
Dear Reviewer, 

 

The comments offered have been immensely helpful. We appreciate your insightful 

comments on our paper. We have responded to every question, indicating exactly how we 

addressed each concern. 

 

This study describes a new 1km dataset of monthly-mean, monthly-maximum and monthly-

minimum surface temperature’s over China, developed using machine learning methods. 

The method used for the final data set was chosen as the best performing method, after a 

comparison of three modern techniques. A dataset of 613 weather stations over China was 

used to train and test the machine learning methods. This study is very clearly written and 

the Figures are of high quality. I agree with all of reviewer 1’s comments, so will not repeat 

these points and assume they have been addressed within the manuscript, but I will add a 

few further comments below. 

Response: Many thanks for the constructive comments.  



General comments: 

Q1: There is always a tradeoff between spatial and temporal resolution when designing 

new data products. Can you explain in a few sentences in the manuscript why you chose 

to create a product with such high spatial resolution but such low temporal resolution? You 

make comparisons at the end to the ERA5 dataset which does have much lower spatial 

resolution (~30 x less) but it has hourly temporal resolution (720 x more) which is very 

useful for a number of applications. Comments suggesting the applications where you think 

this dataset may be preferable to the others mentioned would also be useful. 

Response: Thanks a lot for your suggestion. Here are the reasons we produce the monthly 

product with high spatial resolution. First, the monthly temperature data is crucial for 

multiple studies and applications such as agriculture (Meshram et al., 2020), 

meteorological disasters (Tigkas et al., 2019) and ecology (Leihy et al., 2018). Second, the 

station data we obtained are from the China Meteorological Data Service Centre where the 

daily temperature data are not available. Thirdly, the daily temperature data with a high 

spatial resolution for a long period is enormously huge. Creating the data and storing the 

data for us is still quite challenging. ERA5 has high temporal resolution while the spatial 

resolution is low. We will mention this in the discussion session in the later revision of our 

paper.  

Q2: You mention ERA5 is only available from 1979, but it is now available back to 1950, 

so could be used to incorporate dynamical variables (as suggested by reviewer 1). I’m not 

suggesting you do this, but in the limitations this could be a point for future development. 

And the text should be updated to reflect the availability of ERA5. 

Response: The ERA5 is collected and processed on the Google Earth Engine platform, 

where the data is only available from 1979. We will update the year in the manuscript. 

Incorporating the ERA5 can be a good point for our future study. Thanks a lot for your 

advice. We will add some text to discuss ERA5 in the Discussion section.  

Q3: Is any quality control performed on the meteorological station data you use as inputs? 

A few stations with low quality data could skew the results in data sparse regions. 

Response: Yes. We train the model for each month. In each month, we deleted the stations 

with 999999 or 999998 values which mean the station in that month has no data. We also 

checked the value range of the air temperature in different months and all the selected 

stations are with reasonable values.  



Q4: Do you know if the final model output is sensitive to the choice of stations used in the 

test/training dataset? I imagine that this could heavily influence the results in the data 

sparse regions. 

Response: In order to find out if the model result is sensitive to the selection of weather 

stations used in the training and testing dataset, we conducted some experiments by 

randomly splitting the data into training and testing sets 50 times. We used the data from 

1990, 2000, 2010 to do the case study. As shown in Figure 1, the RMSE varies slightly 

from different scenarios of the test/training dataset, while there is no obvious variation in 

R2 (Figure 2). In our study, we split the stations into testing and training stations in ArcGIS, 

which has considered the spatial distribution of the weather stations. We will put the 

relationship between the choice of stations with the model output in the Discussion session.  

 

Figure 1 The RMSE using different testing and training datasets 



 

Figure 2 The R2 using different testing and training datasets 

 



Q5: Although you’ve included elevation, latitude and longitude there are multiple climatic 

regions in China, and a large amount of external drivers to variations in temperatures. The 

strength of these may modulate surface temperature behavior (e.g. the strength/location 

of the monsoon criculation, El Nino southern Oscillation, and other global teleconnections). 

Distance from the ocean could also play a role. Have you considered these in your 

explanations for months/stations with particuarly large residuals, or stations with strange 

behaviors? It could be that if a month had anomalous large scale weather conditions, which 

your machine learning methods are not trained to capture there are large residuals? These 

could make interesting case studies and could motivate future work incorporating some 

dynamical predictors. 

Response: Many thanks for your comments. The global teleconnections can influence the 

surface temperature. This is a good topic for further study. We may use the data we 

generated combined with global teleconnections to do some research. In order to find out 

if the generated data in our study can capture the anomalous event, we did a case study 

in the Sichuan province. In 2006, there is an extremely severe drought event with an 

extremely high temperature in Sichuan (Li et al., 2011c). We extracted our maximum 

temperature data to the stations which were not used in the model training. We used nine 

stations in Sichuan and compared the mean temperature in July from 2003 to 2009. As 

shown in Figure 3, the temperature in 2006 is markedly higher than the neighbouring years, 

which means that our data can capture the anomalous condition.  

 

Figure 3 Maximum temperature for 9 different testing stations in Sichuan province 



 

Q6: Figure 2: This is a nice depiction of the relationships. If you could briefly unpack the 

meteorological understanding behind this in the text it would be beneficial to readers. Have 

you checked that the relationships hold if different climatic regions of China are subset out? 

Response: We used the subregions provided by Zhang et al. (Zhang et al., 2021). The 

subregions are divided according to the gradients of elevations and the precipitation 

patterns (Chen and Li, 2016; Zhang et al., 2021). The subregions are shown in Figure 4.  

We recalculated the correlation coefficients in each sub-region (Figure 5). The results show 

that Region 4, Region 5, Region 7 and Region 8 have clearly similar relationships as shown 

in Figure 2 in the manuscript. Since we train the model for the whole area of mainland 

China, the correlation in different sub-regions would not influence much about the whole 

region. It is an interesting topic to discuss different sub-regions, which can be helpful for 

regional studies. We would like to talk about this in the discussion session in our revision.  

 

Figure 4 The division of the subregions, and the spatial distribution of the weather stations 

over the Chinese mainland. 



 

Figure 5 Correlation coefficients in different subregions 



Q7: Line 190-195. So you have 840 different models. Can you comment on how different 

are all the 70 models for each month? (e.g. do all the January models look very similar?) 

This could be useful to understand if there are dynamical meteorological explanations for 

any outliers. 

Response: We use the GPR model for all the 840 models for each month. The explicit 

basis in the GPR model is “constant” and the kernel function of the GPR algorithm is the 

exponential kernel. The predictor variables were standardized in the GPR. For each month, 

we use the temperature data of this month to train the model and then use this model to 

generate the grid data. 

As the answer to Question 5: In order to find out if the generated data in our study can 

capture the anomalous event, we did a case study in the Sichuan province. In 2006, there 

is an extremely severe drought event with extreme high temperature in Sichuan (Li et al., 

2011c). We extracted our maximum temperature data to the stations which were not used 

in the model training. We used nine stations in Sichuan and compared the mean 

temperature in July from 2003 to 2009. the temperature in 2006 is markedly higher than 

the neighboring years (Figure 6), which means that our data can capture the anomalous 

condition and it can be useful to understand the dynamical meteorological explanations for 

outliers. 

 

Figure 6 Maximum temperature for 9 different testing stations in Sichuan province 



Q8: Line 243: Do you have a sense of why the errors are larger in the colder months? Are 

the impacts of local meteorological conditions larger in the cold season, which would make 

it more difficult for the methods to work? There may be meteorological literature on this. 

Response: Thanks for your comments. As shown in Figure 2 in the manuscript, there are 

two variables (i.e., longitude and elevation) that have higher correlation with temperature, 

while in cold months there is only one variable with relatively higher correlation (i.e., 

latitude). We did some literature review. The large-scale mountain area is an important 

source of uncertainty in the temperature mapping, which can influence the spatial 

distribution of the surface air temperature such as in the area of the Qinghai Tibet Plateau 

and northwest China (Xu et al., 2018). The study of Stahl et al (Stahl et al., 2006) shows 

that the standard deviation for daily air temperature in winter is larger than that in summer. 

The study of Brunetti shows that the interpolation of high-resolution temperature for Italy 

has the lowest errors in spring and autumn and the highest errors in winter and explained 

that the elevation coefficients (lapse rates) are markedly different during winter (Brunetti et 

al., 2014). The air temperature in winter changes rapidly which may be a reason for the 

high estimation errors in winter (Amini et al., 2019). Rolland (Rolland, 2003) also found 

higher interpolation reliability for maximum and minimum temperature in winter than in 

summer. We will add the literature review in the Discussion session.  

Q9: Figure 6: Can you comment on any features you’re resolving here that are not seen in 

the lower resolution gridded products you will compare to? There are some very high 

resolution features on the map, but clarification that they are physical would be useful. 

Response: The low spatial resolution can limit the ability to reflect the effects of complex 

topographies, land surface characteristics, and other processes on climate systems (Peng 

et al., 2019; Xu et al., 2017). The fine-scale data can provide realistic and reliable climate 

change information. We displayed the mean temperature of July, 2010 in the same region 

using ERA, FLADS datasets and the GPR dataset generated in our study (Figure 7). The 

GPR data can provide more spatial details than ERA and FLDAS (Figure 7).  We will add 

more clarification in our manuscript. 

 

Figure 7 Comparison between the ERA, FLDAS and GPR datasets using the mean air 

temperature in July 2010 



Q10: Does your trend analysis agree with the existing literature on global warming over 

China? If so include references to this. 

Response: Thanks for your suggestion. We did a literature review and found some 

references which agree with the trend analysis in our study. The distribution of the 

temperature trend in China in our study agrees with the existing literature (Dong et al., 

2015, p.1963–2012; Sun et al., 2018; You et al., 2021; Cui et al., 2017, p.1960–2015) 

Q11: Figure 11: The Taylor diagrams show clear improvement from your new dataset. Also 

including some timeseries from locations not sampled from the observation network 

compared between the three datasets would be useful to understand how the four products 

sample the seasonal cycles of the variables. 

 Response: Many thanks for your advice. We randomly selected three locations not 

sampled from the observation network to make a comparison. The location of the points is 

shown in Figure 8. We extract the ERA, FLDAS and the GPR mean air temperature data 

to the three new points to make a comparison. As shown in Figure 9, the mean air 

temperature data of the three datasets have the similar pattern from January 1982 to 

December 2019. We do not have actual temperature data from the three randomly selected 

points, so it is not possible to make an accuracy comparison. However, the ERA and 

FLADS datasets are already used in a lot of studies (McNally et al., 2017; Hersbach et al., 

2020), which means they are reliable to some extent. Thus the similar pattern between the 

GPR data and the ERA/FLDAS data can show the reliability of the GPR dataset we 

generated to a certain extent.  



 

Figure 8 The location of the three random points 

 

Figure 9 Comparisons of the data time series for mean air temperature in three random points 

from January 1982 to December 2019 



Small corrections: 

Q12: The height of the air temperatures (surface, 1.5m, 2m) should be added to the 

manuscript when this is mentioned. 

Response: The height of the air temperatures from the weather stations is 2 m. We will add 

this to section 2.1 Meteorological station data. 

Q13: The acronyms for datasets/methods should be defined in the abstract to make it 

easier to read. 

Response: ANUSPLIN: (short for Australian National University Spline); TerraClimate: 

Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces; FLDAS: 

Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System, 

and ERA5: ECMWF Climate Reanalysis. We will add the full definition in the Abstract as 

you suggested.  

Q14: Line 38: after commenting on the limitations of the observing stations you could 

comment here on the limitations of reanalysis based products. 

Response: Thanks for the suggestion. The reanalysis based data usually have low spatial 

resolution, which limits their ability to reflect the effects of complex topographies, land 

surface characteristics, and other processes on climate systems (Peng et al., 2019; Xu et 

al., 2017). We will add this comment to our manuscript. 

Q15: Throughout the text when you say ‘high resolution’ this should be changed to ‘high 

spatial resolution’ e.g. line 55. 

Response: Yes. It should be changed to “high spatial resolution” to be clearer. 

Q16: Line 56: ‘traditional interpolation techniques’ might be clearer? 

Response: We agree with this. We will revise it in the manuscript.  

Q17: Line 58-60: You comment on a few studies which talk about the superior performance 

of machine learning techniques but you do not say what the benchmark is that they’ve 

succeeded against. This should be included. 



Response: The machine learning methods were selected mainly according to the 

applications of machine learning methods in previous studies. There is potential in applying 

machine learning methods to predict spatially continuous variables. The combination of 

machine learning and the traditional model can usually have better performance 

(Appelhans et al., 2015; Li et al., 2011b). Secondary information considered such as slope, 

latitude and longitude can improve the performance of machine learning as they provide 

essential information for machine learning methods. (Li et al., 2011b; Alizamir et al., 2020; 

Appelhans et al., 2015; Kisi et al., 2017; Zhu et al., 2018). We will include more descriptions 

in the revised manuscript.  

Q18: Line 61: ‘estimation of short-term air temperature ‘ – I’m not sure what you mean by 

this? 

Response: We are sorry for making you confused. Here we should delete “short-term” to 

make it clearer.  

Q19: Line 86: The link here gives me an Error 404. 

Response: The link is not available recently, because the data were not available online. 

We will change our link to the homepage (https://data.cma.cn/data/).  

Q20: Around the discussion for Figure 1 it would be interesting to know the spatial distance 

between observation sites. This might be a small indication of confidence in the final 

machine learning model output. 

Response: Thanks for your advice. We generated the Euclidean distance for the 

observation stations. Figure 10 shows that the Euclidean distance is quite small in most of 

the region. The Euclidean distance is relatively large in the west of the Tibetan Plateau and 

the small region in Inner Mongolia. The larger Euclidean distance means the stations in 

that region are sparse, which can have an impact on the interpolation accuracy (Hijmans 

et al., 2005; Li et al., 2011a). We will talk about the model output and the spatial distance 

in the revised manuscript.  



 

Figure 10 Euclidean distance of the weather stations 



Q21: Section 2.3: When commenting on the spatial resolution of the gridded products used 

for comparison it would be useful to also have this in km. 

Response: Thanks for your suggestion. The spatial resolution of TerraClimate, FLDAS, and 

ERA5 are about 4.6 km, 11 km and 28 km, respectively. We will update the text in the 

manuscript according to your suggestion.  

Q22: Line 149: ‘machining learning’ should be ‘machine learning’ 

Response: We will change the wrong spelling.  

Q23: Section 3.2.2 Are the choices of parameters for the SVM method standard in the 

literature? Can you please comment on your choices? 

Response: Thanks for your suggestion. For the SVM models, we used the Gaussian kernel. 

The kernel scale is set to 1.7 for all SVM models. Hyperparameters are important for the 

performance of the model. We optimized the kernel scale of SVM and made a comparison. 

The box constraint and the epsilon hyperparameters are varying from month to month 

according to the training data of each month are different. The mean temperature data 

from January to December from 1951 to 2020 was used for comparing the new model with 

varying kernel scales and the used model in our study. The accuracy of each month 

between the optimized model and the used model in the paper is similar (Figure 11), the 

optimized models do not improve significantly. As we can see that the adjustment of the 

hyperparameters has little impact on the model accuracy in our study. Besides, the models 

used in our study are more time-saving and efficient. 

 

Figure 11 Comparison between optimized SVM model (new) and the used model in the paper 

(old). 

Q24: Line 342: ‘ shows a cyclic pattern’ might be clearer. 

Response: We will change the text as suggested. 
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