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Abstract. Global surface temperature observational datasets are the basis of global warming studies. 12 

In the context of increasing global warming and frequent extreme events, it is essential to improve 13 

the coverage and reduce the uncertainty of global surface temperature datasets. The China global 14 

Merged Surface Temperature Interim version (CMST-Interim) is updated to CMST 2.0 in this study. 15 

The previous CMST datasets were created by merging the China global Land Surface Air 16 

Temperature (C-LSAT) with sea surface temperature (SST) data from the Extended Reconstructed 17 

Sea Surface Temperature version 5 (ERSSTv5). The CMST2.0 contains three variants: CMST2.0-18 

Nrec (without reconstruction), CMST2.0-Imax, and CMST2.0-Imin (According to their 19 

reconstruction area of the air temperature over the sea ice surface in the Arctic region). The 20 

reconstructed datasets significantly improve data coverage, whereas CMST2.0-Imax and CMST2.0-21 

Imin have improved coverage in the Northern Hemisphere, up to more than 95%, and thus increased 22 

the long-term trends at global, hemispheric, and regional scales from 1850 to 2020. Compared to 23 

CMST-Interim, CMST2.0-Imax and CMST2.0-Imin show a high spatial coverage extended to the 24 

high latitudes and are more consistent with a reference of multi-dataset averages in the polar regions. 25 

The CMST2.0 datasets presented here are publicly available at the website of figshare, 26 

https://doi.org/10.6084/m9.figshare.16929427.v4 (Sun and Li, 2021a) and the CLSAT2.0 datasets 27 

can be downloaded at https://doi.org/10.6084/m9.figshare.16968334.v4 (Sun and Li, 2021b), and 28 

both also are available at http:// www.gwpu.net. 29 

 30 

1. Introduction 31 

Global Surface Temperature (GST) is a key meteorological factor in characterizing climate 32 

change and has been widely used for climate change detection and assessment (IPCC, 2013; 2021). 33 

GST consists of global Land Surface Air Temperature (LSAT), which is the 2-m air temperature 34 

observed by land weather stations, and Sea Surface Temperature (SST) observed by ships, buoys 35 

and Argos. However, there are large uncertainties in the temperature data observed by weather 36 

stations, ships, buoys and Argos in long-term observations, including uncertainties due to uneven 37 

https://doi.org/10.6084/m9.figshare.16929427.v4
https://doi.org/10.6084/m9.figshare.16968334.v4
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spatial and temporal distribution of sampling (Jones et al., 1997; Brohan et al., 2006) and 38 

uncertainties due to stations, environment and instrumentation changes (Parker et al., 1994; Parker, 39 

2006; Trewin, 2012; Kent et al., 2017; Menne et al., 2018; Xu et al., 2018). Nevertheless, several 40 

countries and research teams have applied different homogenization methods to generate a series of 41 

representative homogenized global land-sea surface temperature gridded datasets, including the Met 42 

Office Hadley Centre/Climatic Research Unit Global Gridded Monthly Temperature (HadCRUT) 43 

(Morice et al., 2012), Goddard Institute for Space Studies Surface Temperature (GISTEMP) 44 

(Hansen et al., 2010; Lenssen et al., 2019), NOAA's NOAA Global Temperature 45 

(NOAAGlobalTemp) (Vose et al., 2012; Zhang et al., 2019; Huang et al., 2020), and Berkeley Earth 46 

(BE) (Rohde et al., 2013a; Rohde and Hausfather, 2020), which serve as benchmark data for 47 

monitoring and detecting GST changes and related studies. 48 

However, there are still uncertainties in these datasets, including those due to insufficient 49 

coverage, especially at high altitudes and in the polar regions(Wang et al., 2018). The Artic has high 50 

climate sensitivity (Lu and Cai, 2009, 2010; Yamanouchi, 2011; Dai et al., 2019; Xiao et al., 2020; 51 

Latonin et al., 2021), the absence of data for this region would lead to a cold bias in the estimated 52 

global mean surface temperature (GMST). How to account for this deficiency is an issue that must 53 

be addressed to optimize and improve the observations. Since IPCC AR5 (2013), all the above 54 

datasets have been updated and reconstructed in the data default region (IPCC, 2021). For example, 55 

Cowtan and Way (2014) used kriging and hybrid methods to fill in the HadCRUT4 data gap areas, 56 

extending the data to polar regions. GISSTEMP v4 utilized spatial interpolation methods to fill in 57 

the default data within the appropriate distances (1200km) (Lenssen et al., 2019). NOAA/NCEI 58 

used spatial smoothing and empirical orthogonal remote correlations (EOTs) to reconstruct the data 59 

default areas, generating 100-member GHCN ensemble data and 1000-member ERSST ensemble 60 

data, respectively, which were combined into the NOAAglobalTemp-Interim dataset (Vose et al., 61 

2021). HadCRUT team infilled HadCRUT5 using the Gaussian process method (Morice et al., 2021). 62 

Kadow et al. (2020) used artificial intelligence (AI) in combination with numerical climate model 63 

data to fill the observation gaps in HadCRUT4. Berkeley Earth used kriging-based spatial 64 

interpolation to fill in the terrestrial default data (Rohde et al., 2013a; Rohde et al., 2013b; Rohde 65 

and Hausfather, 2020). Interpolation and reconstruction for high latitudes reduce the error in the 66 

estimate of GMST. Compared to 0.61 (0.55-0.67) °C in IPCC AR5, GST warming estimated with 67 

reconstructed datasets in AR6 from 1850-1800 to 1986-2005 is 0.69 (0.54-0.79) °C, which increased 68 

0.08 (- 0.01 to 0.12) °C (IPCC, 2021).  69 

China global Merged Surface Temperature (China-MST or CMST) is a new global surface 70 

temperature dataset developed by the team at Sun Yat-sen University, which was generated by 71 

merging China global Land Surface Air Temperature (China-LSAT or C-LAST) (Xu et al., 2018; 72 

Yun et al., 2019; Li et al., 2020; Li et al., 2021) as the terrestrial component and ERSSTv5 (Extended 73 

Reconstructed Sea Surface Temperature version 5) (Huang et al., 2017) as the ocean component. It 74 

is generally consistent with other global datasets in terms of GST trends and uncertainty levels since 75 

1880 (Li et al., 2020). Both the CMST and C-LSAT datasets have a resolution of 5°× 5° in the 76 

latitude and longitude directions. Compared with other datasets, the station coverage of C-LSAT has 77 

been significantly improved, especially for Asia (Xu et al., 2018), and more ISTI station data have 78 

been added in C-LSAT 2.0 (Li et al., 2021; Thorne et al., 2011). In addition, C-LSAT adopted a 79 

homogenization scheme for temperature series that is different from datasets such as the Global 80 

Historical Climatology Network version 4 (GHCNm v4)(Menne et al., 2018; Li et al., 2022). Further, 81 
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Sun et al. (2021) trained EOTs modes with “state-of-the-art” ERA5 reanalysis data to extract the 82 

spatial distribution of LSAT. They then used a similar low- and high-frequency reconstruction 83 

method of Huang et al. (2020) with different parameter schemes, combined with the observation 84 

constraint method, to fill the data default region of C-LSAT2.0 and released the new reconstructed 85 

dataset C-LSAT2.0 ensemble and the global surface temperature dataset CMST-Interim. Compared 86 

with the original CMST, CMST-Interim significantly improves the coverage of GST, and the GST 87 

warming estimated by CMST-Interim is more significant, with the warming trend since the 1900s 88 

increasing from 0.085 ± 0.004°C (10 yr)-1 to 0.089 ± 0.004°C (10 yr)-1. In the current CMST-Interim 89 

(Sun et al., 2021) and its earlier version (Yun et al., 2019), we still fully adopted the setting from 90 

ERSSTv5, which treats the sea ice region in the Arctic as the sea surface temperature below the sea 91 

ice and assigns a default value (-1.8°C), which makes it still a gap in the polar region. In contrast, 92 

polar regions are susceptible to climate forcing, with the Arctic warming more than twice the global 93 

average in recent decades (Goosse et al., 2018). The lack of data from CMST-Interim in polar 94 

regions may result in a slight underestimation of its estimated global warming trend. Furthermore, 95 

CMST-Interim does not systematically assess the reconstruction uncertainty of LSAT, resulting in 96 

an incomplete estimate of global surface temperature uncertainty (Li et al., 2021). Although C-LSAT 97 

2.0 ensemble satisfied the criterion of the recently released the 6th assessment report of IPCC, the 98 

CMST -Interim does not appear in the core assessment GMST series due to its insufficient data 99 

coverage in the Arctic region (Gulev et al., 2021).   100 

To address the above issue and improve coverage of CMST in the Arctic, we further reconstruct 101 

and supplement the Arctic data default region in the dataset using a combination of statistical 102 

interpolation and high- and low-frequency reconstruction to develop the reconstructed CMST2.0 103 

dataset and assess its uncertainty. Section 2 introduces the update of terrestrial and oceanic datasets, 104 

section 3 presents the reconstruction and uncertainty analysis of CMST2.0, section 4 introduces the 105 

composition of C-LSAT2.0 and CMST2.0, section 5 analyzes the GMST series of CMST2.0, section 106 

6 is the comparison of CMST2.0 dataset with other datasets, section 7 provides the summary and 107 

outlook, and section 8 is data availability.  108 

2. Updates of the land and ocean datasets 109 

2.1 Data sources and initial processing for C-LSAT2.0 110 

The initial version of the C-LSAT dataset was C-LSAT1.0. The C-LSAT1.0 site dataset 111 

collected and integrated 14 LSAT datasets, including three global data sources (CRUTEM4, GHCN-112 

V3, and BEST), three regional data sources, and eight national situ data sources (Xu et al., 2018). 113 

The current latest version is C-LSAT 2.0 (Li et al., 2021; Sun et al., 2021). 114 

C-LSAT 2.0 used in this study is an update of C-LSAT 1.3. Compared to C-LSAT 1.3 from 115 

1900 to 2017, version 2.0 extend to 1850-2020, and there is a significant increase in the amount of 116 

in situ data for the period 2013-2017 (Figure 1), with the increased situ data from CLIMAT from 117 

WMO’s Global Telecommunication System (GTS) and Global Surface Daily Summary (GSOD) 118 

(https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/; last access: November 2021) 119 

and is homogenized using the same method as Xu et al. (2018). In addition, we have updated the 120 

data in C-LSAT2.0 for 2013-2019, which adds the number of situ data in Africa, North America and 121 

other regions in this study. The C-LSAT 2.0 dataset includes three temperature elements: monthly 122 

mean temperature, maximum temperature, and minimum temperature, and its time range for the 123 

three elements is January 1850 - December 2020. 124 

https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/
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 125 

Figure 1 Comparison of C-LSAT 1.3 and C-LSAT 2.0 site counts from 1900 to 2017 126 

2.2 Sea surface temperature 127 

CMST1.0 (Yun et al., 2019) and CMST-Interim (Sun et al., 2021) use ERSSTv5 as the ocean 128 

component (Huang et al., 2017). ERSSTv5 starts from 1854, and we extend ERSSTv5 (1854-present) 129 

to 1850 using 1850-1853 SST anomalies (relative to 1961-1990 average) from ICOADS Release 130 

3.0 (Freeman et al., 2017) and integrated into a global SST anomaly dataset for January 1850 - 131 

December 2020. In the above integrated SST dataset, the SST is still set to a constant value of -132 

1.8°C for areas with >90% sea ice coverage as ERSSTv5. In addition, some areas in the high 133 

latitudes of the Southern Hemisphere (non-sea ice) are marked as missing values due to the lack of 134 

observations. 135 

2.3 Sea ice surface air temperature 136 

The common air temperature observation for the Arctic region is The International Arctic Buoy 137 

Program (IABP) (http://research.jisao.washington.edu/data_sets/iabppoles/; last access: October 138 

2021), which contains oceanographic and meteorological observations for the Pacific Arctic, but it 139 

only has sea ice data from 1979 to the present, while the climate state of CMST is 1961-1990, the 140 

time length of IABP does not support us to estimate and reconstruct the temperature anomaly of the 141 

Arctic region in the CMST dataset, so we use the Adjusted Inverse Distance Weighted (AIDW, 142 

(Cheng et al., 2020)) extrapolation (site data) and EOT interpolation (gridding) methods to fill the 143 

default grid of the polar region (Cowtan and Way, 2014; Lenssen et al., 2019; Rohde and Hausfather, 144 

2020; Vose et al., 2021). 145 

3. CMST2.0 reconstruction and uncertainty analysis 146 

3.1 CMST and its brief reconstruction history 147 

CMST 1.0 consists of C-LSAT 1.3 (1900-2017) as the terrestrial component and ERSSTv5 as 148 

the ocean component. The latest version without reconstruction is CMST2.0-Nrec in this study, 149 

which composes of C-LSAT2.0 and ERSSTv5. Compared to CMST1.0 from 1900-2017, CMST2.0-150 

Nrec has been updated and expanded to 1850-2020. The original reconstructed version of CMST is 151 

the Chinese global merged surface temperature reconstruction dataset CMST-Interim, which is a 152 

merge of the reconstructed C-LSAT2.0 and ERSSTv5, where the reconstructed C-LSAT2.0 is an 153 
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ensemble reconstruction dataset upgraded from C-LSAT2.0 (Li et al., 2021) with 756 ensemble 154 

members identified based on EOT and smoothing (Sun et al., 2021). Considering that there are much 155 

missing data due to sea ice coverage at high latitudes in the Northern Hemisphere in CMST, the 156 

AIDW extrapolation method is proposed to infill the missing data in some key sites, then EOT 157 

interpolation method is used to reconstruct all the grid boxes over the sea-ice-covered region in this 158 

paper. Considering the effect of interannual variability of sea ice in the Arctic, 65ºN-90ºN and 80ºN-159 

90ºN are taken as the assumed land components for ensemble reconstruction with C-LSAT 2.0, 160 

respectively, using the maximum sea ice area and minimum sea ice area since satellite observations 161 

are available as reference, then the ERSSTv5 ensemble reconstruction dataset is merged to generate 162 

CMST 2.0-Imax and CMST 2.0-Imin datasets. 163 

3.2 Reconstruction of terrestrial and marine components 164 

3.2.1 Reconstruction of the terrestrial component 165 

We follow the reconstruction method of CMST-Interim (Sun et al., 2021) and divide the C-166 

LSAT 2.0 dataset into two parts, high- and low-frequency components, for reconstruction, then sum 167 

them to obtain the reconstructed LSAT data (Figure 2). The low-frequency component is a running 168 

average over time and space to characterize the large-scale features of LSAT anomalies in time and 169 

space. First, a 25° x 25° spatial running average is performed, and then the annual average of LSAT 170 

anomalies is calculated for at least two months of the year. Then, a 15-year median filter is used for 171 

the annual average LSAT, followed by a 15° x 25° spatial sliding average, a 9-point binomial spatial 172 

filter, and a 3-point binomial temporal filter for latitude and longitude, respectively, to fill in the 173 

default data. Finally, a 15° x 25° spatial running average is applied to latitude and longitude 174 

respectively to smooth the spatial distribution of the LSAT. The high-frequency component is the 175 

difference between the original data and the low-frequency component, characterizing the local 176 

variation of LSAT. We train the EOTs modes using the ERA5 reanalysis dataset (Hersbach et al., 177 

2020) (https://cds.climate.copernicus.eu/; last access: July 2020) and localize it. Afterward, the 178 

EOTs modes are used to fit the high-frequency data to obtain a full-coverage reconstruction of the 179 

high-frequency component (Sun et al., 2021). The reconstructed land temperature data can be 180 

obtained by summing the low-frequency and high-frequency components, and finally, the 181 

reconstructed data are observationally constrained to remove the low-quality reconstructed data. 182 

 183 

https://cds.climate.copernicus.eu/
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 184 

Figure 2 Schematic diagram of the LSAT reconstruction process 185 

Reconstruction greatly improves the coverage of C-LSAT2.0. Figure 3 shows the comparison 186 

of land coverage before and after reconstruction. The land coverage of the reconstructed C-LSAT2.0 187 

increases from the original 4.6% in 1850 to 29%, and the land coverage remains above 60% after 188 

1913 and reaches the maximum land cover of about 80% in 1961, which last until 1990, after which 189 

it slightly decreases and remains at about 78%. After 2012 there is a decreasing trend to about 70%, 190 

where the land cover in 2019 is the lowest value of 66% for the period 2012-2020, this is related to 191 

the lower number of sites in the year. 192 



7 

 

 193 

Figure 3 Coverage comparison of the terrestrial component before and after reconstruction 194 

3.2.2 Reconstruction of the ocean component 195 

We use ERSSTv5 data as the basis, which is a full-coverage, monthly reconstructed SST dataset 196 

based on observations from ships, buoys, and Argo (Huang et al., 2017). We fill the data during 197 

1850-1853 with SST anomaly observed by ICOADS Release 3.0 (Freeman et al., 2017) to form a 198 

complete monthly SST anomaly dataset from 1850-2020 and then reconstruct it using the EOTs of 199 

Huang et al. (2017) to reduce the missing data. 200 

3.3 Reconstruction of Arctic ice surface temperature 201 

In CMST-Interim, when the Arctic is covered by sea ice, ERSSTv5 sets SST in the region 202 

with >90% sea ice coverage to a constant value (-1.8°C), making ST of CMST-Interim in the polar 203 

region the default value. It is worth noting that the Arctic is extremely sensitive to changes in climate 204 

forcing (polar amplification effect), so missing data in the polar regions in CMST-Interim may lead 205 

to an underestimation of the global warming trend (IPCC, 2021). 206 

In order to solve this problem and improve the coverage of CMST in the Arctic, we improve 207 

the ST reconstruction method in the Arctic by expressing the ST of the Arctic in terms of the air 208 

temperature of ice surface (considering the similar physical properties of ice and land, the sea ice is 209 

considered as the land). The month with the largest extent of Arctic sea ice is March, and the month 210 

with the smallest extent is September. According to the National Snow and Ice Data Center, during 211 

1980-2020, the year with the largest sea ice extent in March is 1983 and the year with the smallest 212 

sea ice extent in September is 2012, so we designed two experiments: 1) CMST2.0-Imax uses 2 m 213 

air temperature to represent the temperature within the 65ºN-90ºN region to simulate the ST of the 214 

Arctic sea ice-covered region in March 1983, which is the maximum sea ice extent. 2) CMST2.0-215 

Imin uses 2 m air temperature to represent the temperature within the 80ºN-90ºN region to represent 216 

the ST in the Arctic sea ice-covered region at the time of September 2012, which is the minimum 217 

sea ice extent (Figure 4). 218 
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 219 

Figure 4 Reconstruction process of Arctic sea ice ST (left); comparison of maximum sea ice 220 

extent (sea ice extent in March 1983, shaded in dark blue) and minimum sea ice extent(sea ice 221 

extent in September 2012, shaded in light blue) distribution (right) 222 

3.3.1 Maximum sea ice extent reconstruction CMST2.0-Imax 223 

Due to the scarcity of observations in the Arctic and the fact that most observations were 224 

available after the 1980s, the observation period is very short. The data do not cover all the period 225 

of 1961-1990, which is the climatology of our dataset. Therefore the observations cannot be added 226 

to the C-LSAT 2.0 dataset. Due to this fact, we use the AIDW to interpolate the data at lower latitudes 227 

to the Arctic (65°N-90°N) and then perform the high- and low-frequency reconstruction method 228 

based on the interpolated dataset. It is worth noting that we included the region of 65°N-90°N when 229 

training EOTs using the ERA5 reanalysis dataset. We selected the first 55 modes of the EOTs with 230 

three polar modes (the center point at the Arctic poles), for a total of 58 modes for reconstructing 231 

the high-frequency components (Figure 4). After that, the reconstructed C-LSAT is merged with 232 

ERSSTv5, where the merged ERSSTv5 covers only the region south of 65°N. 233 

3.3.2 Minimum sea ice extent reconstruction CMST2.0-Imin 234 

The reconstruction method of the terrestrial component in CMST2.0-Imin is consistent with 235 

CMST2.0-Imax, except that the merged process with ERSSTv5, in CMST2.0-Imin, the merged 236 

ERSSTv5 coverage is south of 80°N. It is worth noting that the sea ice coverage range is 80°N-90°237 

N and the region of 65°N-80°N fill in SST in CMST2.0-Imin. However there are some grids in the 238 
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region of 65°N-80°N that are default values (caused by sea ice coverage) in ERSSTv5, so we use 239 

the AIDW method to fill these default grids. 240 

 Figure 5 shows the coverage comparison of CMST2.0-Nrec (without any land and ice air 241 

temperature reconstruction), CMST-Interim, CMST2.0-Imax, and CMST2.0-Imin. Overall, there is 242 

a significant improvement in the coverage of the reconstructed datasets compared to the original 243 

dataset, CMST2.0-Nrec. Globally, the coverage of CMST2.0-Imax and CMST2.0-Imin 244 

reconstructed for Arctic sea ice is consistently higher than CMST-Interim. CMST2.0-Imax and 245 

CMST2.0-Imin have the highest global coverage, with >80% coverage after 1899. The global 246 

coverage of CMST-Interim reached more than 80% after 1957. The comparative results for Northern 247 

Hemisphere coverage are primarily consistent with the global, with CMST2.0-Imax and CMST2.0-248 

Imin having the greatest coverage, both reaching more than 90% after the 1880s, and CMST-Interim 249 

reaching 80% coverage in 1901, but consistently below 90%. In terms of global and Northern 250 

Hemisphere coverage, there are differences between CMST2.0-Imax, CMST2.0-Imin, and CMST-251 

Interim, but the differences are not significant. However, the coverage of CMST2.0-Imax and 252 

CMST2.0-Imin differed significantly from CMST-Interim at high latitudes in the Northern 253 

Hemisphere, where the coverage of CMST-Interim has been below 70% due to the existence of sea 254 

ice, while CMST2.0-Imax and CMST2.0-Imin reach full coverage at high latitudes in the Northern 255 

Hemisphere after 1983. There is no difference in the coverage of the three reconstructed datasets in 256 

other regions (Southern Hemisphere, Southern Hemisphere mid-high and low latitudes) except for 257 

the Northern Hemisphere and Northern Hemisphere high latitudes. The coverage of the 258 

reconstructed dataset in the Southern Hemisphere has improved considerably, with maximum 259 

coverage of about 80%. The coverage of the reconstructed dataset in the high latitudes of the 260 

Southern Hemisphere is relatively small, consistently below 50%, due to the scarcity of observations 261 

in Antarctica. 262 
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 263 

Figure 5 Coverage comparison of CMST2.0-Nrec, CMST-Interim, CMST2.0-Imax and CMST2.0-264 

Imin 265 

3.4 Estimation of uncertainty in the reconstructed CMST2.0 266 

Uncertainties of the reconstructed CMST2.0 include both land and ocean uncertainties. The 267 

ocean uncertainty is the uncertainty of ERSSTv5. The land uncertainty is based on the reconstructed 268 

C-LSAT2.0 ensemble, which is divided into two parts: parameter uncertainty and reconstruction 269 

uncertainty. Since we reconstruct the temperature of the polar sea ice region in the way that we 270 

reconstruct the LSAT, we calculate the uncertainty of the 65°N-90°N (Imax) and 80°N-90°N (Imin) 271 

regions of CMST2.0-Imax and CMST2.0-Imin following the method of calculating the land 272 

uncertainty. 273 

3.4.1 Parameter uncertainty of C-LSAT2.0 ensemble 274 

In the reconstruction process, we choose different parameters to generate 756-member 275 

ensembles (Table 1), which are different for different combinations, so the parameter uncertainty 276 

represents the difference of parameter combinations. According to Huang et al. (2020), the 277 

parameter uncertainty (Up) is the regional average LSAT uncertainty, as follows: 278 

 
𝑈𝑝

2(𝑡) =
1

𝑀
∑ [𝐴𝑚

𝑔 (𝑡) − 𝐴𝑔̅̅ ̅̅ (𝑡)]2

𝑀

𝑚=1

 （1） 

 
𝐴𝑔̅̅ ̅̅ =  

1

𝑀
∑ 𝐴𝑚

𝑔 (𝑡)

𝑀

𝑚=1

 （2） 

where M is the ensemble member, in this paper M=756; 𝐴𝑚
𝑔

represents global LSAT of m-member 279 



11 

 

ensemble; 𝐴𝑔̅̅ ̅̅  is the average of all ensembles; t represents temporal variations. 280 

Table 1 Parameter settings used for reconstruction scenarios and the operational option. 281 

PARAMETER OPERATIONAL OPTIONS ALTERNATIVE OPTIONS 

MINIMUM NUMBER OF 

MONTHS ANNUAL AVERAGE 

2 months 1, 2, 3 months 

LF FILTER PERIODS 15 years 10, 15, 20 years 

MIN NUMBER OF YEARS FOR 

LF FILTER 

2 years 1, 2, 3 years 

EOTS TRAINING PERIODS AND 

SPATIAL SCALES 

1979-2018, Lx=4000, 3000, 2500, 

Ly=2500 

1979-2018, Lx=3000,2000,1500, Ly=1500; 

1979-2018, Lx=5000,4000,3500, Ly=3500;  

Lx=4000,3000,2500, Ly=2500; 

1979-2008, Lx=4000,3000,2500, Ly=2500; 

1989-2018, Lx=4000,3000,2500, Ly=2500; 

even year, Lx=4000, 3000, 2500, Ly=2500; 

odd year, Lx=4000, 3000, 2500, Ly=2500; 

EOTS ACCEPTANCE 

CRITERION 

0.2 0.10, 0.15, 0.20, 0.25 

Parameter uncertainties for the reconstructed C-LSAT2.0 ensemble, reconstructed C-282 

LSAT2.0+Imax (65°N-90°N) and reconstructed C-LSAT2.0+ Imin (80°N-90°N) show similar 283 

variations. The parameter uncertainties decrease over time, as does its interannual variability. The 284 

parameter uncertainties stabilize below 0.05 during 1876-2016 (Figure 7). However, the parameter 285 

uncertainties are higher in 2018-2020 compared to the previous years. This is due to the lower 286 

coverage in this period compared to the last years, which is more sensitive to the parameter settings. 287 

3.4.2 Reconstruction uncertainty of C-LSAT2.0 ensembles 288 

In the reconstruction process, we smooth the observations when calculating the low-frequency 289 

component to filter out the short-term and local signals to obtain the large-scale characteristics of 290 

the LSAT anomaly, after which the high-frequency component is used to fit the local distribution of 291 

LSAT using the EOTs spatial modes and the available observations. Our purpose of using EOTs is 292 

to obtain the spatial distribution of the LSAT anomaly, filter out the errors in the observations, and 293 

thus estimate the distribution of the LSAT anomaly from limited observations. However, the spatial 294 

pattern of EOTs also smoothes out the local temperature and ignores some local information, thus 295 

deviating from the observations. Therefore, according to Huang et al. (2016), we define the residual 296 

between the ideal observations and the reconstructed values using EOTs as the reconstruction 297 

uncertainty: 298 

 

𝑈𝑟
2(𝑡) =

1

𝑀
∑ [𝑅𝑚

𝑔 (𝑡) − 𝐷(𝑡)]2

𝑀

𝑚=1

 （3） 

where 𝐷(𝑡) represents the ideal observation and  𝑅𝑚
𝑔 (𝑡) is the reconstructed data obtained using 299 

the high- and low-frequency reconstruction method based on 𝐷(𝑡). 300 

 The reconstruction uncertainty represents the differences between the ideal observations and 301 

the reconstructions. We choose two full-coverage CMIP6 models to represent the ideal observations 302 

to assess the deviation of the reconstructed values from the original values, which is due to missing 303 

information caused by the smoothing of local temperatures by EOTs. The C-LSAT 2.0 ensemble 304 

dataset covers the period 1850-2020, while the CMIP6 model historical experimental data are only 305 
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available up to 2014, so we use model data from the SSP370 scenario (taking into account minor 306 

differences in the short term for any scenarios) to complement that of 2015-2020. 307 

The two models we selected are BCC-CSM2-MR and GFDL-ESM4. BCC-CSM2-MR is a new 308 

version of the climate system model developed by the National Climate Center of China with 309 

improved parameterization and physical parameterization results. GFDL-ESM4 is an Earth system 310 

model developed by the GFDL model of NOAA's Geophysical Fluid Dynamics Laboratory. Both 311 

models have a resolution of 1.125° × 1.125°, and we descale both to 5° × 5° to calculate the 312 

temperature anomaly (1961-1990 climatology), after which the data from both models are 313 

reconstructed according to the high- and low-frequency reconstruction method. 314 

Figure 6 shows the reconstruction uncertainties calculated using BCC-CSM2-MR and GFDL-315 

ESM4. In general, the reconstruction uncertainties are relatively stable, do not increase over time. 316 

The reconstruction uncertainties of reconstructed C-LSAT2.0+Imax and reconstructed C-LSAT2.0+ 317 

Imin are larger than that of reconstructed C-LSAT2.0, and the interannual variation is also larger. 318 

The interannual variability of the uncertainty of BCC-CSM2-MR is slightly smaller than that of 319 

GFDL-ESM4. In the following, we choose BCC-CSM2-MR as the reconstruction uncertainty to 320 

discuss the uncertainty of the terrestrial component. 321 

 322 
Figure 6  Reconstruction uncertainty of the reconstructed C-LSAT2.0 ensemble, 323 

reconstructed C-LSAT2.0+Imax (65°N-90°N) and reconstructed C-LSAT2.0+ Imin (80°N-90°N) 324 

calculated using BCC-CSM2-MR and GFDL-ESM4. 325 

3.4.3 Total uncertainty of LSAT 326 

The total uncertainty of the C-LSAT2.0 ensemble is the sum of the parameter uncertainty and 327 

the reconstruction uncertainty: 328 

 
𝑈𝑙

2 = 𝑈𝑝
2 + 𝑈𝑟

2 （4） 

 Figure 7 shows the comparison of parameter uncertainty, reconstruction uncertainty and total 329 

uncertainty of three C-LSAT2.0 ensemble datasets. The parameter uncertainties of the reconstructed 330 

C-LSAT2.0 ensemble, reconstructed C-LSAT2.0+Imax (65 ° N-90 ° N) and reconstructed C-331 

LSAT2.0+ Imin (80°N-90°N) are much larger than the reconstruction uncertainties before 1950, 332 

when the parameter uncertainties mainly determine the magnitude of total uncertainties. The 333 



13 

 

difference between the parameter uncertainties and the reconstruction uncertainties from 1950 to 334 

2016 becomes small, and both determine the total uncertainties. The total uncertainties increase after 335 

2017 due to the increase in parameter uncertainties (Figure 7a). The uncertainties of reconstructed 336 

C-LSAT2.0+Imax and C-LSAT2.0+Imin vary similarly (Figure 7b&7c). The parameter 337 

uncertainties of reconstructed C-LSAT2.0-Imax and C-LSAT2.0-Imin are larger than the 338 

reconstruction uncertainties before 1880, when the total uncertainties are dependent on parameter 339 

uncertainties. During 1880-1950, the magnitude and variation of the parameter uncertainties and the 340 

reconstruction uncertainties are similar. After 1950, the parameter uncertainties decrease to less than 341 

the reconstruction uncertainties, during which reconstruction uncertainties determine the magnitude 342 

and variation of the total uncertainties. 343 

 344 
 Figure 7 Parameter Uncertainty, reconstruction uncertainty and total uncertainty of three 345 

reconstructed C-LSAT2.0 ensemble 346 

3.4.4 Uncertainty of global surface temperature 347 

The uncertainty of the global surface temperature consists of two components, the ocean 348 

component and the land component, and we calculate the total global temperature uncertainty as the 349 

sum of the two, based on the sea-to-land ratio, with the following formula: 350 

 
𝑈𝑔

2 = 𝑎 × 𝑈𝑙
2 + 𝑏 × 𝑈𝑠

2 (5) 

where U𝑔  represents the total uncertainty of GMST, U𝑙  represents the uncertainty of global 351 

averaged LSAT, here chosen from the reconstructed C-LSAT2.0; U𝑠 represents the uncertainty of 352 

global averaged ocean component, here chosen from the ERSSTv5, since the uncertainty of 353 

ERSSTv5 is only calculated up to 1854, our uncertainty of GST forward also only covers up to 1854. 354 

a and b are constants, which are the proportion of land and ocean area to the globe, respectively, but 355 

since the uncertainty of reconstructed Arctic region in CMST2.0-Imax and CMST2.0-Imin is 356 

calculated according to the land uncertainty, a=0.32 and b=0.689 in CMST2.0-Imax and a=0.30 and 357 

b=0.70 in CMST2.0-Imin. 358 

 Figure 8 shows uncertainties of the GMST, land component, and ocean component for CMST-359 

Interim (a), CMST2.0-Imax (b) and CMST2.0-Imin (c). The variation in GMST uncertainty is 360 

similar for the three datasets, but the interannual variation in GMST uncertainty for CMST2.0-Imax 361 
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and CMST2.0-Imin is larger than CMST-Interim, especially after 1994, when both the magnitude 362 

and interannual variation in GMST uncertainty for CMST2.0-Imax and CMST2.0-Imin are 363 

significantly greater than CMST-Interim (Figure 8d). Uncertainties in the ocean and land 364 

components have generally declined, and thus the uncertainty of GMST has also reduced (Figure 365 

8a-c). Before 1870, the uncertainties of land and ocean component are similar, but the interannual 366 

variability of the land uncertainty is greater than that of the ocean. During 1871-1986, the 367 

uncertainty in the ocean component is larger than the uncertainty in the land component, and the 368 

uncertainty of GMST depended mainly on the uncertainty in the ocean component, and the 369 

interannual variability was consistent with the ocean component. There are two peaks in global 370 

uncertainty during this period, in the late 1910s and early 1940s, consistent with ocean uncertainty. 371 

The peaks in ocean uncertainty are associated with the two world wars, and the uncertainty is larger 372 

due to the smaller observation coverage of the SST during the war period(Huang et al., 2020). 373 

Between 1986 and 2003, the uncertainty of GST was determined by both the land and ocean 374 

components. After 2003, the magnitude of uncertainty of the ocean component is smaller than that 375 

of the land component, and the land component determines the magnitude of the uncertainty of GST, 376 

and the interannual variation is also consistent with the land component. 377 

 378 
Figure 8 Uncertainties of GMST (Ug), LSAT (Ul) and SST (Us) for CMST-Interim (a), CMST2.0-379 

Imax (b) and CMST2.0-Imin (c) and their comparison of Ug(d). 380 

4. Composition of C-LSAT2.0 and CMST2.0 381 

The C-LSAT2.0 datasets consist of two datasets, C-LSAT2.0 and reconstructed C-LSAT2.0, while 382 

each dataset includes three temperature-related elements, including monthly average, maximum, 383 

and minimum temperatures. 384 

 The CMST2.0 datasets consist of three versions: CMST2.0-Nrec, CMST2.0-Imax, and 385 

CMST2.0-Imin (Table 2). 386 

CMST2.0-Nrec is the observation-based homogenized gridded dataset, consisting of C-387 

LSAT2.0 and ERSSTv5, where the uncertainty of C-LSAT2.0 is not estimated, and the uncertainty 388 

of ERSSTv5 consists of parameter uncertainty and reconstruction uncertainty. 389 

CMST2.0-Imax is based on CMST-Interim gridded dataset with the addition of Arctic 390 

reconstruction (65 °N-90°N), including reconstructed C-LSAT2.0 with the addition of Arctic 391 
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reconstruction (65°N-90°N) and ERSSTv5 with 90°S-65°N. Its uncertainties include the terrestrial 392 

uncertainty and the oceanic uncertainty, where the terrestrial uncertainty is the uncertainty of the 393 

reconstructed C-LSAT2.0 and of the reconstructed SAT over the ice surface, including the parameter 394 

uncertainty and the reconstruction uncertainty, and the oceanic uncertainty is derived from the 395 

uncertainty of ERSSTv5 (Huang et al., 2017). 396 

 Similarly, CMST2.0-Imin is the gridded data, which modifies the reconstructed Arctic region 397 

based on CMST2.0-Imin. The modification part is to reduce the reconstructed Arctic region of C-398 

LSAT2.0 to 80°N-90°N and expand the merged ERSSTv5 to 90°S-80°N area. 399 

Table 2 Composition of CMST2.0 datasets and CMST-Interim. 400 

Versions Timespan 
LSAT SST 

datasets uncertainty datasets uncertainty 

CMST2.0-

Nrec 
1850-2020 C-LSAT2.0 —— ERSSTv5 

Parameter 

uncertainty 

+ 

Reconstruction 

uncertainty 

CMST-

Interim 
1850-2020 

Reconstructed 

C-LSAT2.0 

Parameter 

uncertainty 

+ 

Reconstruction 

uncertainty 

ERSSTv5 

CMST2.0-

Imax 
1850-2020 

Reconstructed 

C-LSAT2.0 

added Arctic 

reconstruction 

(65N-90N) 

ERSSTv5 

(90S-65N) 

CMST2.0-

Imin 
1850-2020 

Reconstructed 

C-LSAT2.0 

added Arctic 

reconstruction 

(80N-90N) 

ERSSTv5 

(90S-80N) 

5. The GMST series of CMST2.0 datasets 401 
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 402 

 403 

Figure 9 Comparison of GMST anomalies series (relative to 1961-1990 average) for 404 

CMST2.0 datasets and CMST-Interim using two methods：a) the mean of global mean LSAT and 405 

SST weighted the proportion of land and sea.; b) calculated based on latitudinal weighting 406 

Comparing the GMST series of CMST2.0 datasets and CMST-Interim shows that the variability 407 

of GMST in the reconstructed datasets is generally consistent with CMST2.0-Nrec (Figure 9). We 408 

also compare the GMST series for the four datasets calculated by the two methods, which is similar 409 

for the three reconstructed datasets (CMST-Interim, CMST2.0-Imax and CMST2.0-Imin) and differ 410 

slightly for the unreconstructed dataset CMST2.0-Nrec (Figure 9a & 9b). The warming of CMST-411 

Nrec in Figure 9b is significantly lower than that in Figure 9a, which is related to the lower land 412 

coverage. The LSAT coverage of CMST2.0-Nrec is low in previous decades, which is below 18% 413 

before 1900 (Fig. 3), so the GMST series is susceptible to the influence of ocean temperature, 414 

making the GMST series high; The LSAT coverage of CMST2.0-Nrec has increased in recent 415 

decades, with terrestrial coverage above 70% (Figure 3), but the coverage is low at high latitudes, 416 

in South America and Africa, where the absence of LSAT, especially at high latitudes and in the 417 

Arctic, makes the GMST series low. It can be seen that the warming rate of CMST2.0-Nrec 418 
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calculated using latitude-weighting will be significantly lower, so we are using the sea-land ratio 419 

method to calculate the warming trend when comparing each dataset in the following.  420 

In Figure 9a, the CMST-Interim, CMST2.0-Imax and CMST2.0-Imin GMST series are lower 421 

than CMST-Nrec before the 1880s, which is mainly due to the lower coverage of observations in 422 

this period, making the interannual variability of the GMST series in CMST2.0-Nrec larger, while 423 

the reconstructed datasets filled in part of the default grids, resulting in higher coverage and thus 424 

lower interannual variability of GMST series. The reconstructed datasets show high agreement with 425 

the CMST-Nrec temperature series and its interannual variability as the coverage of the observations 426 

increased after the 1880s. While the GMST series of CMST2.0-Imax is significantly higher than the 427 

other three datasets after the 2000s because CMST2.0-Imax reconstructs the Arctic region and the 428 

polar amplification effect of the Arctic significantly increases the GMST series, the GMST series of 429 

CMST-Interim and CMST2. 0-Imin are essentially the same as CMST-Nrec, but CMST2.0-Imin is 430 

slightly higher than CMST-Interim because CMST2.0-Imin fills the 80°N-90°N region with ice 431 

surface temperatures, while CMST-Interim uses SST. The GMST series of CMST2.0-Imax and 432 

CMST2.0-Imin are higher than CMST-Interim after 2000, indicating that the influence of polar 433 

temperature on global temperature also increases with global warming. In summary, the warming 434 

trends of the reconstructed datasets for 1850-2020 are all higher than CMST2.0-Nrec 435 

(0.05±0.003°C(10 yr)-1), with CMST2.0-Imax having the most significant warming trend 436 

(0.054±0.003°C(10 yr)-1) and CMSR2.0-Imin the second largest (0.053±0.003°C(10 yr)-1) (Table 4). 437 

The warming trend estimated by CMST-Interim is 0.051 ± 0.003°C(10 yr)-1, which is slightly larger 438 

than CMST-Nrec, mainly due to the lower temperature series before the 1880s, excluding this period, 439 

the warming trend from 1880 to 2020 estimated by CMST-Interim (0.073 ± 0.003°C(10 yr)-1) is 440 

consistent with CMST-Nrec (0.073 ± 0.004°C(10 yr)-1) (Table 4). While the warming trends of 441 

CMST2.0-Imax and CMST2.0-Imin are higher than the previous two datasets, 0.076±0.004°C(10 442 

yr)-1 and 0.074±0.003°C(10 yr)-1 (Table 4), respectively, due to the polar amplification effect. 443 

6. Comparison of CMST2.0-Imax and CMST2.0-Imin with other datasets 444 

Table 3 General information of input datasets 445 

 
Period of 

record 

Land 

component 

SST 

component 
resolution 

Interpolation, reconstruction, 

and uncertainties evaluation 

China- MST2.0 1850-2020 
China- 

LSAT2.0 
ERSSTv5 5〫×5〫 

Spatial smoothing and EOTs; 

observational constraint; 

ensemble uncertainties 

HadCRUT5 1850-2020 CRUTEM5 HadSST4 5〫×5〫 

Gaussian process method; 

observational constraint; 

ensemble uncertainties 

NOAAGlobal- 

Interim 
1850-2020 GHCNv4 ERSSTv5 5〫×5〫 

Spatial smoothing and EOTs; 

ensemble uncertainties 

GISTEMP v4 1880-2020 GHCNv4 ERSSTv5 2〫×2〫 

Spatial interpolation methods 

over reasonable distances; 

ensemble uncertainties 

Berkeley Earth 1850-2020 Berkeley HadSST4 1〫×1〫 

Kriging-based spatial 

interpolation with constant 

distance parameters at all 
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latitudes 

Cowtan and Way 1850-2020 CRUTEM4 HadSST3 5〫×5〫 

Kriging-based method with 

constant distance parameters at 

all latitudes 

 446 

 447 

Figure 10 Comparison of GMST anomalies series (relative to 1961-1990 average) for different 448 

datasets. The GMST anomalies series is the mean of global mean LSAT and SST weighted the 449 

proportion of land and sea. The average of Imax and Imin is the average of GMST series of 450 

CMST2.0-Imax and CMST2.0-Imin. 451 

Figure 10 shows the GMST series of CMST2.0 compared with the other datasets (Table 3). 452 

The GMST series of the seven datasets (CMST2.0 includes two variants of Imax and Imin) are 453 

generally consistent. The GMST series of CMST2.0-Imax and CMST2.0-Imin are similar to the 454 

other five datasets, indicating that their estimated Arctic temperature variation is consistent with the 455 

other datasets, and can accurately reflect the impact of the Arctic amplification effect on GST. Due 456 

to sparse observations, the variability between datasets is high until the 1880s, as is the interannual 457 

variability between datasets. After the 1900s, the GMST series of CMST2.0-Imax and CMST2.0-458 

Imin are generally lower than other datasets. In the 1910s-1970s, the Cowtan-Way dataset is 459 

consistently higher than other datasets. In the 1930s-1950s, HadCRUT5 is higher than the other 460 

datasets, but similar to Cowtan-Way. After the 2000s, the CMST2.0 datasets are generally lower 461 

than other datasets, with CMST2.0-Imax being closer to the NOAAglobalTemp-Interim GMST 462 

series. For the period 1850-2020, the warming trend of CMST2.0-Nrec is the lowest (0.05±0.003°C 463 

(10 yr)-1) and the highest (0.062±0.003°C (10 yr)-1) warming trend is Berkeley in the seven datasets. 464 

The warming trend of CMST-Interim is consistent with HadCRUT5, both at 0.051±0.003°C (10 yr)-465 
1. The warming trend of CMST2.0-Imax is the same as NOAAglobalTemp-Interim (0.054±0.003°C 466 

(10 yr)-1). Between 1880 and 2020, CMST2.0-Nrec (0.073±0.004°C (10 yr)-1) is agreement with 467 

CMST-Interim (0. 073±0.003°C (10 yr)-1), CMST2.0-Imax is consistent with NOAAglobalTemp-468 

Interim (0.076±0.004°C (10 yr)-1), and CMST2.0-Imin (0.075±0.003°C (10 yr)-1) is consistent with 469 
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Cowtan -Way (0.074±0.003°C (10 yr)-1) (Table 4). We also calculate the warming trends of different 470 

datasets for different periods 1900-2020, 1951-2020, 1979-2020 and 1998-2020 and found that the 471 

warming rate becomes faster over time for most of the datasets, especially the increasing warming 472 

trend for 1998-2020 is much larger than the other periods, indicating that the global warming rate is 473 

accelerating. The maximum warming trend of 0.228±0.029°C (10 yr)-1 (GISTEMP v4) during 1998-474 

2020 increased by 0.037±0.017°C (10 yr)-1 compared to the warming trend during 1979-2020. The 475 

largest increasing warming trend is NOAAglobalTemp-Interim, with a warming trend of 0. 037 ± 476 

0.017°C (10 yr)-1 for 1998-2020, which is 0.04°C (10 yr)-1 higher than the warming trend during 477 

1979-2020, followed by CMST2.0-Imax, CMST2.0-Imin and Berkeley Earth, CMST2.0-Nrec and 478 

CMST-Interim have relatively small increases in the warming trend. The relatively large increases 479 

of warming trend estimated in most datasets with reconstructed Arctic temperatures, compared to 480 

those without (CMST2.0-Nrec and CMST-Interim), illustrate the impact of polar amplification on 481 

global warming and reflect the importance of reconstructing Arctic default data. 482 

 483 
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Table 4 Warming trends for different datasets during different periods. The GMST series used to 484 

calculate the warming trend is the mean of global mean LSAT and SST weighted the proportion of 485 

land and sea. 486 

 

CMST2.0

-Nrec 

CMST2.0

- Interim 

CMST2.0- 

Imax 

CMST-Imin 

Cowtan－

Way 

HadCRUT5 

NOAAglobal

Temp-Interim 

Berkeley 

Earth 

GISTEM

P v4 

1850-2020 0.050±0.003 0.051±0.003 

0.054±0.00

3 

0.053±0.003 0.058±0.003 0.051±0.003 0.054±0.003 0.062±0.003 ─ 

1880-2020 0.073±0.004 0.073±0.003 

0.076±0.00

4 

0.075±0.003 0.074±0.003 0.081±0.004 0.076±0.004 0.083±0.004 0.077±0.004 

1900-2020 0.091±0.004 0.090±0.004 

0.093±0.00

4 

0.091±0.004 0.084±0.004 0.094±0.004 0.093±0.004 0.099±0.004 0.095±0.004 

1951-2020 0.145±0.007 0.139±0.007 

0.146±0.00

7 

0.143±0.007 0.130±0.008 0.150±0.008 0.147±0.007 0.155±0.008 0.151±0.007 

1979-2020 0.174±0.013 0.168±0.011 

0.184±0.01

1 

0.179±0.011 0.190±0.012 0.193±0.012 0.184±0.012 0.195±0.012 0.191±0.012 

1998-2020 0.198±0.030 0.199±0.027 

0.212±0.02

6 

0.209±0.026 0.189±0.028 0.215±0.028 0.224±0.028 0.220±0.030 0.228±0.029 

 487 

 488 

Figure 11 Distribution of warming trends estimated from different datasets during 1880-2020. 489 
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 490 

Figure 12 Differences in warming trends estimated by other 6 datasets (including CMST2.0-Imin)  491 

and CMST2.0-Imax 492 

Figure 11 compares the distribution of warming trends for different datasets for 1880-2020. 493 

The distribution of warming trends is relatively consistent among the nine datasets except for the 494 

Antarctic, with a zone of high warming values in central Asia and Europe, and northeastern North 495 

America. There are large differences among the datasets in the Antarctic region due to the sparse 496 

observations. CMST-Interim, CMSR2.0-Imax and CMST2.0-Imin have fewer LSATs in the 497 

Antarctic due to the sparse observations and observational constraints. Except for CMST2.0-Nrec, 498 

the estimated warming trends of the other eight datasets clearly increase with latitude in the Northern 499 

Hemisphere region. Most datasets assess a significantly higher warming trend in the Arctic (60°N-500 

90°N) than in the lower latitudes. Except for the CMST2.0-Nrec and CMST-Interim datasets in 501 

which Arctic temperature is not available, the magnitude of the estimated Arctic warming trend for 502 

1880-2020 is similar (Figure 12). Still, the warming trends near the poles differ significantly, with 503 

more significant warming trends estimated by HadCRUT5 and GISTEMP v4. CMST2.0-Imax, 504 

CMST2.0-Imin, Cowtan-Way and Berkeley Earth have similar warming trends, while 505 

NOAAglobalTemp-Interim has the smallest warming estimate near the poles. CMST2.0-Imax, 506 

HadCRUT5, and GISTEMP v4 all show a high warming trend in the high latitudes of North America 507 

and the northwestern Arctic Ocean, but CMST2.0-Imax has a relatively small range of highs. 508 

Cowtan-Way and Berkeley Earth are similar to the former three datasets but have smaller ranges 509 

and magnitudes. Meanwhile, each dataset also has a range of warming highs in the southeastern 510 

Arctic Ocean, NOAAglobalTemp-Interim estimates the most extensive range of warming, 511 

CMST2.0-Imax, CMST2.0-Min, HadCRUT5, and GISTEMP v4 estimate similar ranges of 512 

warming. In addition, all datasets, including CMST2.0-Nrec and CMST-Interim, have low warming 513 

trend near Scandinavia. The analysis of the warming trends in the Arctic shows that the magnitude 514 

and spatial distribution of the warming trends estimated based on CMST2.0-Imax and CMST-Imin 515 

are more consistent with the other datasets. Therefore, they are reasonable for the spatial 516 

interpolation reconstruction of temperature anomalies in the Arctic. 517 

7. Summary and Prospects 518 

This paper describes the composition and construction process of the latest versions of the C-519 

LSAT 2.0 and CMST 2.0 ensemble datasets. The C-LSAT 2.0 datasets consist of the C-LSAT 2.0 520 

gridded dataset and the reconstructed C-LSAT 2.0 dataset, including three meteorological elements: 521 

monthly average, maximum and minimum temperatures. The CMST2.0 datasets consist of the 522 
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CMST 2.0-Nrec gridded dataset and two reconstructed datasets (including CMST 2.0-Imax and 523 

CMST2.0-Imin). The CMST 2.0 datasets contain the monthly average temperature anomaly. The 524 

resolution of all datasets is 5°x5° and the time range is 1850-2020. The reconstructed C-LSAT 2.0 525 

dataset, reconstructed according to the high- and low-frequency reconstruction method in Sun et al. 526 

(2021), is merged with ERSSTv5 to generate the global surface temperature ensemble dataset 527 

CMST-Interim. CMST 2.0-Imax and CMST 2.0-Imin are based on CMST-Interim, combining 528 

AIDW and high- and low-frequency reconstruction methods for temperature reconstruction in the 529 

Arctic. Compared with the unreconstructed dataset CMST2.0-Nrec, the coverage of the 530 

reconstructed datasets is greatly improved. These two datasets have greatly improved coverage in 531 

the Northern Hemisphere due to the reconstruction in the Arctic. Compared to 60%-70% for CMST 532 

2.0-Nrec before 1910, the coverage of CMST-Interim has improved to 75%-85%, and CMST 2.0-533 

Imax and CMST 2.0-Imin are both above 80%. The coverage of CMST 2.0-Imax and CMST2.0-534 

Imin in the Northern Hemisphere is 80%-99% and CMST-Interim is 65%-87%. There was no 535 

difference in coverage between the three reconstructed datasets in the Southern Hemisphere. 536 

We then systematically evaluate the uncertainty of the reconstructed datasets. The results of 537 

the uncertainty assessment of the reconstructed C-LSAT2.0 show that the magnitude of the 538 

reconstruction uncertainty is generally smaller than that of the parameter uncertainty, and the 539 

parameter uncertainty mainly determines the total uncertainty of the LSAT. The uncertainty of the 540 

reconstructed LSAT is similar to previous estimates (Li et al., 2020; Sun et al., 2021). The 541 

uncertainty of reconstructed C-LSAT2.0+Imax and reconstructed C-LSAT2.0+Imin is relatively 542 

consistent with the uncertainty variation of reconstructed C-LSAT2.0, but the interannual variation 543 

is larger, and the increasing trend of parameter uncertainty of reconstructed C-LSAT2.0+Imax and 544 

reconstructed C-LSAT2.0+Imin is significantly higher than that of reconstructed C-LSAT2.0 after 545 

2017. The uncertainty analysis of CMST 2.0 shows that the uncertainty of GST depends mainly on 546 

the oceanic component before 1986, is determined by both oceanic and terrestrial components 547 

during 1986-2003, and depends on the magnitude of the terrestrial component after 2003.  548 

Results comparing the GMST series of the three CMST 2.0 datasets and CMST-Interim show 549 

that the reconstructed datasets improve the estimation of global warming trends while increasing 550 

data coverage, especially for the datasets that include the Arctic region in the reconstructed area. 551 

Compared with 0.05 ±0.003°C (10 yr)-1 and 0.073 ±0.004°C (10 yr)-1 for CMST 2.0-Nrec, CMST 552 

2.0-Imax and CMST 2.0-Imin estimated warming trends of 0.054 ±0.003°C (10 yr)-1 and 0.053 553 

±0.003°C (10 yr)-1 for 1850 -2020 and 1880 -2020 is 0.076 ±0.004°C (10 yr)-1 and 0.075 ±0.003°C 554 

(10 yr)-1, with a very significant increase. Compared with the five datasets in IPCC AR6, it can be 555 

found that the datasets considering the reconstruction of Arctic sea ice temperature can more 556 

accurately reflect the effect of polar amplification on global temperature. The GMST series and 557 

warming trends estimated by CMST 2.0-Imax and CMST 2.0-Imin are more consistent with these 558 

five datasets. Both have similar estimates of the spatial distribution and magnitude of warming 559 

trends in the Arctic as the other datasets. 560 

The current CMST 2.0 dataset for the Arctic is a reconstruction of the sea ice surface 561 

temperature in a defined region (65°N-90°N or 80°N-90°N) with 2 meters air temperature. Although 562 

the influence of Arctic temperature on global temperature is considered and the change of GMST 563 

series is estimated relatively accurately, it still cannot reflect the impact of sea ice dynamics on 564 

global temperature very accurately. Therefore, our future work will gradually consider the dynamics 565 

of sea ice as much as possible in the reconstruction process in order to more accurately estimate and 566 
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analyze the amplification effect of the Arctic and its impact on GMST. 567 

Last but not least, due to the limited observations, it is very difficult to fully reconstruct the 568 

SATs over the Antarctic and the surrounding SSTs during the earlier periods (for example: prior to 569 

the 1950s), which made the CMST2.0 is still not “fully” coverage. This will need to be better 570 

addressed by continuing to supplement data sources and technical refining methods in future studies. 571 

8. Data availability 572 

The C-LSAT2.0 datasets are currently publicly available at the website of figshare under the 573 

DOI https://doi.org/10.6084/m9.figshare.16968334.v4 (Sun and Li, 2021b), which contains 574 

monthly mean, maximum and minimum temperature before and after reconstruction during 1850-575 

2020. 576 

The CMST2.0 datasets can be downloaded at 577 

https://doi.org/10.6084/m9.figshare.16929427.v4 (Sun and Li, 2021a), which contains CMST2.0-578 

Nrec, CMST-Interim, CMST2.0-Imax and CMST2.0-Imin datasets. 579 

These datasets are also available freely at http:// www.gwpu.net.  580 
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