
Dear Reviewer, 

 

The comments offered have been immensely helpful. We appreciate your insightful comments on 

our paper. We have responded to every question, indicating exactly how we addressed each concern. 

 

The manuscript aims to produce a long term dataset of monthly 2m temperature over China at high 

spatial resolution on a 1x1 km grid. While the objective is appealing due to the challenges related 

to the complex topography and the irregular data availability in the target region, the applied 

methods show up with significant issues. The major issues are listed subsequently: 

Reply：Many thanks for the comments. We apologize for not expressing ourselves clearly. The 

method we designed generates highly accurate data products. Test results from meteorological 

observation sites in the field show that our method is robust and repeatable. We have responded to 

every question to make the expression clearer and more accurate. The point-to-point responses to 

the comments are listed below. 

 

 

[1] The introduction discusses advantages and disadvantages of different information sources for 

the targeted dataset. While strong arguments for point-wise observational data are presented, long 

term reanalysis data products are not considered despite they provide consistent and spatio-

temporally coherent information on the atmospheric state. It is unclear why such data is not 

considered to provide predictor variables. 

 

Reply: The reanalysis data have some limitations as the predictor variables. 

 

(1) First, the resolution of the reanalysis data is usually low (e.g. the resolution of ERA5 data is 

0.25°). Since the spatial resolution in our study is 1-km, the reanalysis products cannot provide such 

fine resolution data.  

(2) Second, the time span of the reanalysis data can not meet the study period in our study. The 

period of ERA5 starts from 1979 (Tang et al., 2020) while the dataset we produced starts from 1951.  

(3) Third, the reanalysis data are generated using the station observed data, which have uncertainty 

per se. As shown in the study of Tang (2020), the accuracy of ERA5 data in China is relatively low. 

The satellite-based and atmospheric reanalysis precipitation estimates are highly constrained by 

errors (Yin et al., 2021).  

(4) The model designed in our study can generate high-resolution datasets without using the 

reanalysis data.  

 

Considering the above, we did not consider the reanalysis data in our study.  

 

 

[2] The method of data splitting leads to strong autocorrelation between the training and test dataset. 

Due to the spatial proximity of stations in both dataset, a fundamental requirement is hurt, that is 

the independency (or at least a minimization of dependency) between the training and test dataset. 

This is especially true for the stations located in the flat eastern parts of China with a dense 

observational network. Thus, the statistical model are prone to learn nearest neighbor-relations 



rather than learning real abstractions from the features, see, e.g. Kleinert et al., 2021 for a more 

detailed discussion on the requirement of splitting the test and training data temporally when stations 

are located close to each other. 

 

Reply: Many thanks for your constructive comments. In machine learning, there are two strategies 

for splitting the training set and testing set. The first is a spatial division which split the data into the 

training set and testing set on the spatial field. The second is temporal split which splits the data into 

non-overlapping time periods for training and testing, e.g. the study you mentioned (Kleinert et al., 

2021). However, there is no standard method for splitting the training and testing dataset. In our 

study, we used the first strategy for splitting the data, mainly because the following reasons: 

(1) The temporal splitting is not appropriate in our study. In the study of Kleinert (Kleinert et al., 

2021), they used all the data from 1 January 1997 to 31 December 2007 as the training dataset while 

it is not feasible in our study to use all the historical data as training sets. Our object is to generate 

the long time-series data for each month ranging from 1951 to 2020. Thus we need a testing dataset 

for each month to evaluate the monthly data. In our study, the spatial splitting method can meet the 

requirements of our study goal.  

 

(2) In the spatial prediction of the environmental variables, numerous study uses the spatial split 

(Costache et al., 2020; Band et al., 2020; Mohajane et al., 2021; Kutlug Sahin and Colkesen, 2021; 

Hijmans et al., 2005; Fick and Hijmans, 2017).  

 

(3) The spatial splitting was completed using the “Subset Features” (Geostatistical Analyst) tool in 

ArcGIS which divides the original dataset into two parts: one part can be used to construct the model; 

the other part can be used to compare and validate the output. “Subset Features” is the most rigorous 

way to assess the quality of an output surface. Several studies have used the Subset Features tool of 

ArcGIS for splitting training and testing datasets in machine learning modelling (Costache et al., 

2020; Band et al., 2020; Mohajane et al., 2021; Kutlug Sahin and Colkesen, 2021). 

 

The Subset Features tool divides the data into two subsets. Subset one will have L features, and 

subset two will have N - L features (with N being the amount of features in the original dataset). 

The features are divided by generating random values from a uniform [0,1] distribution. If the 

random value is less than L/N, the feature is assigned to the first subset. If not, the feature is assigned 

to the second subset. (source: https://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-

analyst/how-subset-features-works.htm). 

 

(4) We used the 10-fold cross-validation when training the models (Line 193 in the manuscript). 

 

(5) The spatial distribution of the testing data is similar to the spatial distribution of all the data, 

which is in conformity with the stratified sampling scheme in the machine learning.  

We will discuss the splitting strategies in the discussion part of the manuscript.  

 

[3] Only static features are used as predictors which implies that a model must trained for each 

month (!) of the period under consideration. Thus, dynamic information on the atmospheric state 

can exclusively deduced from the optimization procedure on the predictand. It is strongly 

https://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/how-subset-features-works.htm
https://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/how-subset-features-works.htm


recommended to introduce dynamical data as a predictor variable instead. Besides, the chosen 

predictors have periods with neglectable correlation with respect to the target quantity and important 

features such as the ambient topography (is the meteorological station located in a valley) is absent 

(see, e.g., Sha et al., 2020). 

 

Reply: Many thanks for your comments.  

(1) In our study, the model was trained for each month. We described the model construction in 

Lines 193-194. The longitude, latitude and elevation are indeed static factors, but we construct the 

model for each month, respectively, which can reflect the changes of temperature from month to 

month.  

(2) The remote sensing data such as NDVI, land use change and surface temperature are usually not 

available before 2000 since our data is from 1951 to 2020. Furthermore, the MODIS data are not 

available for each month from January 2000 to December 2020. As shown in Figure 1, the 

percentage of the available MODIS images are low in northeast China and southern areas. So the 

remote sensing data are not appropriate for generating long-term temperature data in our study.  

(3) Furthermore, there is inherent data inaccuracy in the remote sensing data itself, such as the land 

use data. 

(4) As shown in the study of Sha et al. (2020), the orography, as represented by elevation fields can 

help characterize the spatial heterogeneity of 2-m temperature. The meteorological processes are 

locally embedded with small-scale terrain features. The terrain features including plain, slope, peak 

and valley are recognized as the semantic contents of terrain. They used the elevation data to 

represent those terrain semantics. In our study, we used the DEM data as the predictor in the machine 

learning model. As said in the study of Sha et al. (2020), the terrain semantics can be learned from 

gridded elevation inputs. 

(5) We can obtain the high-resolution dataset using the selected predictors in our study. The accuracy 

evaluation shows the rationality of the predictors. The model is robust in generating the long-term 

temperature datasets.  



 

Figure 1 Spatial distribution of the percentage of the available MODIS images in each year (2000 

- 2020) by excluding clouds. 

 

[4] The evaluation does not serve the objectives of the study. The stations in the test dataset are 

dominated by stations over flat terrain with a dense observational network. Thus, potential 

deficiencies in capturing the variations due to underlying complex topography are hidden. Indeed, 



Figure 5 indicates that residuals are considerably larger over the mountainous region. 

 

Reply: We agree with the comment. The meteorological stations in mainland China are unevenly 

distributed with more stations in the flat terrain and less stations in the mountains. This is the 

inherent data limitation for modelling continuous raster products in China (Guo et al., 2020; Liu et 

al., 2018). It is true that the stations in the Qinghai-Tibet plateau are sparse (Xu et al., 2018; Zhang 

et al., 2016). It is also an existing challenge of the spatial interpolation of temperature using the 

station data. The potential deficiency in capturing the variations in regions with complex terrain is 

an existing issue in the current studies. We are working to improve the accuracy of models in 

complex regions. The altitude information is conducive to the estimation of temperature (Berndt 

and Haberlandt, 2018).  

 

To show the strength of our data in regions with complicated topography. We took the Tibetan 

plateau region as an example. We compared the accuracy of our data with Peng’s data (Peng et al., 

2019) in Tibetan plateau. In our study, the accuracy in the Qinghai-Tibet Plateau is relatively good. 

We used the mean temperature data of Peng et al. (Peng et al., 2019) to make a comparison. The 

testing stations which were not used in the model training were used to make the comparison. As 

shown in Figure 2, the RMSE of most months for GPR is lower than Peng and GPR has smaller 

variation in RMSE. The R2 of GPR shows good accuracy from January to December, with smaller 

variation in each month, while for Peng’s data the variation in summer is quite high. 

 

Figure 2 Comparison between the GPR data in our study and the Peng’s data in the Tibetan region 

 

[5] Several issues in the follow-up study are present such as (a) a focus on large-scale temperature 

patterns instead of fine-scale patterns in Section 4.2. to reason the high spatial resolution of the 

dataset, (b) the interpretation of patterns in the Xinjiang region which look like artefacts (bulls-eye 

pattern in winter months) and (c) the missing notification on the better performance of the reference 

method ANUSPLIN for July-months in the 70s, 80s and 90s. 

 

Reply: The spatial resolution of the temperature dataset in our study is 1 km. Since the territory of 

China is large, it is challenging to produce fine-scale temperature data. Besides, the scale of 1 km is 

the resolution of a lot of high-resolution datasets for mainland China, like the 1 km monthly 

temperature and precipitation dataset (Peng et al., 2019), 1 km daily surface air temperature product 

over mainland China (Chen et al., 2021), a high-resolution crop phenological dataset for three staple 



crops in China (Luo et al., 2020). The 1-km resolution is high enough for mainland China which 

can satisfy a lot of the requirements in other scientific research or practical applications. The 5-km 

spatial resolution dataset for Spain which is way smaller than China is also treated as the high-

resolution dataset (Serrano-Notivoli et al., 2019). We admit that the finer resolution data may 

provide more detailed information but the 1-km resolution data is high enough for multiple studies. 

 

(b) The bulls-eye pattern in the Xinjiang region in the winter months is induced by the complex 

topography, which just shows that the model captured the detailed local differentiation of 

temperature due to topographic conditions. As shown in Figure 3, the region which has a relatively 

lower temperature (Section 4.2 Figure 6) is because of the high altitude.  

 

(c) Considering the proven power of ANUSPLIN in predicting meteorological variables, the GPR 

yields relatively satisfactory results. The accuracy of ANUSPLIN for July-months in the 70s, 80s 

and 90s is slightly higher than GPR while the accuracy of GPR still performs relatively well. 

ANUSPLIN uses the thin-plate smoothing spline algorithm which allows the introduction of 

multivariate linear sub-models with complex model coefficients to be calculated. Using the same 

computational resources, ANUSPLIN is more time-consuming than GPR. Besides, GPR has higher 

accuracy in the winter months. We will discuss more in the discussion section. 

 

 

Figure 3 The elevation of Xinjiang Uygur Autonomous Region 

 

[6] The comparison to the competing datasets ERA5 and FLADS is misleading due to the much 

coarser spatial resolution of these two datasets. A fair comparison would consult datasets with 

similar spatial resolution such as the dataset described in Peng et al., 2019. 

Reply: Many thanks for your comments. We use three datasets ERA5, FLDAS and TerraClimate. 

The spatial resolution of the three datasets is 27830 meters, 11132 meters, and 4638.3 meters, 

respectively. Our datasets are 1-km. We resampled all the data to 27830 meters to keep the resolution 

consistent and then we comparisons. As shown in Figure 4, GPR still outperformed other products.  



 

Figure 4 Taylor diagrams displaying a statistical comparison with observations between our 

products generated using the GPR model and the other products under the same spatial resolution.  

 

Besides, we also compared our datasets with Peng’s data as you suggested. As shown in Figure 5, 

our datasets have relatively higher accuracy than Peng’s data on the whole, especially in warm 

months.  

 

Figure 5 Accuracy comparison between the GPR data and the Peng’s data for mean temperature  

 

Further minor issues are: 

 

* Splitting into three distinct datasets is unnecessary. Rather merge it to one dataset with one DOI. 

Reply: The Zenodo database has limitations for the data size (max 50 GB per dataset). The zip 

format file of each dataset is about 30 GB, so we uploaded mean, maximum and minimum 

temperature data, respectively.  

 

* Refer to statistical and dynamical downscaling techniques in the introduction. 

Reply: Thanks for your suggestion. The downscaling technique uses the existing coarse product to 

produce the high-resolution dataset. The interpolation uses the meteorological station data to 

generate the spatial continuous grid dataset. The two strategies use different source data, but they 

have the same objectives. In fact, there are multiple low spatial resolution datasets, such as the 

Climatic Research Unit (CRU) (Harris et al., 2014), the Global Precipitation Climatology Centre 

(GPCC) (Schneider et al., 2014; Becker et al., 2013), and Willmott & Matsuura (W&M) 

(Matsuura and Willmott, 2012) which are generated using the data from the observational stations. 

It is a reliable way to produce continuous datasets using the observed station data (Peng et al., 



2019).  

 

* Provide references to the problems related to remote sensing data (see l.66). 

Reply: Thanks for your reminder. The references are listed below:  

(Dong and Xiao, 2016) 

(Xiao et al., 2018, p.2013–2016) 

(Mao et al., 2019) 

 

* Describe the remapping of the STRM DEM data onto the 1x1 km grid (should be an averaging 

method). 

Reply: We used GEE to export the STRM DEM data as 1*1 km grid. The “Scale” parameter was 

used to specify the output resolution to 1 km. The concept of “Scale” is illustrated in Figure 6 

(https://developers.google.com/earth-engine/guides/scale). The default method of resampling is the 

nearest neighbour (https://developers.google.com/earth-engine/guides/scale#image-pyramids). 

 

Figure 6 A graphic representation of an image dataset in Earth Engine. Dashed lines represent the 

pyramiding policy for aggregating 2x2 blocks of 4 pixels. Earth Engine uses the scale specified by 

the output to determine the appropriate level of the image pyramid to use as input. 

 

* The used software tool MATLAB should be only mentioned once rather than being repeated 

three times. More details on the respective ML-technique would be appreciated. 

Reply: Thanks a lot for your advice. We should mention the MATLAB once. In the light of the 

limitation of the words in the manuscript, we did not provide so many details for all the machine 

learning methods but we provided the references or related links which have detailed descriptions 

of the machine learning methods. In the next revision, we will add more key information about the 

machine learning methods in the manuscript.  

 

* l.149: Should be 'ensemble machine learning' 

Reply: You are right. Thanks for pointing this out and sorry for the wrong spelling.  

 

* l.219: "Unnecessary reference to Equation 4 which directly follows the sentence. 

Reply: Thanks for your comment. The references should be removed. 

 

* l.343f. This is sentence is barely comprehensible. 

Reply: What we want to express is that the accuracy measures fluctuate with the seasons.  

https://developers.google.com/earth-engine/guides/scale
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