
1

New gridded dataset of rainfall erosivity (1950–2020) on

the Tibetan Plateau

Yueli Chen1, Xingwu Duan2, Minghu Ding1, Wei Qi1, Ting Wei1, Jianduo Li3

1Institute of Tibetan Plateau and Polar Meteorology, Chinese Academy of Meteorological Sciences,
Beijing, 100081, China5
2Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
3China Meteorological Administration Earth System Modeling and Prediction Centre, Beijing, 100081,
China

Correspondence to: Xingwu Duan (xwduan@ynu.edu.cn), Minghu Ding (dingminghu@foxmail.com)

10

Abstract. The risk of water erosion on the Tibetan Plateau (TP), a typical fragile ecological area, is

increasing with climate change. Rainfall erosivity maps are useful for understanding the spatiotemporal

patterns of rainfall erosivity and identifying vulnerable regions. This study generated a gridded annual

rainfall erosivity dataset of the TP for 1950–2020 using a new approach based on 1-min precipitation

observations at 1787 weather stations and 0.25° hourly European Center for Medium-Range Weather15

Forecasts Reanalysis 5 (ERA5) precipitation data. We conclude that ERA5 is generally useful for

mapping annual rainfall erosivity on the TP, considering the high correlation coefficient and consistent

spatiotemporal patterns between the ERA5-based and observed annual rainfall erosivity. In addition,

obvious underestimation of the ERA5-based annual rainfall erosivity was found. After correction by a

multiplier factor map, the annual rainfall erosivity values for 2013–2020 are in good agreement with20

the observed values in terms of the correction coefficient and probability density. Finally, a new annual

rainfall erosivity dataset for 1950–2020 was produced after the ERA5-based annual rainfall erosivity

values were corrected. We found that the area-averaged mean annual rainfall erosivity on the TP is 307

MJ·mm·ha−1·h−1 and tends to decrease from southeast to northwest. Key regions with large rainfall

erosivity potential are concentrated in the Bomi–West Sichuan and Dawang–Chayu areas. This new25

annual rainfall erosivity dataset could extend our knowledge of rainfall erosivity patterns and provide

fundamental data for quantifying soil erosion in the TP.
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1 Introduction

Precipitation is the main driver of water erosion because it directly affects the detachment of soil30

particles, breakdown of aggregates, and transport of eroded particles via runoff (Wischmeier and Smith,

1965, 1978). The R factor, that is, the multi-year average rainfall erosivity, which is described by the

Uiversal Soil Loss Equation (USLE; Wischmeier and Smith, 1965, 1978) and Revised USLE (Renard,

1997), is an indicator of the multi-year average potential ability of rainfall and runoff to affect soil

erosion. The R factor is calculated using the classical (Wischmeier and Smith, 1965) and statistical35

algorithms (e.g., Liu et al., 2002) according to the temporal resolution of the precipitation data.

The classical algorithm for rainfall erosivity requires a continuous precipitation data series with

<15-min temporal resolution (Angulo-Martínez and Beguería, 2009). As networks of weather stations

and observation platforms have matured considerably in the past two decades, rainfall erosivity has

been calculated using the classical algorithm at the local scale (Agnese et al., 2006; Ma et al., 2014;40

Wang et al., 2017), and the application of the algorithm has been gradually extended to the national

(Panagos et al., 2015; Kim et al., 2020; Yue et al., 2021) and global scale (Panagos et al., 2017; Liu et

al., 2020). Despite substantial progress, it is still notable that the relative error of the estimated rainfall

erosivity increases rapidly with increasing time interval of the precipitation data. For example, the

relative error based on hourly data was more than 80%, compared with the results based on 1-min data45

(Lobo and Bonilla, 2015; Yin et al., 2015; Shin et al., 2019). In addition, the accuracy of the rainfall

erosivity is greatly reduced by inadequate weather station coverage, especially in areas with complex

climates and terrains (Yue et al., 2021). Therefore, the accuracy of rainfall erosivity estimation depends

strongly on the temporal and spatial resolution of the precipitation observations (Panagos et al., 2017;

Kim et al., 2020).50

Compared with station-based observations, gridded precipitation data from radar-based and

satellite-based datasets cover larger areas for longer periods. These gridded data have been widely used

to estimate the rainfall erosivity in China (Teng et al., 2018), Germany (Risal et al., 2018), Africa

(Vrieling et al., 2010), the United States (Kim et al., 2020), and other regions. They have contributed

greatly to our knowledge of the spatiotemporal patterns of rainfall erosivity; however, the uncertainties55

in rainfall erosivity obtained using gridded data have not been quantified, although obvious biases

between gridded and observed precipitation values have been demonstrated (Freitas et al., 2020).
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The Tibetan Plateau (TP) referred to as the Third Pole is one of the highest plateaus worldwide and has

an average altitude of more than 4000 m (Yao et al., 2012). Since the mid-1950s, the TP has

experienced significant warming exceeding that of other regions in the same latitude zone (Liu and60

Chen, 2000). Owing to increasing snowmelt and more frequent heavy precipitation events, which may

cause more severe soil erosion, knowledge of the rainfall erosivity on the TP is highly important for

soil sustainability and thus water and food security. The accuracy of rainfall erosivity estimation

depends mainly on the spatiotemporal accuracy of the precipitation data, especially in the TP, where the

seasonal and regional precipitation patterns exhibit significant variability owing to westerly winds, the65

Indian monsoon, and land–atmosphere interaction.

Many efforts have been made to study rainfall erosivity on the TP. Most studies have used precipitation

observations from dozens of weather stations with inadequate time span (e.g., Gu et al., 2020), yet it is

difficult to accurately obtain the long-term rainfall erosivity on the TP. In particular, considering the

complex precipitation patterns over the TP, there are large uncertainties in the rainfall erosivity70

obtained by the interpolation of scarce in-situ values, which greatly limit our understanding of the

spatiotemporal patterns of rainfall erosivity. Over the past decade, the application of gridded

precipitation datasets has expanded the spatiotemporal scale of studies of rainfall erosivity on the TP

(e.g., Cao et al., 2018). However, the bias of gridded precipitation data has been found to vary

depending on the region, and the calculation biases resulting from the use of gridded data have not yet75

been extensively evaluated and corrected. Thus, the rainfall erosivity, that is, the R factor, strongly

affects the accuracy of soil erosion estimation on the TP.

The main objective of this study is to generate a long-term, high-precision annual rainfall erosivity

dataset that combines the advantages of station-based observations and gridded data. The multi-source

precipitation datasets, including the 1-min precipitation observations at 1787 weather stations for 880

years and 0.25° hourly European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5

(ERA5) data for 71 years, are used. This paper describes (1) the assessment of the ERA5 data for

estimating rainfall erosivity on the TP; (2) the correction of the ERA5-based annual rainfall erosivity

and validation of the corrected values; and (3) the generation of an annual rainfall erosivity dataset with

0.25° resolution for 1950–2020.85

2 Study Area and Source Data
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2.1 Tibetan Plateau

The study area is the TP (26–40°N, 73–105°E), which is located in Southwestern China and covers an

area of approximately 2.5 million km2. The elevation of the TP ranges from 84 to 8246 m, with an

average value of 4379 m. Precipitation in the southeastern TP is influenced by warm, humid Indian90

monsoons, whereas in the western TP, it is influenced more strongly by the mid-latitude westerlies (Yao

et al., 2012). The annual precipitation is concentrated from May to October (Gu et al., 2020), and

shows a spatial pattern of a wet east and west with a dry middle (Li et al., 2020). Along with the

significant climate change and a very fragile ecological environment, the TP has high potential for soil

loss, especially in the eastern TP and Hengduan Mountains, which are among the most severely eroded95

areas in China (Teng et al., 2019).

2.2 Precipitation data

Previous studies of the TP have used in-situ precipitation observations with <50 stations and coarse

temporal resolution, e.g., hourly (Yue et al., 2021), daily (Wang et al., 2017), or half-monthly (Teng et

al., 2018; Gu et al., 2020; Liu et al., 2020). By contrast, this study estimated the rainfall erosivity on the100

TP using precipitation observations at 1-min intervals in 2013–2020 at 1787 weather stations obtained

from the National Meteorology Information Center of the China Meteorological Administration [Figure

1(a)].

To ensure the accuracy of the in situ precipitation data, we evaluated their quality. The data integrity of

each station was first checked using quality control codes at 1-min intervals by month. Because105

precipitation on the TP occurs mainly from May to September, observed data with an integrity of >90%

from May to September in a year can be used to calculate the annual rainfall at the station. The number

of stations with data suitable for calculating the annual rainfall erosivity for each year is shown in the

lower left corner of Figure 1(a); it ranges from 628 to 1472, with an average of 1114 stations for

2013–2020 (excluding 2017, because a disruption in data reception caused the loss of precipitation110

observations in August 2017). Moreover, we examined the station density in each 0.25° grid, which is

consistent with the spatial resolution of the ERA5 data [Figure 1(b)]. The number of stations in each

grid varies from 1 to 29, and the mean value is 2.1. A total of 836 grids (20% of the grids covering the

TP) have observed precipitation values. Because the data quality varies, the available grids with
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observations change annually; on average, there are 589 available grids with observation records for115

2013–2020, excluding 2017.

Figure 1. (a) Spatial distribution of weather stations on TP; the inset shows the number of available weather

stations by year. (b) Number of available weather stations in each grid with 0.25° spatial resolution; the inset

shows the number of available weather stations by year.120

The hourly 0.25° ERA5 data represent the most recent generation of ECMWF global atmospheric

reanalysis and offer higher spatial resolution than ERA-Interim and other improvements since 1979

(Hersbach et al., 2019). The precipitation data are the sum of large-scale precipitation and convective

precipitation consisting of rain and snow, as determined by the ECMWF Integrated Forecasting125
System.

3 Methodology

To reconstruct the annual rainfall erosivity on the TP for 1950–2020, 1-min precipitation observations

and 0.25° hourly ERA5 gridded precipitation data were used. Figure 2 shows the algorithm for

generating the annual rainfall erosivity. For this purpose, we first divided the station-based grid values130

of the annual rainfall erosivity by the ERA5-based values to obtain the multiplier factor. Next, a

multiplier factor map of the TP was generated using inverse distance weighted (IDW) interpolation.

The obtained ERA5-based annual rainfall erosivity map was corrected by the multiplier factors for

1950–2020, and the accuracy of the corrected annual rainfall erosivity maps for 2013–2020, excluding

2017, was evaluated.135
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Figure 2. Schematic representation of algorithm for generating annual rainfall erosivity dataset for 1950–2020.

3.1 Algorithm of annual rainfall erosivity

A rainfall event is defined following Wischmeier and Smith (1978) as having measurable rainfall with140

no interruption or at most a 6-h interruption. If a rainfall event is interrupted for more than 6 h,

subsequent rainfall is considered to belong to a new rainfall event. Rainfall events of more than 12 mm

are selected as erosive events following Xie et al. (2000), and the EI30 index of the erosive event is

calculated. Specifically, the rainfall erosivity of an erosive rainfall event is calculated as follows

(Brown and Foster, 1987):145

�� = 0.29[1 − 0.72exp ( − 0.05��)] (1)

� = �=1
� (�� ∙ ��)� (2)

������ = � ∙ �30 (3)

where E (MJ·ha−1) is the total energy of the erosive event, and revent (MJ·mm·ha−1·h−1) is the event

rainfall erosivity of the event. For the 1-min precipitation data (ERA5 data), ir (mm/h) is the rainfall150
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intensity for the rth minute (hour), er (MJ·ha−1·mm−1) is the unit energy for the rth minute (hour), Pr

(mm) is the rainfall amount for the rth minute (hour), n is the rainfall duration, and I30 (mm/h) is the

maximum contiguous 30-min (1-h) peak intensity. After the event rainfall erosivity at all stations was

calculated, we identified and removed extreme outliers of the event rainfall erosivity at each site, which

resulted from temporary abnormalities in the automatic observation equipment and were not identified155

during quality control of the precipitation data. We used boxplots to detect extreme outliers. The lower

and upper quartiles were defined as the 25th percentile of event rainfall erosivity (Q1) and the 75th

percentile (Q2); the difference (Q2 − Q1) is called the interquartile range (IQR). Event rainfall erosivity

data at a station outside the lower and upper bounds (Q1 − 3IQR, Q2 + 3IQR) are considered extreme

outliers.160

The observed annual rainfall erosivity values (rstation_year) were obtained by summing the rainfall

erosivity for all erosive events per year by station. Next, the ERA5-based annual rainfall erosivity

(rERA5_year) for all the grids in the TP were calculated. Notably, for easy comparison of rstation_year and

rERA5_year, the rstation_year values were upscaled to the grid values (robs_year) with 0.25° spatial resolution by

averaging the station-based values in the same grid. Figure 1(b) shows the spatial distribution of the165

available grids with robs_year. Steps 2 to 5 in Figure 2 are all based on robs_year and rERA5_year data.

3.2 Assessment of ERA5-based annual rainfall erosivity estimation

The mean values of rERA5_year for 2013–2020 were compared with those of robs_year by station. The

absolute bias (AB) and correction coefficient (r) were used to evaluate the accuracy of annual rainfall

erosivity estimation using ERA5 data. The AB is calculated as shown in Eq. 4.170

�� = �=1
� (�ERA5_year�−�obs_year�)� � (4)

where i is the ith annual rainfall erosivity value, �ERA5_year� is the ERA5-based annual rainfall erosivity

in the ith year, �obs_year� is the observed annual rainfall erosivity in the ith year, and n is the number of

years of data. Moreover, the empirical orthogonal function (EOF) was employed to assess the

spatiotemporal pattern of annual rainfall erosivity revealed by the ERA5 reanalysis precipitation data175

by comparing it with the pattern revealed by the observed values.

3.3 Reconstruction and validation of annual rainfall erosivity

The results presented in section 4.1 show a high correlation between the observed and ERA5-based
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annual rainfall erosivity in 2013–2020, and their spatiotemporal distribution patterns show reasonable

agreement. Consequently, the long-term dataset of annual rainfall erosivity can be obtained by180

correcting the ERA5-based values. We used a multiplier factor method to improve the accuracy of the

ERA5-based annual rainfall erosivity; this method is commonly used to correct precipitation amounts

(He et al., 2020). First, the robs_year values were divided by rERA5_year for each year, and then the

calculated results, i.e., the multiplier factor values, were averaged for each year. Second, IDW

interpolation was used to generate a multiplier factor map of the TP with 0.25° spatial resolution.185

Finally, the corrected annual rainfall erosivity dataset (rcor_year) was obtained as the product of rERA5_year

and the multiplier factor for each grid.

Specifically, there are 373 grids with observed annual rainfall erosivity values from 2014 to 2020. The

robs_year and rERA5_year values in these grids were used to generate the multiplier factor map. The robs_year

and rERA5_year values in other grids for 2014–2020, which were not used, are available for assessing the190

accuracy. Moreover, all of the data for 2013 were treated as an independent set for verification; in other

words, none of these data were used to generate the multiplier factor map. Table 1 lists the number of

validation grids for each year, and Figure 3 shows the spatial distribution of the validation grids for

2013–2020 (excluding 2017).

195

Table 1. Numbers of grids used in this study

Year
Total number of grids with

observations

Number of validation

grids

Percentage of validation data in total

data (%)

2013 381 381 100

2014 477 104 22

2015 504 131 26

2016 562 189 34

2018 712 339 48

2019 745 372 50

2020 742 369 50
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Figure 3. Spatial distribution of validation grids covering the TP for 2013–2020 (excluding 2017).

200

4 Results

4.1 Evaluation of rainfall erosivity estimation using ERA5 data

The accuracy of annual rainfall erosivity estimation using the ERA5 precipitation data for 2013–2020

was assessed and compared with the robs_year values in 280 grids covering the TP. The correlation

coefficient of the mean annual rainfall erosivity based on the observed and ERA5 precipitation data is205

0.71. For most stations, the ERA5-based values were significantly underestimated (Figure 4).
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Figure 4. Comparison of mean annual rainfall erosivity based on observed and ERA5-based results for seven years

(2013–2020, excluding 2017). The dotted line is the result of an optimal model (with an intercept of 0 and

regression coefficient of 1). The red line is the regression result. Colors of dots represent the grid density.210

To further evaluate the quality of mean annual rainfall erosivity estimation using ERA5 data, the

performance of the ERA5 data in each grid was evaluated, as shown in Figure 5. The spatial pattern of

the ERA5-based mean annual rainfall erosivity is consistent with that of the observed values.

Specifically, areas with large annual rainfall erosivity are located mainly in the southeastern part of the215

plateau, especially at the southeast edge, whereas the mean annual values in the northwestern part of

the plateau are relatively small. However, the observed mean annual rainfall erosivity on the TP is 344

MJ·mm·ha−1·h−1·yr−1, and the ER5-based results underestimate this value by 47%. Moreover, except

for most of the grids in the northwest corner and individual grids in the southeastern part of the plateau,

the mean annual rainfall erosivity values in most grids in the TP are lower than the observed values.220
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Figure 5. Mean annual rainfall erosivity in 2013–2020 (excluding 2017) based on (a) in situ precipitation

observations and (b) ERA5 reanalysis precipitation data. (c) AB between the values based on ERA5 reanalysis data

and precipitation observations.

225

The accuracy of the spatiotemporal variability of the mean annual rainfall erosivity on the TP obtained

using the ERA5 dataset is also crucial for determining whether ERA5 is suitable for rainfall erosivity

calculation. We used the first three EOF modes, which are considered to provide most of the valuable

information, for evaluation. The spatial pattern of the first three EOFs of the observed values accounts

for 77% of the total variance, and that of the first there EOFs of the ERA5-based values accounts for230

84% of the total variance (Figure 6). Clearly, ERA5 successfully captured the spatial pattern of the

EOF modes, especially the first two EOF modes, revealed by the observed values. In addition, the

corresponding principal components of the EOF modes of the ERA5-based values are also consistent
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with the temporal variation trend of the observed values. Therefore, it can be concluded that the

ERA5-based mean annual rainfall erosivity generally reproduces the spatiotemporal patterns of the235

rainfall erosivity on the TP.

Figure 6. First three EOF modes of observed and ERA5-based mean annual rainfall erosivity on the TP in

2013–2020 (excluding 2017).240

4.2 Reconstruction and validation of corrected annual rainfall erosivity

Using the observed and ERA5-based annual rainfall erosivity, we calculated the multiplier factors for

373 grids [Figure 7(a)]. The multiplier factors for the TP range from 0 to 23, with a mean value of 2.4.

Multiplier factors of <1 indicate that the ERA5-based annual rainfall erosivity is overestimated, and245

conversely, the annual rainfall erosivity in the grid is underestimated. Most of the areas with

overestimated ERA5-based mean annual rainfall erosivity are located in the Tarim, Qaidam, and

Yarlung Zangpo basins. In other areas, the annual rainfall erosivity is typically underestimated, and

areas with greater underestimation appear east of the Qaidam basin and in the source area of the Yellow

River. We also produced a multiplier factor map of the TP by IDW interpolation based on the multiplier250

factors of 373 grids [Figure 7(b)].
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Figure 7. (a) Spatial distribution of multiplier factors of 373 grids, (b) multiplier factor map of TP generated by

IDW interpolation.

255

The corrected annual rainfall erosivity in 2013–2020 (excluding 2017) was then calculated in the

validation grids as the product of the ERA5-based annual values and multiplier factors from the map.

Figure 8 compares the observed and ERA5-based annual rainfall erosivity in the validation grids by

year. In 2014–2020 (excluding 2017), the multi-year averaged correction coefficient between robs_year

and rcor_year is 0.67, which is 0.13 larger than the value between robs_year and rERA5_year. Moreover, all of260

the data for 2013, which were not used to produce the multiplier factor map, were used to conduct an

independent assessment. The results show that the correction coefficient also increases, from 0.53 to

0.67, after the ERA5-based annual rainfall erosivity is corrected, indicating significant improvement.
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Figure 8. Comparison of ERA5-based annual rainfall erosivity (MJ·mm·ha−1·h−1·yr−1) with observed values in265
validation grids for 2013–2020 (excluding 2017). The dotted line is the result of an optimal model (with an

intercept of 0 and a regression coefficient of 1). The red line is the regression result. Colors of dots represent the

grid density.

Violin plots are an alternative method of synthetically evaluating the accuracy of the corrected annual270

rainfall erosivity. Figure 9 compares the observed, ERA5-based, and corrected annual rainfall erosivity

in the validation grids for 2013–2020 (excluding 2017). The corrected annual rainfall erosivity values

for 2014–2020 are better than the ERA5-based values in terms of both the probability density and the

values corresponding to different quantiles. Even in 2013, a completely independent verification year,

the accuracy of the corrected annual rainfall erosivity is greatly improved. Specifically, the observed275

grid-averaged multi-year mean annual rainfall erosivity is 329 MJ·mm·ha−1·h−1·yr−1 in 2013–2020
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(excluding 2017), where the ERA5-based value is 190 MJ·mm·ha−1·h−1·yr−1, and the corrected value is

374 MJ·mm·ha−1·h−1·yr−1. The relative error is significantly reduced, from −42% to 14%, by multiplier

factor correction.

280

Figure 9. Violin plots of observed, ERA5-based, and corrected annual rainfall erosivity in validation grids for

2013–2020 (excluding 2017). Y axis shows annual rainfall erosivity in MJ·mm·ha−1·h−1. The boxplot diagram of

the median of the violin plots shows the maximum value, 75% quantile value, 50% quantile value, 25% quantile

value, and minimum value. The horizontal lines represent average values.285
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4.3 R factor of TP

Because of the large variability of the spatiotemporal patterns of precipitation, the R factor, an essential

input for soil loss estimation, must be calculated using a minimum of 20 years of precipitation data

(Renard et al., 1997). In this study, the annual rainfall erosivity values of the TP for 71 years based on290

the 0.25° hourly ERA5 precipitation data were calculated by the algorithm shown in Section 3.1. Next,

after correction by the multiplier factor map, the new annual rainfall erosivity dataset for 1950–2020

and R factor map were produced.

The annual rainfall erosivity fluctuates considerably within a range of 239 to 408 MJ·mm·ha−1·h−1·yr−1

(Figure 10). However, no obvious increasing or decreasing trend appears in the past 71 years across the295

TP. Regarding the spatial distribution, the R factor generally shows a decreasing trend from southeast to

northwest. The areas with R factors below 200 MJ·mm·ha−1·h−1·yr−1 are concentrated in the

northwestern part of the TP, whereas regions with high R factors appear mainly in the southeastern TP,

especially in the Bomi–West Sichuan and Dawang–Chayu areas.

300

Figure 10. R factor map of TP with the 0.25° spatial resolution for 1950–2020. Inset represents the yearly change

in annual rainfall erosivity.

When the annual rainfall erosivity across the TP is averaged, the R factor is 307 MJ·mm·ha−1·h−1·yr−1.305

The R factor obtained in this study is clearly lower than those from previous studies, excluding that of

Liu et al. (2013) (Table 2). In contrast to the published results, our study presents a data-driven

approach including the use of 1-min precipitation observations from a dense network of weather
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stations and the 0.25° hourly ERA5 precipitation dataset to reconstruct the annual rainfall erosivity in

1950–2020.310

Table 2. R factor of TP in previous studies

Region Study scale
Number of

weather stations

Temporal

resolution
Period R factor Reference

Central and

eastern TP
China 590 Daily 1960–2009 147

Liu et al.,

2013

Tibet Tibet 38 Daily 1981–2015 714
Gu et al.,

2020

TP China 756 Daily 1951–2010 408
Qin et al.,

2016

Most of TP

China’s

dryland

region

298 Daily 1961–2012 <500
Yang et al.,

2015

Tibet China CRU_TS4 Monthly 1901–2016 3407
Cao et al.,

2018

Tibet Tibet TRMM 3B42 Daily 2000–2008 768
Yan et al.,

2010

TP China 564 Daily 1971–1998

Cold zone:

368

Sub-cold

zone: 427

Zhang et al.,

2003

Note: CRU_TS4: Climatic Research Unit Time Series 4. TRMM: Tropical Rainfall Measuring Mission. Units:

MJ·mm·ha−1·h−1·yr−1. The boundary of the TP is identified slightly differently in these studies.

315

5 Data availability

The new gridded annual rainfall erosivity dataset for the TP for 1950–2020 is available at

http://data.tpdc.ac.cn/en/data/37c34046-3c2a-4737-b3c9-35af398da62a/ (Chen et al., 2021).

6 Conclusions

An annual rainfall erosivity dataset for the TP for 1950–2020 was generated using station-based320

precipitation data from a dense network of weather stations and reanalysis data. The main conclusions

are as follows:

(1) The correction coefficient between the observed mean annual rainfall erosivity on the TP and the

ERA5-based values is 0.71. In addition, EOF analysis revealed that the spatiotemporal pattern of the
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ERA5-based mean rainfall erosivity is consistent with that revealed by the observed values.325

(2) The mean correction coefficient between the observed mean annual rainfall erosivity and the

corrected values is 0.67, which is 0.13 larger than that between the observed and ERA5-based values

for 2013–2020. In addition, the probability density and various quantile values of the corrected annual

rainfall erosivity are also clearly improved.

(3) The area-averaged R factor is appropriately 307 MJ·mm·ha−1·h−1. The R factor tends to decrease330

from southeast to northwest. Areas with large R factors are concentrated mainly in the Bomi–West

Sichuan and Dawang–Chayu areas.
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