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Abstract 1 

Vegetation phenology can profoundly modulate the climate-biosphere interactions and 2 

thus plays a key role in regulating the terrestrial carbon cycle and the climate. However, 3 

most previous phenology studies are based on the traditional vegetation indices, which 4 

are inadequate to characterize the seasonal activity of photosynthesis. Here, we 5 

generated an annual vegetation photosynthetic phenology dataset with a spatial 6 

resolution of 0.05 degree from 2001 to 2020, using the latest gross primary productivity 7 

product based on solar-induced chlorophyll fluorescence (GOSIF-GPP). We combined 8 

smoothing splines with multiple change-point detection to retrieve the phenology 9 

metrics: start of the growing season (SOS), end of the growing season (EOS), and 10 

length of growing season (LOS) for terrestrial ecosystems in the Northern Hemisphere. 11 

We found that the derived phenology metrics agreed better with in situ observations 12 
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from the flux tower sites than vegetation indices and MODIS-GPP. Our phenology 13 

metrics captured the spatial-temporal patterns of the single and double growing season 14 

in the Northern Hemisphere. The double season was mainly from the cropland rotation 15 

and ecosystems having two different phenological cycles. In addition, we observed a 16 

trend toward advanced SOS in about 62.98% of the land area, with a mean rate of 17 

0.14±0.01 days year-1, a trend toward delayed EOS in about 61.87% of the area, with a 18 

mean rate of 0.19±0.16 days year-1, and a trend toward extended LOS in about 70.52% 19 

of the area, with a mean rate of 0.33±0.17 days year-1. Our phenology product can be 20 

used for validating and developing phenology models or carbon cycle models, for 21 

evaluating satellite remote sensing phenology, and for monitoring climate change 22 

impacts on terrestrial ecosystems. The data are available 23 

at https://doi.org/10.6084/m9.figshare.17195009.v2 (Fang et al. 2021). 24 

 25 

1. Introduction 26 

Vegetation phenology, the cycle sequence of plant vital activities, is a highly sensitive 27 

indicator of the climate impacts on terrestrial ecosystems (Richardson et al. 2013, Piao 28 
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et al. 2019, Wang et al. 2019, Keenan et al. 2020). Most phenology studies focus on the 29 

structural changes of plants, such as using the growth process of leaf represented by the 30 

greenness indicators (Seyednasrollah et al. 2021, Yang and Noormets 2021). However, 31 

recent studies found that the methods based on vegetation greenness have limited ability 32 

to capture the photosynthesis changes in some vegetation types (e.g. evergreen forests) 33 

since the greenness and photosynthesis are sometimes decoupled (Walther et al. 2016, 34 

Smith et al. 2018). The inaccurate estimation of phenology can lead to substantial 35 

uncertainties in the estimation of plant productivity and carbon sequestration 36 

(Richardson et al. 2012, Wu et al. 2017, Fang et al. 2020). 37 

The plant photosynthetic cycle on the seasonal time scale is termed as ‘vegetation 38 

photosynthetic phenology’, which represents the functional aspects of plant activities 39 

(Gu et al. 2009). This phenology definition is based on the photosynthesis transition 40 

dates extracted from the gross primary productivity (GPP) time series. Thus, the 41 

accuracy of extracted phenology metrics is largely dependent on the data source of GPP. 42 

Currently, the GPP can either be derived from Eddy Covariance (EC) flux towers at the 43 

ecosystem scale or from satellite remote sensing or modeling at the regional or global 44 
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scale (Xiao et al. 2019). The EC technique, which is considered as the most accurate 45 

observation method (Baldocchi et al. 2001), has provided long-term GPP estimates for 46 

more than 20 years. However, these observations are limited by their spatial distribution 47 

and some key areas are still underrepresented (Xiao et al. 2019). For example, only a 48 

few EC sites provide public datasets in the tropical and high latitude regions. GPP 49 

derived from satellite remote sensing is able to investigate large–scale phenology across 50 

the globe (Sjöström et al. 2013). Greenness-related vegetation indices such as the 51 

normalized difference vegetation index (NDVI) and the enhanced vegetation index 52 

(EVI) have been widely used to estimate GPP (Wu et al. 2017, Huang et al. 2019, Dai 53 

et al. 2021). However, these indices work better for capturing the variations in 54 

chlorophyll content or vegetation coverage and are not sufficient to track the 55 

instantaneous physiological changes in vegetation photosynthesis, especially for 56 

evergreen vegetation (Joiner et al. 2014, Li and Xiao 2020). Recently, the emergence 57 

of satellite-based solar-induced chlorophyll fluorescence (SIF) has offered 58 

unprecedented opportunities for developing more accurate photosynthetic phenology 59 

data products on large scales (Joiner et al. 2011, Frankenberg et al. 2014, Li et al. 2018, 60 

https://doi.org/10.5194/essd-2021-452

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 31 March 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

Köhler et al. 2018). SIF, a signal emitted by plant chlorophyll molecules after absorbing 61 

photosynthetically active radiation (APAR), is considered to be an effective tool for 62 

diagnosing terrestrial photosynthesis and estimating GPP more accurately (Meroni et 63 

al. 2009, Verma et al. 2017, Wood et al. 2017, Li and Xiao 2020). Based on the SIF 64 

product, recent studies used the relationship between the GPP and SIF to estimate the 65 

regional or global GPP (SIF-GPP) (Li and Xiao 2019, Zhang et al. 2020). Previous 66 

studies reported that SIF-GPP can better capture the GPP dynamics in evergreen 67 

vegetation and dryland ecosystems than traditional vegetation indices (Bertani et al. 68 

2017, Smith et al. 2018). 69 

In addition, the retrieval of phenology in previous studies mainly used a logistic 70 

regression model to fit the time series of smoothed vegetation indices or GPP, and the 71 

predetermined thresholds or inflection points are identified as the transition dates of 72 

phenology in the fitted curve (Garrity et al. 2011, Wang et al. 2017, Yang and Noormets 73 

2021). However, this method needs to reconstruct the original data sequence and thus 74 

results in uncertainty from the model parameterization (Klosterman et al. 2014). 75 

Furthermore, this method is usually used to capture a single growing season instead of 76 
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the multiple growing seasons in a given year (Yang and Noormets 2021). 77 

Correspondingly, Richardson et al. (2018) proposed a method of smoothing spline and 78 

multiple change-point detection to retrieve the transition dates of phenology from the 79 

camera data. The strength of this method is not limited by the uncertainty of additional 80 

model parameters and can also be applied in ecosystems having multiple growing 81 

seasons. The method has been successfully used at multiple sites in North America 82 

(Richardson et al. 2018) and needs to be extended to large scales. 83 

Here, we aim to generate a photosynthetic phenology metrics dataset based on the 84 

GPP product derived from satellite SIF data. Our data can detect multiple growing 85 

seasons, which can be used to evaluate the photosynthesis activity of vegetation from 86 

large scales. The metrics include the start state-transition dates of photosynthesis (SOS), 87 

the end state-transition dates of photosynthesis (EOS), and the duration length of 88 

photosynthesis (LOS). With this goal, we constructed a method combining smoothing 89 

filter and change-point detection to retrieve photosynthetic phenology from a recently 90 

developed SIF-based GPP product (GOSIF-GPP: 2001-2020) with a fine spatial 91 

resolution (0.05o). This method enables us to acquire multiple photosynthesis activity 92 
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periods of vegetation within one year. The remainder of this paper describes the data of 93 

SIF-GPP and land cover data, the adopted method for retrieving photosynthetic 94 

phenology metrics, the results and discussion of the metrics and their uncertainties, and 95 

the conclusions. 96 

 97 

 98 

2. Data 99 

We used the GOSIF-GPP dataset from 2001-2020 (Li and Xiao 2019) to derive the 100 

phenology metrics on large scales in this study (http://data.globalecology.unh.edu/). 101 

GOSIF-GPP was estimated from the GOSIF dataset based on eight linear SIF-GPP 102 

relationships with 0.05o spatial and 8-day temporal resolutions (i.e., 46 GPP estimates 103 

per year for each 0.05o grid cell). The GOSIF dataset was developed by using discrete 104 

SIF soundings from the Orbiting Carbon Observatory-2 (OCO-2), remote sensing data 105 

from MODIS, and reanalysis data from MERRA-2 based on machine learning method 106 

(Li and Xiao 2019b). The GOSIF-GPP showed reasonable seasonal and spatial patterns 107 

and was highly correlated with GPP from FLUXNET (Li and Xiao 2019). Here, we 108 
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identified the vegetation type of each grid cell according to the MODIS Land Cover 109 

Type Product Version 6 (MCD12C1: https://lpdaac.usgs.gov/products/mcd12q1v006/) 110 

(Fig. S1, 0.05o spatial resolution). The current study used six broad vegetation types 111 

(i.e. forests: evergreen needleleaf forests, evergreen broadleaf forests, deciduous 112 

needleleaf forests, deciduous broadleaf forests, and mixed forests; shrublands: closed 113 

canopy shrublands and open shrublands; savannas: savannas and woody savannas; 114 

grasslands; wetlands; croplands) in the Northern Hemisphere. For the sake of 115 

reducing noise generated by non-vegetation signals, we excluded the area covered with 116 

bare soil and sparse vegetation (i.e., maximum GPP lower than 2.0 g C m-2 day-1) (Liu 117 

et al. 2016). Since the seasonal variation of vegetation photosynthesis in the tropical 118 

region is relatively small (Piao et al. 2019), we focused on the area above 30o N latitude. 119 

The final dataset is provided at each 0.05o grid for 20 years in the six terrestrial 120 

ecosystems of the Northern Hemisphere. 121 

To evaluate phenology estimates based on GOSIF-GPP, we used the daily GPP 122 

data from EC flux towers across the Northern Hemisphere based on the 123 

FLUXNET2015 Dataset (https://fluxnet.org/data/fluxnet2015-dataset/) (Pastorello et al. 124 
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2020). We retained the EC flux sites that were relatively homogeneous because the 125 

footprint of 0.05o GOSIF product and EC tower may not exactly match (Li and Xiao 126 

2019). We selected the flux sites having available GPP data for more than one year. 127 

The selected flux tower GPP dataset includes 49 sites with 389 site-year data (the 128 

detailed information of these flux sites can be found in Table S1). As a comparison, we 129 

also compared the performance of GOSIF-GPP based phenology metrics with those 130 

based on the vegetation indices and GPP products from the MODIS datasets. For each 131 

site, we extracted and calculated three vegetation indices from the Nadir Bidirectional 132 

Reflectance Distribution Function (BRDF)-Adjusted Reflectance dataset MCD43A4 133 

(produced daily and 500 m resolution) including the NDVI, the EVI, the near-infrared 134 

reflectance of vegetation (NIRV) (Badgley et al. 2017), and the 8-day, 500-m MODIS 135 

GPP data (MOD17A2) (Zhao et al. 2005) from 2001 to 2014. 136 

 137 

 138 

3. Method 139 

3.1 Photosynthetic phenology metrics 140 
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The phenology metrics in this study include SOS, EOS, and LOS. Unlike the traditional 141 

phenological events from the structural changes of leaf or flower, the photosynthetic 142 

phenology is defined as the start (i.e. SOS) and end (i.e. EOS) state-transition dates of 143 

the photosynthesis cycles. These transition dates are used as the phenology metrics. 144 

One full cycle generally has five distinctive stages, including (1) photosynthesis 145 

dormancy period, a season before the growing season; (2) photosynthesis development 146 

period, a GPP rising stage; (3) photosynthesis peak period, a peak stage of GPP; (4) 147 

photosynthesis recession period, a GPP falling stage; and (5) photosynthesis dormancy 148 

period, the photosynthetically inactive stage after the growing season. Most previous 149 

studies used the sigmoid-based methods (e.g., double-logistic model) to extract the 150 

phenology, but these methods are limited to the single cycle (Yang and Noormets 2021). 151 

Because some regions or ecosystems had multiple cycles in one year, we used the 152 

smoothing splines and change points to identify the transition dates of photosynthesis. 153 

In this study, all transition dates were extracted from the daily GPP sequence of each 154 

grid cell. Thus, we interpolated the 8-day GOSIF-GPP data to the daily scale using 155 

cubic spline interpolation before the extraction. 156 
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We constructed an automatic method to retrieve transition dates (i.e. SOS and EOS) 157 

of photosynthetic phenology using GPP data. The algorithm of this method is outlined 158 

in the flowchart in Fig. 1. The important basis for acquiring phenological events was 159 

the data reconstruction using smoothing methods to minimize the impact of abnormal 160 

values (Li et al. 2019). We applied the iterative procedure to conduct the smoothing 161 

process (Fig. 1): (1) Smoothing the GPP time series by the Savitzky-Golay filter, which 162 

can reflect the change characteristics of the original data sequence; (2) Calculating the 163 

ratio of the daily GPP value to the smooth value; (3) Identifying outliers in these ratios 164 

by using the Grubbs test; (4) Using the smooth value instead of the daily GPP value 165 

when the ratios were larger than one standard deviation below the mean ratio; (5) 166 

Applying the iterative procedure up to 20 times or until no outliers were detected from 167 

one iteration to the next. This procedure can largely keep the raw seasonal pattern of 168 

photosynthesis and avoid the uncertainty of parameter estimation by reconstructing the 169 

data time series by estimating parameters in the double logistic model. 170 

The potential change points in the final smoothing splines were identified with the 171 

Pruned Exact Linear Time (PELT) method. This method can accurately detect the 172 
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significant change points in the data time series and does not need to preset the number 173 

of change points. The PELT was first applied by Killick et al. (2012), and they described 174 

in detail on how to find the change points in time series. For each photosynthesis cycle, 175 

we followed Richardson et al. (2018) to set the penalty factor and the minimum segment 176 

length of PELT as 0.5 and 14-days, respectively. We calculated the mean GPP value of 177 

the adjacent change points as the potential peak and bottom baseline in one full cycle. 178 

According to the time series of mean GPP value, we used the difference method to 179 

detect the bottoms and peaks (i.e., minimum and maximum value in each cycle). The 180 

adjacent bottoms and one peak were formed as a full cycle, and the value of these points 181 

was considered as the baselines. Some GOSIF-GPP data affected by the weak 182 

vegetation SIF signals could have unreliable cycles, and these cycles that had peaks less 183 

than 0.25 of the maximum peak were excluded in the current study.  184 

Here, the SOS and EOS dates of each cycle were determined by amplitude 185 

thresholds. The amplitude was equal to the peak minus the bottom. Although the “true” 186 

onset of photosynthesis may correspond most closely to the 10% amplitude threshold 187 

(Wu et al. 2017), the most tightly-constrained transition dates tended to occur in the 188 
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later dates of the GPP rising stage and the earlier dates of the GPP falling stage 189 

(Richardson et al. 2018). Thus, we followed Richardson et al. (2018) to provide the 190 

SOS and EOS dates by using three amplitude thresholds: 10%, 25%, and 50%. The 191 

SOS and EOS were determined when the GPP smoothing splines reached the value of 192 

amplitude thresholds, and the LOS was defined as EOS minus SOS: 193 𝑆𝑂𝑆௜ = 𝑡, 𝑖𝑓 𝐺𝑃𝑃ௌሺ𝑡ሻ = (𝑃𝑒𝑎𝑘 − 𝐵𝑜𝑡𝑡𝑜𝑚ଵ) × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௜ (1) 𝐸𝑂𝑆௜ = 𝑡, 𝑖𝑓 𝐺𝑃𝑃ௌ(𝑡) = (𝑃𝑒𝑎𝑘 − 𝐵𝑜𝑡𝑡𝑜𝑚ଶ) × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௜ (2) 𝐿𝑂𝑆௜ = 𝐸𝑂𝑆௜ − 𝑆𝑂𝑆௜ (3) 

where i is the threshold (10%, 25%, and 50%); t is the day of the year (DOY); GPPS is 194 

the daily value of the smoothing splines; Bottom1 is the baseline for dormancy season 195 

before the growing season; Bottom2 is the baseline for dormancy season after growing 196 

season. Note that we retrieved the phenology of vegetation indices (i.e. daily data) and 197 

MODIS-GPP (i.e. interpolating the 8-day data to the daily scale) by using the same 198 

method. 199 

 200 

3.2 Uncertainty estimation 201 
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The uncertainties in the estimates of phenology metrics mainly arise from the gridded 202 

SIF-based GPP estimates, such as using the limited explanatory variables to acquire the 203 

gridded SIF estimates (i.e., GOSIF) and the relationship between the SIF and GPP. In 204 

this study, we did not assess the quality of the underlying SIF and GPP data, which was 205 

previously evaluated (Li and Xiao 2019); instead we used the Monte Carlo 206 

Bootstrapping method (Efron 1992) to estimate the related uncertainties. Bootstrapping 207 

provides valuable information about uncertainties without making assumptions about 208 

the underlying data distributions (Elmore et al. 2012). For each year of the individual 209 

grid cell, we used bootstrapping to replace the transition dates with 100 times random 210 

uniform sampling (Yang and Noormets 2021). The 5th and 95th percentiles of the 100 211 

bootstrapped data were considered as the confidence interval of the mean estimated 212 

from the original transition dates. 213 

 214 

 215 

4. Results and discussion 216 

4.1 Comparison with phenology derived from vegetation indices, MODIS-GPP, 217 
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and EC tower data 218 

We used the photosynthetic phenology metrics extracted from the daily GPP of the flux 219 

towers to examine the corresponding metrics extracted from the GOSIF-GPP product. 220 

We also use the same method to retrieve phenology from the NDVI, EVI, NIRV, and 221 

MODIS GPP for the EC tower sites. According to the different thresholds, the metrics 222 

were divided in to nine groups (SOS10%, SOS25%, SOS50%: SOS with 10%, 25%, and 223 

50% amplitude threshold; EOS10%, EOS25%, EOS50%: EOS with 10%, 25%, and 50% 224 

amplitude threshold; EOS10%, EOS25%, EOS50%: EOS with 10%, 25%, and 50% 225 

amplitude threshold) (Fig. 2 and Table 1). Overall, the phenology metrics of GOSIF-226 

GPP showed the highest correlations with the phenology metrics of EC tower GPP, 227 

while the phenology of NDVI showed the lowest correlations. For each metric, (1) SOS, 228 

the correlation coefficient (R) between the 10%, 25%, and 50% SOS of EC tower GPP 229 

and other data were (i.e. from high to low): GOSIF-GPP (0.78-0.80), MODIS-GPP 230 

(0.65-0.67), NIRV (0.47-0.60), EVI (0.40-0.57), and NDVI (0.14-0.39); the root mean 231 

square error (RMSE) were (i.e. from low to high): GOSIF-GPP (14.99-18.03 days), 232 

MODIS-GPP (18.83-22.98 days), NIRV (21.74-29.86 days), EVI (24.97-36.97 days), 233 
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and NDVI (26.20-26.91 days). (2) EOS, the highest R between 10%, 25%, and 50% 234 

EOS of EC tower GPP and other data was GOSIF-GPP (0.63-0.73) and the lowest R 235 

was NDVI (0.42-0.56). (3) LOS, the highest R between 10%, 25%, and 50% EOS of 236 

EC tower GPP and other data was GOSIF-GPP (0.65-0.76) and the lowest R was NDVI 237 

(0.28-0.40). The comparisons indicated that GOSIF-GPP showed consistently better 238 

performance than the vegetation indices (i.e., NDVI, EVI, and NIRV) for different 239 

phenology metrics and different thresholds. MODIS-GPP had larger deviations 240 

compared to GOSIF-GPP, which highlights the need for the improvement on light use 241 

efficient models. NIRv, the product of near-infrared reflectance and NDVI (Badgley et 242 

al. 2017), was slightly better to capture the phenology metrics of tower GPP than EVI 243 

and NDVI. The results agreed with previous studies which showed a stronger ability of 244 

SIF in responding to the environmental conditions such as water and heat stresses, and 245 

thus in better capturing the seasonal and interannual photosynthetic activity (Walther 246 

et al. 2016; Smith et al. 2018; Li et al. 2018).  247 

The derived phenology of GOSIF-GPP and EC tower GPP showed a close 248 

correspondence across the 389 site-years. The best performance of the different 249 
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thresholds in SOS, EOS, and LOS was 25% (R=0.80, 0.73, and 0.76; RMSE=15.83, 250 

21.89, and 29.14 days, respectively), and the threshold of 10% had relatively low 251 

performance in SOS and EOS (R=0.79 and 0.63; RMSE=18.03 and 23.55 days, 252 

respectively) and 50% had relatively low performance in LOS (R=0.65; RMSE=27.89 253 

days). Our results showed that our method better captured the SOS than the EOS, which 254 

was consistent with previous studies that uncertainty occurred in satellite-based EOS 255 

estimations, especially for the evergreen vegetation such as tropical and boreal 256 

evergreen forests (Liu et al. 2016, Piao et al. 2019). In addition, more tower sites need 257 

to be considered in further studies so that the photosynthesis phenology metrics from 258 

the SIF product can be better evaluated. 259 

 260 

4.2 Number of growing seasons 261 

We used the method to retrieve the multiple growing seasons in the Northern 262 

Hemisphere. Fig. 3 showed the spatial distribution of the number of growing seasons. 263 

Most regions in the Northern Hemisphere had a single growing season, while part of 264 

the cropland had a double growing season in a given year. The North China Plain (the 265 
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red part in the top right of Fig. 3) had the most areas with the double growing season 266 

because the wheat-maize rotation was the most important cropping system in this plain 267 

(Zhao et al. 2006). This artificial crop rotation pattern brought two photosynthesis 268 

cycles: wheat grows in winter and spring, and maize grows in summer and autumn. In 269 

addition to croplands, a small proportion of the grid cells also had double growing 270 

seasons, such as some areas in California. Turner et al. (2020) reported that the double 271 

growing season in California was due to two overlapping ecosystems in one grid, 272 

whereas they were out of phase with each other: grasslands showed a peak of the 273 

growing season in April and forests peak in June. The phenology retrieval of such 274 

mixed ecosystems is still challenging and requires further exploration (Piao et al. 2019). 275 

 276 

4.3 Spatial patterns of photosynthetic phenology metrics 277 

Here, we showed the spatial distribution of the first growing season in Fig. 4. Overall, 278 

phenology metrics (SOS, EOS, and LOS) in terrestrial ecosystems of the Northern 279 

Hemisphere exhibited a spatially explicit pattern from the high latitudes to the low 280 

latitudes. Limited by low temperature, the areas around the Arctic Circle had the latest 281 
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SOS (DOY>140), the earliest EOS (DOY<220), and the shortest LOS (days<120). LOS 282 

gradually increased as the climate conditions became more suitable for photosynthesis 283 

and then reached the longest in the subtropics. For different thresholds, the mean 284 

difference of SOS, EOS, and LOS between 10% and 50% was 30 days, 40 days, and 285 

70 days, respectively. For different ecosystems (Table 2), grasslands showed the 286 

earliest SOS and EOS among all biomes; forests and savannas had the latest SOS; 287 

croplands and forests exhibited the latest EOS and the longest LOS, while shrublands 288 

and grasslands had the shortest LOS. 289 

Fig. 5 showed the spatial distribution of the second growing season. We found that 290 

the second 10% SOS in North China Plain was in the end of May (DOY=150) and the 291 

second 10% EOS was in the middle of September (DOY=280). This was consistent 292 

with the emergence and dormancy of maize (i.e. the second growing season). The wheat 293 

would seed after the maize was harvested and the greenness of wheat was in the early 294 

March of the next year, which was the start time of the first growing season (Tang et al. 295 

2020). In California, the second 10% SOS of some areas was in the early June 296 

(DOY=160) and 10% EOS was in the middle of September (DOY=280); the second 297 
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10% SOS of other areas was in the late September (DOY=250) and 10% EOS was in 298 

the late November (DOY=330). These results were from the two different mixed grids, 299 

one included the evergreen forests and grasslands, another included the croplands and 300 

grasslands. Turner et al. (2020) found that the growth of grasses provides the first 301 

growing season for these grids. As the grids included evergreen forests entered summer, 302 

the increase of the available water in the soil resulted in the growth of evergreen woody 303 

plants, prompting these grids to enter the second growing season. Other ecosystems 304 

were gradually entered the dormant stage in fall, but the crops still maintained 305 

photosynthesis, making the grids containing croplands show the second growing season. 306 

 307 

4.4 Uncertainties of photosynthetic phenology metrics 308 

The uncertainty used in this study was defined as the 5th and 95th percentiles of the 309 

100 Monte Carlo bootstrapping samples ranging from a few days to several weeks 310 

(Table 2). The uncertainty was the lowest for SOS and the highest for LOS; EOS had 311 

intermediate uncertainty. The highest uncertainty in LOS maybe because of the 312 

compounding effect of SOS and EOS (Yang and Noormets 2021). Generally, metrics 313 
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of grasslands had the lowest uncertainty: SOS uncertainty ranged from 3.8 to 5.1 days, 314 

EOS uncertainty ranged from 8.6 to 10.4 days, LOS uncertainty ranged from 13.7 to 315 

14.2 days; forests have the largest uncertainty, with SOS uncertainty ranging from 7.3 316 

to 9.4 days, EOS uncertainty from 16.0 to 18.4 days, and LOS uncertainty from 25.4 to 317 

25.7 days. The high uncertainty in the forests was possibly because this ecosystem 318 

included multiple mixed vegetation types and the phenology of these plants was more 319 

difficult to retrieve (Piao et al. 2019). 320 

 321 

4.5 Changes in photosynthetic phenology metrics 322 

We conducted the linear regression analysis by using the transition dates of phenology 323 

and the time series in each grid cell, and the regression coefficient was considered as 324 

the changing trend of the grid cell (Fig. 6). Here, we only showed the changes of the 325 

dominant single growing season. For the spatial distribution of the phenology metrics 326 

with the three thresholds, 61.71-64.25% of the study area experienced advanced trends 327 

of SOS, with a large advanced trend in northwestern North America, northern Siberia, 328 

and eastern Europe (changes>0.6 days year-1); 57.97%-65.89% of the study area 329 
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experienced delayed trends of EOS, with a large delayed trend in the northern North 330 

America and northern Siberia (changes>0.4 days year-1); 70.29-70.76% of the study 331 

area experienced extended trends of LOS, with a large extended trend in northern China, 332 

northern North America, and northern Siberia (changes>0.6 days year-1). Note that the 333 

inconsistent climate change trends in different seasons may lead to advanced or delayed 334 

SOS and EOS in some regions simultaneously, such as eastern Europe (Cohen et al. 335 

2012). 336 

We spatially averaged the phenology metrics for the terrestrial ecosystems across 337 

the Northern Hemisphere to assess the interannual variation of phenology metrics (Fig. 338 

7). During the period 2001-2020, the mean SOS of all thresholds significantly advanced 339 

by 0.13-0.16 days year-1 (p<0.05); the mean EOS of 10% and 25% significantly 340 

advanced by 0.03-0.35 days year-1 (p<0.05); the mean LOS of all thresholds 341 

significantly extended by 0.16-0.51 days year-1 (p<0.01). These findings are consistent 342 

with previous studies (Zhu et al. 2012, Liu et al. 2016). For example, Liu et al. (2016) 343 

indicated that the EOS delayed by 0.18 days year-1 across the Northern Hemisphere of 344 

1982-2011. 345 
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 346 

 347 

5. Data availability 348 

This dataset is divided into single and double growing seasons. The entire dataset is 349 

deposited at the open-access repository Figshare 350 

(https://doi.org/10.6084/m9.figshare.17195009.v2; Fang et al. 2021). 351 

 352 

 353 

6. Conclusions 354 

This study used a long-term (2001-2020) SIF-based GPP product (GOSIF-GPP) to 355 

generate annual photosynthetic phenology of vegetation with a high spatial resolution 356 

(0.05o) in the Northern Hemisphere. Here, we applied a method combining filter 357 

smoothing and change point detection to determine the annual dynamics of phenology 358 

metrics (i.e., SOS, EOS, and LOS). This method avoided the re-modeling of the GPP 359 

time series and allowed the extraction of metrics with different thresholds in multiple 360 

growing seasons. We provided data users with three choices (10%, 25%, and 50% 361 
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threshold) of the metrics most appropriate for their specific application. Overall, the 362 

photosynthetic phenology metrics based on GOSIF-GPP agree with those extracted 363 

from in situ observations of EC towers. Compared to the metrics of vegetation indices 364 

and MODIS-GPP, the GOSIF-GPP metrics can provided more accurate phenology in 365 

most EC tower sites. The comparison with field data acquired at the EC towers suggests 366 

the 25% threshold of GOSIF-GPP can better capture the dynamics of photosynthetic 367 

phenology than other thresholds. In addition, the results showed a spatially explicit 368 

pattern from the north to the south in Northern Hemisphere. The SOS of all thresholds 369 

presented a significant advanced trend in the past 20 years; the EOS of 50% threshold 370 

showed an insignificant delayed trend; the LOS of all thresholds had a significant 371 

extended trend. 372 

The phenology product based on GOSIF-GPP in our study is of great use in 373 

vegetation phenology studies because the SIF can directly reveal seasonal variations in 374 

vegetation vital activities (Mohammed et al. 2019). With these metrics, the response of 375 

vegetation phenology to climate change can be further investigated such as the 376 

importance of precipitation in spring phenology (Li et al. 2021). It will also be useful 377 
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for developing and validating dynamic vegetation models. Our phenology metrics 378 

could be further improved when more accurate SIF-based GPP estimates are available. 379 

 380 

 381 

Acknowledgments 382 

This study was supported by the National Natural Science Foundation of China 383 

(32101349, 32171599). This study also was supported by the National Key R&D 384 

Program of China (2019YFA0606904) and the Key Program of the National Natural 385 

Science Foundation of China (32130069). J.X. was supported by the University of New 386 

Hampshire. 387 

 388 

 389 

Reference 390 

Badgley, G., Field, C. B., & Berry, J. A. 2017. Canopy near-infrared reflectance and terrestrial 391 
photosynthesis. Science Advances, 3:e1602244. 392 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., ... & Wofsy, S. 2001. FLUXNET: A new 393 
tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water 394 
vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82: 2415-395 
2434. 396 

Bertani, G., F. H. Wagner, L. O. Anderson, and L. E. O. C. Aragão. 2017. Chlorophyll Fluorescence Data 397 

https://doi.org/10.5194/essd-2021-452

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 31 March 2022
c© Author(s) 2022. CC BY 4.0 License.



27 
 

Reveals Climate-Related Photosynthesis Seasonality in Amazonian Forests. Remote Sensing 398 
9:1275. 399 

Chen, A., J. Mao, D. Ricciuto, D. Lu, J. Xiao, X. Li, P. E. Thornton, and A. K. Knapp. 2021. Seasonal changes 400 
in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere. Global 401 
Change Biology 27:5186-5197. 402 

Cohen, J. L., J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry. 2012. Asymmetric seasonal 403 
temperature trends. Geophysical Research Letters 39. 404 

Dai, J., M. Zhu, W. Mao, R. Liu, H. Wang, J. M. Alatalo, Z. Tao, and Q. Ge. 2021. Divergent changes of the 405 
elevational synchronicity in vegetation spring phenology in North China from 2001 to 2017 in 406 
connection with variations in chilling. International Journal of Climatology 41:6109-6121. 407 

Efron, B. 1992. Bootstrap Methods: Another Look at the Jackknife. Pages 569-593 in S. Kotz and N. L. 408 
Johnson, editors. Breakthroughs in Statistics: Methodology and Distribution. Springer New 409 
York, New York, NY. 410 

Elmore, A. J., S. M. Guinn, B. J. Minsley, and A. D. Richardson. 2012. Landscape controls on the timing of 411 
spring, autumn, and growing season length in mid-Atlantic forests. Global Change Biology 412 
18:656-674. 413 

Fang, J., J. A. Lutz, L. Wang, H. H. Shugart, and X. Yan. 2020. Using climate-driven leaf phenology and 414 
growth to improve predictions of gross primary productivity in North American forests. Global 415 
Change Biology 26:6974-6988. 416 

Fang, J., Li, X., X. Xiao, J., X. Yan, B. Li, F. Liu. 2021. Vegetation photosynthetic phenology metrics in 417 
northern terrestrial ecosystems: a dataset derived from a gross primary productivity product 418 
based on solar-induced chlorophyll fluorescence. figshare. Dataset. 419 
https://doi.org/10.6084/m9.figshare.17195009.v1 420 

Frankenberg, C., C. O'Dell, J. Berry, L. Guanter, J. Joiner, P. Köhler, R. Pollock, and T. E. Taylor. 2014. 421 
Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-422 
2. Remote Sensing of Environment 147:1-12. 423 

Garrity, S. R., G. Bohrer, K. D. Maurer, K. L. Mueller, C. S. Vogel, and P. S. Curtis. 2011. A comparison of 424 
multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon 425 
exchange. Agricultural and Forest Meteorology 151:1741-1752. 426 

Gu, L., Post, W. M., Baldocchi, D. D., Black, T. A., Suyker, A. E., Verma, S. B., ... & Wofsy, S. C. 2009. 427 
Characterizing the seasonal dynamics of plant community photosynthesis across a range of 428 
vegetation types. In Phenology of ecosystem processes (pp. 35-58). Springer, New York, NY. 429 

Huang, X., J. Xiao, and M. Ma. 2019. Evaluating the Performance of Satellite-Derived Vegetation Indices 430 

https://doi.org/10.5194/essd-2021-452

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 31 March 2022
c© Author(s) 2022. CC BY 4.0 License.



28 
 

for Estimating Gross Primary Productivity Using FLUXNET Observations across the Globe. 431 
Remote Sensing 11:1823. 432 

Joiner, J., Y. Yoshida, A. P. Vasilkov, K. Schaefer, M. Jung, L. Guanter, Y. Zhang, S. Garrity, E. M. Middleton, 433 
K. F. Huemmrich, L. Gu, and L. Belelli Marchesini. 2014. The seasonal cycle of satellite 434 
chlorophyll fluorescence observations and its relationship to vegetation phenology and 435 
ecosystem atmosphere carbon exchange. Remote Sensing of Environment 152:375-391. 436 

Joiner, J., Y. Yoshida, A. P. Vasilkov, Y. Yoshida, L. A. Corp, and E. M. Middleton. 2011. First observations 437 
of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8:637-438 
651. 439 

Keenan, T. F., A. D. Richardson, and K. Hufkens. 2020. On quantifying the apparent temperature 440 
sensitivity of plant phenology. New Phytologist 225:1033-1040. 441 

Killick, R., P. Fearnhead, and I. A. Eckley. 2012. Optimal detection of changepoints with a linear 442 
computational cost. Journal of the American Statistical Association 107:1590-1598. 443 

Klosterman, S. T., K. Hufkens, J. M. Gray, E. Melaas, O. Sonnentag, I. Lavine, L. Mitchell, R. Norman, M. 444 
A. Friedl, and A. D. Richardson. 2014. Evaluating remote sensing of deciduous forest phenology 445 
at multiple spatial scales using PhenoCam imagery. Biogeosciences 11:4305-4320. 446 

Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., & Landgraf, J. 2018. Global retrievals of 447 
solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor 448 
comparison to OCO-2. Geophysical Research Letters, 45: 10-456. 449 

Li, X., Y. H. Fu, S. Chen, Xiao J., G. Yin, X. Li, X. Zhang, X. Geng, Z. Wu, X. Zhou, J. Tang, and F. Hao. 2021. 450 
Increasing importance of precipitation in spring phenology with decreasing latitudes in 451 
subtropical forest area in China. Agricultural and Forest Meteorology 304-305:108427. 452 

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., ... & Varlagin, A. 2018. Solar-induced 453 
chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety 454 
of biomes: First global analysis based on OCO-2 and flux tower observations. Global change 455 
biology, 24: 3990-4008. 456 

Li, X., and J. Xiao. 2019. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived 457 
from OCO-2, MODIS, and reanalysis data. Remote Sensing 11: 517. 458 

Li, X., and J. Xiao. 2020. Global climatic controls on interannual variability of ecosystem productivity: 459 
Similarities and differences inferred from solar-induced chlorophyll fluorescence and enhanced 460 
vegetation index. Agricultural and Forest Meteorology 288-289:108018. 461 

Li, X., Y. Zhou, L. Meng, G. R. Asrar, C. Lu, and Q. Wu. 2019. A dataset of 30 m annual vegetation 462 
phenology indicators (1985–2015) in urban areas of the conterminous United States. Earth 463 

https://doi.org/10.5194/essd-2021-452

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 31 March 2022
c© Author(s) 2022. CC BY 4.0 License.



29 
 

System Science Data 11:881-894. 464 
Liu, Q., Y. H. Fu, Z. Zhu, Y. Liu, Z. Liu, M. Huang, I. A. Janssens, and S. Piao. 2016. Delayed autumn 465 

phenology in the Northern Hemisphere is related to change in both climate and spring 466 
phenology. Global Change Biology 22:3702-3711. 467 

Meroni, M., M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, and J. Moreno. 2009. Remote 468 
sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. 469 
Remote Sensing of Environment 113:2037-2051. 470 

Mohammed, G. H., R. Colombo, E. M. Middleton, U. Rascher, C. van der Tol, L. Nedbal, Y. Goulas, O. 471 
Pérez-Priego, A. Damm, M. Meroni, J. Joiner, S. Cogliati, W. Verhoef, Z. Malenovský, J.-P. 472 
Gastellu-Etchegorry, J. R. Miller, L. Guanter, J. Moreno, I. Moya, J. A. Berry, C. Frankenberg, and 473 
P. J. Zarco-Tejada. 2019. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in 474 
vegetation: 50 years of progress. Remote Sensing of Environment 231:111177. 475 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., ... & Law, B. 2020. The 476 
FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific 477 
data 7:225. 478 

Piao, S., Q. Liu, A. Chen, I. A. Janssens, Y. Fu, J. Dai, L. Liu, X. Lian, M. Shen, and X. Zhu. 2019. Plant 479 
phenology and global climate change: Current progresses and challenges. Global Change 480 
Biology 25:1922-1940. 481 

Richardson, A. D., R. S. Anderson, M. A. Arain, A. G. Barr, G. Bohrer, G. Chen, J. M. Chen, P. Ciais, K. J. 482 
Davis, A. R. Desai, M. C. Dietze, D. Dragoni, S. R. Garrity, C. M. Gough, R. Grant, D. Y. Hollinger, 483 
H. A. Margolis, H. McCaughey, M. Migliavacca, R. K. Monson, J. W. Munger, B. Poulter, B. M. 484 
Raczka, D. M. Ricciuto, A. K. Sahoo, K. Schaefer, H. Tian, R. Vargas, H. Verbeeck, J. Xiao, and Y. 485 
Xue. 2012. Terrestrial biosphere models need better representation of vegetation phenology: 486 
results from the North American Carbon Program Site Synthesis. Global Change Biology 487 
18:566-584. 488 

Richardson, A. D., K. Hufkens, T. Milliman, D. M. Aubrecht, M. Chen, J. M. Gray, M. R. Johnston, T. F. 489 
Keenan, S. T. Klosterman, and M. Kosmala. 2018. Tracking vegetation phenology across diverse 490 
North American biomes using PhenoCam imagery. Scientific data 5:1-24. 491 

Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey. 2013. Climate 492 
change, phenology, and phenological control of vegetation feedbacks to the climate system. 493 
Agricultural and Forest Meteorology 169:156-173. 494 

Seyednasrollah, B., D. R. Bowling, R. Cheng, B. A. Logan, T. S. Magney, C. Frankenberg, J. C. Yang, A. M. 495 
Young, K. Hufkens, M. A. Arain, T. A. Black, P. D. Blanken, R. Bracho, R. Jassal, D. Y. Hollinger, B. 496 

https://doi.org/10.5194/essd-2021-452

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 31 March 2022
c© Author(s) 2022. CC BY 4.0 License.



30 
 

E. Law, Z. Nesic, and A. D. Richardson. 2021. Seasonal variation in the canopy color of 497 
temperate evergreen conifer forests. New Phytologist 229:2586-2600. 498 

Sjöström, M., M. Zhao, S. Archibald, A. Arneth, B. Cappelaere, U. Falk, A. de Grandcourt, N. Hanan, L. 499 
Kergoat, W. Kutsch, L. Merbold, E. Mougin, A. Nickless, Y. Nouvellon, R. J. Scholes, E. M. 500 
Veenendaal, and J. Ardö. 2013. Evaluation of MODIS gross primary productivity for Africa using 501 
eddy covariance data. Remote Sensing of Environment 131:275-286. 502 

Smith, W. K., J. A. Biederman, R. L. Scott, D. J. P. Moore, M. He, J. S. Kimball, D. Yan, A. Hudson, M. L. 503 
Barnes, N. MacBean, A. M. Fox, and M. E. Litvak. 2018. Chlorophyll Fluorescence Better 504 
Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland 505 
Ecosystems of Southwestern North America. Geophysical Research Letters 45:748-757. 506 

Tang, J., Zeng, J., Zhang, Q., Zhang, R., Leng, S., Zeng, Y., ... & Wang, Q. 2020. Self-adapting extraction of 507 
cropland phenological transitions of rotation agroecosystems using dynamically fused NDVI 508 
images. International journal of biometeorology, 64: 1273-1283. 509 

Verma, M., D. Schimel, B. Evans, C. Frankenberg, J. Beringer, D. T. Drewry, T. Magney, I. Marang, L. Hutley, 510 
C. Moore, and A. Eldering. 2017. Effect of environmental conditions on the relationship 511 
between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. 512 
Journal of Geophysical Research: Biogeosciences 122:716-733. 513 

Walther, S., Voigt, M., Thum, T., Gonsamo, A., Zhang, Y., Köhler, P., ... & Guanter, L. 2016. Satellite 514 
chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and 515 
greenness dynamics in boreal evergreen forests. Global change biology, 22: 2979-2996. 516 

Wang, X., Xiao, J., Li, X., Cheng, G., Ma, M., Che, T., ... & Wu, J. 2017. No consistent evidence for 517 
advancing or delaying trends in spring phenology on the Tibetan Plateau. Journal of 518 
Geophysical Research: Biogeosciences, 122: 3288-3305. 519 

Wang, X., Xiao, J., Li, X., Cheng, G., Ma, M., Zhu, G., Arain, M.A., Black, T.A., Jassal, R.S. 2019. No trends 520 
in spring and autumn phenology during the global warming hiatus. Nature communications 10: 521 
1-10. 522 

Wood, J. D., T. J. Griffis, J. M. Baker, C. Frankenberg, M. Verma, and K. Yuen. 2017. Multiscale analyses 523 
of solar-induced florescence and gross primary production. Geophysical Research Letters 524 
44:533-541. 525 

Wu, C., D. Peng, K. Soudani, L. Siebicke, C. M. Gough, M. A. Arain, G. Bohrer, P. M. Lafleur, M. Peichl, A. 526 
Gonsamo, S. Xu, B. Fang, and Q. Ge. 2017. Land surface phenology derived from normalized 527 
difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest 528 
Meteorology 233:171-182. 529 

https://doi.org/10.5194/essd-2021-452

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 31 March 2022
c© Author(s) 2022. CC BY 4.0 License.



31 
 

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J.A., Huete, A.R., Ichii, K., Ni, W., Pang, Y., Rahman, 530 
A.F., Sun, G., Yuan, W., Zhang, L., Zhang, X. 2019. Remote sensing of the terrestrial carbon cycle: 531 
A review of advances over 50 years. Remote Sensing of Environment, 233:111383. 532 

Yang, L., and A. Noormets. 2021. Standardized flux seasonality metrics: a companion dataset for 533 
FLUXNET annual product. Earth System Science Data 13:1461-1475. 534 

Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. 2005. Improvements of the MODIS terrestrial 535 
gross and net primary production global data set. Remote Sensing of Environment, 95:164-176. 536 

Zhao, R.-F., X.-P. Chen, F.-S. Zhang, H. Zhang, J. Schroder, and V. Römheld. 2006. Fertilization and Nitrogen 537 
Balance in a Wheat–Maize Rotation System in North China. Agronomy Journal 98:938-945. 538 

Zhu, W., Tian, H., Xu, X., Pan, Y., Chen, G., & Lin, W. 2012. Extension of the growing season due to delayed 539 
autumn over mid and high latitudes in North America during 1982–2006. Global Ecology and 540 
Biogeography, 21: 260-271. 541 

 542 
 543 
Table 1. Statistical comparison of the phenology metrics retrieved from EC tower GPP 
and GOSIF-GPP, NDVI, EVI, NIRV, and MODIS-GPP. 10%, 25%, and 50% mean the 
three thresholds. The bold means the highest R and the lowest RMSE. R: correlation 
coefficient; RMSE: root mean square error. 

Data 
source 

SOS EOS LOS 
10% 25% 50% 10% 25% 50% 10% 25% 50% 

R 
GOSIF-
GPP 

0.79  0.80  0.78  0.63  0.73  0.63  0.72  0.76  0.65  

NDVI 0.14  0.25  0.39  0.45  0.42  0.56  0.28  0.32  0.40  

EVI 0.40  0.46  0.57  0.57  0.60  0.66  0.37  0.37  0.38  

NIRv 0.47  0.51  0.60  0.63  0.66  0.67  0.51  0.48  0.41  
MODIS-
GPP 0.66  0.67  0.65  0.29  0.55  0.61  0.47  0.55  0.49  

 RMSE (days) 
GOSIF-
GPP 18.03 15.83  14.99  23.55  21.89 24.38 33.93 29.14 27.89 
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NDVI 36.91 32.18  26.20  34.13  39.68 41.86 53.87 53.92 52.39 

EVI 36.97 31.34  24.97  31.75  29.41 26.09 58.53 49.04 39.28 

NIRv 29.86 26.00  21.74  27.26  25.67 24.95 46.11 40.03 35.12 

MODIS-
GPP 

22.98 20.56  18.83  30.22  24.76 23.88 43.79 36.33 32.25 

 
 
Table 2. The mean value and uncertainty of photosynthetic phenology metrics in the 
different terrestrial ecosystems. 
Terrestrial 
ecosystems 

Threshold Mean SOS 
(uncertainty) 

Mean EOS 
(uncertainty) 

Mean LOS 
(uncertainty) 

Forests 10% 108.26 (7.34)  271.29 (18.39) 163.03 (25.73) 
 25% 122.12 (8.28) 255.40 (17.31)  133.28 (25.59)  
 50% 138.44 (9.38) 236.24 (16.01)  97.80 (25.40)  
Shrublands 10% 75.10 (5.09)  144.33 (9.78)  69.22 (14.88)  
 25% 80.97 (5.49)  137.14 (9.30)  56.17 (14.79)  
 50% 88.14 (5.97)  129.02 (8.75)  40.89 (14.72)  
Savannas 10% 106.37 (7.21)  244.25 (16.56)  137.88 (23.77)  

25% 117.25 (7.95)  230.10 (15.60) 112.85 (23.55) 
50% 130.85 (8.87) 213.10 (14.45)  82.24 (23.32)  

Grasslands 10% 56.72 (3.84)  153.48 (10.40)  96.76 (14.25)  
 25% 65.21 (4.42)  140.37 (9.52)  75.16 (13.94)  
 50% 74.71 (5.06)  127.55 (8.65)  52.84 (13.71)  
Wetlands 10% 106.58 (7.23)  213.13 (14.45)  106.55 (21.67)  
 25% 115.24 (7.81)  202.70 (13.70)  86.83 (21.51)  
 50% 126.24 (8.56)  189.61 (12.85)  63.37 (21.41)  
Croplands 10% 86.60 (5.87) 272.47 (18.47) 185.87 (24.34) 
 25% 102.20 (6.93) 250.78 (17.00) 148.58 (23.93) 
 50% 120.56 (8.17) 226.01 (15.32) 105.45 (23.49) 
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Fig. 1. Illustration of the method for identifying the transition dates of photosynthetic 
phenology. The method is based on three thresholds, 10%, 25%, and 50%. Bottom1: 
baseline for dormancy season before the growing season; Peak: the peak value in one 
single cycle; Bottom2: baseline for dormancy season after growing season. The 
example of the single growing season is from one forest site (latitude: 60.0o N, 
longitude: 15.5o E); the example of the double growing season is from one cropland 
site (latitude: 36.5o N, longitude: 36.0o E).  
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Fig. 2. The comparison of the phenology metrics retrieves from EC tower GPP and 
GOSIF-GPP, NDVI, EVI, NIRV, and MODIS-GPP. The dotted line represents a 1:1 
line. DOY: day of the year; R: correlation coefficient.
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Fig. 3. The spatial distribution of the number of growing seasons in the Northern 
Hemisphere (0.05o spatial resolution).
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Fig. 4. The spatial distribution of the mean photosynthetic phenology metrics (first 
growing season) in the Northern Hemisphere of 2001-2020 (0.05o spatial resolution). 
The right parts are the latitudinal pattern.
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Fig. 5. The spatial distribution of the mean photosynthetic phenology metrics of the 
second growing season in the Northern Hemisphere of 2001-2020 (0.05o spatial 
resolution).
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Fig. 6. Changes in photosynthetic phenology metrics in the Northern Hemisphere over 
the period 2001-2020. 
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Fig. 7. Annual photosynthetic phenology metrics in the Northern Hemisphere during 2001-
2020. The straight lines represent the change trends. 

https://doi.org/10.5194/essd-2021-452

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 31 March 2022
c© Author(s) 2022. CC BY 4.0 License.


