
1

New gridded dataset of rainfall erosivity (1950–2020) on

the Tibetan Plateau

Yueli Chen1, Xingwu Duan2, Minghu Ding1, Wei Qi1, Ting Wei1, Jianduo Li3,1, Yun

Xie4

1State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing,5
100081, China
2Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
3CMA Earth System Modeling and Prediction Centre, Beijing, 100081, China
4State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographic
Science, Beijing Normal University, Beijing, 100875, China10

Correspondence to: Xingwu Duan (xwduan@ynu.edu.cn), Minghu Ding (dingminghu@foxmail.com)

Abstract. The risk of water erosion on the Tibetan Plateau (TP), a typical fragile ecological area, is

increasing with climate change. Rainfall erosivity map is useful for understanding the spatial-temporal

pattern of rainfall erosivity and identifying hot spots of soil erosion. This study generate an annual15

gridded rainfall erosivity dataset on a 0.25° grid for the TP in 1950–2020. 1-min precipitation

observations at 1787 weather stations for 7 years and 0.25° hourly European Center for Medium-Range

Weather Forecasts Reanalysis 5 (ERA5) precipitation data for 71 years are employed in this study. Our

results indicate that the ERA5-based estimates have a marked tendency to underestimate annual rainfall

erosivity when compared to the station-based estimates, because of the systematically biases of ERA520

precipitation data including the large underestimation of the maximum contiguous 30-min peak

intensity and relatively slight overestimation of event erosive precipitation amount. The multiplier

factor map over the TP, which was generated by Inverse Distance Weighted method based on the

relative changes between the available station-based annual rainfall erosivity grid values and the

corresponding ERA5-based values, was employed to correct the ERA5-based annual rainfall erosivity25

and then reconstruct the annual rainfall erosivity dataset. The multi-year average correction coefficient

over the TP between the station-based annual rainfall erosivity values and the newly released data is

0.67. In addition, the probability density and various quantile values of the new data are generally

consistent with the station-based values. The data offers a view of large-scale spatial-temporal
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variability in the rainfall erosivity and addresses the growing need for the information to predict30

rainfall-induced hazards over the TP. The dataset are available at

http://data.tpdc.ac.cn/en/data/37c34046-3c2a-4737-b3c9-35af398da62a/.
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1 Introduction

Precipitation is the main driver of water erosion because it directly affects the detachment of soil

particles, breakdown of aggregates, and transport of eroded particles via runoff (Wischmeier and Smith,35

1965, 1978). The R factor, that is, the multi-year average rainfall erosivity, which is described by the

Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1965, 1978) and Revised USLE (RUSLE;

Renard, 1997), is an indicator of the potential ability of rainfall and runoff to affect soil erosion.

Generally, the R factor is calculated by using the classical (Wischmeier and Smith, 1965) or statistical

algorithms (e.g., Liu et al., 2002) according to the temporal resolution of the available precipitation40

data.

The classical algorithm for rainfall erosivity requires a continuous precipitation data series with

<15-min temporal resolution (Angulo-Martínez and Beguería, 2009). As networks of weather stations

and observation platforms have matured considerably in the past two decades, rainfall erosivity has

been calculated using the classical algorithm at the local scale (Agnese et al., 2006; Ma et al., 2014;45

Wang et al., 2017), and the application of the algorithm has been gradually extended to the national

(Panagos et al., 2015; Kim et al., 2020; Yue et al., 2021) and global scale (Panagos et al., 2017; Liu et

al., 2020). Despite substantial progress, it is still notable that the relative error of the estimated rainfall

erosivity increases rapidly with increasing time interval of the precipitation data. For example, the

relative error based on hourly data was more than 80%, compared with the results based on 1-min data50

(Lobo and Bonilla, 2015; Yin et al., 2015; Shin et al., 2019). In addition, the accuracy of the rainfall

erosivity map is greatly reduced by inadequate weather station coverage, especially in areas with

complex climates and terrains (Yue et al., 2021). Therefore, the accuracy of rainfall erosivity

estimation depends strongly on both of the temporal and spatial resolution of the precipitation data

(Panagos et al., 2017; Kim et al., 2020).55

Compared with in-situ observations, gridded precipitation data (e.g. satellite-based, reanalysis and

fused datasets) are not subjected to topographical limitations and could supply continuous precipitation

data (Beck et al., 2017). These data have been widely used to estimate the rainfall erosivity in China,

especially in the regions with scarce in-situ observations (Teng et al., 2018), Germany (Risal et al.,

2018), Africa (Vrieling et al., 2010), the United States (Kim et al., 2020), and other regions. They have60

contributed greatly to our knowledge of the spatiotemporal patterns of rainfall erosivity; however, the

uncertainties in rainfall erosivity directly calculated by using gridded precipitation data have not been
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quantified, although obvious biases between gridded and observed precipitation values have been

demonstrated (Freitas et al., 2020).

The Tibetan Plateau (TP) referred to as the Third Pole is one of the highest plateaus worldwide and has65

an average altitude of more than 4000 m (Yao et al., 2012). Since the mid-1950s, the TP has

experienced significant warming exceeding that of other regions in the same latitude zone (Liu and

Chen, 2000). Owing to increasing snowmelt and more frequent heavy precipitation events, which may

cause more severe soil erosion, knowledge of the rainfall erosivity on the TP is highly important for

soil sustainability and thus water and food security. The accuracy of rainfall erosivity estimation70

depends mainly on the spatiotemporal accuracy of the precipitation data, especially on the TP, where

the seasonal and regional precipitation patterns exhibit significant variability owing to westerly winds,

the Indian monsoon, and land–atmosphere interaction.

Many efforts have been made to study the rainfall erosivity on the TP (Table 1). Most studies employed

the empirical methods, however, our study has demonstrated that these empirical methods always75

resulted to obvious biases over the TP, when compared with the values based on the 1-min precipitation

data by using the standard method (paper submitted). In the term of the type of the precipitation data,

dozens of station-based precipitation data were commonly used to calculate the rainfall erosivity (e.g.,

Qin et al., 2016; Gu et al., 2020). Yue et al. (2022) has reported that the scarce weather stations can

significantly reduce the estimation accuracy of the rainfall erosivity in the regions with complex terrain80

and climate, especially on the TP. Therefore, the accuracy of the estimated rainfall erosivity on the TP

are largely reduced by the current empirical estimation models and the scarcity of the historical weather

stations. In other words, the precipitation data with high spatial-temporal resolution are essential to

calculate the rainfall erosivity on the TP.
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Table 1. R factor of TP in previous studies85

Study scale
Type of precipitation

data

Number of weather

stations

Temporal

resolution

Calculation

Method
Spatial characteristics

R factor

(MJ·mm·ha−1·h−1·yr−1)
Reference

China Weather station
China: 2381

TP: < 100
1 hour Standard Kriging TP: 273 Yue et al., 2022

Southwestern

China
CRU_TS4 Monthly Empirical

Grid,

no bias correction
Tibet: 3407

Cao et al.,

2018

China
TRMM,

weather station

China: 650

TP: < 50
Daily Empirical

Grid,

bias correction of TRMM

precipitation

No value
Teng et al.,

2017

China Weather station
China: 756

TP: < 50
Daily Empirical Kriging TP: 408 Qin et al., 2016

China’s dryland

region
Weather station

China’s dryland

region 298
Daily Empirical HASM interpolation Most of TP: 1–500

Yang et al.,

2015

China Weather station
China: 590

TP: < 50
Daily Empirical Kriging

Central and eastern TP:

147
Liu et al., 2013

China Weather station China: 564 Daily Empirical Kriging
Cold zone of TP: 368

Sub-cold zone of TP: 427

Zhang et al.,

2003

Tibet Weather station Tibet: 38 Daily Empirical Station-averaged Tibet: 714 Gu et al., 2020

Tibet
TRMM 3B42

gridded
Daily Empirical

Grid,

no bias correction
Tibet: 768

Yan et al.,

2010

Note: CRU_TS4: Climatic Research Unit Time Series 4 gridded precipitation product. TRMM: Tropical Rainfall Measuring Mission gridded precipitation product. Empirical method means

the rainfall erosivity values are calculated by using the empirical equations based on daily or monthly precipitation data. The standard method is proposed by USLE or RUSLE. The boundaries

of the TP used in these studies has some slight differences.
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To expand the spatial coverage and extend the time series of rainfall erosivity over the TP, the various

gridded precipitation datasets, for example, satellite-based Tropical Rainfall Measuring Mission90

(TRMM) and station-based Climatic Research Unit Time Series 4 gridded precipitation datasets

(CRU_TS4), are also introduced into the soil erosion study of the TP in recent decade (Yan et al., 2010;

Teng et al., 2017; Gao et al., 2018). The performances of these gridded precipitation mainly depend on

the spatial-temporal accuracy of the gauge observations, and thus these datasets always present obvious

biases, due to insufficient density of the weather station network over the TP (Yuan et al., 2021). It is95

notable that the significant biases of various gridded precipitation data have also been widely identified

(Sun et al., 2018), and their impacts on the rainfall erosivity estimation have not been assessed.

In recent researches, the model-based gridded precipitation datasets begin to be concerned (Li et al.,

2020; Zhou et al., 2021), because they could resolve the complex topography and climate effects over

the TP and provide long-term data by setting simulation period. The European Center for100

Medium-Range Weather Forecasts Reanalysis 5 (ERA5) as the newly generation is one of the most

widely used precipitation datasets in the world (Hersbach et al. 2019). Compared with other gridded

precipitation datasets, ERA5 succeeded in reproducing the inter-annual and decadal variabilities of

precipitation and reflecting the spatial-temporal patterns (Yuan et al., 2021), and performed marginally

better in detecting daily precipitation over the whole TP for the long-term periods (Jiang et al., 2021),105

despite the bias in precipitation amount was also reported (Jiang et al., 2021; Jiao et al., 2021).

Therefore, this study aims to reconstruct the historical annual rainfall erosivity with 0.25° spatial

resolution in 1950–2020 over the TP, by employing the 0.25° hourly ERA5 precipitation data for 71

years to generate a long-term background values and utilizing the 1-min precipitation observations at

1787 weather stations for 7 years to identify and correct the biases of the estimates. In detail, this paper110

describes (1) the performance of ERA5 precipitation data at the weather stations; (2) the performance

of the ERA5-based annual rainfall erosivity calculated by using the standard method recommended by

the USLE model; (3) the correction of the ERA5-based annual rainfall erosivity and the validation of

the newly generated dataset.

2 Study Area and Source Data115

2.1 Tibetan Plateau

The study area is the TP (26–40°N, 73–105°E), which is located in Southwestern China and covers an
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area of approximately 2.5 million km2. The elevation of the TP ranges from 84 to 8246 m, with an

average value of 4379 m. Precipitation in the southeastern TP is influenced by warm, humid Indian

monsoons, whereas in the western TP, it is influenced more strongly by the mid-latitude westerlies (Yao120

et al., 2012). The annual precipitation is concentrated from May to October (Gu et al., 2020), and

shows a spatial pattern of a wet east and west with a dry middle (Li et al., 2020). Along with the

significant climate change and a very fragile ecological environment, the TP has high potential for soil

loss, especially in the eastern TP and Hengduan Mountains, which are among the most severely eroded

areas in China (Teng et al., 2019).125

2.2 Precipitation data

Previous studies of the TP have used in-situ precipitation observations with <50 stations and coarse

temporal resolution, e.g., hourly (Yue et al., 2021), daily (Wang et al., 2017), or half-monthly (Teng et

al., 2018; Gu et al., 2020; Liu et al., 2020). By contrast, this study estimated the rainfall erosivity on the

TP using precipitation observations at 1-min intervals in 2013–2020 at 1787 weather stations obtained130

from the National Meteorology Information Center of the China Meteorological Administration [Figure

1(a)].

To ensure the accuracy of the in situ precipitation data, we evaluated their quality. The data integrity of

each station was first checked using quality control codes at 1-min intervals by month. Because

precipitation on the TP occurs mainly from May to September, observed data with an integrity of >90%135

from May to September in a year can be used to calculate the annual rainfall at the station. The number

of stations with data suitable for calculating the annual rainfall erosivity for each year is shown in the

lower left corner of Figure 1(a); it ranges from 628 to 1472, with an average of 1114 stations for

2013–2020 (excluding 2017, because a disruption in data reception caused the loss of precipitation

observations in August 2017). Moreover, we examined the station density in each 0.25° grid, which is140

consistent with the spatial resolution of the ERA5 data [Figure 1(b)]. The number of stations in each

grid varies from 1 to 29, and the mean value is 2.1. A total of 836 grids (20% of the grids covering the

TP) have observed precipitation values. Because the data quality varies, the available grids with

observations change annually; on average, there are 589 available grids with observation records for

2013–2020, excluding 2017.145
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The hourly 0.25° ERA5 data represent the most recent generation of ECMWF global atmospheric

reanalysis and offer higher spatial resolution than ERA-Interim and other improvements since 1979

(Hersbach et al., 2019). The precipitation data are the sum of large-scale precipitation and convective

precipitation consisting of rain and snow, as determined by the ECMWF Integrated Forecasting

System.150

Figure 1. (a) Spatial distribution of weather stations on TP; the inset shows the number of available weather

stations by year. (b) Number of available weather stations in each grid with 0.25° spatial resolution; the inset

shows the number of available weather stations by year.155

3 Methodology

Figure 2 shows the overall algorithm for generating the annual rainfall erosivity dataset with the 0.25°

spatial resolution over the TP in 1950–2020. We firstly calculated the annual rainfall erosivity by using

the standard method of rainfall erosivity based on the 1-min in-situ precipitation observations and 0.25°160

hourly ERA5 precipitation data, respectively. Secondly, the performances of the ERA5 were

systematically assessed in the terms of the detecting accuracy of the precipitation for erosive events and

the estimation accuracy of ERA5-based annual rainfall erosivity. Finally, the historical annual rainfall

erosivity data for the TP was produced after correcting the ERA5-based annual rainfall erosivity.
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Figure 2. Schematic representation of algorithm for generating annual rainfall erosivity dataset for 1950–2020.

robs_year and rERA5_year represent the station-based and ERA5-based annual rainfall erosivity values, respectively.

rcor_year means the corrected values of the rERA5_year by using the multiplier factor map.

170

3.1 Algorithm of annual rainfall erosivity

A rainfall event is defined following Wischmeier and Smith (1978) as having measurable rainfall with

no interruption or at most a 6-h interruption. If a rainfall event is interrupted for more than 6 h,

subsequent rainfall is considered to belong to a new rainfall event. Rainfall events of more than 12 mm

are selected as erosive events following Xie et al. (2000), and the EI30 index of the erosive event is175

calculated. Specifically, the rainfall erosivity of an erosive rainfall event is calculated as follows

(Brown and Foster, 1987):

�� = 0.29[1 − 0.72exp ( − 0.05��)] (1)

� = �=1
� (�� ∙ ��)� (2)

������ = � ∙ �30 (3)180

where E (MJ·ha−1) is the total energy of the erosive event, and revent (MJ·mm·ha−1·h−1) is the event

rainfall erosivity of the event. For the 1-min precipitation data (ERA5 data), ir (mm/h) is the rainfall

intensity for the rth minute (hour), er (MJ·ha−1·mm−1) is the unit energy for the rth minute (hour), Pr
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(mm) is the rainfall amount for the rth minute (hour), n is the rainfall duration, and I30 (mm/h) is the

maximum contiguous 30-min (1-h) peak intensity. After the event rainfall erosivity at all stations was185

calculated, we identified and removed extreme outliers of the event rainfall erosivity at each site, which

resulted from temporary abnormalities in the automatic observation equipment and were not identified

during quality control of the precipitation data. We used boxplots to detect extreme outliers. The lower

and upper quartiles were defined as the 25th percentile of event rainfall erosivity (Q1) and the 75th

percentile (Q2); the difference (Q2 − Q1) is called the interquartile range (IQR). Event rainfall erosivity190

data at a station outside the lower and upper bounds (Q1 − 3IQR, Q2 + 3IQR) are considered extreme

outliers.

The observed annual rainfall erosivity values (rstation_year) were obtained by summing the rainfall

erosivity for all erosive events per year by station. Next, the ERA5-based annual rainfall erosivity

(rERA5_year) for all the grids in the TP were calculated. Notably, for easy comparison of rstation_year and195

rERA5_year, the rstation_year values were upscaled to the grid values (robs_year) with 0.25° spatial resolution by

averaging the station-based values in the same grid. Figure 1(b) shows the spatial distribution of the

available grids with robs_year. Steps 2 to 3 in Figure 2 are all based on robs_year and rERA5_year data at grid

scale.

3.2 Assessment of the performance of the ERA5 precipitation data200

The performance of the ERA5 precipitation data were assessed at 280 grid cells, which corresponded to

7% of all the grids over the TP. Given the importance of erosive rainfall events to soil erosion, we

focused on the performance of the ERA5 precipitation data in detecting characteristics of erosive

rainfall event, including multi-year averaged annual erosive precipitation amount and frequency, and

mean erosive event precipitation amount and I30.205

The mean values of rERA5_year for 2013–2020 were compared with those of robs_year by station. The

absolute bias (AB) and correction coefficient (r) were used to evaluate the accuracy of annual rainfall

erosivity estimation using ERA5 data. The AB is calculated as shown in Eq. 4.

�� = �=1
� (�ERA5_year�−�obs_year�)� � (4)

where i is the ith annual rainfall erosivity value, �ERA5_year� is the ERA5-based annual rainfall erosivity210

in the ith year, �obs_year� is the observed annual rainfall erosivity in the ith year, and n is the number of

years of data. Moreover, the empirical orthogonal function (EOF) was employed to assess the
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spatiotemporal pattern of annual rainfall erosivity revealed by the ERA5 reanalysis precipitation data

by comparing it with the pattern revealed by the observed values.

3.3 Reconstruction and validation of annual rainfall erosivity215

For the soil erosion process, it is known that not all the precipitation events but the erosive events have

close relationship with the water erosion process. Our study indicated the precipitation characteristics

derived from ERA5 data for erosive events showed high correction with those from in-situ precipitation

observations over the TP (Figure 4). In addition, there was a high correlation between the station-based

and ERA5-based annual rainfall erosivity (Figure 5), and their spatiotemporal distribution patterns also220

showed well agreement (Figure 7). These findings have demonstrated that it is reasonable to generate

the rainfall erosivity dataset for the TP by using the ERA5 precipitation data, and meanwhile, the

correction is also essential because of the obvious biases identified in the ERA5-based rainfall erosivity

values.

Relative changes between the in-situ and modeled precipitation are always used to correct the modeled225

precipitation for accuracy improvement, such as the global precipitation data from WorldClim (Fick et

al., 2017), the gridded precipitation data of the China Meteorological Forcing Dataset (He et al., 2020)

and the bias adjusted ERA5 precipitation data (Cucchi et al., 2020). Given the close correlation

between the precipitation and rainfall erosivity, the relative changes were also employed to correct the

ERA5-based annual rainfall erosivity in this study. Here, we have used a hypothesis that the bias of the230

ERA5-based annual rainfall erosivity resulted from ERA5 precipitation data at each grid keeps steady

by year. In detail, the correction process can be divided into three steps. Firstly, the robs_year values were

divided by rERA5_year for each year, and then the calculated results, i.e., the multiplier factor values, were

averaged for years. Secondly, inverse distance weighted (IDW) interpolation was used to generate a

multiplier factor map of the TP with 0.25° spatial resolution. Thirdly, the corrected annual rainfall235

erosivity dataset (rcor_year) was obtained as the product of rERA5_year and the multiplier factor for each

grid.

Specifically, there are 373 grids with observed annual rainfall erosivity values from 2014 to 2020. The

robs_year and rERA5_year values in these grids were used to generate the multiplier factor map. The robs_year

and rERA5_year values in other grids for 2014–2020, which were not used before, are available for240

assessing the accuracy. Moreover, the year 2013 was regarded as a complete verification year, in which
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the assessment of the rcor_year was conducted in all the TP grids with robs_year values. Table 2 lists the

number of validation grids at each year, and Figure 3 shows the spatial distribution of the validation

grids for 2013–2020 (excluding 2017).

245

Table 2. Numbers of grids used in this study

Year
Total number of grids with

observations

Number of validation

grids

Percentage of validation data in total

data (%)

2013 381 381 100

2014 477 104 22

2015 504 131 26

2016 562 189 34

2018 712 339 48

2019 745 372 50

2020 742 369 50
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Figure 3. Spatial distribution of validation grids covering the TP for 2013–2020 (excluding 2017).

250

4 Results

4.1 Detecting accuracy of ERA5 for erosive rainfall events

Figure 4 compared the multi-year average annual erosive precipitation amount and frequency, and

mean erosive event precipitation amount and I30 derived from ERA5 precipitation data with those from

in-situ observations. In detail, the EA5-based multi-year average annual erosive precipitation amount is255

three times more than the station-based value across the TP. The overestimation of the multi-year

average annual precipitation amount was also reported by Jiao et al. (2021). The ERA5 overestimated

the annual erosive precipitation frequency by 1.6 times. For the erosive event rainfall amount, ERA5

was almost twice as much as the station-based value, which differed from the finding of Jiao et al.

(2021) that the daily precipitation amount with more than 10 mm are underestimated by ERA5. This260

result demonstrates that the erosive rainfall events in the TP cannot be simply equivalent to the daily
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precipitation events (Chen et al., 2022). In addition, the mean I30 of ERA5 for erosive events are only

one ninth of the station-based value. Because the relatively slight overestimation of ERA5 precipitation

data in the erosive event precipitation amount could not offset the substantial underestimation in I30, the

ERA5-based estimates showed a marked tendency to underestimate the rainfall erosivity when265

compared to the station-based estimates. Overall, the comparison between the two data sources

indicated that there were significantly biases of ERA5 data in detecting precipitation characteristics for

erosive events in the TP, however, also presented high corrections with correlation coefficient being

0.33–0.84.

270

Figure 4. Scatterplots of the station-based multi-year average (a) annual erosive precipitation amount (Ptot), (b)

annual erosive precipitation frequency (PF), (c) mean erosive event precipitation amount (Pevent), (d) mean I30 for

erosive events ( I30) vs those derived from ERA5 data at the corresponding grid cells in 2013–2020.

4.2 Evaluation of rainfall erosivity estimation using ERA5 data275

The accuracy of annual rainfall erosivity estimation using the ERA5 precipitation data for 2013–2020
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was assessed and compared with the robs_year values in 280 grids covering the TP. The correlation

coefficient of the mean annual rainfall erosivity based on the observed and ERA5 precipitation data is

0.71. For most stations, the ERA5-based values were significantly underestimated (Figure 5).

280

Figure 5. Comparison of mean annual rainfall erosivity based on observed and ERA5-based results for seven years

(2013–2020, excluding 2017). The dotted line is the result of an optimal model (with an intercept of 0 and

regression coefficient of 1). The red line is the regression result. Colors of dots represent the grid density. Unit:

MJ·mm·ha−1·h−1·yr−1.

285

To further evaluate the quality of mean annual rainfall erosivity estimation using ERA5 data, the

performance of the ERA5 data in each grid was evaluated, as shown in Figure 6. The spatial pattern of

the ERA5-based mean annual rainfall erosivity is consistent with that of the observed values.

Specifically, areas with large annual rainfall erosivity are located mainly in the southeastern part of the

plateau, especially at the southeast edge, whereas the mean annual values in the northwestern part of290

the plateau are relatively small. However, the observed mean annual rainfall erosivity on the TP is 344

MJ·mm·ha−1·h−1·yr−1, and the ER5-based results underestimate this value by 47%. Moreover, except

for most of the grids in the northwest corner and individual grids in the southeastern part of the plateau,

the mean annual rainfall erosivity values in most grids in the TP are lower than the observed values.
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295
Figure 6. Mean annual rainfall erosivity in 2013–2020 (excluding 2017) based on (a) in situ precipitation

observations and (b) ERA5 reanalysis precipitation data. (c) AB between the values based on ERA5 reanalysis data

and precipitation observations. Unit: MJ·mm·ha−1·h−1·yr−1.

The accuracy of the spatiotemporal variability of the mean annual rainfall erosivity on the TP obtained300

using the ERA5 dataset is also crucial for determining whether ERA5 is suitable for rainfall erosivity

calculation. We used the first three EOF modes, which are considered to provide most of the valuable

information, for evaluation. The spatial pattern of the first three EOFs of the observed values accounts

for 77% of the total variance, and that of the first there EOFs of the ERA5-based values accounts for

84% of the total variance (Figure 7). Clearly, ERA5 successfully captured the spatial pattern of the305

EOF modes, especially the first two EOF modes, revealed by the observed values. In addition, the

corresponding principal components of the EOF modes of the ERA5-based values are also consistent
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with the temporal variation trend of the observed values. Therefore, it can be concluded that the

ERA5-based mean annual rainfall erosivity generally reproduces the spatiotemporal patterns of the

rainfall erosivity on the TP.310

Figure 7. First three EOF modes of observed and ERA5-based mean annual rainfall erosivity on the TP in

2013–2020 (excluding 2017).

315

4.2 Reconstruction and validation of corrected annual rainfall erosivity

Using the observed and ERA5-based annual rainfall erosivity, we calculated the multiplier factors for

373 grids [Figure 8(a)]. The multiplier factors for the TP range from 0 to 23, with a mean value of 2.4.

Multiplier factors of <1 indicate that the ERA5-based annual rainfall erosivity is overestimated, and

conversely, the annual rainfall erosivity in the grid is underestimated. Most of the areas with320

overestimated ERA5-based mean annual rainfall erosivity are located in the Tarim, Qaidam, and

Yarlung Zangpo basins. In other areas, the annual rainfall erosivity is typically underestimated, and

areas with greater underestimation appear east of the Qaidam basin and in the source area of the Yellow

River. We also produced a multiplier factor map of the TP by IDW interpolation based on the multiplier

factors of 373 grids [Figure 8(b)].325
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Figure 8. (a) Spatial distribution of multiplier factors of 373 grids, (b) multiplier factor map of TP generated by

IDW interpolation.

The corrected annual rainfall erosivity in 2013–2020 (excluding 2017) was then calculated in the330

validation grids as the product of the ERA5-based annual values and multiplier factors from the map.

Figure 9 compares the observed and ERA5-based annual rainfall erosivity in the validation grids by

year. In 2014–2020 (excluding 2017), the multi-year averaged correction coefficient between robs_year

and rcor_year is 0.67, which is 0.13 larger than the value between robs_year and rERA5_year. Moreover, all of

the data for 2013, which were not used to produce the multiplier factor map, were used to conduct an335

independent assessment. The results show that the correction coefficient also increases, from 0.53 to

0.67, after the ERA5-based annual rainfall erosivity is corrected, indicating significant improvement.
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Figure 9. Comparison of ERA5-based annual rainfall erosivity (MJ·mm·ha−1·h−1·yr−1) with observed values in

validation grids for 2013–2020 (excluding 2017). The dotted line is the result of an optimal model (with an340
intercept of 0 and a regression coefficient of 1). The black solid lines are the regression result. Colors of dots

represent the grid density.

Violin plots are an alternative method of synthetically evaluating the accuracy of the corrected annual

rainfall erosivity. Figure 10 compares the observed, ERA5-based, and corrected annual rainfall345

erosivity in the validation grids for 2013–2020 (excluding 2017). The corrected annual rainfall

erosivity values for 2014–2020 are better than the ERA5-based values in terms of both the probability

density and the values corresponding to different quantiles. Even in 2013, a completely independent

verification year, the accuracy of the corrected annual rainfall erosivity is greatly improved.

Specifically, the observed grid-averaged multi-year mean annual rainfall erosivity is 329350
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MJ·mm·ha−1·h−1·yr−1 in 2013–2020 (excluding 2017), where the ERA5-based value is 190

MJ·mm·ha−1·h−1·yr−1, and the corrected value is 374 MJ·mm·ha−1·h−1·yr−1. The relative error is

significantly reduced, from −42% to 14%, by multiplier factor correction.

355
Figure 10. Violin plots of observed, ERA5-based, and corrected annual rainfall erosivity in validation grids for

2013–2020 (excluding 2017). Y axis shows annual rainfall erosivity in MJ·mm·ha−1·h−1. The boxplot diagram of

the median of the violin plots shows the maximum value, 75% quantile value, 50% quantile value, 25% quantile

value, and minimum value. The horizontal lines represent average values.

360
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4.3 Rainfall erosivity in the TP and related uncertainties

Because of the large variability of the spatiotemporal patterns of precipitation, the R factor, an essential

input for soil loss estimation, must be calculated using a minimum of 20 years of precipitation data

(Renard et al., 1997). In this study, the annual rainfall erosivity values of the TP for 71 years based on

the 0.25° hourly ERA5 precipitation data were calculated by the algorithm shown in Section 3.1. Next,365

after correction by the multiplier factor map, the new annual rainfall erosivity dataset for 1950–2020

and R factor map were produced.

The annual rainfall erosivity fluctuates considerably within a range of 239 to 408 MJ·mm·ha−1·h−1·yr−1

(Figure 10). However, no obvious increasing or decreasing trend appears in the past 71 years across the

TP. Regarding the spatial distribution, the R factor generally shows a decreasing trend from southeast to370

northwest. The areas with R factors below 200 MJ·mm·ha−1·h−1·yr−1 are concentrated in the

northwestern part of the TP, whereas regions with high R factors appear mainly in the southeastern TP,

especially in the Bomi–West Sichuan and Dawang–Chayu areas. The TP-averaged R factor is 307

MJ·mm·ha−1·h−1·yr−1, which is obviously lower than those from previous studies (e.g. Qin et al., 2016;

Cao et al., 2018), excluding Liu et al. (2013) and Yue et al. (2022).375

Figure 11. R factor map of TP with the 0.25° spatial resolution for 1950–2020. Inset represents the yearly change

in annual rainfall erosivity.
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Compared with the previous studies, there are two essential improvements by using the data-driven380

approach in this study. One the one hand, the 1-min precipitation observations from 1787 weather

stations are firstly used to calculate the accuracy rainfall erosivity values by employing the standard

algorithm. With the densely-spaced rainfall erosivity values, it is able to yield realistic spatial

distribution and identifying the high spatial heterogeneity of the rainfall erosivity over the TP. On the

other hand, not only a R factor map, we also produced a high-precision time series of annual rainfall385

erosivity for 71 years after correcting the ERA5-based estimations, which may offer great help to

reveal the spatial-temporal evolution over the TP under the climate change.

It is also notable that some uncertainties are also unavoidably involved in the newly reconstructed

dataset. As the biases of the ERA5 precipitation data in detecting the characteristics of the erosive

rainfall events have been revealed, we intended to use multiple factors to correct the ERA5-based390

rainfall erosivity values by grid, to reduce the biases resulting from the ERA5 data. Limited by the

scarcity of the in-situ precipitation observations from weather stations before 2013 (less than 100

weather stations), it is hardly to yield realistic spatial distribution of the multiple factor map by year.

Here, we made a hypothesis that the biases of the ERA5-based annual rainfall erosivity always kept

steady in various years, and thus the multi-year average annual multiple factor map from 2014–2020 is395

used in correcting process. With the improvement of the weather/climate forecast models in the future,

the biases of the estimated rainfall erosivity by using gridded precipitation data will continue to reduce.

5 Data availability

The new gridded annual rainfall erosivity dataset for the TP for 1950–2020 is available at400

http://data.tpdc.ac.cn/en/data/37c34046-3c2a-4737-b3c9-35af398da62a/ (Chen et al., 2021).

6 Conclusions

This study presents a new gridded dataset of annual rainfall erosivity over the TP based on the 1-min

in-situ precipitation data from 1787 weather stations and the long-term ERA5 precipitation data. The

annual rainfall erosivity data are available over 71 years (from 1950 to 2020) on a 0.25° grid. The405

TP-averaged correction coefficient between the station-based annual rainfall erosivity and the newly

released data is 0.67. In addition, the probability density and various quantile values of the new data are

generally consistent with the station-based values across the TP.

http://data.tpdc.ac.cn/en/data/37c34046-3c2a-4737-b3c9-35af398da62a/
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This dataset offers a unique view of large- to local-scale features in rainfall erosivity variability over

the TP, where it is hardly to obtain the long-term in-situ precipitation data with sufficient410

spatial-temporal resolution. This new data availability opens up many interesting applications in soil

erosion study and disaster research, including:

(1) providing input data of the R factor for the TP, which is needed for soil erosion modelling;

(2) understanding the present processes of water erosion over the TP and improving future

projections;415

(3) identifying the hot spots at high risk of the landslide and flood hazards.

The data are available in Network Common (NC) Data Format that can be readily imported into

standard geographical information system software (e.g. ArcGIS) or accessed programmatically (e.g.

MATLAB, Python).

420
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