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Abstract. The important Qinghai Tibet Engineering Corridor (QTEC) covers the part of the Highway and Railway underlain 

by permafrost. The permafrost on the QTEC is sensitive to climate warming and human disturbance and suffers accelerating 

degradation. Retrogressive thaw slumps (RTSs) are slope failures due to the thawing of ice-rich permafrost. They typically 15 

retreat and expand at high rates, damaging infrastructure, and releasing carbon preserved in frozen ground. Along the critical 

and essential corridor, RTSs are commonly distributed but remain poorly investigated. To compile the first comprehensive 

inventory of RTSs, this study uses an iteratively semi-automatic method built on deep learning to delineate thaw slumps in the 

2019 PlanetScope CubeSat images over a ~54,000 km2 corridor area. The method effectively assesses every image pixel using 

DeepLabv3+ with limited training samples and manually inspects the deep-learning-identified thaw slumps based on their 20 

geomorphic features and temporal changes. The inventory includes 875 RTSs, of which 474 are clustered in the Beiluhe region, 

and 38 are near roads or railway lines. The dataset is available at https://doi.org/10.5281/zenodo.6397028 (Xia et al., 2021)， 

with the Chinese version at https://data.tpdc.ac.cn/zh-hans/disallow/50de2d4f-75e1-4bad-b316-6fb91d915a1a/. These RTSs 

tend to be located on north-facing slopes with gradients of 1.2º–18.1º and distributed at medium elevations ranging from 4511 

to 5212 m a.s.l. They prefer to develop on land receiving relatively low annual solar radiation (from 2900 to 3200 kWh	m!"), 25 

alpine meadow covered, and loam underlay. Our results provide a significant and fundamental benchmark dataset for 

quantifying thaw slump changes in this vulnerable region undergoing strong climatic warming and extensive human activities. 

Short Summary 

Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, widely distributed along the Qinghai-

Tibet Engineering Corridor. The potential damage to infrastructure and the carbon emission of thaw slumps motivated us to 30 
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obtain an inventory of thaw slumps. We used a semi-automatic method to get 875 thaw slumps, filling the knowledge gap of 

thaw slump locations and providing key benchmarks for analyzing the distribution features and quantifying spatio-temporal 

changes.   

1 Introduction 

Permafrost is defined as ground that remains at or below 0℃ for at least two consecutive years (Van Everdingen, 1998; French, 35 

2018). On the Qinghai-Tibet Plateau, permafrost covers an area of about 1.06 × 10#	km"	(Zou et al., 2017; Cao et al., 2019) 

with an average elevation of more than 4000 m (Liu, 2000) and latitudes of 26°N–38°N (Wang and French, 1994; Zhang et 

al., 2008). Because the underlying permafrost on the plateau is characterized by shallow thickness and relatively high 

temperature (Wu and Zhang, 2008; Wu et al., 2010; Zhou et al., 2000), it is vulnerable to degradation under climate warming 

and disturbance due to human activities. One critical zone suffering accelerated permafrost degradation is the Qinghai-Tibet 40 

Engineering Corridor (QTEC), which contains the Qinghai-Tibet Railway and Qinghai-Tibet Highway. This corridor is 1120 

km long, and almost half its length (531 km) is underlain by permafrost (Jin et al., 2008; Wu and Zhang, 2010). 

As a typical type of thermokarst landform, retrogressive thaw slumps (RTSs) are caused by the thawing of ice-rich permafrost 

(Jorgenson, 2013) and thus serve as vital and visual indicators of permafrost degradation. An RTS typically consists of a sub-

vertical ice-rich headwall and a gentle slump floor occupied by mudflows (Ballantyne, 2018). The triggering factors and 45 

mechanisms include coastal erosion, high air temperatures, extreme precipitation, and human disturbance (Balser et al., 2014; 

French, 2018; Niu et al., 2005). Once initiated, ablation of the exposed ice-rich permafrost leads to the upslope retreat of the 

headwall at a rapid rate and disruption of vegetation cover. RTSs can significantly disrupt the local environment, for instance, 

causing damage to infrastructure (Hjort, 2022), changing ecosystems (Kokelj and Jorgenson, 2013), and triggering the release 

of carbon previously stored in the frozen ground (Turetsky et al., 2020). 50 

Compared with the counterparts in the circum-Arctic, there still lacks basic knowledge of RTSs locations on the Qinghai-Tibet 

Plateau (Mu et al., 2020), with only limited studies identifying RTSs in subregions of the QTEC. For instance, Niu et al. (2016) 

identified 42 slope failures (some of them are RTSs) by manually interpreting SPOT-5 imagery and field investigations within 

a 10 km lateral zone along the Qinghai-Tibet Highway from Wudaoliang to the Fenghuo Mountain pass. Luo et al. (2019) 

manually interpreted 438 RTSs using a series of satellite images from 2008 to 2017 covering the Beiluhe region. None of the 55 

previous works obtained a comprehensive RTS inventory for this vital area due to the challenges of visiting RTSs in the remote 

and harsh permafrost regions or mapping them from remote sensing imagery (Huang et al., 2020).   

Several methods have been used in mapping RTSs in a large area, including manual delineation and automatic recognition.  

Lewkowicz and Way (2019) used the Google Earth Engine Time-lapse dataset to visually locate and delineate terrain changes 

on Banks Island in the Canadian Arctic. However, manual delineation is time-consuming and has a chance of missing possible 60 

RTSs. Deep learning techniques automate several fields, such as identifying targets and classifying various land covers in 

remote sensing images. For permafrost-related landforms identification, Zhang et al. (2018) used Mask R-CNN to delineate 
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ice-wedge polygons in high-resolution aerial images covering northern Alaska. Abolt and Young (2020) used deep learning 

and 50-cm-resolution DEMs to identify ice-wedge polygons near Prudhoe Bay, Alaska. Nitze et al. (2021) tested the regional 

transferability and potential for the deep learning approach in inferring RTSs in the pan-Arctic. These studies proved the 65 

applicability of deep learning in mapping permafrost-related landforms in remote sensing images and emphasized the 

importance of the quality and quantity of the training dataset. However, many cryospheric studies, this one included, lacked 

label data that are readily used in training. Set against this background, we identified and delineated RTSs along the whole 

QTEC by combining the efficiency of the deep learning model in mapping with the reliability of human input based on the 

deep-learning-based mapping method proposed by Huang et al. (2020). 70 

This study aims to obtain a comprehensive inventory of RTSs with high accuracy along the QTEC using a semi-automatic 

method and plenty of supplementary datasets. Apart from this, using the topographic, soil properties, vegetation data, we reveal 

the spatial distribution characteristics of RTSs. 

2 Study Area 

The study area is the permafrost region along the Qinghai-Tibet Engineering Corridor, defined based on the maps of Tong et 75 

al. (2011) and Zou et al. (2017). The study area (Figure 1a) has a length of ~550 km along the Qinghai-Tibet Railway and 

Highway and a total area of ~54,000 km2 (lying within the coordinates 90.91° E to 95.15° E, and 31.74° N to 35.99° N, Figure 

1b). The mean annual ground temperature on the natural ground is -4−0°C (Jin et al., 2008; Wu and Zhang, 2008; Wu et al., 

2012). Around half of the permafrost in the region has relatively high ground ice content with a thin active layer (Cheng, 2005; 

Yang et al., 2010). In many locations, the surface vegetation cover has been destroyed or removed because of anthropogenic 80 

and animal activities, which expose the bare ground to the air and increase the instability of this region (Jin et al., 2008; Wu 

et al., 2012). Thermokarst landforms, including retrogressive thaw slumps, thermo-erosion gullies, and thermokarst lakes, are 

widely distributed across the Qinghai-Tibetan Plateau (Huang et al., 2018; Mu et al., 2020; Niu et al., 2012). Some RTSs 

developed in the area are perilously close to the line of the Qinghai-Tibet Highway (Niu et al., 2005), as Fig. 1c shows a typical 

example.   85 
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Figure 1. (a) Coverage of the study area and the permafrost distribution. The red boundary is the extent of the study area. The 

yellow line is the Qinghai-Tibet Highway, and the diced line is the Qinghai-Tibet Railway, most of which runs close to the highway. 

Blue lines represent other national roads. The background is the permafrost distribution map produced by Zou et al. (2017), with 

white patches representing lakes or glaciers. The black triangles label the sites where we conducted UAV investigations. (b) The 90 
location of the study area on the Qinghai-Tibet Plateau. (c) A UAV photo of an RTS near the Qinghai-Tibet railway (center location: 

92.883° E, 34.709° N).  

3 Data sources 

We collected PlanetScope Scenes (Planet Team, 2017) with a spatial resolution of 3 meters acquired in July and August during 

the years 2016 to 2020. In addition to the multi-year PlanetScope images, the following supplementary data were used for 95 

reference in manual inspection: Landsat-5 and 8, Sentinel-2, unmanned aerial vehicle (UAV) images, the “World Imagery” 

provided by Esri, and the digital elevation model (DEM) from the Shuttle Radar Topography Mission (SRTM) (Farr et al., 

2007). We downloaded Landsat and Sentinel-2 images taken before 2016 through the Google Earth Engine (Gorelick et al., 

2017). Landsat-5 carried with sensor Thematic Mapper provides images with 30 m visible bands. Landsat-8 used the 

Operational Land Imager sensor to obtain images with resolutions of 30 m for visible bands and 15 m for the panchromatic 100 

band. Sentinel-2 has achieved images since 2015 and provides images with a resolution of 10 m for the red, green, and blue 

bands. We used the flying platform DJI P4 Multispectral to obtain the UAV images with around 15-cm resolution in 16 near 
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roads sites where 23 RTSs candidates are located. We also accessed the high resolution (< 1 m) satellite imagery via Esri 

Wayback Imagery (Esri Inc., 2018), which archived all published versions of World Imagery. Moreover, we calculated the 

slopes and aspects using the 30-m DEM.  105 

To further analyze the RTSs distribution patterns and associated environmental factors, we used topo-climatic, hydrological, 

vegetation, and soil datasets, including (1) the annual potential incoming solar radiation (PISR), calculated using the method 

described by Kumar et al. (1997), (2) the stream networks simulated by SAGA GIS based on the DEM, (3) vegetation types 

(data source: Wang et al., 2016); and (4) soil textures (data source:  Food and Agriculture Organization of the United Nations, 

2019). All the data are listed in Table 1.  110 

 

Table 1 List of the data used for mapping RTSs and analyzing their spatial distribution. 

  Acquisition time Spatial  

coverage 

Spectral bands Spatial 

resolution 

Purpose Source/Reference 

PlanetScope Scenes July, August  

2019  

QTEC red, green, blue 3–5 m Automatically 

delineating 

Planet Team, 2017 
 

July and August 

during the years 

2016 to 2020 

   
Manual inspection 

LandSat-8 2013–2016 
RTS locations 

and the 

surrounding 

areas within 

1km 

Panchromatic  

band 

15 m 

Manual inspection Google Earth Engine 

red, green, blue 30 m  

LandSat-5 2009–2016 red, green, blue 30 m 

Sentinel-2 2015–2016 red, green, blue 10 m 

UAV images August 2020;  

July 2021 

16 Selected sites 

along the Qinghai-

Tibet Highway 

red, green, blue ~ 15 cm  Manual inspection 
 

Field surveys 

ESRI World  

Imagery 

Since 2010 QTEC / < 1 m Manual inspection 
 

Esri Inc., 2018 

SRTM DEM 2000 QTEC / 30 m Manual inspection  

and analyzing RTS 

distribution patterns 

Farr et al., 2007 
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Vegetation type / QTEC / 1 km Analyzing RTS 

distribution patterns 

Wang et al., 2016 

Soil textures 2010 QTEC / 1 km  Analyzing RTS 

distribution patterns 

Food and Agriculture 

Organization of the 

United Nations, 2019 

 

4 Methodology 

4.1 Pre-processing of PlanetScope images 

We built an automated pipeline to download and pre-process the PlanetScope images, including extracting RGB bands to 115 

composite natural-color images, converting them from 16-bit to 8-bit using a linear transformation, tiling and mosaicking them 

to cover the entire study region. We used the processed images in 2019 to train the deep learning model and infer RTSs and 

used images from the other years for manual inspection.  

4.2 Iterative mapping of RTSs 

We applied a deep learning architecture called DeepLabv3+ (github.com/tensorflow/models/tree/master/research/deeplab) to 120 

identify possible RTSs, and determined RTSs from these potential candidates based on human knowledge and supplementary 

datasets. The DeepLabv3+ model (http://download.tensorflow.org/models/deeplabv3_xception_2018_01_04.tar.gz) we used 

was pre-trained using the ImageNet dataset (Russakovsky et al., 2015). To make the model feasible for identifying RTSs, we 

fine-tuned the model using corresponding PlanetScope images and labels as training data. Because the initial training data 

were derived from the work of Huang et al. (2021) and only included 300 RTSs in the Beiluhe region, they were insufficient 125 

for fine-tuning the deep learning model and would have led to inferior results containing multiple misidentifications and 

missing some RTSs. To overcome this problem and obtain a complete inventory, we adapted an iterative mapping strategy 

using optimized training data. 

The flowchart of the method is illustrated in Fig. 2. The main steps were (1) collecting training polygons and preparing training 

data (Section 2.2); (2) training and fine-tuning the neural network DeepLabv3+; (3) predicting RTSs in the whole region using 130 

the 2019 PlanetScope images and reserving newly inferred polygons; (4) manually inspecting 2016–2020 time-lapse images 

of each new polygon to determine RTS boundaries;  and (5) adding the newly found RTSs into the positive training dataset, 

and optionally adding limited polygons covering representative misidentified RTSs into the negative training dataset. Then we 

repeated steps (2) – (5) until no new RTSs were found. Facing the difficulty due to lacking of training polygons, these iterative 

experiments succeeded in obtaining a more comprehensive and representative training dataset by adding newly identified 135 

RTSs and a small number of non-RTS polygons in the next iteration. Further details are provided below. 
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Figure 2. Workflow of the deep-learning-aided semi-automatic method.  

In every iteration, we trained the model using the confirmed RTS polygons and negative training data of representative non-

RTS polygons together with the PlanetScope images. The details of preparing training images and label images are given in 140 

Huang et al. (2018). After every iteration, we manually inspected the newly inferred polygons using the 2019 PlanetScope 

images, time-lapse images, as well as other supplementary data listed in Section 2.2. To prepare the time-lapse images, we 

first extracted sub-images from PlanetScope images collected in 2016–2020 based on the bounding boxes of deep-learning-

inferred polygons with a buffer size of 300 m. We then used these chronological sub-images to make time-lapse images, with 

which we could visually inspect the temporal changes of RTSs. The manual inspection was based on the geomorphic features 145 

of the RTSs and their annual changes. We manually identified the headwalls based on the annual RTS retreating direction and 

direction of uphill and set four criteria for improving inspection accuracy: (1) the headwall must be located at the highest 

elevation inside an RTS, (2) RTSs present a yellowish-brown color in the images because of vegetation cover degradation and 
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bare ground emergence, (3) the headwalls must be arcuate and nearly vertical, thus tend to be partially covered by narrow 

bands of shadows, and (4) the active RTSs retreat in an upslope direction at a rapid rate, and their retreat can be identified in 150 

the time-lapse images. One example of an RTS is shown in Fig. 3, together with the criteria we identified in the image. Then, 

for some inaccurate polygons, we manually modified the boundaries. Limited by the image resolution of 3 meters, we need at 

least ~55 pixels to identify the features of thaw slumps, so the minimum mapping unit (MMU) we set is 0.05 ha. In the case 

of several RTSs that were stable in 2016-2020, we used multi-source images to extend the time span. One example of RTS 

shown in Fig. 4 was larger in 2013 than it was in 2010, but its area remained almost the same in subsequent years. For those 155 

near roads polygons that were easy to approach, we went to the field and collected UAV images, allowing us to further improve 

the reliability of the mapping results (e.g., Fig. 1c). Two experts manually inspected the results independently, costing 2 to 6 

hours per iteration. The numbers of training polygons, deep-learning-inferred polygons, and newly identified RTSs in each 

iteration are listed in Table 2. To identify RTSs that are near roads, we measured the distance between the geometric center of 

an RTS and the roads. Considering the sizes of RTSs and their fast retreat rates, which can sometimes reach 212 m per year 160 

(Huang et al., 2021), we set the distance threshold as 500 m. Using the time-lapse images (data are available from Xia et al., 

2021), we further subdivided RTSs into four groups: RTSs initiated before July or August 2016, 2016 – 2017, 2017– 2018, 

and 2018 – 2019 (between two summers).  

 
Figure 3. An example of an RTS shown in the PlanetScope image with corresponding criteria illustrated for manual checking. The 165 
ID was assigned by us in the inventory. The white polygons highlight the RTS in the images, and this RTS is initialized after August 

2016. Basemap data © Planet Labs Inc. 
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Figure 4. Temporal images of an RTS from various remote sensing data sources, including PlanetScope images (© Planet Labs Inc), 

Landsat images, and World Imagery (Esri Inc., 2018). The image from World Imagery cannot be downloaded, so it was a screenshot 170 
without a scale. The ID of this RTS is 166. The red polygons represent the boundaries of the RTS, based on the 2019 PlanetScope 

images. 

Table 2. Summary of iterative mapping. The positive polygons are RTSs boundaries. The negative polygons outline some non-
RTS landforms or landcover that appear similar to RTSs in the PlanetScope images. The deep-learning-inferred polygons are the 
output of the DeepLabv3+. Newly found RTSs are polygons manually selected from the deep-learning-inferred polygons. We 
recorded the total number of RTSs for every iteration in the ‘number of RTSs’. 

Iteration number Training Prediction Manual inspection Number of RTSs 

Positive polygons Negative polygons Deep-learning-inferred 
polygons 

Newly found RTSs 

1 300 72 2064 149 449 
2 449 72 2842 196 645 
3 645 78 3153 73 718 
4 718 78 10510 86 804 
5 804 90 4609 34 838 
6 838 90 3362 4 842 
7 842 90 5033 21 863 
8 863 90 3622 12 875 
9 875 90 4031 0 875 
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4.3 Uncertainty assessment for RTS inventory 

We manually assigned a probability for each mapped RTS as an uncertainty indicator based on the availability of multi-175 

temporal remote sensing imagery and coverage of field validation. Due to the lack of ground truth in the entire QTEC, we 

cannot quantify the accuracy of the whole inventory. Considering the lack of field evidence for each RTS, and the drawbacks 

of remote sensing imagery, such as indirect observation and limited spatial resolution, we assigned low or medium probability 

for an RTS that does not strictly meet the four criteria in the manual inspection. For instance, the ones that retreated abruptly 

in one year but were stable in other years, or their changes were too subtle to identify.  180 

5 Results  

The inventory we complied includes 875 RTSs along the Qinghai-Tibet Engineering Corridor (Fig. 5).   The largest RTS has 

an area of 24.03 ha and the smallest one is 0.05 ha; whereas 98.5% of them are smaller than 10 ha (Figure 6a). Together they 

affect 1700 ha land on a 5,400,000 ha study region. Altitudes in this whole study area vary from ~3300 m to ~6200 m.  Around 

90% of the RTSs were found at medium elevations (4582–5010 m), and the highest was at an elevation of 5394 m (Figure 6b). 185 

The RTSs tend to be located on north-facing slopes with gentle gradients ranging from 1.2° to 18.1° (Figure 6c and 6d).  Most 

of them (67%) are located on slopes with gradients of 4–8°. They also tend to occur in areas where the annual PISR ranges 

from 2900 to 3200 kWh	m!", while the entire study region potentially receives solar radiation from 2500 to 3450 kWh	m!" 

(Figure 6e). We also found 209 RTSs adjacent to the simulated stream networks. The main vegetation types in the study region 

are swamp meadow, alpine meadow, alpine steppe, and arid desert meadow. The alpine meadow areas contain ~75% of the 190 

RTSs (Figure 6f).  Soil texture analysis indicates that a large portion of the surface soil is loam and sandy loam (~23.3% and 

~71.3%, respectively), only 5.4% is clay, sandy clay loam, sand.  Strikingly, ~55% of the RTSs are in areas covered by loam 

(Figure 6g). These heterogeneities illustrate the development of RTSs needs specific environments, such as regions with 

massive ground ice and sloped terrains, thus limiting RTSs to regional clusters. Our inventory revealed that ~50% of the RTSs 

are densely clustered in the west of the Beiluhe region (e.g., Figure 5b), while the others are sparsely scattered across the other 195 

subregions (Figure 5a). The lack of uniformity in their distribution is further shown by the density maps of the total area in 10 

km ´ 10 km grid cells (Figure 7a).  
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Figure 5. (a) Permafrost distribution map (Zou et al., 2017) with 875 delineated RTSs. The circle sizes indicate the RTSs' area.  

Orange circles are RTSs close to roads, while blue circles show other RTSs. (b) Examples of the delineated RTSs in the Beiluhe 200 
region, with the white polygons representing the boundaries of RTSs. (c) An example of an RTS adjacent to the Qinghai-Tibet 

Highway (yellow line). Basemap images © Planet Labs Inc. 
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Figure 6. Statistical summaries of the RTSs’ geometric features and terrain properties. (a) The histogram shows the area of all the 

RTSs in the research region. (b) The elevation frequency of the landscape and RTSs. Landscape means the entire study region. (c) 205 
The slope aspects of RTSs, with radial axis representing the number of RTSs.  (d) The slope frequencies of the landscape and RTSs. 

(e) The annual PISR frequencies of the landscape and RTSs. (f) The vegetation type distribution of the landscape and RTSs. (g) The 

soil texture distribution of the landscape and RTSs.  

We further identified 38 RTSs that are close to roads. Figure 5c presents an example whose center is ~400 m from the highway. 

The RTSs near roads are moderate in size, with an average area of 0.97 ha, and around 86.8% of the RTSs are smaller than 2 210 

ha. The largest one has an area of 24.03 ha and is near the Yaxi Co lake. The smallest one has an area of only 0.128 ha.  

Our temporal analysis revealed that there were 306 RTSs before July or August 2016. From summer 2016 to summer 2017, 

455 new RTSs emerged, constituting more than half of the overall number of RTSs included in the inventory. Only 21 and 55 

RTSs formed during 2017–2018 and 2018–2019, respectively. From the distribution map showing the initiating years of RTSs 
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in grid cells of 25 km ´ 25 km (Figure 7b), we observed that many of the newly initiated RTSs are located in the west of the 215 

Beiluhe region.  

 

Figure 7. (a) Areas affected by RTSs in grid cells of 10 km ´ 10 km. (b) The distribution map of RTSs with different initiating years 

in grid cells. For clear visualization, we set the cell size as 25 km ´ 25 km in (b). The background is a map elevation based on the 

Shuttle Radar Topography Mission DEM (Farr et al., 2007).  220 

6 Discussion 

6.1 Possible controlling factors of RTS spatial distributions 

Most of the RTSs are in the western part of the Beiluhe region, and a small portion of them are sparsely distributed along the 

roads. The uneven distribution may be controlled by topographic factors (Wang and French, 1994), hydrological factors, soil 

texture, vegetation, and human activities. (1) Proven by the statistical analysis of topographic features of RTSs, as the majority 225 

of the RTSs are in the Beiluhe region, the RTSs in this clustered region dominate the distribution characteristics along the 

QTEC. In other words, RTSs prefer to occur on north-facing slopes with gentle gradients, at medium elevations, and in 

locations receiving relatively low annual PISR. The main reason is that water tends to accumulate on gentle slopes, resulting 

in high soil moisture contents and decreased internal friction of the soil mass (McRoberts and Morgenstern, 1974). Moreover, 

the north-facing slopes with relatively low PISR have a thinner active layer than their south-facing counterparts. As a thin 230 

active layer is easier to be removed by thermokarst processes, the possibility of exposing the permafrost underneath will 

increase. The soil moisture content is also higher on land which receives low PISR (Lin et al., 2019). All the topographically 

controlled moisture availability is highly related to the formation of excess ground ice near the top of permafrost (Lin et al., 
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2020). (2) The ground near streams tends to contain a higher water content. (3) The vegetation types also impact the distribution 

of RTSs, as we have shown that many RTSs are in alpine meadows. Since alpine meadows grow on land with more water 235 

content than alpine steppe (Yin et al., 2017), permafrost underneath may contain more ice. (4) The results show that the RTSs 

tend to develop on the land covered by loam. Silt fraction, which influences the frost susceptibility of the host sediment, is 

higher for loam than for sandy loam, and the ground consequently has a higher ice content (Gilbert et al., 2016). In sum, all 

these terrain factors, potentially related to the ice content, may exert a confounding influence on RTS formation. (5) We found 

38 RTSs that are near roads, with only 7 of them in the Beiluhe Region, a vulnerable area where 474 RTSs are located. It 240 

proves that engineering can minimize the impact that infrastructure has on permafrost. Excavation for soils and gravel during 

road construction damaged the vegetation cover in the 1980s, which led to the thawing of the exposed ice-rich permafrost and 

resulted in the initiation of many RTSs (Luo et al., 2019). Engineers began to realize that human activities accelerated 

permafrost degradation, and after 1980 adopted various methods to protect the permafrost (Luo et al., 2019). Moreover, the 

limited RTSs near roads indicate that it is possible, even in a vulnerable region, to select relatively stable ground for the 245 

construction of facilities and minimize the damage caused by permafrost degradation. As the distribution of the RTSs helps to 

pinpoint unstable ground, it should be possible to plan the alignment of a new highway along the QTEC to avoid such sensitive 

areas. 

6.2 Comparison with other inventories 

Our inventory is the first comprehensive one along the entire corridor region. Compared with the existing RTS datasets in the 250 

subregions (Niu et al., 2016; Luo et al., 2019), our inventory has advantages in its comprehensiveness, novelty, and being open 

source. Based on manual interpretation from SPOT-5 imagery and field investigations, Niu’s results contain 42 slope failures 

(some are RTSs) in 2016 in a 10-km lateral zone of the Qinghai-Tibet Highway from Wudaoliang in the north to the Fenghuo 

Mountain pass in the south. In this same subregion, our method detected 47 RTSs in 2019, with 4 of them having low or 

medium probability. Luo’s 2017 results contain 438 RTSs but only cover the Beiluhe region, within which our inventory found 255 

459 RTSs in 2019. In total, our inventory obtains 875 RTSs in the entire study area, including the part where the critical 

transportation infrastructure is underlain by permafrost. We also labelled RTSs near roads and provided the initiation periods, 

areas, probabilities, and locations of RTSs. The deep learning model and multi-source and multi-temporal images were 

performed in tandem to provide a more accurate inventory than the results obtained from manual inspection alone.  

6.3 Necessity and limitations of iterative mapping 260 

Our method combines the efficiency of the deep learning neural network with the invaluable interpretative experience of 

experts. Manual delineating is labor-intensive and not feasible for a large area. Deep-learning-based mapping outperforms 

many other automated mapping methods by a large margin, although it still produced lots of false positives and missed a few 

RTSs, as shown in the first few iterations in Table 2. The newly found RTSs in every iteration indicate that one-time training 
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and predicting has a high chance of missing some RTSs due to the bias between training data and the images covering the rest 265 

of the study area. As proved by our iterative mapping (Table 2), by adding more training data, each new iteration successfully 

inferred some RTSs missed in the previous mapping iterations.  

The main disadvantage is that this method is still time-consuming while compared to a fully automated process. In each 

iteration, the deep learning model inferred 2 to 5 thousand polygons which need to be manually inspected. Another problem 

is that we may still miss some small RTSs and misidentify other landforms, for instance, drained ponds and artificial pits. 270 

Although we have already used multi-source images to guarantee the accuracy of the RTS polygons, the imagery resolution 

limitation still exists, which restricts the MMU to 0.05 ha. Moreover, some RTSs that have re-vegetated on the surface cannot 

be identified using remote sensing images alone. 

7 Conclusions 

This study successfully used deep learning to infer possible retrogressive thaw slumps and temporal multi-source images to 275 

visually inspect retrogressive thaw slumps over a large area. This inventory of 875 thaw slumps fills the gaps in the RTS data 

along the corridor and provides a diverse and representative training dataset for automatically delineating thaw slumps in even 

larger areas. Through statistical analysis of the terrain properties, we found that (1) the RTSs along the QTEC tend to develop 

on north-facing slopes with gentle degrees and tend to appear at medium elevations or areas receiving less solar radiation; (2) 

209 RTSs are near stream networks; (3) a large portion of the RTSs are located on the ground covered with alpine meadows; 280 

(4) RTSs develop more frequently in areas covered by loam soil. The inventory of 38 RTSs that are near roads indicates the 

human impact on permafrost and provides us with data to assess the ground stability while planning a new highway. The 

abnormal increase between 2016 and 2017 is worth further investigation. For instance, we can lengthen the time span and 

explore the relationship between the number of newly initiated RTSs and meteorological variables such as temperature and 

precipitation.  As the first attempt of mapping RTSs in the Qinghai-Tibet Engineering Corridor from high-resolution images, 285 

the results we obtained can potentially serve the policymakers and stakeholders with the information necessary to pursue 

sustainable social-economic development on the Qinghai-Tibet Plateau. 

Data availability 

The PlanetScope CubeSat images are copyrighted by Planet Labs Inc., restricted by commercial policies and are not open to 

the public. The Landsat 5/8 and Sentinel 2 images are publicly available through the U.S. Geological Survey and the European 290 

Space Agency, respectively, and can be downloaded via the Google Earth Engine. The Esri World Imagery can be accessed 

via the Esri Wayback Imagery: https://livingatlas.arcgis.com/wayback/. The thaw slump inventory is accessible through Xia 

et al. (2021), Zenodo, https://doi.org/10.5281/zenodo.6397028. The Chinese version is in the National Tibetan Plateau/Third 

Pole Environment Data Center, with link https://data.tpdc.ac.cn/zh-hans/disallow/50de2d4f-75e1-4bad-b316-6fb91d915a1a/. 
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