
Dear Editor, 

Thank you for your letter and the chance of revising our paper on 

“GPRChinaTemp1km: a high-resolution monthly air temperature dataset for China (1951–

2020) based on machine learning” (Manuscript ID: essd-2021-442). We thank you and the 

reviewers for giving our manuscript insightful comments to further improve our manuscript.  

We have revised our manuscript following your advice. We have included the 

comments in this letter and responded to them individually. The revisions have been 

approved by all three authors. The responses to the comments are listed below in blue. 

# Reviewer 1 

The comments offered have been immensely helpful. We appreciate your insightful 

comments on our paper. We have responded to every question, indicating exactly how we 

addressed each concern. 

 

The manuscript aims to produce a long term dataset of monthly 2m temperature over China 

at high spatial resolution on a 1x1 km grid. While the objective is appealing due to the 

challenges related to the complex topography and the irregular data availability in the target 

region, the applied methods show up with significant issues. The major issues are listed 

subsequently: 

Response: Many thanks for the comments. We apologize for not expressing ourselves 

clearly. The method we designed generates highly accurate data products. Test results 

from meteorological observation sites in the field show that our method is robust and 

repeatable. We have responded to every question to make the expression clearer and 

more accurate. The point-to-point responses to the comments are listed below. 

Q1: The introduction discusses advantages and disadvantages of different 

information sources for the targeted dataset. While strong arguments for point-wise 

observational data are presented, long term reanalysis data products are not 

considered despite they provide consistent and spatio-temporally coherent 

information on the atmospheric state. It is unclear why such data is not considered 

to provide predictor variables. 

Response: The reanalysis data have some limitations as the predictor variables. 



(1) First, the resolution of the reanalysis data is usually low (e.g. the resolution of ERA5 

data is 0.25°). Since the spatial resolution in our study is 1-km, the reanalysis products 

cannot provide such fine resolution data.  

(2) Second, the time span of the reanalysis data can not meet the study period in our study. 

The period of ERA5 starts from 1979 (Tang et al., 2020) on the GEE platform while the 

dataset we produced starts from 1951.  

(3) Third, the reanalysis data are generated using the station observed data, which have 

uncertainty per se. As shown in the study by Tang (2020), the accuracy of ERA5 data in 

China is relatively low. The satellite-based and atmospheric reanalysis precipitation 

estimates are highly constrained by errors (Yin et al., 2021).  

(4) The model designed in our study can generate high-resolution datasets without using 

the reanalysis data.  

Considering the above, we did not consider the reanalysis data in our study. We mentioned 

this in the revised manuscript (Lines 49-51). 

Q2: The method of data splitting leads to strong autocorrelation between the training 

and test dataset. Due to the spatial proximity of stations in both dataset, a 

fundamental requirement is hurt, that is the independency (or at least a minimization 

of dependency) between the training and test dataset. This is especially true for the 

stations located in the flat eastern parts of China with a dense observational network. 

Thus, the statistical model are prone to learn nearest neighbor-relations rather than 

learning real abstractions from the features, see, e.g. Kleinert et al., 2021 for a more 

detailed discussion on the requirement of splitting the test and training data 

temporally when stations are located close to each other. 

Response: Many thanks for your constructive comments. In machine learning, there are 

two strategies for splitting the training set and testing set. The first is a spatial division which 

split the data into the training set and testing set on the spatial field. The second is temporal 

split which splits the data into non-overlapping time periods for training and testing, e.g. 

the study you mentioned (Kleinert et al., 2021). However, there is no standard method for 

splitting the training and testing dataset. In our study, we used the first strategy for splitting 

the data, mainly because the following reasons: 

(1) The temporal splitting is not appropriate in our study. In the study of Kleinert (Kleinert 

et al., 2021), they used all the data from 1 January 1997 to 31 December 2007 as the 

training dataset while it is not feasible in our study to use all the historical data as training 

sets. Our object is to generate the long time-series data for each month ranging from 1951 



to 2020. Thus we need a testing dataset for each month to evaluate the monthly data. In 

our study, the spatial splitting method can meet the requirements of our study goal.  

(2) In the spatial prediction of the environmental variables, numerous study uses the spatial 

split (Costache et al., 2020; Band et al., 2020; Mohajane et al., 2021; Kutlug Sahin and 

Colkesen, 2021; Hijmans et al., 2005; Fick and Hijmans, 2017).  

(3) The spatial splitting was completed using the “Subset Features” (Geostatistical Analyst) 

tool in ArcGIS which divides the original dataset into two parts: one part can be used to 

construct the model; the other part can be used to compare and validate the output. 

“Subset Features” is the most rigorous way to assess the quality of an output surface. 

Several studies have used the Subset Features tool of ArcGIS for splitting training and 

testing datasets in machine learning modelling (Costache et al., 2020; Band et al., 2020; 

Mohajane et al., 2021; Kutlug Sahin and Colkesen, 2021). 

The Subset Features tool divides the data into two subsets. Subset one will have L features, 

and subset two will have N - L features (with N being the number of features in the original 

dataset). The features are divided by generating random values from a uniform [0,1] 

distribution. If the random value is less than L/N, the feature is assigned to the first subset. 

If not, the feature is assigned to the second subset. (source: 

https://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/how-

subset-features-works.htm). 

(4) We used the 10-fold cross-validation when training the models (Line 216 in the 

manuscript). The spatial distribution of the testing data is similar to the spatial distribution 

of all the data, which conforms with the stratified sampling scheme in machine learning.  

(5) In order to find out if the model result is sensitive to the selection of weather stations 

used in the training and testing dataset, we conducted some experiments by randomly 

splitting the data into training and testing sets 50 times. We used the data from 1990, 2000, 

and 2010 to do the case study. As shown in Figure 1, the RMSE varies slightly from different 

scenarios of the test/training dataset, while there is no obvious variation in R2 (Figure 2). 

In our study, we split the stations into testing and training stations in ArcGIS, which has 

considered the spatial distribution of the weather stations. 

We added the details of the data splitting in the revised manuscript (Lines 101-103, 484-

488).  

 

https://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/how-subset-features-works.htm
https://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/how-subset-features-works.htm


 

Figure 1 The RMSE using different testing and training datasets 



 

Figure 2 The R2 using different testing and training datasets 

Q3: Only static features are used as predictors which implies that a model must 

trained for each month (!) of the period under consideration. Thus, dynamic 

information on the atmospheric state can exclusively deduced from the optimization 

procedure on the predictand. It is strongly recommended to introduce dynamical 

data as a predictor variable instead. Besides, the chosen predictors have periods 

with neglectable correlation with respect to the target quantity and important 

features such as the ambient topography (is the meteorological station located in a 

valley) is absent (see, e.g., Sha et al., 2020). 

Response: Many thanks for your comments.  



(1) In our study, the model was trained for each month. We described the model 

construction in Lines 213-217. The longitude, latitude and elevation are indeed static 

factors, but we construct the model for each month, respectively, which can reflect the 

changes in temperature from month to month.  

(2) The remote sensing data such as NDVI, land use change and surface temperature are 

usually not available before 2000 since our data is from 1951 to 2020. Furthermore, the 

MODIS data are not available for each month from January 2000 to December 2020. As 

shown in Figure 3, the percentage of the available MODIS images is low in northeast China 

and southern areas. So, the remote sensing data are not appropriate for generating long-

term temperature data in our study.  

(3) Furthermore, there is inherent data inaccuracy in the remote sensing data itself, such 

as the land use data. As shown in the study of Sha et al. (2020), the orography, as 

represented by elevation fields, can help characterize the spatial heterogeneity of 2-m 

temperature. The meteorological processes are locally embedded with small-scale terrain 

features. The terrain features including plain, slope, peak and valley are recognized as the 

semantic contents of terrain. They used the elevation data to represent those terrain 

semantics. In our study, we used the DEM data as the predictor in the machine learning 

models. As said in the study of Sha et al. (2020), the terrain semantics can be learned from 

gridded elevation inputs. 

(4) We can obtain the high-resolution dataset using the selected predictors in our study. 

The accuracy evaluation shows the plausibility of the predictors. The model is robust in 

generating the long-term temperature datasets.  

We discussed this in the Limitation section (Lines 463, 477-483). 



 

Figure 3 Spatial distribution of the percentage of the available MODIS images in each year 

(2000 - 2020) by excluding clouds. 

 

 



Q4: The evaluation does not serve the objectives of the study. The stations in the 

test dataset are dominated by stations over flat terrain with a dense observational 

network. Thus, potential deficiencies in capturing the variations due to underlying 

complex topography are hidden. Indeed, Figure 5 indicates that residuals are 

considerably larger over the mountainous region. 

Response: We agree with the comment. The meteorological stations in mainland China 

are unevenly distributed with more stations in the flat terrain and fewer stations in the 

mountains. This is the inherent data limitation for modelling continuous raster products in 

China (Guo et al., 2020; Liu et al., 2018). It is true that the stations in the Qinghai-Tibet 

plateau are sparse (Xu et al., 2018; Zhang et al., 2016). It is also an existing challenge of 

the spatial interpolation of temperature using the station data. The potential deficiency in 

capturing the variations in regions with complex terrain is an existing issue in the current 

studies. We are working to improve the accuracy of models in complex regions. The 

altitude information is conducive to the estimation of temperature (Berndt and Haberlandt, 

2018).  

To show the strength of our data in regions with complicated topography. We took the 

Tibetan plateau region as an example. We compared the accuracy of our data with Peng’s 

data (Peng et al., 2019) in the Tibetan plateau. In our study, the accuracy in the Qinghai-

Tibet Plateau is relatively good. We used the mean temperature data of Peng et al. (Peng 

et al., 2019) to make a comparison. The testing stations which were not used in the model 

training were used to make the comparison. As shown in Figure 4, the RMSE of most 

months for GPR is lower than Peng and GPR has a smaller variation in RMSE. The R2 of 

GPR shows good accuracy from January to December, with smaller variation in each 

month, while for Peng’s data the variation in summer is quite high. 

We added it to the revised manuscript (Lines 415-416). 

 

Figure 4 Comparison between the GPR data in our study and the Peng’s data in the Tibetan Plateau 



Q5: Several issues in the follow-up study are present such as (a) a focus on large-

scale temperature patterns instead of fine-scale patterns in Section 4.2. to reason 

the high spatial resolution of the dataset, (b) the interpretation of patterns in the 

Xinjiang region which look like artefacts (bulls-eye pattern in winter months) and (c) 

the missing notification on the better performance of the reference method 

ANUSPLIN for July-months in the 70s, 80s and 90s. 

Response: The spatial resolution of the temperature dataset in our study is 1 km. Since 

the territory of China is large, it is challenging to produce fine-scale temperature data. 

Besides, the scale of 1 km is the resolution of a lot of high-resolution datasets for mainland 

China, like the 1 km monthly temperature and precipitation dataset (Peng et al., 2019), 1 

km daily surface air temperature product over mainland China (Chen et al., 2021), a high-

resolution crop phenological dataset for three staple crops in China (Luo et al., 2020). The 

1-km resolution is high enough for mainland China which can satisfy a lot of the 

requirements in other scientific research or practical applications. The 5-km spatial 

resolution dataset for Spain which is way smaller than China is also treated as the high-

resolution dataset (Serrano-Notivoli et al., 2019). We admit that the finer resolution data 

may provide more detailed information but the 1-km resolution data is high enough for 

multiple studies. 

(b) The bulls-eye pattern in the Xinjiang region in the winter months is induced by the 

complex topography, which just shows that the model captured the detailed local 

differentiation of temperature due to topographic conditions. As shown in Figure 5, the 

region which has a relatively lower temperature (Section 4.2 Figure 6) is because of the 

high altitude.  

(c) Considering the proven power of ANUSPLIN in predicting meteorological variables, the 

GPR yields relatively satisfactory results. The accuracy of ANUSPLIN for July-months in 

the 70s, 80s and 90s is slightly higher than GPR while GPR still performs relatively well. 

ANUSPLIN uses the thin-plate smoothing spline algorithm which allows the introduction of 

multivariate linear sub-models with complex model coefficients to be calculated. Using the 

same computational resources, ANUSPLIN is more time-consuming than GPR. Besides, 

GPR has higher accuracy in the winter months.  

We added the missing notification on the better performance of the ANUSPLIN for July-

months in the 70s, 80s and 90s in the revised manuscript (Lines 374-375). 

 



 

Figure 5 The elevation of Xinjiang Uygur Autonomous Region 

Q6: The comparison to the competing datasets ERA5 and FLADS is misleading due 

to the much coarser spatial resolution of these two datasets. A fair comparison 

would consult datasets with similar spatial resolution such as the dataset described 

in Peng et al., 2019. 

Response: Many thanks for your comments. We use three datasets: ERA5, FLDAS and 

TerraClimate. The spatial resolution of the three datasets is 27830 meters, 11132 meters, 

and 4638.3 meters, respectively. Our datasets are 1-km. We resampled all the data to 

27830 meters to keep the resolution consistent and then we made comparisons. As shown 

in Figure 6, GPR still outperformed other products.  

We replaced Figure 11 in the revised manuscript and added more text to make it clear 

(Lines 434-435). 

 

Figure 6 Taylor diagrams displaying a statistical comparison with observations between our 

products generated using the GPR model and the other products under the same spatial 

resolution.  



Besides, we also compared our datasets with Peng’s data as you suggested. As shown in 

Figure 7, our datasets have relatively higher accuracy than Peng’s data on the whole, 

especially in warm months.  

We also added this part in the Discussion section of the revised manuscript (Lines 449-

451). 

 

Figure 7 Accuracy comparison between the GPR data and the Peng’s data for mean 

temperature  

Further minor issues are: 

Q7: * Splitting into three distinct datasets is unnecessary. Rather merge it to one 

dataset with one DOI. 

Response: The Zenodo database has limitations for the data size (max 50 GB per dataset). 

The zip format file of each dataset is about 30 GB, so we uploaded mean, maximum, and 

minimum temperature data, respectively.  

Q8: * Refer to statistical and dynamical downscaling techniques in the introduction. 

Response: Thanks for your suggestion. The downscaling technique uses the existing 

coarse product to produce the high-resolution dataset. The interpolation uses the 

meteorological station data to generate the spatial continuous grid dataset. The two 

strategies use different source data, but they have the same objectives. In fact, there are 

multiple low spatial resolution datasets, such as the Climatic Research Unit (CRU) (Harris 

et al., 2014), the Global Precipitation Climatology Centre (GPCC) (Schneider et al., 2014; 

Becker et al., 2013), and Willmott & Matsuura (W&M) (Matsuura and Willmott, 2012) which 

are generated using the data from the observational stations. It is a reliable way to produce 

continuous datasets using the observed station data (Peng et al., 2019). We referred to 

the downscaling techniques in the introduction as suggested (Lines 44-49). 



Q9: * Provide references to the problems related to remote sensing data (see l.66). 

Response: Thanks for your reminder. The references are listed below:  

(Dong and Xiao, 2016) 

(Xiao et al., 2018, p.2013–2016) 

(Mao et al., 2019) 

We provided the references in the revised manuscript (Lines 79-80). 

Q10: * Describe the remapping of the STRM DEM data onto the 1x1 km grid (should 

be an averaging method). 

Response: We used GEE to export the STRM DEM data as a 1*1 km grid. The “Scale” 

parameter was used to specify the output resolution to 1 km. The concept of “Scale” is 

illustrated in Figure 8 (https://developers.google.com/earth-engine/guides/scale). The 

default method of resampling is the nearest neighbour 

(https://developers.google.com/earth-engine/guides/scale#image-pyramids). 

We clarified the resampling method in the revised manuscript (Line 116).  

 

Figure 8 A graphic representation of an image dataset in Earth Engine. Dashed lines 

represent the pyramiding policy for aggregating 2x2 blocks of 4 pixels. Earth Engine uses the 

scale specified by the output to determine the appropriate level of the image pyramid to use 

as input. 

Q11: * The used software tool MATLAB should be only mentioned once rather than 

being repeated three times. More details on the respective ML-technique would be 

appreciated. 

Response: Thanks a lot for your advice. We should mention MATLAB once. In the light of 

the limitation of the words in the manuscript, we did not provide so many details for all the 

machine learning methods but we provided the references or related links which have 

detailed descriptions of the machine learning methods.  

https://developers.google.com/earth-engine/guides/scale
https://developers.google.com/earth-engine/guides/scale#image-pyramids


We added some more information about the machine learning methods in the revised 

manuscript (Lines 178, 192-195, 204) and we deleted the redundant “MATLAB” as 

suggested.  

Q12: * l.149: Should be 'ensemble machine learning' 

Response: You are right. Thanks for pointing this out and sorry for the wrong spelling. We 

corrected it in the revised manuscript (Line 179). 

Q13: * l.219: "Unnecessary reference to Equation 4 which directly follows the 

sentence. 

Response: Thanks for your comment. The reference has been removed in the revised 

manuscript (Line 242).  

Q14: * l.343f. This is sentence is barely comprehensible. 

Response: We have revised the sentence in the revised manuscript (Line 368). 
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# Reviewer 2 

The comments offered have been immensely helpful. We appreciate your insightful 

comments on our paper. We have responded to every question, indicating exactly how we 

addressed each concern. 

 

This study describes a new 1km dataset of monthly-mean, monthly-maximum and monthly-

minimum surface temperature’s over China, developed using machine learning methods. 

The method used for the final data set was chosen as the best performing method, after a 

comparison of three modern techniques. A dataset of 613 weather stations over China was 

used to train and test the machine learning methods. This study is very clearly written and 

the Figures are of high quality. I agree with all of reviewer 1’s comments, so will not repeat 

these points and assume they have been addressed within the manuscript, but I will add a 

few further comments below. 

Response: Many thanks for the constructive comments.  

General comments: 

Q1: There is always a tradeoff between spatial and temporal resolution when 

designing new data products. Can you explain in a few sentences in the manuscript 

why you chose to create a product with such high spatial resolution but such low 

temporal resolution? You make comparisons at the end to the ERA5 dataset which 

does have much lower spatial resolution (~30 x less) but it has hourly temporal 

resolution (720 x more) which is very useful for a number of applications. Comments 

suggesting the applications where you think this dataset may be preferable to the 

others mentioned would also be useful. 

Response: Thanks a lot for your suggestion. Here are the reasons we produce the monthly 

product with high spatial resolution. First, the monthly temperature data is crucial for 

multiple studies and applications such as agriculture (Meshram et al., 2020), 

meteorological disasters (Tigkas et al., 2019) and ecology (Leihy et al., 2018). Second, the 

station data we obtained are from the China Meteorological Data Service Centre where the 

daily temperature data are not available. Thirdly, the daily temperature data with a high 

spatial resolution for a long period is enormously huge. Creating the data and storing the 

data for us is still quite challenging. ERA5 has high temporal resolution while the spatial 

resolution is low.  

We commented on the applications of the monthly data in the revised manuscript (Lines 



39-40).  

Q2: You mention ERA5 is only available from 1979, but it is now available back to 

1950, so could be used to incorporate dynamical variables (as suggested by 

reviewer 1). I’m not suggesting you do this, but in the limitations this could be a 

point for future development. And the text should be updated to reflect the 

availability of ERA5. 

Response: The ERA5 is collected and processed on the Google Earth Engine platform, 

where the data is only available from 1979. 

We revised the text to make it more accurate in the revised manuscript (Line 135).  

Q3: Is any quality control performed on the meteorological station data you use as 

inputs? A few stations with low quality data could skew the results in data sparse 

regions. 

Response: Yes. We train the model for each month. In each month, we deleted the stations 

with 999999 or 999998 values which means the station in that month has no data. We also 

checked the value range of the air temperature in different months and all the selected 

stations are with reasonable values.  

We described the quality control of the data in the revised manuscript (Lines 107-108).  

Q4: Do you know if the final model output is sensitive to the choice of stations used 

in the test/training dataset? I imagine that this could heavily influence the results in 

the data sparse regions. 

Response: In order to find out if the model result is sensitive to the selection of weather 

stations used in the training and testing dataset, we conducted some experiments by 

randomly splitting the data into training and testing sets 50 times. We used the data from 

1990, 2000, and 2010 to do the case study. As shown in Figure 9, the RMSE varies slightly 

from different scenarios of the test/training dataset, while there is no obvious variation in 

R2 (Figure 10). In our study, we split the stations into testing and training stations in ArcGIS, 

which has considered the spatial distribution of the weather stations.  

We discussed this in the revised manuscript in the Discussion session (Lines 484-488).  



 

Figure 9 The RMSE using different testing and training datasets 



 

Figure 10 The R2 using different testing and training datasets 

Q5: Although you’ve included elevation, latitude and longitude there are multiple 

climatic regions in China, and a large amount of external drivers to variations in 

temperatures. The strength of these may modulate surface temperature behavior 

(e.g. the strength/location of the monsoon criculation, El Nino southern Oscillation, 

and other global teleconnections). Distance from the ocean could also play a role. 

Have you considered these in your explanations for months/stations with particuarly 

large residuals, or stations with strange behaviors? It could be that if a month had 

anomalous large scale weather conditions, which your machine learning methods 

are not trained to capture there are large residuals? These could make interesting 



case studies and could motivate future work incorporating some dynamical 

predictors. 

Response: Many thanks for your comments. The global teleconnections can influence 

surface temperature. This is a good topic for further study. We may use the data we 

generated combined with global teleconnections to do some research. In order to find out 

if the generated data in our study can capture the anomalous event, we did a case study 

in the Sichuan province. In 2006, there is an extremely severe drought event with an 

extremely high temperature in Sichuan (Li et al., 2011c). We extracted our mean 

temperature data to the stations which were not used in the model training. We used nine 

stations in Sichuan and compared the mean temperature in July from 2003 to 2009. As 

shown in Figure 11, the temperature in 2006 is markedly higher than the neighbouring 

years, which means that our data can capture the anomalous condition.  

We have described the ability of our data to capture the anomalous condition in the revised 

manuscript (Lines 429-430). 

 

Figure 11 Mean temperature for 9 different testing stations in Sichuan province 

Q6: Figure 2: This is a nice depiction of the relationships. If you could briefly unpack 

the meteorological understanding behind this in the text it would be beneficial to 

readers. Have you checked that the relationships hold if different climatic regions of 

China are subset out? 



Response: We used the subregions provided by Zhang et al. (Zhang et al., 2021). The 

subregions are divided according to the gradients of elevations and the precipitation 

patterns (Chen and Li, 2016; Zhang et al., 2021). The subregions are shown in Figure 12.  

We recalculated the correlation coefficients in each sub-region (Figure 13). The results 

show that Region 4, Region 5, Region 7, and Region 8 have clearly similar relationships 

as shown in Figure 2 in the manuscript. Since we train the model for the whole area of 

mainland China, the correlation in different sub-regions would not influence greatly on the 

whole region. It is an interesting topic to discuss different sub-regions, which can be helpful 

for regional studies. We will do the regional research in future work.  

We added some text in the revised manuscript (Lines 155-156). 

 

Figure 12 The division of the subregions, and the spatial distribution of the weather stations 

over the China mainland. 



 

Figure 13 Correlation coefficients in different subregions 

Q7: Line 190-195. So you have 840 different models. Can you comment on how 

different are all the 70 models for each month? (e.g. do all the January models look 

very similar?) This could be useful to understand if there are dynamical 

meteorological explanations for any outliers. 

Response: We use the GPR model for all the 840 models for each month. The explicit 

basis in the GPR model is “constant” and the kernel function of the GPR algorithm is the 

exponential kernel. The predictor variables were standardized in the GPR. For each month, 

we use the temperature data of this month to train the model and then use this model to 

generate the grid data. 

We added more details in the revised manuscript (Lines 215-216). 

As the answer to Question 5: In order to find out if the generated data in our study can 



capture the anomalous event, we did a case study in the Sichuan province. In 2006, there 

is an extremely severe drought event with an extreme high temperature in Sichuan (Li et 

al., 2011c). We extracted our mean temperature data to the stations which were not used 

in the model training. We used nine stations in Sichuan and compared the mean 

temperature in July from 2003 to 2009. the temperature in 2006 is markedly higher than 

the neighbouring years (Figure 14), which means that our data can capture the anomalous 

condition and it can be useful to understand the dynamical meteorological explanations for 

outliers. 

 

Figure 14 Maximum temperature for 9 different testing stations in Sichuan province 

Q8: Line 243: Do you have a sense of why the errors are larger in the colder months? 

Are the impacts of local meteorological conditions larger in the cold season, which 

would make it more difficult for the methods to work? There may be meteorological 

literature on this. 

Response: Thanks for your comments. As shown in Figure 2 in the manuscript, there are 

two variables (i.e., longitude and elevation) that have higher correlation with temperature, 

while in cold months there is only one variable with relatively higher correlation (i.e., 

latitude). We did some literature review. The large-scale mountain area is an important 

source of uncertainty in the temperature mapping, which can influence the spatial 

distribution of the surface air temperature such as in the area of the Qinghai Tibet Plateau 



and northwest China (Xu et al., 2018). The study of Stahl et al (Stahl et al., 2006) shows 

that the standard deviation for daily air temperature in winter is larger than that in summer. 

The study of Brunetti shows that the interpolation of high-resolution temperature for Italy 

has the lowest errors in spring and autumn and the highest errors in winter and explained 

that the elevation coefficients (lapse rates) are markedly different during winter (Brunetti et 

al., 2014). The air temperature in winter changes rapidly which may be a reason for the 

high estimation errors in winter (Amini et al., 2019). Rolland (Rolland, 2003) also found 

higher interpolation reliability for maximum and minimum temperature in summer than in 

winter. 

We added the literature in the revised manuscript (Lines 369-371). 

Q9: Figure 6: Can you comment on any features you’re resolving here that are not 

seen in the lower resolution gridded products you will compare to? There are some 

very high resolution features on the map, but clarification that they are physical 

would be useful. 

Response: The low spatial resolution can limit the ability to reflect the effects of complex 

topographies, land surface characteristics, and other processes on climate systems (Peng 

et al., 2019; Xu et al., 2017). The fine-scale data can provide realistic and reliable climate 

change information. We displayed the mean temperature of July, 2010 in the same region 

using ERA, FLADS datasets and the GPR dataset generated in our study (Figure 15). The 

GPR data can provide more spatial details than ERA and FLDAS (Figure 15).  

We added the comment in the revised manuscript (Lines 451-452). 

 

Figure 15 Comparison between the ERA, FLDAS and GPR datasets using the mean air 

temperature in July 2010 

  



Q10: Does your trend analysis agree with the existing literature on global warming 

over China? If so include references to this. 

Response: Thanks for your suggestion. We did a literature review and found some 

references which agree with the trend analysis in our study. The distribution of the 

temperature trend in China in our study agrees with the existing literature (Dong et al., 

2015, p.1963–2012; Sun et al., 2018; You et al., 2021; Cui et al., 2017, p.1960–2015).  

We added the literature in the revised manuscript (Lines 342-343). 

Q11: Figure 11: The Taylor diagrams show clear improvement from your new dataset. 

Also including some timeseries from locations not sampled from the observation 

network compared between the three datasets would be useful to understand how 

the four products sample the seasonal cycles of the variables. 

 Response: Many thanks for your advice. We randomly selected three locations not 

sampled from the observation network to make a comparison. The location of the points is 

shown in Figure 16. We extract the ERA, FLDAS and the GPR mean air temperature data 

to the three new points to make a comparison. As shown in Figure 17, the mean air 

temperature data of the three datasets have a similar pattern from January 1982 to 

December 2019. We do not have actual temperature data from the three randomly selected 

points, so it is not possible to make an accuracy comparison. However, the ERA and 

FLADS datasets are already widely used in a lot of studies (McNally et al., 2017; Hersbach 

et al., 2020), which means they are reliable to some extent. Thus the similar pattern 

between the GPR data and the ERA/FLDAS data can show the reliability of the GPR 

dataset to a certain extent.  



 

Figure 16 The location of the three random points 

 

Figure 17 Comparisons of the data time series for mean air temperature in three random 

points from January 1982 to December 2019 



Small corrections: 

Q12: The height of the air temperatures (surface, 1.5m, 2m) should be added to the 

manuscript when this is mentioned. 

Response: The height of the air temperatures from the weather stations is 2 m. 

We added this to section 2.1 Meteorological station data in the revised manuscript (Lines 

99-100). 

Q13: The acronyms for datasets/methods should be defined in the abstract to make 

it easier to read. 

Response: ANUSPLIN: (short for Australian National University Spline); TerraClimate: 

Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces; FLDAS: 

Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System, 

and ERA5: ECMWF Climate Reanalysis.  

We added the full definition in the Abstract in the revised manuscript (Lines 19, 22-23). 

Q14: Line 38: after commenting on the limitations of the observing stations you 

could comment here on the limitations of reanalysis based products. 

Response: Thanks for the suggestion. The reanalysis based data usually have a low spatial 

resolution, which limits their ability to reflect the effects of complex topographies, land 

surface characteristics, and other processes on climate systems (Peng et al., 2019; Xu et 

al., 2017). 

We added this comment to our revised manuscript (Lines 49-51). 

Q15: Throughout the text when you say ‘high resolution’ this should be changed to 

‘high spatial resolution’ e.g. line 55. 

Response: Yes. It has been changed to “high spatial resolution” in the revised manuscript 

(Line 66). 

Q16: Line 56: ‘traditional interpolation techniques’ might be clearer? 

Response: We agree with this. We changed it in the revised manuscript (Line 67).  

Q17: Line 58-60: You comment on a few studies which talk about the superior 

performance of machine learning techniques but you do not say what the 



benchmark is that they’ve succeeded against. This should be included. 

Response: The machine learning methods were selected mainly according to the 

applications of machine learning methods in previous studies. There is potential in applying 

machine learning methods to predict spatially continuous variables. The combination of 

machine learning and the traditional model can usually have better performance 

(Appelhans et al., 2015; Li et al., 2011b). Secondary information considered such as slope, 

latitude and longitude can improve the performance of machine learning as they provide 

essential information for machine learning methods (Li et al., 2011b; Alizamir et al., 2020; 

Appelhans et al., 2015; Kisi et al., 2017; Zhu et al., 2018).  

We included additional descriptions in the revised manuscript (Lines 71-72).  

Q18: Line 61: ‘estimation of short-term air temperature ‘ – I’m not sure what you 

mean by this? 

Response: We are sorry for making you confused. Here we deleted “short-term” to make 

it clearer (Line 74 in the revised manuscript).  

Q19: Line 86: The link here gives me an Error 404. 

Response: The link is not available recently, because the data are not available online 

anymore. We changed our link to the homepage (https://data.cma.cn/data/). See Line 99.  

Q20: Around the discussion for Figure 1 it would be interesting to know the spatial 

distance between observation sites. This might be a small indication of confidence 

in the final machine learning model output. 

Response: Thanks for your advice. We generated the Euclidean distance for the 

observation stations. Figure 18 shows that the Euclidean distance is quite small in most 

regions. The Euclidean distance is relatively large in the west of the Tibetan Plateau and 

the small region in Inner Mongolia. The larger Euclidean distance means the stations in 

that region are sparse, which can have an impact on the interpolation accuracy (Hijmans 

et al., 2005; Li et al., 2011a). 

We talked about the model output and the spatial distance between observation sites in 

the revised manuscript (Lines 471-473).  

https://data.cma.cn/data/


 

Figure 18 Euclidean distance of the weather stations 

Q21: Section 2.3: When commenting on the spatial resolution of the gridded 

products used for comparison it would be useful to also have this in km. 

Response: Thanks for your suggestion. The spatial resolution of TerraClimate, FLDAS, and 

ERA5 are about 4.6 km, 11 km and 28 km, respectively.  

We updated the text in the revised manuscript (Lines 121, 124, 127).  

Q22: Line 149: ‘machining learning’ should be ‘machine learning’ 

Response: We changed the wrong spelling (Line 169 in the revised manuscript).  

Q23: Section 3.2.2 Are the choices of parameters for the SVM method standard in 

the literature? Can you please comment on your choices? 

Response: Thanks for your suggestion. For the SVM models, we used the Gaussian kernel. 

The kernel scale is set to 1.7 for all SVM models. Hyperparameters are important for the 

performance of the model. We optimized the kernel scale of SVM and made a comparison. 

The box constraint and the epsilon hyperparameters are varying from month to month 

according to the training data of each month. The mean temperature data from January to 

December from 1951 to 2020 was used for comparing the new model with varying kernel 

scales and the used model in our study. The accuracy of each month between the 

optimized model and the used model in the paper is similar (Figure 19), the optimized 

models do not improve significantly. As we can see that the adjustment of the 

hyperparameters has little impact on the model accuracy in our study. Besides, the models 



used in our study are more time-saving and efficient.  

We added more information in the revised manuscript (Lines 192-193, 194-195). 

 

Figure 19 Comparison between optimized SVM model (new) and the used model in the paper 

(old). 

Q24: Line 342: ‘ shows a cyclic pattern’ might be clearer. 

Response: We changed the text as suggested in the revised manuscript (Line 367). 
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# Reviewer 3 

 

The comments offered have been immensely helpful. We appreciate your insightful 

comments on our paper. We have responded to every question, indicating exactly how we 

addressed each concern. 

General Comments: 

The paper is presenting a method for spatial interpolation of air temperature data for 

China from meteorological stations based on machine learning tools. The authors 

analyze the technique used and present the limitations of the experiment. Three ML 

models were tested and three interpolation method and the Gaussian Process 

Regression was chosen based on its better performance. The results compared with 

existing published datasets. A detailed trend analysis of the predicted dataset is also 

presented. ML techniques are very promising as they are addressing current 

challenges in computational research. 

Response: Many thanks for the constructive comments on our study.  

Specific comments: 

Q1: It is not clear to me if all stations contribute equally to the analysis, for example 

red and blue stations (Figure S2). Is there any weighting technique applied to the 

training model(s)? If yes, I think it could be mentioned. 

Response: In our study, we used the “subset features” option of the Geostatistical Analyst 

Tools in ArcGIS10.8 to divide the original dataset into 70% training dataset and 30% testing 

dataset. This tool considers the randomness both in the data and the spatial distribution of 

the data as described in the manuscript (Line 101-104). There is no weighting technique 

applied in the training models.  

Q3: Besides the trends statistical analysis, are there available error spatial 

distributions of the predicted temperatures so as to illustrate the confidence level 

of the analysis results especially in station empty areas? 

Response: GPR is a full Bayesian learning algorithm. A process is referred to as a 

Gaussian process if it is assumed that the joint probability distribution of model outputs is 

Gaussian (Zhu et al., 2018). Because a GPR model is probabilistic, it is possible to 

compute the prediction intervals using the trained model. Here, we displayed the spatial 



distribution of the width of the predicted intervals with a significance level of 5% (using the 

upper limit minus the lower limit) for the 12 months in 2010 using the trained models (Figure 

20). Figure 21 provides the histogram of the width of the confidence intervals. Most of the 

regions have small confidence intervals. The calculation was conducted in Matlab 2021b. 

For more detailed information about the prediction intervals of GPR models, please see 

https://www.mathworks.com/help/stats/gaussian-process-regression-models.html. 

We added the uncertainty discussion in the revised manuscript (Lines 203-205, 473-476).  

 

Figure 20 The spatial distribution of the width of the 95% prediction intervals (the upper limit 

minus the lower limit of the confidence interval) for 12 months in 2010  

https://www.mathworks.com/help/stats/gaussian-process-regression-models.html


 

Figure 21 The histogram of the width of the 95% prediction intervals (the upper limit minus the 

lower limit of the confidence interval) for 12 months in 2010  

Q4: In addition, as the study of the climatic dynamics is in the epicenter of this work, 

the use of remote sensing data jointly with the land meteo stations could overcome 

the data scarcity, improve the results and reveal trends with more accuracy after 

2000. 

Response: The goal of our study is to generate the long-term time series of high-resolution 

temperature data. Due to the limitation of the remote sensing data, we did not consider 

remote sensing data in our study. We discussed the topic in the discussion session (see 

Lines 477-483).  

The longitude, latitude and elevation are static factors, but we construct the model for each 

month, respectively, which can reflect the changes of temperature from month to month. 

The remote sensing data such as NDVI, land-use change and surface temperature are 

usually not available before 2000 since our data is from 1951 to 2020. Furthermore, the 

MODIS data are not available for each month from January 2000 to December 2020. As 

shown in Figure 3, the percentage of the available MODIS images are low in northeast 

China and southern areas. So, we did not use the remote sensing data for generating long-

term temperature data in our study. We will consider using the remote sensing data in 

future studies to further increase the accuracy.  



 

Figure 22 Spatial distribution of the percentage of the available MODIS images in each year 

(2000 - 2020) by excluding clouds. 

Q5: While the height of the air Temperature is mentioned for the ERA5 dataset (2m), 

this is not the case for the GPRChinaTemp1km product or the other datasets 



mentioned in the analysis. 

Response: We will include more detailed descriptions of the data we used. In our study, 

we use the weather station data to interpolate the gridded temperature datasets. The 

station data used in the study records the temperature at 2 m height above ground (Liu et 

al., 2011; Zhang et al., 2010).  

We mentioned this in the revised manuscript (Lines 99, 436-437). Thus, the generated 

GPRChinaTemp1km product also represents the temperature data at 2 m height.  

For TerraClimate data, it is produced based on other datasets including WorldClim, 

CRUTs4.0 and JRA-55 (Abatzoglou et al., 2018, p.1958–2015). The temperatures in 

WorldClim are at 2 m height (Fick and Hijmans, 2017; Chou et al., 2020). The temperature 

data from CRU Ts and JRA-55 are also at 2 m height (Harris et al., 2020; 

https://jra.kishou.go.jp/JRA-55/document/JRA-55_handbook_LL125_en.pdf). Therefore, 

the TerraClimate dataset also represents the 2m temperature.  

The height of the temperature data from FLDAS is also 2 m (McNally et al., 2017; 

https://ldas.gsfc.nasa.gov/fldas/specifications). 

We included the detailed information on the height of the data in the revised manuscript 

(Lines 137-141, 436-437). 

Q6: Could the experiment be tested in other atmospheric parameters? If so, I think 

that a few sentences on the perspectives of the specific approach would be 

beneficial. 

Response: Thanks a lot for your suggestion. Our current study is only aiming for 

temperature. We have not done some experiments on other meteorological variables. This 

actually is our next work. We are trying to apply the GPR model to other meteorological 

variables.  

We added a few sentences in the Discussion session (Lines 430-431).  
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