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Abstract 13 

Land evapotranspiration (ET) is a key element of Earth’s water-carbon system. 14 

Accurate estimation of global land ET is essential for better understanding of land-15 

atmosphere interaction. Past decades have witnessed the generation of various ET 16 

products. However, the widely used products still contain inherent uncertainty 17 

induced by forcing inputs and imperfect model parameterizations. In addition, direct 18 

evaluation of ET products is not feasible due to the lack of sufficient global in-situ 19 

observations, which hinders our usage and assimilation. Hence, merging a global 20 

dataset as reliable benchmark and exploring evaluation method for ET products are of 21 

great importance. The aims of our study were as followed: (1) to design and validate a 22 

collocation-based method for ET merging; (2) to generate a long-term (1981-2020) 23 

ET product employing ERA5, FLUXCOM, PMLV2, GLDAS and GLEAM at 0.1°-24 

8Daily and 0.25°-Daily resolutions. The produced Collocation-Analyzed Multi-source 25 

Ensembled Land Evapotranspiration Data (CAMELE) was then compared with others 26 

at point and regional scales. At the point scale, the results showed that the CAMELE 27 

performed well over different vegetation coverage. The accuracy of CAMELE was 28 

validated against in-situ observations with Pearson Correlation of 0.68, 0.62 and root 29 

mean square error of 0.84 and 1.03 mm/d on average over 0.1° and 0.25°, respectively. 30 

In terms of Kling-Gupta Efficiency, CAMELE ET obtained results superior (mean 31 

0.52) to the second best ERA5 (mean 0.44) at 0.1° basis. For global comparison, the 32 

spatial distribution of multi-year average and annual variation were in consistent with 33 

others. Our merged product revealed increased ET in South Asia, Northwest Australia, 34 

and decreases in Amazon Plain and Congo Basin. The CAMELE products is freely 35 

available at https://doi.org/10.5281/zenodo.6283239  (Li et al., 2021). 36 

 37 
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1. Introduction 39 

Land Evapotranspiration, including transpiration, soil evaporation, and evaporation 40 

from canopy interception, is the key component of global terrestrial water and energy 41 

cycle (Jung et al., 2010; Lian et al., 2018), which accounts for about 60% of water 42 

cycle. As the intermediate variable of soil moisture affecting air temperature, accurate 43 

estimation of global land evapotranspiration is critical for understanding the 44 

hydrological cycle and land-atmosphere interaction (Miralles et al., 2019; Gentine et 45 

al., 2019). Thus, providing a reliable ET dataset as benchmark for further studies is of 46 

great importance. 47 

During past decades, a great number of studies have investigated and developed 48 

different methods for the estimation of global land evapotranspiration, which leads to 49 

lots of datasets. Due to the difference in employed algorithms and principles, 50 

discrepancies are quite common among different simulations (Restrepo-Coupe et al., 51 

2021; Han and Tian, 2020; Zhang et al., 2021b). In addition, evaluation of ET 52 

products is always challenging due to the lack of sufficient observations at global 53 

scale, which limits the direct uses of these data (Pan et al., 2020; Baker et al., 2021).  54 

Products are often merged to mitigate their uncertainties. Recent studies have 55 

explored several approaches to integrate multiple ET products, including Simple 56 

Average (SA) (Ershadi et al., 2014), Bayesian Model Average (BMA) (Ma et al., 57 

2020; Zhu et al., 2016), Reliability Ensemble Average method (REA) (Yoo et al., 58 

2020), Empirical Orthogonal Functions (EOF) (Feng et al., 2016) and machine-59 

learning based methods (Chen et al., 2020; Yin et al., 2021). The SA method assigns 60 

the same weight to each product, which is practically unreasonable; The BMA 61 

method requires a certain input of observations with high quality and relative dense 62 

distribution (Li et al., 2021); The EOF method requires high computational cost and 63 

may introduce uncertainty by unclear refactoring scheme (Le et al., 2017). Behind 64 

these methods, the main challenge is to calculate reliable weights for inputs based on 65 

a chosen “truth” (Gruber et al., 2020; Koster et al., 2021), either by averaging or 66 
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introducing other relative geographical information as benchmark (Zhang et al., 67 

2021a). In addition, previous research mostly focused on the estimation of ET at 68 

regional scale. For a global simulation, a more simple and reliable method is required. 69 

Without the requirement of given reference, collocation analysis methods are widely 70 

used to estimate error variances and data-truth correlations by comparing across 71 

several independent data sources (Stoffelen, 1998; Gruber et al., 2020) . Lately, these 72 

methods have been widely applied in evaluation of various geographical variables 73 

estimates, including soil moisture (Chen et al., 2018; Dong et al., 2020c), precipitation 74 

(Li et al., 2018; Dong et al., 2020a), ocean wind speed (Ribal and Young, 2020), leaf 75 

area index (Jiang et al., 2017), total water storage (Baik et al., 2021), sea ice thickness 76 

and surface salinity (Hoareau et al., 2018), and near-surface air temperature (Sun et al., 77 

2021). The original triple-collocation framework has been expanded in recent years. 78 

(Su et al., 2014) proposed an instrumental-variable based approach by using a 79 

temporally lag-1 time series of one product as the other independent product, which 80 

only requires double collocation and is referred as single instrumental variable 81 

algorithm, or IVS. Based on that, (Dong et al., 2019) achieved a more robust solution, 82 

denoted as double instrumental variable algorithm, or IVD. (Gruber et al., 2016) 83 

extends the original algorithm to include a fourth dataset (i.e., quadruple collocation 84 

or QC) and partially address the independent assumption to calculate a part of error 85 

cross-correlation (Vogelzang and Stoffelen, 2021). To combine the benefits of both 86 

double and quadruple collocation, (Dong et al., 2020b) recently proposed the 87 

extended double instrumental or EIVD. 88 

In this study, we proposed a collocation-based data ensembled method to merge 89 

multiple ET products and produced the collocation-analyzed multi-source ensembled 90 

land evapotranspiration data, abbreviated as CAMELE. Merging framework was 91 

validated through synthetic experiments and validation against flux tower 92 

observations. By minimizing mean square error, the optimal weights for inputs were 93 

given using collocation-based evaluation results. Finally, our merged product was 94 
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compared at point and global scale with others.  95 

2. Data  96 

Five widely used land ET products were selected, covering the period from 1980 to 97 

2020. In addition, in-situ observations were employed for evaluation of the 98 

framework and further comparison of our merged product. The spatial and temporal 99 

resolutions of input datasets are shown in the following Table: 100 

TABLE.1 Summary of products involved 101 

Name Schemes 
Spatial 

resolution 
Temporal 
resolution 

Time Span Reference 

ERA5 IFS 0.1°&0.25° Hourly 
1980-

present 
(Hersbach 

et al., 2020) 

GLDASv2.1 Noah 0.25° Daily 1980-2019 
(Rodell et 
al., 2004) 

PMLV2 Penman-Monteith-Leuning 0.083° 8-Daily 2002-2019 
(Zhang et 
al., 2019) 

FLUXCOM Machine learning 0.083° 8-Daily 2001-2013 
(Jung et al., 

2019) 

GLEAMv3.3a Priestley-Taylor 0.25° Daily 1980-2017 
(Miralles et 
al., 2011) 

  102 

(1) ERA5 103 

The European Centre for Medium-Range Weather Forecasts (ECMWF) provides 104 

ERA5-Land global hourly reanalysis dataset at various resolutions, covering the 105 

period 1981 to nearly present. ERA5-Land has been produced by replaying the land 106 

component of ECMWF ERA5 climate reanalysis. The atmospheric forcing data 107 

served an indirect influence as the constraint of the model-based estimates (Hersbach 108 

et al., 2020). Land evaporation is just one of the many output variables, which 109 

containing evaporation from bare soil, evaporation from open water surface excluding 110 

oceans, evaporation from the top canopy, evaporation from vegetation transpiration, 111 

snow evaporation, potential evaporation, and total evaporation. The dataset is freely 112 

available at the Climate Change service of Copernicus center 113 

(http://cds.climate.copernicus.eu). The accumulated total evaporation was 114 

downloaded and aggregated from hourly to daily timestep over 0.1° and 0.25° 115 
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resolutions in this study.  116 

(2) GLDASv2.1 Noah 117 

The Global Land Data Assimilation System (GLDAS) product is a land surface 118 

simulation forced by a combination of model and observation datasets, which 119 

incorporates advanced and sophisticated data assimilation methodologies (Rodell et 120 

al., 2004). GLDAS runs multiple land surface models (LSMs), including Noah, 121 

Mosaic, Variable infiltration capacity (VIC) and Community land model (CLM). 122 

These combined models provide global estimation of evapotranspiration at both fine 123 

and coarse spatial (0.01° and 0.25°) and temporal (3-hourly and monthly) resolution. 124 

More complicated descriptions of the GLDAS products are available at NASA’s 125 

Hydrology Data and Information Services Center 126 

(http://disc.sci.gsfc.nasa.gov/hydrology). In this study, we employed the GLDAS 2.1 127 

Noah model at 0.25° spatial resolution with 3-hourly frequency. The 3-hourly data 128 

were then aggregated to daily timestep to match the consistence with other products. 129 

(3) PMLV2 130 

The Penman-Monteith-Leuning model version 2 global evaporation (PMLV2) is 131 

produced based on Penman-Monteith-Leuning model (Zhang et al., 2019). The PML 132 

model was first proposed by (Leuning et al., 2008), and further improved by (Zhang 133 

et al., 2010). The PML version 1 (PMLv1) is based on a biophysical model that 134 

considers canopy physiological processes and soil evaporation for the accurate 135 

estimation of surface conductance (��), which is the focus of PM-based method. It 136 

was further incorporated with a canopy conductance ( �� ) model that coupled 137 

vegetation transpiration with gross primary productivity, resulting in the PML version 138 

2 (PMLv2) (Gan et al., 2018). (Zhang et al., 2019) applied the PMLv2 model at global 139 

scale. The daily inputs include: (1) leaf area index (LAI), white sky shortwave albedo, 140 

and emissivity from Moderate Resolution Imaging Spectroradiometer (MODIS); (2) 141 

temperature variables (����, ����, ����), instantaneous variables (�����, ��, �, �), and 142 

accumulated variables (����, ���, ��) from GLDAS. The evaporation is divided into 143 

direct evaporation from bare soil (��), evaporation from solid water (water body, 144 
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snow, and ice) (�������), and vegetation transpiration (��). The PMLv2-ET is well-145 

calibrated against 8-daily eddy covariance data from 95 global flux towers for ten 146 

land cover types (Kong et al., 2020).The data is freely available at the data center of 147 

institute of Tibetan Plateau Research, Chinese Academy of Sciences via application 148 

(https://data.tpdc.ac.cn/zh-hans/data/48c16a8d-d307-4973-abab-972e9449827c/?q= ). 149 

In this study, the 8-daily PMLv2 data were used and interpolated to 0.1° using the 150 

MATLAB Gaussian process regression package. The accumulated total evaporation is 151 

calculated as: 152 

�� = �� + �� + ������� 153 

Data with abnormal value were removed. 154 

(4) FLUXCOM 155 

FLUXCOM is a machine-learning-based merging data of global land-atmosphere 156 

energy fluxes, which is the combination of remote sensing data and meteorological 157 

data (Jung et al., 2019). FLUXCOM uses several machine-learning-based regression 158 

tools, including tree-based methods, regression splines, neural networks, and kernel 159 

methods. The outputs were designed following two complementary strategies: (1) 160 

FLUXCOM-RS: merging exclusively remote sensing data to produce flux data with 161 

high spatial resolution. (2) FLUXCOM-RS+METEO: merging meteorological 162 

observations with remote sensing data at daily temporal resolution. The exclusive 163 

ensemble of RS data allows for generating gridded flux products at 500m spatial 164 

resolution, with relatively low frequency of 8-daily. Additionally, the FLUXCOM-RS 165 

data only cover the period after 2000 due to data availability. While the merging of 166 

meteorological data and remote sensing data extended the coverage (since 1980) with 167 

the cost of relatively coarser spatial resolution (0.5°). More detailed descriptions of 168 

the FLUXCOM dataset are available on the FLUXCOM website (http://fluxcom.org/). 169 

Data is freely available via contact.  170 

In this study, we employed the FLUXCOM-RS 8-daily 0.0833° energy flux data and 171 

convert the latent heat to evaporation using ERA5-Land aggregated daily air 172 

temperature. The conversion follows the equation: 173 
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�� =
�� × 30 × 60

(2.501 − 0.002361 × �) × 10�
 174 

Where �� is the evapotranspiration (kg ∙ m�� ∙ s��), �� is the latent heat flux (W ∙175 

m��), � is the air temperature (�). Furthermore, the original evaporation data were 176 

interpolated to 0.1° using the MATLAB Gaussian process regression package. 177 

(5) GLEAM v3.3a 178 

In this study, the Global Land Evaporation Amsterdam Model version 3.3a (GLEAM 179 

v3.3a) dataset (Miralles et al., 2011; Martens et al., 2017) at 0.25° are used. This 180 

version of GEAM provides daily estimation of actual evaporation (� ), bare soil 181 

evaporation ( �� ), canopy interception ( �� ), transpiration from vegetation ( �� ), 182 

potential evaporation (��), and snow sublimation (��) for the period 2003-2018. The 183 

data is freely available on VU university Amsterdam Geoservices website 184 

(http://geoservices.falw.vu.nl).  185 

GLEAM is based on the Priestley-Taylor framework (Priestley and Taylor, 1972), 186 

which employs reanalysis temperature and radiation to estimate potential ET (PET). 187 

Furthermore, the PET is reduced to actual ET using remotely sensed soil moisture and 188 

vegetation optical-depth measurements. The GLEAM AET data was validated at 43 189 

FLUXNET flux sites and had been proven to provide solid AET estimation (Majozi et 190 

al., 2017). Since ERA5-Land and GLEAMv3.3a both employ the ECMWF 191 

atmospheric reanalysis data, they may suffer the uncertainty from the same origin. 192 

However, due to the indirect influence of atmospheric data used in ERA5-Land, we 193 

can still assume that these two products are independent. 194 

(6) In-situ observations 195 

The FLUXNET2015 Tier 1 (http://fluxnet.fluxdata.org/) half-hourly eddy-covariance 196 

data are used in our study (Pastorello et al., 2020). After data filtering and processing, 197 

82 sites are selected, and the observations are aggregated to daily timestep as 198 

reference data for evaluation of other products.  199 

Following a filtering process by (Lin et al., 2019; Li et al., 2019), original hourly data 200 

is selected. Firstly, only the measured and good-quality gap-filled data are used for 201 

quality control. Secondly, to reduce the impact of canopy interception (Medlyn et al., 202 
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2017; Knauer et al., 2018), we excluded days with rainfall, as well as one extra 203 

subsequent day after rainy events. Thirdly, data records with negative GPP, ET and 204 

VPD were removed. When the number of valid half-hourly observations is higher 205 

than 38 (about 80%) per day, the daily total �� is calculated as: 206 

�� =
∑ (�� × 48)�

���

�
 207 

��� =
��� × 30 × 60

(2.501 − 0.002361 × ��) × 10�
 208 

Where �  is the number of valid half-hourly observations; ���  is the half-hourly 209 

observed latent heat flux (W ∙ m��); �� is the air temperature (K). 210 

If the number of valid data is below 38, the daily value is set as fill value. 211 

Additionally, previous studies illustrated that FLUXNET2015 data suffered from an 212 

energy imbalance problem. Thus, following the method proposed by (Twine et al., 213 

2000), the measured ET data are corrected. The sites are distributed globally, mostly 214 

located in North America and Europe. The International Geosphere–Biosphere 215 

Program (IGBP) land cover classification system (Loveland et al., 1999) is employed 216 

to distinguish the nine PFTs across sites, including evergreen needleleaf forests (ENF), 217 

evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), croplands 218 

(CRO), grasslands (GRA), savannas (SAV), woody savannas (WSA), and mixed 219 

forests (MF). The selected sites cover the period from 2003 to 2017 and each has at 220 

least 3 years of reliable data. Detailed information are included in the Appendix. 221 

3. Method 222 

In our study, the merging process contained three steps: (1) uncertainty 223 

characterization of inputs using collocation analysis methods; (2) calculation of 224 

optimal weights for each product by minimizing the mean square error; (3) linear 225 

combination of inputs and products of merged product over various resolutions. 226 

Figure 1 represents the general process for data merging. 227 
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 228 

FIGURE.1 A flowchart for the data merging process 229 

3.1 Uncertainty characterization 230 

The challenge for the evaluation of global ET products is due to the lack of reliable 231 

benchmark. While the main advantage of collocation analysis methods is that no 232 

reference is required. In collocation analysis, independent products of a geophysical 233 

variable are typically assumed to be linearly related to the true signal (Mccoll et al., 234 

2016). This linear model can be expressed as: 235 

� = ��� + �� + �� 236 

Where � is the product, � is the true signal; �� and �� are the ordinary least squares 237 

intercept and slope; and �� is zero-mean random error. This model is referred as the 238 

additive error structure model, while in practice, multiplicative error model in 239 

conjunction log transformation is more preferred (Li et al., 2018).  240 

The basic assumptions adopted in collocation contain: (1) error orthogonality, 241 

assuming that the random error is independent with the true signal, which can be 242 

expressed as: ��� = �� − �� = 0 ; (2) zero error cross-correlation, requiring the 243 

independence of each two products, which can be expressed as: ���� = ���� =244 

���� = 0; (3) the random error of each products is zero-mean, which means � = 0. 245 

https://doi.org/10.5194/essd-2021-456

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 March 2022
c© Author(s) 2022. CC BY 4.0 License.



11 
 

Based on these assumptions, the covariances between the products and the Pearson 246 

correlation (��) of each product against the true signal can be solved.  247 

The triple-collocation method (TC) requires a triplet of independent data sources 248 

(Stoffelen, 1998; Gruber et al., 2020) .The collocation analysis relies highly on the 249 

assumption that all datasets are mutually independent, which means error cross-250 

correlation (ECC) is considered as zero (Gruber et al., 2020). As illustrated by 251 

(Yilmaz and Crow, 2014), the violation of zero ECC assumption usually results in 252 

underestimation of data errors. However, it is usually difficult to find three 253 

independent datasets in practice. To address the problem, (Su et al., 2014) proposed 254 

the instrumental-variable based approach by using a temporally lag-1 time series of 255 

one product as the third independent product, which only requires double collocation 256 

and is referred as single instrumental variable algorithm, or IVS. Based on that, (Dong 257 

et al., 2019) achieved a more robust solution, denoted as double instrumental variable 258 

algorithm, or IVD. (Gruber et al., 2016) extends the original algorithm to include a 259 

fourth dataset (i.e., quadruple collocation or QC) and partially address the 260 

independent assumption to calculate a part of ECCs (Vogelzang and Stoffelen, 2021). 261 

To combine the benefits of both double and quadruple collocation, (Dong et al., 262 

2020b) recently proposed the extended double instrumental (EIVD), by which an 263 

ECC can be estimated using three datasets. Detailed deviations of each method were 264 

included in the Appendix. 265 

To characterize the uncertainties of inputs, all five collocation analysis methods were 266 

employed at both 0.1° and 0.25°, daily and 8-daily resolution. Different methods can 267 

also be categorized by number of inputs: (1) Dual inputs (IVS/IVD); (2) Triple inputs 268 

(TC/EIVD); (3) Quadruple inputs (QC). For dual-input methods, IVS required the 269 

selection of product to derive the lag-1 series as the third input, while IVD used the 270 

lag-1 variances of both products. For triple-input methods, EIVD required the 271 

identification of two products with non-zero error-correlation-covariance, while TC 272 

assumed all three products were mutual-independent. For quadruple-input method, the 273 
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requirement of QC was the same as EIVD. Therefore, taken the combinations over 274 

0.25°/8-daily resolution for example, the number of combination scenarios for: (1) 275 

IVS: (
5
2

) × (
2
1

) = 20; (2) EIVD: (
5
3

) × (
3
2

) = 30; (3) QC: �
5
4

� × �
4
2

� = 30. Detailed 276 

description of combinations could be found in the Appendix.  277 

3.2 Calculation of Optimal Weights 278 

Given specific variances of inputs, linear combination could serve as a simple and 279 

efficient solution for data assimilation. In this study, each product is assigned with the 280 

optimal weight (�) that minimizing the mean square error (Bates and Granger, 1969; 281 

Kim et al., 2020) using error variances (���
) and the ECC (�����

) as: 282 

��� =
���

� − �����

� ���
���

���
� + ���

� − 2�����
� ���

���

  283 

And the combined product �� is calculated as: 284 

�� = � ����

�

���

 285 

Where ��  is the weighted arithmetic mean for each product, for a dual-input 286 

combination, the value of �� is calculated as: 287 

�� =
���

��� + ���
 288 

For a triple-input combination, the value of �� is given as: 289 

�� =
��� + ���

(��� + ���) + (��� + ���) + (��� + ���)
 290 

In addition, for a quadruple-input, the value is: 291 

�� =
��� + ��� + ���

���� + ��� + ���� + ���� + ��� + ���� + ���� + ��� + ���� + ���� + ��� + ����
 292 

3.3 Merging combination 293 

The data were produced over 0.1°-8Daily and 0.25°-Daily resolutions based on 294 

evaluation results using IVD and EIVD algorithms. The selection of algorithm was 295 
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based on the comparison results. The performance of IVD and EIVD generally 296 

outperformed other methods at chosen resolutions. In this study, each product is 297 

assigned with the optimal weight (�) that minimizing the mean square error (Bates 298 

and Granger, 1969; Kim et al., 2020) using collocation-evaluated error variances (���
) 299 

and the ECC (�����
) . The table below showed the data used for merging during 300 

different period.  301 

TABLE.2 Combination of inputs and accessible methods  302 

Scenario 1 (0.1°-8Daily) 

Time Period Available Products Method 

（2001.01.01-2002.07.03) ERA5/ FLUXCOM IVD 

（2002.07.04-2013.12.27) ERA5/ FLUXCOM/ PMLV2 EIVD 

（2013.12.28-2019.08.29) ERA5/ PMLV2 IVD 

Scenario 2 (0.25°-Daily) 

Time Period Available Products Method 

（1981.01.01-2003.02.01) ERA5/ GLEAM IVD 

（2003.02.02-2018.12.31) ERA5/ FLUXCOM/ PMLV2 EIVD 

（2019.01.01-2020.08.31) ERA5/ GLDAS IVD 

4. Validation of framework 303 

In this section, the validation of our framework was conducted as follow: (1) synthetic 304 

experiments were design to validate the merging route and provide information for the 305 

selection of proper collocation methods; (2) collocation-based evaluation results for 306 

inputs were compared against site-based evaluation using FLUXNET. Here, we used 307 

three indexes for comparison, including: 308 

Pearson’s Correlation (��) 309 

�� =
[∑(�� − �)(�� − �)]�

∑��� − ��
�

∑��� − ��
� 310 

Root-mean-squared-error (����) 311 
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���� = �
∑(�� − ��)�

�
 312 

Standard Deviation (��) 313 

�� = �
∑(�� − �)�

�
 314 

4.1 Synthetic validation 315 

In our study, five synthetic experiments were designed to evaluate the merging route 316 

and compare different collocation analysis algorithms. Our aims were to (1) 317 

demonstrate that the merging data using linear combination based on minimizing 318 

mean square error outperforms any of the parent products; (2) compare the 319 

improvement of merging data over parent products using optimal weights derived by 320 

different methods; (3) evaluate how the violation of assumptions will impact the 321 

results; (4) illustrate that even though the assumptions are not perfectly valid, the 322 

merging product is still improved. Each experiment was repeated 1000 times using 323 

bootstrap to reduce the inherent uncertainty. In addition, only multiplicative error 324 

structure was employed in our experiments due to its applicability on collocation error 325 

characterization (Li et al., 2018; Gruber et al., 2020). 326 

4.1.1 Design of synthetic experiment 327 

A true signal (�) was generated following a passion distribution with a sample size of 328 

�: � = 0.85�(0~50, �) (Kim et al., 2020). Then a collection of synthetic products, 329 

�� (� = 1, 2, 3, and 4), was generated by adding zero-mean Gaussian errors (��) to � as: 330 

�� = � + �� 331 

This synthetic model was employed for the five synthetic experiments, where each 332 

assumption was violated one at a time by generating a relative error (��). In addition, 333 

six value of signal-to-noise rations (����� = 0.1, 0.5, 1, 2, 5, ��� 10) were adopted 334 

for the consideration of various noise range in the five synthetic experiments as: 335 
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��� = 10
�����

�� , �� =
��

���
 336 

Where �� and �� are signal power and noise power, respectively. While �� is used to 337 

generated noise with a specific variance according to the given SNR. 338 

The first experiment (denote as “Exp1”) was mean to test how the sample size (�) 339 

affects the result. Here, six sample sizes were chosen (50, 200, 600, 1000, 5000, and 340 

10000) and the errors were expressed as: 341 

�� = �(0, ��) 342 

Where �(0, ��) represents the Gaussian distribution with zero mean and variance of 343 

��. 344 

The second experiment (denoted as “Exp2”) was designed to analyze the violation of 345 

stationary assumption that random error of each product was assumed to be zero-346 

mean. Here, we increased the error mean by linearly including an additive term as: 347 

�� = � +
� − 0.5�

�
× � × �[�], � = 1: � 348 

Where � is the random error generated using Gaussian distribution (�(0, ��); � is the 349 

monotonical increment ranging from 1 to �; � is the increasing slope with relation to 350 

the exception of true signal. The sample size is fixed as 800 for Exp2 and the 351 

remaining experiments based on the analysis from Exp1. 352 

The third experiment (denoted as “Exp3”) aimed to evaluate the impact of the 353 

violation of zero error correlation covariance assumption. Non-zero ECC indicated 354 

that products were not mutual-independent. Here, we considered two conditions: (1) 355 

fully correlated, where all products were dependent; (2) partly correlated, where only 356 

two products were related. Given that IVS and IVD algorithms only require two 357 

products, evaluations of dual-input methods were all under fully correlated 358 

consideration. The errors were defined as: 359 

������ ����������: �

��~� = � = �(0, ��)

�� = �����
�� + �1 − �����

� �
 360 
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����� ����������: �

�� = � = �(0, ��)

��~� = �����~�
�� + �1 − �����~�

� �
 361 

Where �����
 is the error correlation covariance (ECC) and set as varying values (0.1, 362 

0.2, 0.4, 0.6, 0.8, and 0.9). 363 

The fourth experiment (denoted as “Exp4”) tested how the combination results were 364 

changed when the error-truth orthogonality assumption was violated. The errors in 365 

Exp4 were derived as: 366 

�� = ���� ×
�

√���
+ �1 − ����

� � 367 

Where ���� is the cross correlation between error and true signal and set as varying 368 

values (0.1, 0.2, 0.4, 0.6, 0.8, and 0.9). 369 

The last experiment (denoted as “Exp5”) investigated the effects of violation on zero 370 

autocovariance assumption. This assumption was adopted in IVS, IVD, and EIVD 371 

algorithms. The error of the one synthetic data was generated by a first-order 372 

autoregressive process with varying autocorrelation coefficients (0.1, 0.2, 0.4, 0.6, 0.8, 373 

and 0.9) using MATLAB simulation package. 374 

�� = �������������′���������, �,� ���, ����,� ���������, ����, �� 375 

Where � is the expectation of true signal; ���� is the autocorrelation coefficient. 376 

In summary, the designed aim and control parameter of each experiment is shown 377 

below: 378 

TABLE.3 Description of synthetic experiments 379 

No. Related Assumption Control Parameter 

Exp0 Error noise Signal-to-noise ratios (�����) 

Exp1 Sample representative Sample Size (�) 

Exp2 Stationarity Non-stationary slope (�) 

Exp3 Zero Error correlation covariance Error-cross-correlation (�����
) 

Exp4 Zero Error-truth orthogonality Error-truth cross-correlation (���) 

Exp5 Zero Error autocorrelation Error autocorrelation (�) 
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4.1.2 Synthetic Experiments Results 380 

The synthetic results were validated based on the data-truth correlation (����). Given 381 

that the synthetic data could not explicitly reflect the real situation, the analysis of 382 

results should focus on patterns and tendencies with changes in control parameters. 383 

Here, we focused on the improvement of combined product based on ∆�: 384 

∆� = ���� − max [���] 385 

Here, positive ∆� represents improvements of the combined product, and vice versa. 386 

The analysis is twofold: (1) the results of all experiments under 0.1dB SNR are 387 

investigated; (2) the results of EIVD-based experiments under six SNR value are 388 

compared to illustrate the impact of noise. 389 

https://doi.org/10.5194/essd-2021-456

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 March 2022
c© Author(s) 2022. CC BY 4.0 License.



18 
 

 390 

FIGURE.2 Results of all synthetic experiments with 0.1dB SNR. All methods were 391 

employed in the experiments. The legend of x axis in each figure represents the 392 

control parameter. The legend of y axis in all figures is the ∆�. Lines in various colors 393 

corresponds to a method as marked in the legend box. 394 

In Exp1, the value of ∆� raised with increasing sample size, while the variability 395 

reduced. Combined products based on all method present improvement, while EIVD-396 

based product outperformed others. The expansion of data volume effectively reduced 397 
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the uncertainty. Moreover, the results suggested that a sample size no less than 800 398 

should be used for the combination. 399 

Exp2 was designed to test the impact of stationarity assumption with increasing slope 400 

of error mean (�). With the augment of slope, performance of combined product 401 

based on all method turned down, including the simplest average method. When the 402 

slope was over 1.0, the combined products showed no improvement. However, this 403 

value of slope (�>1) indicated that the expectation of random error was one time 404 

greater than the mean of true signal, which was hardly possible in practice.  405 

In Exp3, we compared the results under two different conditions: (1) fully correlated, 406 

where all products were dependent; (2) partly correlated, where only two products 407 

were related. The value of ∆� rapidly decreased with the augment of �����
 under both 408 

conditions. When all products were correlated, the decreasing slope of ∆�  was 409 

significantly steeper. Since zero-ECC assumption was hard to meet in practical 410 

situation, the finding suggested that the ECC should be carefully considered for a 411 

linear combination, as mentioned in previous studies (Gruber et al., 2020). In addition, 412 

the impact of ECC on combination was relatively lower under partly correlated 413 

condition. Thus, the selection of products was also essential for error characterization 414 

and combination. 415 

The impact of error-truth orthogonality assumption was shown in Exp4. The 416 

improvement in ∆� was weakening when the true signal was more relevant with the 417 

random error. When the correlation (�) was over 0.9, which indicated that random 418 

error was highly correlated with true signal, the improvement in ∆� was nearly zero. 419 

However, given that the random error of data was usually considered independent 420 

with true signal in practice, the impact of error-truth orthogonality could not the main 421 

source of the method uncertainty (Yilmaz and Crow, 2014).  422 

As for Exp5, we designed this experiment to investigate the impact of autocovariance. 423 

This assumption is related to IVS, IVD, and EIVD methods. The overall combination 424 

performance in ∆� declined compared with other experiments, and the value of ∆� 425 
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was slightly degraded when the error autocorrelation (�) became significant. The 426 

finding suggested that the consideration of error autocorrelations of products was 427 

necessary. However, evapotranspiration was less influenced by predominant condition 428 

(Zhang et al., 2011; Sharma et al., 2021). Thus, the impact of error-autocorrelation 429 

should not introduce much uncertainty. 430 

Finally, comparing different methods, the results demonstrated that combination 431 

performance based on EIVD method generally outperformed other methods through 432 

synthetic experiments. As for the simplest averaging method, though previous studies 433 

recommended the average value as the proxy of reference (Pan et al., 2020; Burnett et 434 

al., 2020; Baker et al., 2021), our synthetic results demonstrated that the averaging 435 

method presented the lowest improvement. For gridded data, the equal weight for 436 

each grid assigned by averaging method ignored the spatial variability of different 437 

products, which could result in large uncertainty. In addition, since EIVD algorithm 438 

used the lag-1 series of two products, the violation of zero-error-autocorrelation 439 

assumption had the greatest impact than other methods.  440 
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 441 

FIGURE.3 EIVD-based results of all synthetic experiments under six various SNR 442 

value to investigate the impact of error noise. The legend of x axis in each figure 443 

represents the control parameter. The legend of y axis in all figures is the ∆�. Lines in 444 

various colors corresponds to a SNR value as marked in the legend box. 445 

As shown in the figure, when the ����� was over 1, the combination performance 446 

was dramatically degraded. The results illustrated that impact of noise was significant 447 

and was necessary to be taken into consideration. In practice, the ����� is usually 448 
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considered between 0.1 and 0.6 for products of geographical variables (Biscarini et al., 449 

2021). 450 

4.2 Site-based Validation of collocation-based evaluation results 451 

Flux tower observation is the direct way to achieve the value of evapotranspiration, 452 

which is usually regarded as the reference for the assessments of products (Decker et 453 

al., 2012; Griebel et al., 2020). Due to the high cost for installation and maintenance 454 

of flux tower, the distribution and data period is scare at global scale. To prove that 455 

collocation analysis methods could be used as a reliable alternative when direct 456 

observations are not available, we compared the collocation-based evaluation results 457 

(as simulation) against the results based on flux tower observations (as reference). 458 

The comparisons were conducted over three resolutions: 0.1°-8Daily, 0.25°-Daily, 459 

and 0.25°-8Daily.  460 

Table 4 presents the average value of Pearson’s correlation (��) for five collocation 461 

analysis methods under all scenarios using multiplicative error structure. The 462 

comparison results demonstrated that collocation framework was reliable for the 463 

evaluation of �� products. Among the methods, IVD, EIVD, and QC were the three 464 

preferred methods for usage.  465 

TABLE.4 Pearson’s correlation (��) for different products using collocation analysis 466 

algorithms against evaluations based on in-situ observations. 467 

 Resolution: 0.1°/8Daily Resolution: 0.25°/Daily 
Methods ERA5 FLUXCOM PMLV2 ERA5 GLEAM GLDAS 

IVS 0.682  0.357 0.442 0.574  0.486  0.616  
IVD 0.647  0.663 0.669 0.576  0.693  0.700  
TC 0.712 0.035 0.574 0.649 0.645 0.691 

EIVD 0.698  0.719 0.703 0.751  0.692  0.719  
Resolution: 0.25°/8Daily 

Methods ERA5 FLUXCOM PMLV2 GLEAM GLDAS 
IVS 0.699  0.542  0.523  0.675  0.686  
IVD 0.683  0.643  0.546  0.631  0.693  
TC 0.734  0.803  0.710  0.564  0.764  

EIVD 0.717  0.722  0.608  0.800  0.748  
QC 0.743  0.529  0.570  0.489  0.766  

Furthermore, we presented the Taylor diagram (Taylor, 2001) to provide a way of 468 
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graphically summarizing how closely the results match the reference. The similarity is 469 

quantified in terms of their correlation, their centered root-mean-square difference, 470 

and the amplitude of their variations (represented by their standard deviations). In this 471 

study, since calculated indexes were generally quite small (below 0.5), we multiplied 472 

the results of ����  and ��  by 100 to magnify the difference for more intuitive 473 

contrast.  474 

 475 

 476 

FIGURE.4 Taylor diagram for average collocation-based results against evaluations 477 

over tower observations of five products. Each color refers to one product and each 478 

shape represents one algorithm, as marked in the figure. The diagrams (from left to 479 

right) correspond to 0.1°-8Daily results, 0.25°-Daily results, and 0.25°-8Daily results, 480 

respectively. 481 
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As shown in the figure, the average ���� was between 0.02-0.04 mm/d with mean 482 

�� over 0.8, manifesting the overall high accuracy of all products. Moreover, EIVD 483 

and IVD methods outperformed others with relatively higher correlation and lower 484 

difference, while TC showed the highest ����. However, since all the indexes were 485 

quite small, it could be concluded that results by any method matched the reference 486 

well. 487 

In addition, to select the proper error structure and assess the performance of 488 

algorithms over various resolution, we compared the ERA5-results based on two error 489 

models over two scales. Each column referred to one resolution. 490 

 491 

FIGURE.5 Comparison of collocation analysis results for ERA5 using multiplicative 492 

(first row) or additive (second row) error structure at various resolutions against 493 

evaluations over observations 494 

As shown in the figure, there was a poignant contrast of performance between two 495 

error models. Multiplicative structure was proven to be a better description of the 496 

error-truth-relation, which was consistent with previous research (Yilmaz and Crow, 497 

2014; Li et al., 2018). In the contrast, evaluations using additive model showed 498 
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dramatical deviation against observation-based results. Thus, we only employed the 499 

multiplicative error model for further calculation and analysis. 500 

In general, the comparison results demonstrated that collocation methods were 501 

reliable for the evaluation of evapotranspiration products. Multiplicative error model 502 

was more suitable for the description of error-truth-relation. Among the methods, IVD, 503 

EIVD, and QC were the three preferred methods for usage. 504 

5. Results 505 

In this section, we conducted the comparison between merged product and others in 506 

two steps: (1) validation at point scale using 82 selected FLUXNET sites; (2) 507 

comparison of global spatial distribution and variation trend. 508 

5.1 Site-based Validation  509 

The validation results of CAMELE against flux tower observations for different land 510 

cover types were shown in Figure 6 - 7. The average accuracy of CAMELE was about 511 

0.68, 0.62 of correlation and 0.84, 1.03 mm/d of RMSE over 0.1° and 0.25°, while 512 

ERA5 and GLEAM were the second best for 0.1° and 0.25° with 0.66 and 0.61 of 513 

correlation. In general, the merged product revealed well performance over all land 514 

cover types with some variations. The results also indicated that the uncertainties of 515 

products increased over coarser resolution with obvious higher relative bias and lower 516 

correlation. Moreover, slight overestimation of merged product was found over 0.25° 517 

for generally all land cover types. Since tower or gauge could only cover the variation 518 

of geographical variables over a certain range (Tang et al., 2018), pixel-based 519 

evaluation on 0.1° and 0.25° should consider the inherent uncertainty of in-situ 520 

observations, which may explain the increased bias found in our comparison. In 521 

general, the validation against flux tower data demonstrated the overall high accuracy 522 

of CAMELE over various land cover types. 523 

 524 

https://doi.org/10.5194/essd-2021-456

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 March 2022
c© Author(s) 2022. CC BY 4.0 License.



26 
 

 525 

FIGURE.6 Validation results of CAMELE against flux tower observations for 526 
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evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous 527 

broadleaf forests (DBF), croplands (CRO), grasslands (GRA), savannas (SAV), 528 

woody savannas (WSA), and mixed forests (MF) over 0.1°-8Daily resolution 529 
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 530 
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FIGURE.7 Validation results of CAMELE against flux tower observations for 531 

evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous 532 

broadleaf forests (DBF), croplands (CRO), grasslands (GRA), savannas (SAV), 533 

woody savannas (WSA), and mixed forests (MF) over 0.25°-Daily resolution 534 

Here we also presented the comparison of all products over some sites and employ the 535 

Kling-Gupta Efficiency (KGE) for better description. The KGE (Gupta et al., 2009) 536 

addressed several shortcomings in Nash-Sutcliffe Efficiency (NSE) and were 537 

increasingly used for calibration and evaluation (Knoben et al., 2019), given by: 538 

��� = 1 − �(� − 1)� + �
����

����
− 1�

�

+ �
����

����
− 1�

�

 539 

Where ����  and ����  are the standard deviations of observations and simulations; 540 

���� and ���� are the mean of observations and simulations. Similar with NSE, KGE 541 

= 1 indicates perfect agreement of simulations while KGE<0 reveals that the average 542 

of observations is better than simulations (Towner et al., 2019; Knoben et al., 2019).  543 
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 544 

FIGURE.8 Boxplots of KGE for all products over two resolutions against 82 sites. 545 

In terms of KGE, CAMELE obtained results superior (mean KGE=0.52) to the 546 
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second best ERA5 (mean KGE=0.44) at 0.1° basis. In general, our merged product 547 

performed well with precise reflection of the fluctuation. At FR-Gri site, some 548 

underestimation of PMLV2 and overestimation of FLUXCOM over peak value were 549 

observed over 0.1°. At US-Wkg site over 0.25°, all products showed high 550 

performance except for ERA5 with significant overestimation. To some extent, our 551 

merged product integrated the advantages of all inputs and addressed the 552 

overestimation and underestimation of peak value. 553 

 554 

 555 

FIGURE.9 Performance of different products at 0.1°-8Daily resolution on FR-Gri 556 

site from 2011 to 2014. 557 

 558 

FIGURE.10 Performance of different products at 0.25°-Daily resolution on FR-Gri 559 

site from 2011 to 2014. 560 
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 561 

FIGURE.11 Performance of different products at 0.1°-8Daily resolution on US-Wkg 562 

site from 2008 to 2014. 563 

 564 

FIGURE.12 Performance of different products at 0.25°-1Daily resolution on US-565 

Wkg site from 2008 to 2014. 566 

5.2 Spatial distribution 567 

Figure 13 - 14 depicted the spatial distribution of multi-year daily average ET, and the 568 

results were found consistent among different products over two resolutions. High 569 

evaporation regions were near the equators, including the Amazon Plain in South 570 

America, the Congo Basin in central Africa and the border between Asia and Oceania, 571 

with high precipitation (usually over 1000 mm per year). As for extreme low value, 572 

they were distributed in permafrost regions or dry desert, like the Sahara and Arabian 573 

deserts in North Africa, permafrost regions in North America and Eurasia. Compared 574 

to CAMELE, estimations by ERA5 and FLUXCOM were higher in wet regions near 575 

the equator while value of PMLV2 was slightly lower over 0.1°; estimations by 576 

GLEAM was significant higher near the equators and the value by GLDAS was the 577 
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lowest among these wet regions. Since the available period varied among different 578 

products, we only showed a general comparison and future studies could consider 579 

more detailed regional investigation.  580 

 581 

FIGURE.13 Spatial distribution of long-period average daily land evaporation for 582 

different products over relative period over 0.1°-8Daily resolution 583 

 584 

FIGURE.14 Spatial distribution of long-period average daily land evaporation for 585 

different products over relative period over 0.25°-8Daily resolution 586 

Figure 15 - 16 presented the annual variation trends of multiple products during 2002-587 
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2015 and 2003-2017. Over 0.1°, a decrease in ET was found in Amazon Plain and 588 

Congo Basin by our merged product, while the increase regions were indicated in 589 

South Asia and the West Australia. The reduction over Amazon Plain was also found 590 

in ERA5 and FLUXCOM, while PMLV2 showed a rising trend. The decreasing trend 591 

over Congo Basin was consistent with ERA5 and FLUXCOM, still an opposite one 592 

by PMLV2. (Burnett et al., 2020) demonstrated that Congo Basin had become drier 593 

and less humid in recent years based on the analysis of environmental data. Our 594 

results showed the same trend. 595 

 596 

FIGURE.15 Spatial distribution of linear annual trends of land evapotranspiration of 597 

different products from 2002 to 2015 over 0.1°-8Daily resolution 598 

 599 
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 600 

FIGURE.16 Spatial distribution of linear annual trends of land evapotranspiration of 601 

different products from 2003 to 2017 over 0.25°-8Daily resolution 602 

Over 0.25°, the variation by merged product followed the similar patterns with the 603 

one over 0.1° with smaller value. This may be explained by the changing of resolution 604 

(from 0.1° to 0.25°), which included more pixels into one grid that neutralize the total 605 

variation. The general distribution was quite consistent with that of GLEAM, which 606 

had been proven with high accuracy, especially over tropical Africa (Liu et al., 2016; 607 

Wang et al., 2020). Decreases on Amazon Plain and Congo Basin were also revealed 608 

with opposite finding by GLDAS. (Burnett et al., 2020) found GLDAS with the 609 

maximum temporal variability among the selected products in their study, especially 610 

over Congo Basin. The increases in South Asia and the coastline of Australia were 611 

detected in all products. 612 

6. Conclusion 613 

In this study, we proposed a collocation-based data merging method and generated a 614 

long-period (1980-2020) CAMELE ET product over 0.1°-8Daily and 0.25°-Daily 615 

resolutions by merging five widely used datasets, including ERA5, FLUXCOM, 616 

PMLV2, GLDAS and GLEAM. The optimal weights were calculated using 617 
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evaluations of inputs by collocation methods. The error characterizations were then 618 

proven be reliable against evaluations by in-situ observations. In addition, a series of 619 

synthetic experiments were design to validate our merging framework. Further, we 620 

conducted a comparison between CAMELE and other products at site-based and 621 

regional scales. To sum up, our conclusions were as follow: 622 

1. Collocation analysis methods could serve as a reliable tool for evaluation of ET 623 

products without given reference, which provides promising future for error 624 

characterization especially over data-scare region or analysis at global scale. The 625 

evaluation results could provide important information for data merging. 626 

2. The CAMELE product revealed general good performance at point scale. 627 

Compared to in-situ observations, the Pearson Correlation of 0.68 and 0.62 value 628 

of CAMELE over 0.1° and 0.25° resolutions are higher than the second best for 629 

relative resolution (0.66 for ERA5 and 0.61 for GLEAM). In addition to Kling-630 

Gupta Efficiency, the merged product obtained superior mean value of 0.52, 631 

compared to 0.44 for ERA5 at 0.1° basis.  632 

3. The spatial distributions of multi-year average daily ET and annual variation trend 633 

were generally similar to others. Results by CAMELE indicated a decrease in ET 634 

over Amazon Plain and Congo Basin, as consistent with the finding by ERA5 and 635 

GLEAM. Increases were found in South Asia and Northwest Australia. Our 636 

merged product well described the variation of global ET with combining 637 

advantages of the input products. 638 

The optimal weight for each product was calculated using collocation-based 639 

evaluation results. Thus, the uncertainty may come from biased evaluation due to the 640 

violation of mathematical assumptions employed by collocation methods, especially 641 

the zero ECC assumption. While in our study, the ECC results by EIVD and QC 642 

demonstrated that this impact was within acceptable range since the general value of 643 

ECC was quite low as presented in the Appendix. Moreover, though random error 644 

caused by changing combinations may bring additional uncertainty, previous studies 645 
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have showed that the variance over difference combination was quite small (Li et al., 646 

2018). Thus, this may not bring much error and could be considered in further study. 647 

To sum up, our proposed collocation-based data merging method revealed promising 648 

potential for the merging of ET products. The merged CAMELE ET showed general 649 

well performance over site-based and regional scales, which could satisfy the 650 

requirement of more detailed research. In future studies, to improve the quality of 651 

merged product, dynamic weights could be calculated by adopting suitable merging 652 

period for different products and more complicated combination schemes could be 653 

considered to improve the accuracy.  654 
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