviation, respectively) (Huang et al., 2021a). 

Vegetation and water bodies were common false alarms in existing datasets (Figs. 2a&b). However, these errors often 

accounted for a relatively small proportion, and they can be effectively identified and reduced by the spectral rule. It can be 185 

seen that most of the water bodies and vegetation (e.g. red rectangles in Fig. 2) were successfully removed from the initial 

ISARS training samples.  

 

Figure 2. The example of initial and filtered ISARS training samples in Wuhan city (30.625382° N, 114.392682° E). The purple in 
the close-up maps represents the samples. 190 

On the other hand, we extracted ISAOSM samples from OSM buildings and roads through the following rules. 
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(1) Temporal rule: We chose the OSM data built on 2 January, 2017 in terms of the time of GISA-10m. This version of OSM 

data was employed to ensure that buildings and roads were constructed in 2016 or before, and hence, it was suitable for 2016 

ISA mapping. 

(2) Geometric rule: A natural way to extract training points from OSM was to generate random points within the building or 195 

road polygons (Johnson and Iizuka, 2016; Liu et al., 2020a). However, random points may contain erroneous or mixed pixels. 

Such problems can be mitigated by making negative buffers to the polygons (Liu et al., 2020a). However, this approach was 

very time-consuming when applied to global ISA mapping, especially given more than 200 million buildings in the OSM 

data. Therefore, in this study, we extracted the geometric center of a building polygon as an ISAOSM sample, which was more 

efficient than buffering and random points. Notably, although we can filter out the erroneous buildings using attribute tags 200 

(e.g. dams, swimming pools, playgrounds), the geometric center of a building was not always an ISA sample. Hence, we 

further required that the geometric center must be contained by the building. As in Figs. 3a&b, the incorrect building 

geometric centers (e.g., the vegetation and water, indicated by the yellow points) were successfully identified and removed 

by the geometric rule. In addition, we excluded buildings with area less than 100 m2 (~ a Sentinel pixel) to ensure the 

reliability of the sample. Because the training sample extracted from the geometric center may be NISA, when the area of a 205 

building is smaller than a Sentinel pixel.  

Compared with the widely used 30-m Landsat data, the high-resolution Sentinel data promotes a better delineation of roads. 

We thereby also extracted ISAOSM samples from the OSM road networks. The OSM roads usually consisted of centerlines 

rather than boundaries. Therefore, we extracted the center point of each road rather than its geometric center, as the road ISA 

samples. Given that the width of low-grade roads may be smaller than 10 m (a Sentinel pixel), we kept only the main roads 210 

(highway="primary"). 
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Figure 3. Examples of initial and filtered ISAOSM training samples in Wuhan city (30.530202° N, 114.356287° E). The yellow points 
in the close-up maps represent the errors recognized by (a-b) geometric and (c-d) spectral rules.  

(3) Spatial rule: Given the uneven spatial distribution of OSM data (Tian et al., 2019), we then applied the spatial rule to 215 

balance its distribution at the global scale. Specifically, for hexagons with more than 10,000 OSM records (i.e. buildings and 

roads), we randomly selected 10,000 records as initial samples. The dilution of OSM data can significantly reduce 

subsequent computational cost. In addition, considering that ISAOSM could overlie with ISARS, we removed the ISAOSM 

samples that were intersected with ISARS. In the field of supervised classification, the diversity of samples was important for 

the generalization ability of the classification model (Huang and Zhang, 2013). Considering that ISAOSM could overlie with 220 

ISARS, we removed the ISAOSM samples intersected with ISARS sample pool to increase the diversity and reduce the 

redundancy of the ISA samples. 

(4) Spectral rule: Although OSM uses human as sensors, ISAOSM samples may still contain erroneous points, such as 

vegetation and water body beside roads. As shown in Figs. 3c&d, the yellow points satisfied the temporal, spatial and 

geometric rules, but they were actually vegetation. Hence, we applied the spectral rule to filter them out. Specifically, the 225 

ISAOSM samples whose MNDWI (modified normalized difference water index) or NDVI (normalized difference vegetation 

index) values larger than μ+δ were removed (μ and δ represent the mean and standard deviation of the indices, respectively), 

as these points were more likely to be vegetation or water body (Huang et al., 2021a). 

After obtaining the ISA candidate samples, we randomly selected 2,500 ISARS and ISAOSM, respectively, within each 

hexagon as the final ISA training samples (see Section 5.3 for details). It can be seen that our generated ISA samples covered 230 

broad terrestrial surface, especially in India and China where a large number of small villages gather (Fig. 4). 

 

Figure 4. Global distribution of ISA training samples. The number of samples was counted within 0.5º spatial grid. 
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On the other hand, NISA (non-ISA) training samples were also important for accurate ISA mapping. We used the three 

existing datasets (i.e. GISA 30m, FROM_GLC10, GlobeLand30) and OSM to generate the NISA samples. Firstly, we took 235 

the intersect of the NISA regions in the three datasets as the initial NISA sample pool: 

𝑁𝐼𝑆𝐴 𝑁𝐼𝑆𝐴 ∩ 𝑁𝐼𝑆𝐴 ∩ 𝑁𝐼𝑆𝐴 _ 𝐼𝑆𝐴                                                                                        (1) 

For GlebeLand30 and FROM_GLC10, NISA was defined as all land cover type other than ISA. We then masked the initial 

NISA sample pool using OSM buildings and roads to suppress the errors in the existing global dataset. To this end, here we 

used the OSM version built in December 20202, which documented more buildings and road networks than the 2017 version. 240 

Besides, we buffered the OSM roads with 30 m to better mitigate the errors. Subsequently, 30,000 points were randomly 

selected in each hexagon as NISA samples. The distance between each NISA sample was kept larger than 200 m to ensure 

its diversity and irrelevance. Finally, we extracted 58 million training samples (51,674,533 NISA and 6,897,378 ISA samples) 

for GISA-10m mapping.  

Table 2. The multi-source features used for GISA-10m mapping. 245 

Type Features Description Dimension Source 

Spectrum Blue, green, red, red edge1, red edge2, 
red edge3, NIR, red edge4, SWIR1 and 
SWIR2 

50th percentile value of reflectance derived from all 
available Sentinel-2 images 

10 Sentinel-2  

Normalized 
indices 

Index1, Index2, Index3, Index4, Index5, 
Index6, Index7, Index8, Index9, Index10, 
Index11, Index12, Index13, Index14, 
Index15 

Normalized indices derived from the spectral bands 
descripted above. The indices are calculated as: 
Index1=NI (NIR, blue), Index2=NI (NIR, green),  

Index3=NI (NIR, red), Index4=NI (NIR, red edge1),  

Index5=NI (NIR, red edge2), Index6=NI (NIR, red edge3), 

Index7=NI (NIR, red edge4), Index8=NI (SWIR1, blue), 

Index9=NI (SWIR1, green), Index10=NI (SWIR1, red),  

Index11=NI (SWIR1, NIR), Index12=NI (SWIR2, blue),  

Index13=NI (SWIR2, green), Index14=NI (SWIR2, red), 

Index15=NI (SWIR2, NIR),  

where NI represents the function (b1- b2) / (b1+ b2), b1 
and b2 denote two spectral bands 

15 Sentinel-2 

SAR VV, VH Temporal mean VV and VH backscatter coefficients of 
Sentinel-1 images 

2 Sentinel-1 

Temporal 
statistics 

NDVI_Std, MNDWI_Std, NDBI_Std, 
NDVIMax, VV_Std, VH_Std 

Standard deviation of NDVI, MNDWI, NDBI, VV and 
VH backscatter coefficients; Maximum NDIV of the 
year 

5 Sentinel-1& 
Sentinel-2 

Texture Contrast, dissimilarity, entropy, IDM, 
ASM 

The GLCM texture derived from NIR band of Sentinel-2 
data, including entropy, dissimilarity, contrast, angular 
second moment (ASM) and inverse difference moment 
(IDM) 

5 Sentinel-2 

Topography Elevation, slope and aspect Slope and aspect calculated from the elevation 3 SRTM & 
GMTED 

                                                           
2 https://planet.openstreetmap.org/planet/2020/planet-201207.osm.bz2, last access: 13 Mar 2021 
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3.1.2 Multi-source feature extraction 

The dedicated image pyramid of GEE enabled us to perform pixel-wise feature extraction (Gorelick et al., 2017; Huang et al., 

2021a; Yang and Huang, 2021). Therefore, based on all available Sentinel data in 2016, we constructed a set of spectral, 

phenological, texture, SAR and topographical features with the temporal composite method (Table 2). This approach used all 

available data and at the same time allowed us to reduce the feature dimension, preserve the temporal information and 250 

minimize the effects from clouds and shadows (Yang and Huang, 2021). Firstly, we used the spectral signatures provided by 

Sentienl-2 data to extract ISA in visible, red-edge, near-infrared and infrared bands the 50th percentile TOA reflectance was 

calculated for each spectral band (Table 2). Moreover, considering that spectral indices could increase the differences 

between land covers, we also extracted a series of normalized spectral indices to enhance the discrimination ability between 

ISA and NISA (Yang and Huang, 2021) we calculated 15 spectral indexes to improve the discrimination between ISA and 255 

NISA (Table 2). These indices were built according to the following criteria: (1) They were mainly constructed by near-

infrared (NIR) and short-wave infrared (SWIR) bands due to their better atmospheric transmission (Huang et al., 2021a; 

Yang and Huang, 2021); (2) Each index contained at least one 10-m band (i.e. visible and NIR bands) to ensure the spatial 

resolution of the features.  

The complex spectral and spatial characteristics in urban environments increase the difficulty of ISA mapping. In this regard, 260 

texture features are usually employed to depict the spatial information of urban ISA (Huang and Zhang, 2013). To further 

exploit the textural information for the ISA mapping, we computed the gray-level co-occurrence matrix (GLCM) via NIR 

band to depict the spatial information of urban ISA (Weng, 2012). Owing to the high redundancy among GLCM 

measurements (Clausi, 2002; Zhang et al., 2021), we chose the contrast, dissimilarity, entropy, IDM (inverse difference 

moment) and ASM (angular second moment) for texture extraction (Conners et al., 1984; Haralick et al., 1973; Rodriguez-265 

Galiano et al., 2012). The window size for GLCM measurements was set to 7 × 7 as it was suitable for urban classification 

with image resolution from 2.5 to 10 m (Puissant et al., 2005). Besides, we averaged the GLCM from different directions (0, 

45, 90, and 135) to maintain the rotational invariance (Rodriguez-Galiano et al., 2012). 

Given that spectral responses of vegetation and water bodies vary over time, Given that spectra and backscatter of some 

NISA (e.g., vegetation and water bodies) vary throughout time, the phenological information derived from multi-temporal 270 

spectral and SAR data is utilized to depict the temporal fluctuations. we We calculated the maximum NDVI as well as 

standard deviation of NDVI, MNDWI, and NDBI (normalized difference built-up index) to further enhance the temporal 

information (Tucker, 1979; Xu, 2006; Zha et al., 2003). These temporal characteristics were useful in identifying NISA with 

temporal fluctuations. For example, the spectra of fallow cropland and ISA were similar, even SAR data may not well 

separate them. However, the NDVI of cropland can describe the changes of crops growth, and hence, its standard deviation 275 

can be used to distinguish between ISA and cropland. In addition, to increase the robustness of these temporal features, 

Sentinel-2 data from adjacent two years were also included. 
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SAR data is potential for reducing the false alarms caused by bare soil in optical images, and it is more sensitive to buildings. 

In addition, it is able to penetrate clouds. So, in this study, it was combined with optical data for ISA mapping. With regard 

to the SAR data, Specifically, the VV (vertical-vertical polarization) and VH (vertical-horizontal polarization) backscatter 280 

coefficients from the Sentienl-1 images were selected. Specifically, based on all available Sentienl-1 data, the annual mean 

and standard deviation of the VV and VH backscatter coefficients were calculated by the temporal composite method: 

𝜎  ∑ 𝜎                                                                                                                                                                        (2)  

𝜎
∑

                                                                                                                                                              (3) 

where 𝑛 denotes the total number of Sentinel-1 observations within a year and 𝜎  represents the ith backscatter coefficient 285 

observation in the year. The temporal mean method can reduce speckle noise in the SAR images (Lin et al., 2020), while the 

annual standard deviation can reflect temporal information. Topography-related features are necessary for ISA mapping, in 

order to reduce the confusion between complex terrain and buildings. For instance, topographical features could help to 

distinguish steeply hills from buildingsIn addition, DEM-derived (Digital Elevation Model) topographic features were also 

constructed to reduce false alarms induced by SAR data over mountain areas (Ban et al., 2015; Gamba and Lisini, 2013). 290 

Specifically, we used SRTM (Shuttle Radar Topographic Mission) in the areas below 58° latitude and GMTD2010 (Global 

Multi-resolution Terrain Elevation Data 2010) in the areas above 58° (Huang et al., 2021a). Finally, a total of 41 features 

were constructed on the 2.7 million Sentinel images (2,613,180 Sentinel-2 and 122,156 Sentinel-1) and DEM data.  

3.1.3 Hexagon-based adaptive random forest classification 

When dealing with global land cover classification, the global terrestrial surface was usually divided into homogeneous sub-295 

regions according to criteria such as climate, land cover or administrative regions (Goldblatt et al., 2018; Homer et al., 2004; 

Turner, 1989). For global ISA mapping, regular square grids were commonly used (Table 1), such as 1° and 5° grids (e.g. 

WSF2015 and GLCFCS). Herein we divided the terrestrial surface into 2° hexagonal grids (Fig. 1), due to its symmetry and 

invariance (Birch et al., 2007; Goldblatt et al., 2018; Huang et al., 2021a). Besides, there were no gaps or overlaps between 

hexagons, and the distance between adjacent hexagon centers was approximately equal (Richards et al., 2000). 300 

Random forest (RF) classifier has been widely used in global ISA mapping, due to its robustness to erroneous samples, 

flexibility to high-dimensional data and tolerance to noise (Bauer and Kohavi, 1999; Wulder et al., 2018) (Table 1). It 

utilizes ensemble learning to obtain predictions by voting on categories through multiple decision trees (Breiman, 2001). 

Each tree uses a random subset of the input features to increase the generalization ability. In addition, trees are grown from 

different subsets of training data (i.e. bagging or bootstrap) to increase the diversity (Rodriguez-Galiano et al., 2012). RF has 305 

been proved to outperform other classifiers when dealing with large-scale and high-dimension data (Gislason et al., 2006; 

Goldblatt et al., 2016). The flexibility of RF to handle multi-source data also makes it convenient for us to deal with Sentinel 

radar and optical data. Therefore, together with the aforementioned multi-source features and global training samples, RF 

was used for GISA-10m mapping. As suggested by Yang and Huang, (2021), the number of trees was set to 200. We divided 
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the global terrestrial surface using 1,808 hexagons where a local RF model was built for adaptive ISA classification in each 310 

hexagon. Therefore, a total of 1,808 RF models were built. In terms of the features used to train each tree, the random forest 

uses a random subset of features to reduce the correlation between trees. In general, the diversity of trees can be increased 

when fewer features are used for training each tree (Breiman, 2001). In GISA-10m mapping, we set the number of features 

used for each tree to the square root of the total number of features, as suggested by Liu et al., (2020b). 

3.2 Accuracy assessment 315 

The test samples of GISA-10m included (1) visually interpreted samples via Google Earth, (2) test samples extracted from 

the ZiYuan-3 (ZY-3) built-up datasets (Liu et al., 2019), and (3) building samples located in the arid areas.  

(1) As suggested by Stehman and Foody (2019), we used cluster sampling to collect the visually-interpreted test samples. 

The primary sampling unit involved 59 grids with a side length of 1°, which was randomly selected based on population, 

ecoregion, and urban landscape (red squares in Fig. 5). The secondary sampling unit included the random samples within 320 

each grid. In such way, samples from different urban sizes and densities were considered for validation. Specifically, in each 

grid, we randomly selected 100 ISA and 100 NISA points to test their accuracy. An equal allocation of ISA and NISA test 

samples could reduce the bias of the accuracy assessment and hence allow for a more accurate estimate of user's accuracy 

(Marconcini et al., 2020; Olofsson et al., 2014; Stehman, 2012; Story and Congalton, 1986; Wehmann and Liu, 2015). By 

referring to the high-resolution Google Earth images, a pixel (10m × 10m) was labelled as ISA if more than half of its area 325 

was cover by ISA, otherwise it was identified as NISA. As seen from Fig. 5, the test samples involved not only high-density 

ISA samples in urban areas, but also a large number of low-density samples in suburban and rural regions. In such 

wayFinally, a total of 10,80011,800 test samples were obtained. 

(2) Liu et al., (2019) proposed a multi-angle built-up index to extract built-up areas from ZY-3 images covering 45 global 

cities, with an overall accuracy greater than 90%. The multi-angle ZY-3 images depicted the three-dimensional and vertical 330 

structure of buildings, which were more effective and accurate than the planar feature extraction for detecting built-up areas. 

Given the higher spatial resolution (2 m) and better accuracy of ZY-3 global built-up dataset, we extracted test samples from 

it in the year of 2016 (Huang et al., 2021a; Liu et al., 2019). A sample (10m × 10m) was labelled as ISA if more than 50% of 

its area was classified as ISA in the ZY-3 dataset, while NISA samples were those with no built-up pixels in the area (Huang 

et al., 2021a). For each city, the number of samples was proportional to the area of the ZY-3 image, and the ratio of ISA and 335 

NISA test samples was consistent with the ratio of the built-up and non-built-up (Huang et al., 2021a). In this way, we 

obtained 47,216 NISA and 21,152 ISA samples (green dots in Fig. 5) from 24 cities in the ZY-3 built-up dataset. 

(3) Considering the difficulty of ISA extraction in the arid regions (Tian et al., 2018), we paid special attention to the 

accuracy assessment in the arid regions. To this end, we visually interpreted 5,385 building pixels in these regions. A total of 

25 photo interpreters were recruited for this task by referring to the Google Earth images. These samples were further 340 

checked by three experts. The arid regions were defined according to the "Deserts and Xeric Shrublands" biome in Olson et 

al., (2001).  
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Based on the three groups of test samples aforementioned, the accuracy of GISA-10m was assessed by overall accuracy 

(OA), kappa, producer's accuracy (PA), user's accuracy (UA), and F-Score (the harmonic mean of PA and UA). Besides, 

seven existing global ISA datasets were used for inter-comparison with GISA-10m, including GHSL2018, GLCFCS, 345 

WSF2015, FORM_GLC10, GISA, GAUD, and GAIA (Table 1). The three groups of test samples mentioned above were 

used to assess and compare the accuracy of these products. 

 

 

Figure 5. Global distribution of the test samples and grids used in this study, including (1) 59 grids for visual interpretation, (2) 350 
ZY-3 reference set covering 23 cities, and (3) 5,385 building samples in the arid regions. The arid regions were extracted from 
"Deserts and Xeric Shrublands" biome in Olson et al., (2001). The inner graph showed ISA density within 0.5 km buffer of ISA 
test samples. 
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3.3 Inter-comparison between different global datasets 

Seven existing global ISA datasets were used for inter-comparison with GISA-10m, including GHSL2018, GLCFCS, 355 

WSF2015, FORM_GLC10, GISA, GAUD, and GAIA (Table 1). First, the three groups of test samples mentioned above 

were used to assess and compare the accuracy of these products. Second, their spatial agreements with GISA-10m were 

measured by the linear fit of ISA fraction, including metrics such as correlation coefficient and root mean square error 

(RMSE). Finally, attention was paid to their performances in urban and rural regions for a comprehensive assessment. 

 360 

 

Figure 6. Box plots of the overall accuracy for GISA-10m and existing datasets in the six continents. 
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4 Results 

4.1 Accuracy assessment of GISA-10m 

4.1.1 Global scale 365 

The accuracy assessment based on the visually-interpreted samples were shown in the Table 3. GISA-10m exhibited the 

highest OA of 86.06%, with an increase of +2.73%, +3.73% and +2.3%, respectively, with respect to GHSL2018, GLCFCS 

and WSF2015 (Table 3). The Kappa of GISA-10m was 0.7165, which exceeded the WSF2015, FROM_GLC10 and GAIA 

by 0.052, 0.1774 and 0.2039, respectively. Alongside, GISA-10m showed higher accuracy as to the 30 m datasets (i.e. GISA, 

GAUD, GAIA), which suggested a better delineation of global ISA due to its higher resolution. Fig. 6 summarized the 370 

results of the accuracy assessment at the continent level, with the average and standard deviation of OA for each continent 

shown in the box plots. In general, GISA-10m exhibited stable performance for each continent, with an average OA more 

than 85%. Specifically, Oceania and South America obtained the best OA of 87.25% and 87.08%, followed by Europe 

(86.45%) and Asia (85.85%). The results also showed that the average overall accuracy of GISA-10m exceeded the existing 

datasets in Africa, North America and Europe. In addition, it was found that the performance of GHSL2018 and GLCFCS 375 

was relatively unstable in South America and North America, respectively. 

 

Table 3. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples between GISA-10m and the 
existing ISA datasets. OA represents the overall accuracy.  

Globe 

Visually interpreted samples (n=10800)  ZY-3 samples (n=68368) 

OA (%) Kappa F-Score of 
ISA (%) 

F-Score of  
NISA (%) 

  OA (%) Kappa F-Score of 
ISA (%) 

F-Score of  
NISA (%) 

GISA-10m 86.06 0.7165  83.65 88.55  86.25  0.6664  76.25  90.32  

GHSL2018 83.33 0.6540  78.66 86.89  84.53  0.6401  75.27  88.74  

GLCFCS  82.33 0.6336  77.57 85.96  84.56  0.6280  73.68  89.08  

WSF2015 83.76 0.6645  79.68 87.06  85.44  0.6664  77.35  89.27  

FROM_GLC10  78.16 0.5391  69.65 83.39  83.66  0.6082  72.39  88.39  

GISA  78.84 0.5532  70.65 83.88  85.63  0.6627  76.65  89.63  

GAUD  77.36 0.5185  67.46 83.01  85.59  0.6549  75.70  89.76  

GAIA  77.05 0.5126  67.13 82.77  84.23  0.6381  75.39  88.40  

 380 

GISA-10m obtained the best OA of 86.25% on the ZY-3 samples, outperforming GHSL2018, GLCFCS and WSF2015, by 

1.72%, 1.69% and 0.81%, respectively. The ZY-3 images employed by Liu et al., (2019) covered 45 major global cities, and 

therefore the ZY-3 samples were more inclined to reflect the accuracy in urban regions. Therefore, the accuracy difference 

between various datasets was not significant (Table 3). Due to the relatively coarser resolution, the 30 m datasets usually 

tended to overestimate the ISA extent (Gong et al., 2020b), resulting in higher UA but lower PA (Table S1). For example, 385 
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the ISA UA of GISA was slightly higher than GISA-10m, but its PA was much smaller than the latter (Table S1). However, 

when the two metrics (PA and UA) were considered at the same time (i.e. F-Score), GISA-10m outperformed GISA. 

4.1.2 Rural and arid, arid and urban regions 

The population of rural regions is comparable to that of urban regions (https://data.worldbank.org/). Existing studies as well 

as their global ISA datasets usually focus on the performance in urban regions, but the accuracy of rural ISA regions has not 390 

been sufficiently assessed. Hence, in this study, we paid special attention to the accuracy assessment in the global rural 

regions. Specifically, we divided the GISA-10m into urban and rural regions using the urban boundary defined by Li et al., 

(2020). In fact, due to the random sampling strategy, most of visually-interpreted test samples were located in rural regions.  

In the case of the visually-interpreted samples, GISA-10m exhibited a better OA of 86.19% against the GHSL2018 (84.92%), 

GLCFCS (83.25%), FROM_GLC10 (78.83%) and WSF2015 (83.81%). As regards the three 30-m datasets (i.e. GISA, 395 

GAIA, GAUD), their ISA accuracy (F-Score) decreased significantly in the rural regions while the NISA accuracy was 

relatively stable (Tables 2&3). Having a closer look at the PA, one can notice that the ISA PA decreases by more than 15% 

for all the three 30-m datasets (Table S2), which suggested their more omission errors in the rural regions (Fig.12b). This 

demonstrated the deficiency of 30-m datasets in depicting rural ISA and also reflected the importance of 10-m global ISA 

mapping. 400 

 

Table 4. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples in rural regions between GISA-
10m and the existing ISA datasets. OA represents the overall accuracy. 

Rural Regions 

Visually interpreted samples (n=9547)  ZY-3 samples (n=43950) 

OA (%) Kappa F-Score of 
ISA (%) 

F-Score of  
NISA (%) 

  OA (%) Kappa F-Score of 
ISA (%) 

F-Score of  
NISA (%) 

GISA-10m 86.19  0.6794  77.96  90.48   90.85  0.4768  52.46  94.94  

GHSL2018 84.92  0.6297  73.34  89.88   88.95  0.4656  52.82  93.74  

GLCFCS  83.25  0.5871  70.15  88.72   89.46  0.4261  48.33  94.13  

WSF2015 83.81  0.6012  71.17  89.12   89.37  0.4514  51.05  94.04  

FROM_GLC10  78.83  0.4485  57.08  86.24   88.59  0.3884  45.08  93.63  

GISA  77.87  0.4082  52.53  85.80   89.83  0.3954  44.66  94.40  

GAUD  76.38  0.3516  46.13  85.05   89.70  0.3199  36.35  94.40  

GAIA  75.41  0.3213  43.05  84.49   88.93  0.3611  41.85  93.88  

 

 405 
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Table 5. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples in arid regions between GISA-10m 
and the existing ISA datasets. OA represents the overall accuracy. 410 

Arid Region 

Visually interpreted samples (n=1020)  ZY-3 samples (n=10827) 

OA (%) Kappa F-Score of 
ISA (%) 

F-Score of  
NISA (%) 

  OA (%) Kappa F-Score of 
ISA (%) 

F-Score of  
NISA (%) 

GISA-10m 86.67  0.7358  86.05  88.22   89.64  0.7296  79.95  93.01  

GHSL2018 86.57  0.7336  86.06  87.99   85.13  0.5817  67.68  90.34  

GLCFCS  82.16  0.6454  80.32  84.46   85.14  0.6232  72.45  89.82  

WSF2015 82.45  0.6516  80.95  84.56   88.37  0.6881  76.53  92.27  

FROM_GLC10  76.27  0.5271  70.97  80.59   84.06  0.5755  68.18  89.37  

GISA  80.20  0.6058  76.89  83.39   87.72  0.6795  76.23  91.72  

GAUD  77.06  0.5424  71.88  81.20   88.66  0.6894  76.37  92.54  

GAIA  77.45  0.5506  72.84  81.35   85.78  0.6317  72.79  90.37  

 

Furthermore, we focused on the accuracy assessment in arid regions. In general, the OA of GISA-10m was higher than the 

existing datasets (Table 5). Although its ISA UA did not always outperform other datasets, GISA-10m achieved the highest 

PA among the existing ones (Table S3). Specifically, GISA-10m exhibited a notably higher ISA PA compared to GLCFCS, 

FROM_GLC10, GISA, GAUD and GAIA (Table S3), indicating its better ability of detecting ISA in arid regions (Fig. 7). 415 

Moreover, the accuracy of these global ISA products was assessed using our manually and randomly chosen rural building 

samples (see Section 3.2). It can be found that GISA-10m extracted detected 15% more buildings in arid regions with respect 

to FROM-GLC10, GAUD and GAIA (Table S4), which again verified its better performance in describing rural ISA. 

In the case of urban region, GISA-10m exhibited satisfactory result with an overall accuracy similar to the global assessment 

(Table 6). Note that urban ISA only accounts for one-third of global ISA while nearly 70% of ISA was located in suburban 420 

and rural regions. Existing datasets showed relatively more ISA omissions in rural or arid regions, suggesting that global ISA 

mapping at 10-m (e.g., GISA-10m) is necessary. Moreover, we divided the visually-interpreted samples located in cities into 

three levels (i.e., small, middle and big cities) to assess the accuracy of GISA-10m over cities with different scales: Level 1 

(population<250,000), Level 2 (250,000 to 1,000,000), and Level 3 (>1,000,000) (Larkin et al., 2016; Yang et al., 2019). It 

was found that the overall accuracy of GISA-10m across three level of cities was 85.35%, 87.43% and 85.42%, respectively 425 

(Table S5). The result indicated the performance of GISA-10m in different scales of cities was stable, and was also close to 

its global assessment (OA of 86.06%). 

 

 

 430 
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Table 6. Results of quantitative accuracy assessment via visually-interpreted and ZY-3 samples in urban regions between 

GISA-10m and the existing ISA datasets. OA represents the overall accuracy. 

Urban Regions 

Visually interpreted samples (n=2253)  ZY-3 samples (n=24418) 

OA (%) Kappa F-Score of 
ISA (%) 

F-Score of  
NISA (%) 

  OA (%) Kappa F-Score of 
ISA (%) 

F-Score of  
NISA (%) 

GISA-10m 85.49  0.30  91.93  38.26   77.96  0.52  82.71  69.61  

GHSL2018 76.61  0.20  86.02  31.41   76.56  0.47  82.38  64.99  

GLCFCS  78.43  0.18  87.51  27.96   75.75  0.48  80.98  66.55  

WSF2015 83.58  0.23  90.73  32.76   78.36  0.49  84.64  63.38  

FROM_GLC10  75.32  0.21  85.15  31.66   74.78  0.45  80.35  64.80  

GISA  82.96  0.24  90.41  33.15   78.09  0.49  84.25  63.98  

GAUD  81.49  0.22  89.49  31.06   78.20  0.50  84.07  65.48  

GAIA  84.02  0.20  91.07  29.57   75.77  0.41  83.30  55.83  
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 435 

Figure 7. Comparison of the GISA-10m and other datasets over arid regions in (a) Kabul, Afghanistan; (b)Mashhad, Iran; (c) 
Buraidah, Saudi Arabia; (d) Ashkhabad, Turkmenistan. The illustration is of Sentinel-2 images with false-color combination (R: 
NIR, G: Red, B: Green) to enhance the ISA. 
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4.2 Global ISA distribution 

4.2.1 Urban and rural ISA  440 

Based on GISA-10m, we analyzed the global ISA distribution at 10-m scale (Fig. 8Fig. S1). Global impervious surface 

areaISA was mainly distributed in Asia (41.43%), North America (20.59%), Europe (18.93%), followed by Africa (9.78%) 

and South America (7.50%). It was found that 67% of global ISA was located in the Eastern Hemisphere, while 85% of ISA 

was distributed in the north of the equator. Rural ISA was more scattered than urban ISA (Fig. 8Fig. S1), and it was mainly 

located in Asia (42.84%), Europe (19.49%) and North America (16.51%). Asia embraced the largest urban ISA, more than 445 

twice as Europe. Although North America only accounted for 20% of global ISA, its urban ISA took up more than 29% of 

the global total. Taking a closer look at the ratio of rural and urban ISA (Table 67), one can see that rural ISA were 2.2 times 

larger than the urban. At the continental level, Africa possessed the highest "rural-to-urban ratio", which may be related to its 

large population but relatively poor economy. 

Table 67. Impervious surface area derived from GISA-10m in the six continents. 450 

ISA Europe Africa S. America Oceania N. America Asia Globe 

Total (105km2) 1.88 (18.93%) 0.97 (9.78%) 0.75 (7.50%) 0.18 (1.76%) 2.05 (20.59%) 4.12 (41.43%) 9.94 (100%) 

Rural (105km2) 1.33 (19.49%) 0.78 (11.43%) 0.55 (8.11%) 0.11 (1.62%) 1.13 (16.51%) 2.93 (42.84%) 6.84 (100%) 

Urban (105km2) 0.55 (17.69%) 0.19 (6.16%) 0.19 (6.17%) 0.07 (2.07%) 0.92 (29.56%) 1.19 (38.35%) 3.10 (100%) 

Rural/Urban 2.42  4.08  2.89  1.73  1.22  2.46  2.20  
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Figure 8. Spatial distribution of ISA in (a) the global and (b) rural regions. The pixel represents the ISA regions in 0.01º grid while 
the doted lines denote the cumulative histograms. 

China and the United States (US) embraced 33% of global ISA. Together with Russia, Brazil, India, Japan, Indonesia, 

France, Canada and Germany, these ten countries accounted for 58% of the world. The urban ISA owned by the top ten 455 

countries (US, China, Russia, Brazil, Japan, India, Mexico, France, Germany, and the United Kingdom) took up 69% of the 

global total, while the top ten countries in terms of rural ISA (China, US, Russia, Brazil, India, Indonesia, Japan, France, 

Canada, and Germany) accounted for only 54% of the total. In Africa, the Republic of South Africa had much more urban 

ISA than other countries. However, Nigeria showed comparable rural ISA to the South Africa (~7738 km2). China ranked 

first in term of rural ISA, most of which was located in the North China Plain (Fig. 9b). Indonesia also possessed much rural 460 

ISA, since it ranked sixth in the rural ISA but its urban ISA only ranked sixteenth. 
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Figure 9. Urban and rural ISA at the country scale based on GISA-10m. 

 

 465 
Figure 10. Examples of road area derived from GISA-10m and OSM in the Toyama (Japan), Detroit (US), Chengdu (China), and 
Riyadh (Saudi Arabia). 
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4.2.2 Global road area 

Roads are major anthropic footprints, we attempted to analyse the global road area based on GISA-10m, by courtesy of its 

high spatial resolution. Firstly, the road networks were extracted from OSM, and then, the ISA regions in the GISA 10-m 470 

within a 10-m buffer of the road networks were identified as the road areas (Fig. 10). Results showed that 82.84% of the 

global road areas located in Asia (30.74%), North America (27.17%) and Europe (24.92%), while the remaining 17.16% was 

owned by South America (8.26%), Africa (7.47%) and Oceania (1.44%). Although Asia exceeded the other continents 

regarding ISA and rural road area, it possessed less urban road area than North America. China and US had the largest road 

area, together accounting for 29% of the global total, which were followed by Brazil, Japan, Russia, Germany, India, France, 475 

Indonesia, and Mexico. The top ten countries owned more than half of global roads. The global road area accounted for 

14.18% of the global ISA, and rural road area was 1.5 times larger than urban (Table 78). However, it should be noted that 

these estimates might be biased owing to the incompleteness of the OSM data. In addition, narrow roads might be partly 

detected or missed due to the limitation of spatial resolution. 

Table 78. Statistics of road network derived from GISA-10m and OSM in the six continents. 480 

Road Europe Africa S. America Oceania N. America Asia Globe 

Total (104km2) 3.51 (24.92%) 1.05 (7.47%) 1.16 (8.26%) 0.20 (1.44%) 3.83 (27.17%) 4.34 (30.74%) 14.10 (100%) 

Rural (104km2) 2.27 (26.88%) 0.71 (8.43%) 0.75 (8.88%) 0.11 (1.26%) 1.84 (21.73%) 2.77 (32.82%) 8.45 (100%) 

Urban (104km2) 1.24 (21.99%) 0.34 (6.03%) 0.42 (7.34%) 0.10 (1.70%) 2.00 (35.29%) 1.56 (27.65%) 5.66 (100%) 

Rural/Urban 1.82  2.09  1.81  1.10  0.92  1.77  1.49  

5 Discussions 

5.1 Inter-comparison with existing datasets  

To further validate the performance of GISA-10m, we compared it with a series of existing state-of-the-art global datasets, 

including three 10-m datasets (i.e. WSF2015, GHSL2018, FROM_GLC10) and four 30-m datasets (i.e. GLCFCS, GAUD, 

GAIA, and GISA). Their spatial agreements with GISA-10m were measured by the linear fit of ISA fraction, including 485 

metrics such as correlation coefficient and root mean square error (RMSE). Attention was also paid to their performances in 

urban and rural regions for a comprehensive assessment.The spatial agreements over urban and rural regions were estimated 

by the linear fitting of ISA fraction. Considering their difference of spatial resolutions, the ISA fraction was calculated 

within the 0.05° spatial grid. 
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Figure 11. Scatterplots of (a) urban and (b) rural ISA fraction between GISA-10m with GHSL, WSF, FROM_GLC10, GLCFCS, 
GAUD, GAIA, GISA, respectively. ISA fraction was calculated within a 0.05° by 0.05° spatial grid. 

In general, GISA-10m exhibited high agreement (0.777 < R2 < 0.892) with these existing datasets over urban regions. In the 

case of GHSL2018 and FROM_GLC10, their fitted lines with GISA-10m were closer to the 1:1 line in the high fraction 495 

regions (Fig. 11a&c). As shown in the Fig.12, GHSL2018 and GISA-10m were generally similar in the dense urban areas 

(e.g. urban cores in Fig.12), but GHSL2018 tended to overestimate ISA in the low-density residential areas (Fig. 12c). The 

fitted lines for GLCFCS and WSF2015 were above the diagonal (slope greater than 1 and intercept greater than 0) in both 

high and low ISA fraction regions, possibly owing to their overestimations. For instance, in the case of Cairo (Fig. 12b), 

WSF2015 showed significant overestimations but other datasets better depicted the residential areas. According to 500 

Marconcini et al., (2020), the overestimations of the WSF2015 may be related to the employment of the coefficient of 

variation (COV), which reduced the omissions in the rural regions but at the same time led to overestimations of ISA extent. 

The fitted lines for the three 30-m datasets (i.e. GISA, GAIA, GAUD) were all above the diagonal (Fig. 11e-ga), suggesting 

that they detected more urban ISA than GISA-10 m. However, in the 30-m dataset, vegetation alongside roads or buildings 

was often identified as ISA due to the issue of mixed pixels (Gong et al., 2020b). From this perspective, the results of GISA-505 
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10m seem more reliable due to its high spatial resolution. For instance, in the case of Johannesburg and Los Angeles (Fig. 

12c&d), GAIA and GAUD exhibited false alarms in both residential and industrial areas, but these errors were significantly 

reduced in GISA-10m due to the better discrimination ability of 10-m Sentinel data. 

 

Figure 12. Comparison of the GISA-10m and seven datasets over urban regions in (a) Suzhou, China; (b) Cairo, Egypt; (c) 510 
Johannesburg, South Africa; (d) Los Angeles, the United States. The Sentinel-2 images were composited in the false-color 
combination (R: NIR, G: Red, B: Green). 
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On the other hand, the agreement between GISA-10m and existing datasets was slightly lower in rural regions (0.5099 < R2 

< 0.6525). The fitted slopes between three 30-m datasets (i.e. GISA, GAIA, GAUD) and GISA-10m in rural regions were all 

less than one. This phenomenon can be attributed to the finer spatial resolution of GISA-10m, which detected more rural ISA 515 

than the 30-m datasets (Figs. 13b&d). As to GLCFCS and WSF2015, they possessed more rural ISA than GISA-10m (Fig. 

11b11i&k), which may be attributed their overestimations. For example, in Figs. 13a&c, GLCFCS and WSF2015 failed to 

identify the vegetation in the village. FROM_GLC10 seemed more consistent with GISA-10m (see the sample of US, Fig. 

13d), but it tended to underestimate the rural ISA (see Figs. 13a-c). GHSL2018 and GISA-10m showed high agreement in 

the rural regions. However, GHSL2018 aimed to outline human settlements while GISA-10m focused on artificial ISA 520 

(including buildings, parking lot, roads).  
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Figure 13. Comparison of the GISA-10m and seven datasets over rural regions in (a) China (126.348044° E, 45.269079° N), (b) 
Uzbekistan (60.573313° E, 41.461425° N), (c) Côte d'Ivoire (5.853317° W, 6.820244° N), (d) the United States (90.210747° W, 
39.950221° N). The illustration is of Sentinel-2 images with false-color combination (R: NIR, G: Red, B: Green) to enhance the ISA. 525 

The differences between GHSL2018, WSF2015 and GISA-10m were further analysed by taking Beijing and Washington as 

examples. In Fig. 14, the overlapping parts between these datasets were marked in different colors, and the regions where the 

three datasets all agreed were shown in gray. In both examples, WSF2015 and GHSL2018 tended to overestimate the ISA 
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extent (Fig. 14b). They wrongly identified vegetation as ISA in the low-density residential areas (Fig. 14h). In particular, 

GHSL2018 successfully detected roads in Beijing but failed in Washington (see the color of purple in Fig. 14). This may be 530 

related to the fact that GHSL2018 used different sources of training samples in different regions (Corbane et al., 2021). 

Although WSF2015 generally obtained similar results with GISA-10m, its detected roads may stem from the overestimation 

of building boundaries (Marconcini et al., 2020). For instance, WSF2015 ignored the airport runways in the example of 

Beijing (Fig. 14d). In the case of Washington, WSF2015 was less capable of delineating scattered buildings than GISA-10m 

and GHSL2018 (Fig. 14f), possibly because it also incorporated the 30-m Landsat data in the ISA detection. It should be 535 

mentioned that GHSL2018 estimated the probability of human settlement, and hence, different thresholds could yield 

different results. Small thresholds were suitable for capturing scattered settlements but could result in false alarms. In this 

study, we chose 0.2 as the threshold, as suggested by Corbane et al., (2021). 
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 540 

Figure 14. The illustration of WSF2015, GHSL2018 and GISA-10m in (i) Beijing and (ii) Washington. Regions where three 
datasets all agreed were shown in gray.  
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5.2 Importance of multi-source features 

In this paper, we proposed a global ISA mapping method that incorporated spectral, SAR, and temporal information 

extracted from multi-source Sentinel data. To illustrate the importance of multi-source features in the global ISA mapping, 545 

we selected 30 hexagons in terms of the global urban ecoregions (Schneider et al., 2010). Urban ecoregions were defined 

with reference to biomes, urban landscapes, and economic levels. In each ecoregion, we randomly selected two grids, with 

their population greater or less than 5 million, respectively (Fig. S1). The "snow and ice" ecoregion was not considered. 

Feature contribution estimated by RF classifier was employed to analyze the relative importance of multi-source features 

(Pflugmacher et al., 2014). Different color schemes in Fig. 15 indicated different types of features. For instance, the color of 550 

blue denoted SAR features while green represented the spectral indices. The results indicated that the feature importance 

varied in different regions. For example, SAR features were more effective in the temperate grassland of Middle East and 

Asia (53N_75E and 50N_39E), while phenological features had more influence in the deciduous forest of Siberia 

(65N_125E). In particular, SAR features played a more important role in the more populated regions, e.g. in temperate forest 

of North America and Europe as well as temperate grassland of the Middle East and Asia (Fig. 15). 555 

 

Figure 15. Relative importance of multi-source features in the 30 randomly selected grids located in different urban ecoregion. The 
labels on the right denote grid ID and total population. The Dis, IDM and ASM represents the dissimilarity, angular second 
moment and inverse difference moment, respectively. 

It is worth noting that although high-rise ISA (e.g. buildings) tended to have higher radar backscatters, the importance of 560 

SAR features was not always the highest. For example, in the hexagon of central US (45N_96W), SAR features played a less 

significant role than temporal metrics. In contrast, the spectral indices and phenological information were more effective in 
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this region. For example, as shown in Fig. 16Fig. S4 (red squares), in the residential area, the buildings were often 

surrounded by dense shrub, which may shrink the double bounce scattering. Therefore, spectral and phenological features 

had higher importance since they can better distinguish vegetation from non-vegetation. A similar situation occurred in a 565 

desert area (26N_45E), where SAR features could not distinguish well ISA from NISA effectively, due to the complex 

topography of mountains. In this case, spectral indices and textures were more effective (Fig. 15). However, SAR features 

were still very important for global ISA mapping, especially for identifying rural buildings (Zhang et al., 2020). Therefore, 

in this study, we used multi-source features and hexagon-based adaptive random forest models to ensure that the most 

suitable features were chosen for different regions. 570 

 

Figure 16. Example of Sentinel-1 VH backscatter, standard deviation of NDVI from Sentinel-2 (S2_NDVIStd), Sentinel-2 true 
color composite and GISA-10m in Paterson, New Jersey, the United States. 

5.3 Impact of training sample size and tree number 

Based on aforementioned randomly selected 30 hexagons in different urban ecoregions, we investigated the relationship 575 

between the training sample size and the accuracy (Fig. S1). For each hexagon, we fixed the number of NISA samples to 
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30,000 and changed the number of ISARS and ISAOSM samples. Specifically, we first randomly selected 1,000 ISARS, 1,000 

ISAOSM and 2,000 NISA samples from the candidate pool (see Section 3.1.1) as the test samples and used the remaining ones 

for the training. We randomly selected 50 ISARS and 50 ISAOSM as the initial training samples, and subsequently, in an 

iterative manner, 400 ISARS and ISAOSM samples were randomly selected from the pool and added to the training samples to 580 

train the RF classifier. It can be observed that all the hexagons reached saturation with 2,500 ISARS and ISAOSM samples (Fig. 

17Fig. S5). Therefore, in this research, we set the number of ISARS, ISAOSM, and NISA samples to 2,500, 2,500 and 30,000, 

respectively. 

 

Figure 17. The F1-Score as a function of ISARS and ISAOSM samples in the randomly selected 30 global grids. 585 
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We also analyzed the effect of the tree number on the accuracy of global ISA mapping, using 30 aforementioned mapping 
grids from global urban ecological regions. The results showed that the overall accuracy was low and unstable while the 
number of trees was less than 20 (Fig. S6). As the number of trees increased, the mapping accuracy increased and stabilized 
around 200 trees. Therefore, we used 200 trees for each random forest model in GISA-10m.  
 590 

5.4 Advantages of locally adaptive RF classification 

We used two hexagons located in China (CHN) and Saudi Arabia (SA) to demonstrate the advantages of adaptive random 

forest classification. Although China and Saudi Arabia are both located in Asia, their urban landscapes and architecture 

styles are significantly different due to their difference differences in climate, environment, and culture. In this section, we 

migrated the training samples from one hexagon to classify the other one. For example, training samples collected in the SA 595 

was used to classify the hexagon of China. The accuracy of each hexagon was evaluated by the visually-interpreted samples 

inside it. It was found that the OA decreased by 34% when the SA samples was applied to CHN (written as SA-to-CHN). 

Similarly, the OA was substantially reduced by 23% by the transfer of CHN-to-SA. Furthermore, we found that local 

samples always outperformed the migrated ones (see Table 89), which verified the necessity of local and adaptive 

classification strategies in the global ISA mapping. Besides, the locally adaptive model is more sensitive to the sample 600 

quality compared to the global model (Radoux et al., 2014), which further showed the necessity and effectiveness of the 

local classification strategy. 

 

Table 89. Results of quantitative accuracy assessment for China (CHN) and Saudi Arabia (SA) based on local and transferred 
samples. OA denotes the overall accuracy.  605 

 
Saudi Arabia  China 

OA (%) Kappa F-Score of 
ISA (%) 

F-Score of 
NISA (%) 

 OA (%) Kappa F-Score of 
ISA (%) 

F-Score of 
NISA (%) 

ISA_SA & NISA_SA 93.00 0.8599  92.39  93.95   79.50  0.5915  77.60  81.86  

ISA_SA & NISA_CN 53.00 0.7253  65.44  26.77   55.00  0.5233  4.35  70.59  

ISA_CN & NISA_SA 70.50 0.8396  53.23  78.55  48.00  0.6251  63.38  10.53  

ISA_CN & NISA_CN 50.50 0.0846  64.77  16.95   89.00  0.7778  86.90  91.30  

 

5.5 Influence of the sources of training samples 

In this section, the effects of the training sample sources, i.e., from remote sensing dataset (ISARS) and the OSM (ISAOSM), 

were investigated. Various combinations of the ISARS and ISAOSM training samples were tested at the global scale using the 

visually-interpreted samples from Section 3.2 samples were tested at the global scale (Table 9Table 10). In general, it can be 610 

found that using both sources yielded the most accurate results, which showed the effectiveness and necessity of 

incorporation of training samples from remote sensing and crowdsourcing OSM. By further checking the UA and PA of ISA, 
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one can see that using both sample sources significantly improved the PA and reduced the ISA omissions, since the 

combination of ISARS and ISAOSM strengthened the diversity of the training samples. Similarly, it was also found that the 

multi-source samples significantly raised the PA of NISA and lowered its commission error.  615 

 

Table 910. Results of global accuracy assessment for ISARS and ISAOSM sample. OA denotes the overall accuracy, while PA and 
UA indicate the user's accuracy and the producer's accuracy, respectively. 

Source of training sample OA (%) Kappa F-Score of 
ISA (%) 

F-Score of 
NISA (%)  

UA of ISA 
(%) 

PA of ISA 
(%) 

UA of 
NISA (%) 

PA of NISA 
(%) 

NISA+ISARS+ISAOSM 86.06  0.7165  83.65  88.55  86.13  81.30  86.01  91.25  

NISA+ISARS 80.24  0.5871  73.85  84.63  88.16  63.54  76.73  94.35  

NISA+ISAOSM 82.99  0.6500  78.96  86.34  86.24  72.81  81.17  92.23  

 

Although the quality and consistency of OSM data may affect the performance of GISA-10m (Fan et al., 2014; 620 

Zacharopoulou et al., 2021), global ISA mapping using only ISAOSM showed relatively consistent accuracy across continents 

(Fig.S3). Given that geographic bias in the spatial distribution of OSM data may affect the mapping results (Fan et al., 2014; 

Zacharopoulou et al., 2021), we applied temporal and spatial rules to mitigate the effect of the difference of the spatial 

distribution. In addition, spectral rule was used to remove potential errors in OSM-derived training samples (i.e., ISAOSM). In 

fact, more than 82% of OSM ways are buildings and highways, whose total number exceeds 700 million 625 

(https://taginfo.openstreetmap.org/keys, last access: 20 June 2022). Therefore, OSM data provides a reference for large-scale 

ISA mapping, but it has rarely been employed in global ISA mapping. We calculated the overall accuracy for the test grids 

where the number of ISAosm training samples were less or larger than 2500 (i.e., the recommended size of training sample 

in Section 5.3). The results showed that the accuracy of these regions was similar to the global accuracy (Table 11). This 

phenomenon demonstrated the stable performance of GISA-10m. Moreover, global ISA mapping using only ISAOSM training 630 

samples showed relatively stable accuracy across the continents (Fig. S7), suggesting that the refined OSM buildings and 

roads can reduce the impact of their uneven spatial distribution. This can be attributed to the rule-based method we 

implemented that improved the reliability and spatial consistency of ISAOSM. In addition, the collaboration of ISAOSM 

improved the overall accuracy of global ISA mapping by 3% (Table 9Table 10), indicating the feasibility of OSM data in 

enhancing performance of global ISA mapping after a set of refinements. Overall, although the spatial distribution of OSM 635 

data is uneven, we tried to balance its spatial distribution through a series of rules, and incorporated multi-source geospatial 

data (e.g., satellite-derived datasets) to reduce the impact of geographical bias on GISA-10m. 

 

 

 640 
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Table 11. Results of quantitative accuracy assessment for test grids with the number of ISAOSM training samples less or more 

than the recommended size. OA represents the overall accuracy. 

Type of test grids OA (%) Kappa F-Score of ISA (%) F-Score of NISA (%) 

#ISAOSM  < 2500 85.61 0.7021 81.79 89.01 
#ISAOSM  > 2500 86.23 0.7218 84.32 88.35 
All of the above 86.06 0.7165  83.65 88.55 

 

6 Data availability 645 

The GISA-10m product generated in this study is available in the public domain at http://doi.org/10.5281/zenodo.5791855 

(Huang et al, 2021). Sentinel data were acquired from the Google Earth Engine (available at code.earthengine.google.com, 

last access: 6 August 2021). GHSL was provided by the Joint Research Centre at European Commission (available at 

https://ghsl.jrc.ec.europa.eu/datasets.php, last access: 19 December 2021). WSF was provided by the German Aerospace 

Center (https://doi.org/10.6084/m9.figshare.c.4712852, Marconcini et al., 2020).The GlobeLand30 and GAUD were 650 

downloaded from the website of the National Geomatics Center of China (available at http://www.globallandcover.com/, last 

access: 6 August 2021) and Sun Yat-sen University (available at https://doi.org/10.6084/m9.figshare.11513178.v1, Liu et al., 

2020b). FROM_GLC10, global urban boundaries and GAIA were assessed from the Tsinghua University (available at 

http://data.ess.tsinghua.edu.cn, last access: 6 August 2021). The GISA was provided by the Institute of Remote Sensing 

Information Processing at Wuhan University (available at https://zenodo.org/record/5136330, Huang et al., 2021a). GLCFCS 655 

was provided by Aerospace Information Research Institute at Chinese Academy of Sciences (available at 

https://zenodo.org/record/4280923, Zhang et al., 2021). The planet files were download from the website of OpenStreetMap 

(available at https://planet.openstreetmap.org, last access: 19 December 2021). 

7 Conclusion 

In this study, we proposed a global ISA mapping method and produced the 10-m global ISA dataset (GISA-10m). To our 660 

knowledge, this is the first global 10-m ISA map based on Sentienl-1 and 2 data. To this end, a global training sample 

generation method was proposed based on a series of temporal, spatial, spectral, and geometrical rules and 58 million 

training samples were generated from the existing global ISA datasets and the social sensing data (i.e., OSM). On the basis 

of the 2.7 million Sentinel images available in the Google Earth Engine (GEE), multi-source features were constructed 

including spectral, texture, SAR, and temporal metrics. The global terrestrial surface was divided with hexagons, and the 665 

results were obtained by a series of RF classifiers. In particular, the mapping was conducted adaptively for each hexagon, by 

considering the difficulty and diversity for the global ISA detection. The overall accuracy of GISA-10m exceeded 86% 

based on a set of independent test samples. The inter-comparison between different global ISA datasets showed the 
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superiority of our results. Based on GISA-10m, the ISA distribution at the global, continental, and country levels was 

discussed and compared. In addition, the global ISA distribution was compared between rural and urban. In particular, for 670 

the first time, by courtesy of the high spatial resolution, the global road ISA was further identified and its distribution was 

discussed.  

GISA-10m can be used for global climate change studies and urban planning. Our proposed rule-based sample generation 

method can also be applied for global mapping of other land cover categories. For example, millions of cropland and forest 

tags in the OSM can facilitate global high-resolution cropland and forest mapping. The ISA mapping method via multi-675 

source geospatial data presented in this paper can also be improved by incorporating additional data sources, such as 

building footprints from Microsoft and Facebook (Corbane et al., 2021). In the future, we plan to extend the temporal 

coverage of GISA-10m and reveal the global ISA dynamics at the 10-m resolution.  
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