
Colombian soil texture: Building a spatial ensemble model
Viviana Marcela Varón-Ramírez1, Gustavo Alfonso Araujo-Carrillo1, and Mario Guevara2-4

1Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Mosquera-Cundinamarca, Colombia
2Centro de Geociencias - Universidad Nacional Autónoma de México Campus Juriquilla, Qro. MX.
3University of California, Riverside, Department of Environmental Sciences, Riverside CA. 92507, USA
4United States Department of Agriculture, U.S. Soil Salinity National Laboratory, Riverside CA. 92507, USA

Correspondence: Viviana Marcela Varón-Ramírez (vvaron@agrosavia.co)

Abstract. Texture is a fundamental soil property for multiple applications in environmental and earth sciences. Knowing its

spatial distribution allows for a better understanding of the response of soil conditions to changes in the environment, such as

land use. This paper describes the technical development of Colombia´s first texture maps, obtained via a spatial ensemble

of national and global digital soil mapping products. This work compiles a new database with 4,203 soil profiles, which were

harmonized at five standard depths (0-5, 5-15, 15-30, 30-60, and 60-100 cm) and standardized with additive log-ratio (ALR)5

transformation. A compilation of 83 covariates was developed and harmonized at 1 square kilometer of spatial resolution.

Ensemble Machine Learning (EML) algorithms (MACHISPLIN and landmap) were trained to predict the distribution of soil

particle-size fractions (PSF) (clay, sand, and silt), and a comparison with SoilGrids (SG) products was performed. Finally, a

spatial ensemble function was created to identify the smallest prediction errors between EML and SG. Our results in a digital

soil mapping framework signify
::
are

:
the first effort to build a national texture map (clay, sand, and silt fractions)

:::::
based

::
on

::::::
digital10

:::
soil

:::::::
mapping

::
in
:::::::::
Colombia. The results of ensemble

::::
EML

:
algorithms showed that their accuracies were very similar to the PSF

at each standard depth, and both were more accurate than SG. The largest improvement with the spatial ensemble was found

at the first layer (0-5 cm). EML predictions were frequently selected for each PSF and depth in the total area; however, SG

predictions were better when increasing soil depth in some specific regions. The final error distribution in the study area showed

that sand presented higher absolute error values than clay and silt fractions, specifically in eastern Colombia. The spatial15

distribution of soil texture in Colombia is a potential tool to provide information for water-related applications, ecosystem

services, and agricultural and crop modeling. However, future efforts need to improve aspects such as treating abrupt changes

in the texture between depths and unbalanced data. Our results and the compiled database (Varón-Ramírez and Araujo-Carrillo,

2022; Varón-Ramírez et al., 2022) provide new insights to solve some of the aforementioned issues.

Keywords: Soil Particle Fractions, Ensemble Machine Learning, Compositional Data, Soil Database.20

1 Introduction

Soil texture is defined by the proportion of particle-size fractions (PSF), called clay, silt, and sand (Richer-de Forges et al.,

2022). Soil texture is important to understand soil processes related to agriculture and the environment from the field to the

continental scale (Radočaj et al., 2020; Malone et al., 2021; Bönecke et al., 2021; Caubet et al., 2019). For example, soil texture
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is a fundamental soil property for characterizing soil productivity and soil fertility (Patel et al., 2021; Soropa et al., 2021). Soil25

texture plays a fundamental role in quantifying the capacity of soils to store carbon and retain the water required for plants

to grow (Dharumarajan and Hegde, 2020; Zhang and Hartemink, 2021). Additionally, the soil texture study must include two

principal statements: this soil property changes with depth increasing (Orton et al., 2016; Poggio and Gimona, 2017) and
::::
first,

it is compositional data, which means that PSF sum to 100% (%clay+%sand+%silt),
:
and this statement must be satisfied at

each location (Amirian-Chakan et al., 2019)
:
;
:::::::
second,

::
the

:::::::::
proportion

:::
of

:::
PSF

:::::
could

::::::
variate

::::::::
between

:::::::
horizons

:::::::::
depending

::
on

::::
soil30

::::::
forming

::::::
factors

::::::::::
interactions

::::::::::::::::::::::::::::::::::::::
(Orton et al., 2016; Poggio and Gimona, 2017).

Spatial predictions of soil properties (e.g., particle-size fractions proportion) or classes (e.g., soil textural class) across areas

where no soil data exist is the primary motivation of digital soil mapping (or pedometric mapping) (McBratney et al., 2003).

In digital soil mapping
::::::
(DSM), soil properties (continuous or categorical) for a specific soil depth and a given location in the

geographical space can be predicted as a function (e.g., empirical function) of the soil forming environment (climate, organisms,35

topography, geology, ecology, atmosphere, and human interventions to soils) (Grunwald et al., 2011). These environmental

prediction factors are commonly acquired from four primary sources: remote sensing, digital terrain analysis, climate, and

thematic maps (e.g., soil type, rock type). The use of prediction algorithms or models that can account for the spatial variability

of soil distribution is the basis of digital soil mapping
:::::
DSM (Wadoux et al., 2021a; Khaledian and Miller, 2020).

Predictions of quantitative soil properties (e.g., percentages of clay, silt, and sand) (Liu et al., 2020; Li et al., 2020) or the40

probability of presence/absence of a soil class (e.g., a soil textural class) (Ramcharan et al., 2018; Kaya and Başayiğit, 2022) are

represented on digital soil maps for a given soil depth and a specific period. These predictions or probabilities come
:::::::::
probability

:::::::
estimates

:::
are

:::::::
derived from the use of statistical models for supervised

:::::::::
supervised

::::::::
statistical

:::::::
learning (in the presence of training

data for a response variable)
:
or

:::::::::::
unsupervised

:
statistical learning (in the absence of a response variable) (James et al., 2013).

Statistical learning methods for supervised learning (e.g., for upscaling soil texture data using digital elevation models) can45

be applied to categorical (e.g., to solve classification problems) or numerical (to solve prediction problems) datasets (Bischl

et al., 2016). There are hundreds (if not thousands) of modeling approaches for solving regression and classification problems.

We could classify these methods into two modeling cultures: one assumes that a given stochastic data model generates the

data, and the other
::::::
another

:
uses algorithmic models and treats the data mechanism as unknown (Breiman, 2001). However, it

is not easy to classify the immense diversity of modeling approaches and their possible combinations. Therefore, the problem50

of model or algorithm selection to perform predictions in digital soil mapping
::::
DSM is an emergent research question.

Geostatistics and machine learning are the two principal forms of statistical learning in digital soil mapping - DSM (Hengl

and MacMillan, 2019). Geostatistics is a branch of statistics that deals with the values associated with spatial or spatial-

temporal datasets (Webster and Oliver, 2007). In contrast, machine learning is a computer-assisted branch of statistics that uses

algorithms developed to solve prediction problems (Witten et al., 2011). Machine learning models are commonly parameterized55

(selection of multiple modeling parameters) using multiple resampling techniques, such as cross-validation or bootstrapping

(Brenning, 2012). These resampling techniques allow the algorithm to ’learn’ from the data using the capacity of computers to

store results from multiple data configurations following the same statistical treatment. This computer-assisted learning allows

machine learning algorithms to reproduce the relationship between the response and the prediction factors in the statistical
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space and can be applied to soil datasets to generate digital soil maps. Machine learning algorithms can be roughly divided60

into four main groups: a) conventional machine learning based on trees, kernels, linear based
:
,
:
or probabilistic algorithms, b)

reinforcement learning algorithms, c) deep learning algorithms, and d) ensemble learning algorithms. These ensemble learning

algorithms extract
:::
The

:::::
latter

::::::
extracts

:
information from multiple modeling approaches and combine

:::::::
combines

:
them to create a

better solution for a given prediction problem (Yang, 2017).

Recent developments in ensemble learning efforts have demonstrated great potential for improving the accuracy and spatial65

detail of current estimates of soil functional properties across scales (Hengl et al. (2021); Wadoux et al. (2020); Llamas et al.

(2020)). Several experiences with the mapping of soil texture at different depths have been done: France (Mulder et al., 2016),

Scotland (Poggio and Gimona, 2017), Hungary (Laborczi et al., 2019), or China (Liu et al., 2020) are some examples. However,

few of them have used spatial ensemble techniques. One representative case was developed by Hengl et al. (2021) for the

continent of Africa at three depths (0, 20, and 50 cm) and 30 m spatial resolution. They produced predictions using two70

scale 3D ensemble machine learning (EML) framework
:::
and

:::::::
122,200

:::::::
training

::::::::
samples

:::::::::::::
(approximately); their study utilized

an improved predictive mapping framework: spatially-adjusted EML, that better accounts for spatial clustering of points. The

spatial cross-validation methodology was a special point of their work, obtaining the following RMSE for ≈ 122,200 training

samples: clay
:::::
RMSE

::::::
values

::
of

:
9.6%, sand 13.7%, and silt 8.9%

::
for

::::
clay,

:::::
sand,

:::
and

::::
silt,

::::::::::
respectively. Their results proved to

be more accurate than previous works, which is
:::
was attributable to the addition of higher resolution remote sensing images75

and Digital Terrain Parameters (DTM), the adoption of methodological improvements in hyper-parameter tuning, selection of

features, and implementation of ensemble models (Hengl et al., 2021).

Colombia has produced maps, either PSF or textural classes, at a national scale through conventional mapping and regional

scale using digital soil mapping
::::
DSM. On a national scale, these maps use a series of delineations based on qualitative soil

characteristics, called cartographic soil units (CSU). This studies have been produced in different periods: Cortés et al. (1982)80

(scale 1:5.000.000), IGAC (2003) (scale 1:500.000), and IGAC (2015) (scale 1:500.000). The map carried out by IGAC (2015)

represented the PSF through four textural groups of soils (very fine, fine, medium, and coarse) in a layer from 0 to 50 cm;

however, this methodology ignores the spatial variability inside the CSU. On a regional scale, Araujo-Carrillo et al. (2021)

used machine learning algorithms to show the spatial distribution of clay (%) and its prediction error. However, they ignore the

statement of compositional data of the soil texture, and their study just included the surface layer of the soil (0-20cm).85

In this work, first, we compared and tested two ensemble machine learning approaches applied to predict soil texture at

national scales in Colombia. Second, we compared our results with the global product SoilGrids (SG). Third, we built an en-

semble map developing a pixel-wise solution to identify the method with lower prediction error. We hypothesized that multiple

prediction algorithms could capture the spatial variability of soil texture differently because they treat the data in different ways

to solve prediction problems (e.g., using decision boundaries or probability thresholds or hypothesis of the empirical relation-90

ship between the response and the prediction factors). Understanding which prediction algorithms and approaches yield lower

error levels at the pixel level could benefit model selection efforts in digital soil mapping
::::
DSM.
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2 Methodology

Our workflow contains five significant steps: harmonization and transformation of soil data, selection of covariates, spatial

prediction with different algorithms, validation, and spatial ensemble. These sections will be discussed in detail below.95

2.1 Dataset

A total of 4,203 georeferenced (EPSG:4326) soil profiles were collected from Sistema de Información de Suelos de Lati-

noamérica y el Caribe - SISLAC, a soil information system developed by FAO (FAO, 2020), that all contained informa-

tion about soil particle-size fractions (PSF) (clay, sand, and silt
::::
PSF.

:::::
These

::::
PSF

:::
are

:::::::::
classified

::::::::
according

::
to

:::
the

::::::
United

::::::
States

:::::::::
Department

:::
of

:::::::::
Agriculture

:::::::
(USDA)

:::::::
system:

::::
clay

::::::::
(particles

::::::
smaller

::::
than

:::::
0.002

::::
mm

::
in

::::::::
diameter),

:::
silt

::::::::
(particles

::::
sizes

:::::
from

:::::
0.002100

::
to

:::
0.05

::::
mm

::
in

:::::::::
diameter),

:::
and

::::
sand

::::::::
(particles

::::
sizes

:::::
from

::::
0.05

::
to

::::
2.00

:::
mm

::
in

::::::::
diameter). The soil data covered five natural regions

(geographic division made based on climatic, vegetation, relief, and soil class conditions) and 31 districts of the continental

area of Colombia (Figure 1) (Rangel-Ch and Aguilar, 1995). The regions were: Caribean
:::::::::
Caribbean in the north, Pacific in the

west, Andean in the center (corresponding to the Andes Mountains), Orinoquia in the east, and Amazon in the south.

2.2 Data harmonization and transformation105

Dataset quality was ensured by: i) sum of PSF equals 100 % and ii) no overlapping sampling depth. PSF were harmonized

to five standard depths (0-5, 5-15, 15-30, 30-60, and 60-100 cm), following the vertical discretization in the GlobalSoilMap

specifications (Arrouays et al., 2014). The distribution of soil profiles by depth was: 4,203 at 0-5 cm, 4,201 at 5-15 cm,

4,153 at 15-30 cm, 3,974 at 30-60 cm, and 3,597 at 60-100 cm. The soil information for each depth was obtained using

a quadratic function of depth with equal areas (spline) (Bishop et al., 1999), through the mpspline function of the aqp110

package (Beaudette et al., 2013) of R version 4.0.3.

A D-part composition is an element where all its components are strictly positive real numbers, they stock relative informa-

tion, and these components must sum to 100% (Amirian-Chakan et al., 2019). In this way, soil texture is a 3-part composition,

which means that PSF sum to 100% (%clay+%sand+%silt), and this statement must be satisfied at each location. In order to

address this statement, PSF at each profile in standard depth were transformed based on additive log-ratio (ALR) transforma-115

tion (Aitchison, 1986). The properties of the transformations when applied to regionalized compositions were discussed by

Pawlowsky-Glahn and Olea (2004). ALR is commonly used for mapping soil PSF (Odeh et al., 2003; Poggio and Gimona,

2017; Wang et al., 2020; Li et al., 2020), preserving information about spatial correlation, showing a distribution more likely to

be closer to a normal distribution (Li et al., 2020), and maintaining the compositional aspect of the variables (Lark and Bishop,

2007).120
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Figure 1. Soil-sample points distribution at 0-5 cm depth (Left: training samples. Right: testing samples)

Let zi, i=1, 2, 3 (D) represent the clay, sand, and silt fractions, where D = 3 is the number of soil particle-size categories

and D− 1 = 2 is the number of transformations. ALR transformation is defined in equation 1, and the inverse transformation

to obtain the original values of clay, sand, and silt is defined in equation 2:

Trans_i= ln

(
zi
zD

)
, i= 1, 2, . . . , D− 1 (1)

zi =


exp (Trans_i)

1+
∑D−1

j=1 exp (Trans_j)
, i= 1, 2, . . . , D− 1

1
1+

∑D−1
j=1 exp (Trans_j)

, i=D
(2)125
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Where Trans_i is the transformed value, and zi is the original value. According to Poggio and Gimona (2017) and af-

ter verifying the possible selection of denominators (normality), this study used clay as the denominator variable. In this

way, Trans_1 = ln
(

sand
clay

)
and Trans_2 = ln

(
silt
clay

)
. The ALR transformation was implemented using the alr function in

Compositional package (Tsagris et al., 2022). The predictive
:::::::
predicted

:
results were back-transformed to the original PSF

values (clay, sand, and silt) using alrinv function.130

2.3 Soil covariates

Using ArcGIS
:::::::::::::
ESRI®ArcGIS™version 10.3, a total of 83 environmental covariates were selected to broadly reflect soil forming

factors, as described by McBratney et al. (2003):

Sa = f(s,c,o,r,p,a,n) (3)

where a soil attribute (Sa) is a function of other properties of the soil at a point (s), the climate (c), organisms (o), relief (r),135

parent material (p), age (a), and space (s) (Table 1). The pixel size of the environmental covariates was adjusted to 1 square

kilometer using two methods: nearest neighbor and bilinear interpolation. Then, a stack of covariates (collection of rasters)

was compiled for Colombia.

A recursive feature elimination (RFE) was run for each depth and transformation, using the function rfe of the caret

package (Kuhn et al., 2020). The RFE is an algorithm that implements a backward selection of covariates based on predictor140

importance ranking (Kuhn et al., 2020). The goal was to find a subset of covariates used to produce the most accurate model

possible. A regression matrix for each depth and transformation was built with the selected covariates, and this allowed extrac-

tion of the covariate values at the coordinates of each soil sample. With the regression matrix the dataset was divided using the

function createDataPartition of the caret package (Kuhn et al., 2020). This function generates a stratified random

split of the data and aims to create balanced splits of the data: a part for model training (75 %) (training samples in Figure 1)145

and another independent part for validation purposes (25 %) (testing samples in Figure 1) (Guevara et al., 2018).

2.4 Prediction models

The spatial distribution of the PSF at each of the five standard depths was modeled through Ensemble Machine Learning

(EML) algorithms in two R packages: MACHISPLIN (Brown, 2021) and landmap (Hengl, 2021). EML consists of var-

ious approaches based on different methodologies, including stacking methods, averaging methods, bagging, and boosting150

approaches (Zounemat-Kermani et al., 2021).

MACHISPLIN evaluates different combinations to predict the input data, weighing and evaluating the fit. MACHISPLIN

algorithm interpolates multivariate data through EML using six algorithms: boosted regression trees (BRT), neural networks

(NN), generalized additive model (GAM), multivariate adaptive regression splines (MARS), support vector machines (SVM),

and random forest (RF). This approach evaluates (via k-fold cross validation, where k=10) a method’s ability to predict the155

input data and ensembles of all combinations of the six algorithms weighting each from 0 to 1. The best model will have the

lowest Akaike information criterion with a correction for small sizes(AICc). After the best model is determined, the function
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No Factor Covariate Source
Scale or

resolution
Type Unit

1

Soil

(s)

Clay ratio Google Earth Engine

(2020)
30 m

Cont Dimensionless

2 Grain Size Index - GSI Cont Dimensionless

3-22

Alofana-Kaolinite, Kaolinite, Kaolinite-Alofana,

Kaolinite-Gibsite, Kaolinite-Integrated, Kaolinite-

Micas, Kaolinite-Montmorillonite, Kaolinite-Quartz,

Montmorillonite-Vermiculite, Montmorillonite-

Kaolinite, Altered-Quartz, Feldspars-Altered, Feldspars-

Amphiboles, Feldspars-Quartz, Feldspars-VolcanicGlass,

Quartz-Amphiboles, Quartz-Altered, Quartz-Feldspars,

Quartz-Micas, Quartz.

Soil map. IGAC (2015) 1:100,000 Bin -

23-28 Udic, Ustic, Udic - Aquic, Aquic - Udic, Aquic, Aridic Soil map. IGAC (2015) 1:100,000 Bin -

29
Climate

(c)

Precipitation Climatological database

1980 - 2011.

IDEAM (2015)

1,000 m

Cont Millimeters

30 Relative humidity Cont Percentage

31 Mean air temperature Cont Celsius degree

32
Organisms

(o)

Pastures, Heterogeneous agriculture, Shrubs,

Forests, Permanent crops

Corine Land Cover

Classification 2010–2012.

IDEAM (2014)

1:100,000 Bin -

37 NDVI - index Google Earth Engine

(2020)
30 m

Cont Dimensionless

38-39 Averages Band 6 and Band 7 - Landsat 8 Cont Dimensionless

40-54

Relief

(r)

Saladares, Mesas, Hills, Glacis, Terraces, Filas - vigas,

Slopes, Fans, Crest, Vallecitos, Hogback, Flood Plan,

Dunes, Rocky Glacis, Flattening.

Soil map. IGAC (2015) 1:100,000 Bin -

55 Elevation

SRTM (2000) 90 m

Cont Meter

56 Aspect Cont Degree

57 Curvature Cont Dimensionless

58 Drainage Distance Cont Meter

59 Slope Cont Degree

60 Terrain Ruggedness Index - TRI Cont Dimensionless

61 Topographic Wetness Index - TWI Cont Dimensionless

62 Valley Depth Cont Meter

63-68

Parental

material

(p)

Alluvial Deposits, Colluvial Deposits,

Volcanic Ash, Igneous Rocks,

Sedimentary Rocks, Metamorphic Rocks

Soil map. IGAC (2015) 1:100,000 Bin -

69-78
Age

(a)

Andisols, Alfisols, Entisols, Mollisols, Inceptisols,

Oxisols, Ultisols, Histosols, Vertisols, Aridisols.
Soil map. IGAC (2015) 1:100,000 Bin -

79-83
Space

(n)
Oblique geographic coords 0.0π, 0.2π, 0.4π, 0.6π, 0.8π Møller et al. (2020) 1,000 m Bin Degree

Table 1. Environmental covariates by soil forming factor. Cont: Continuous; Bin: Binary
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runs the ensemble on the full dataset. Then, residuals are calculated and interpolated using a thin-plate-smoothing spline; this

creates a continuous error surface and is used to correct most of the residual errors in the final ensemble model (Brown, 2021).

The landmap algorithm applies the stacking ensemble type. Stacking (sometimes called stacked generalization or committee160

machine approach) learns in parallel , then
:::
and

:
fits a meta-model to predict ensemble estimates (Zhang and Ma, 2012). The

“
:
’meta-model” ’

:
is an additional model that combines all individual or “base learners”

:::::
’base

:::::::
learners’

:
(Hengl, 2021). The

landmap approach ensembles different machine learning algorithms, a fast implementation of RF (ranger), extreme gradient

boosting (xgboost), support vector machines (ksvm), neural networks (nnet), and generalized linear models (GLM) (with

Lasso or Elastic Net Regularization). The landmap package extends the functionality of the
::::::::
deprecated

:
mlr ’meta-package’165

::::
(now

:::::
mlr3) (Lang et al., 2019) and is based on super learner. It is a prediction method designed to find the optimal combination

of a collection of prediction algorithms, and its framework is built on the theory of cross-validation and allows for a general

class of prediction algorithms to be considered for the ensemble (Polley and Van der Laan, 2010).

The main difference between these two algorithms is the cross-validation; . MACHISPLIN randomly makes cross-validation,

while landmap makes spatial cross-validation. In the random process, the testing and training dataset would not be independent170

in this scenario, with the consequence that cross-validation fails to detect a possible overfitting (Lovelace et al., 2019). That

situation is performed by landmap, due it blocks some training points based on spatial dependence (it makes a semivariogram

model) to prevent producing biased estimations predictions (Hengl, 2021). However, Wadoux et al. (2021b) indicate that

spatial cross-validation methods may provide biased estimates of map accuracy, but standard cross-validation is deficient in

the case of clustered data. Additionally, MACHISPLIN constructs the best linear model, systematically assigning a weight175

for each algorithm and evaluating the fit of the ensemble algorithm. In contrast, landmap constructs the meta-model with the

predictions of the cross-validation (indicated in the method of ensemble).

2.5 Validation

The validation process had three steps: i) inclusion of SG layers, ii) calculation of map quality measures, and iii) identification

of the spatial distribution of the prediction error.180

In the first step, one aim of the work was to compare the spatial prediction of techniques mentioned in section 2.4 against

the products from SG Version 2.0 (Poggio et al., 2021). In this step, SG layers (250 m pixel size) of the PSF at each standard

depth were downloaded.

In the second step, the prediction errors, which is the difference between the predicted value and observed value (Brus

et al., 2011), were calculated for each testing sample. After that, were calculated some quantitative statistics: mean error (ME),185

root mean square error (RMSE), amount of variance explained (AVE), and concordance correlation coefficient (CCC). ME

measures bias in the prediction and is defined as the population mean of the prediction errors (Yigini et al., 2018), values close

to 0 indicate that the predictions are unbiased. RMSE is a measure of prediction accuracy, and a perfect model would have a

value ≈ 0 (Kempen et al., 2012). The AVE measures the fraction of the overall dispersion of the observed values that the model

explains, and this measure has an optimal value of 1 (Samuel-Rosa et al., 2015). Finally, the CCC measures the agreement of190
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predicted values with observed values (relationship 1:1), where 1 is a perfect concordance and 0 is no correlation (Lawrence

and Lin, 1989).

In the third step, the prediction errors were interpolated using ordinary kriging (OK), a widely used geostatistical technique

that assumes intrinsic stationarity (Webster and Oliver, 2007). This process was done for prediction errors of the three ap-

proaches (MACHISPLIN, landmap, and SG) in the five standard depths and each PSF. The layers obtained in this step were195

harmonized according to this study’s resolution and extent framework.

2.6 Spatial ensemble

The spatial ensemble maps and their ensemble errors were generated for each depth and PSF (Figure 2). First, with the error

prediction maps for each PSF, a mean absolute error (MAE) was calculated for each EML and SG. After, a spatial ensemble

function was created to perform a conditional evaluation using the prediction maps and their respective MAE; at each pixel,200

the function identified which model (EML or SG) had the minimum MAE and selected the predictions for clay, sand, and silt

of it. At last, an ensemble prediction error map was built for each PSF doing a mask by model selected and assigning their

respective prediction error (calculated in section 2.5). After, the map quality measures statistics were newly calculated.

Figure 2. Framework used for generating ensemble maps. PSF means: inputs or outputs for clay, sand, and silt

3 Results

This study represents the first effort to provide a national map of soil texture within the framework of
:::::
using

:
a
:

digital soil205

mapping
:::::::::
framework

::
in

::::::::
Colombia. This work used EML algorithms to improve the accuracy of national soil texture predictions,
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with a fully independent dataset, concerning the global product (SG). Also, it provided new insights for assessing the quality

and accuracy of global soil texture predictions. The main results are going to be shown in the following subsections.

3.1 Soil texture characterization and dataset

The textural classes for each sample point at five standard depths are shown in Figure 3. In most USDA textural classes, the210

dataset has soil samples. Sandy loam, loam, clay loam, sandy clay loam, and clay were the most frequent textural classes in all

standard depths, and silty and silty loam textural classes were less frequent. Also, it is easy to identify that, in the dataset, there

are not many soil samples with high content of clay and silt, while extreme contents of sand fraction are frequent.

Descriptive statistics are shown in Table 2 for PSF and its transformations (Trans_1 and Trans_2). The PSF covers the

entire range of measures (0 to 100 %), which is expected for national-scale analysis. The mean and median for sand fraction215

was higher than clay and silt fractions in all standard depths, indicating that sand is the dominant particle-size fraction
::::
PSF

in Colombian soils. The standard deviation grows
::::
grew

:
for all fractions in the deepest layers; sand content was the fraction

with the highest variation in all depths. These results suggest that sand fraction has the highest variability in the PSF for

Colombian soils, which rises with increasing depth. The skewness coefficients were positive and less than 1 for all textural

fraction datasets
::::::
dataset, and the sand fraction showed less deviation from the normal distribution, except for 60-100 cm layer.220

Regarding transformations, the ranges took values from negatives to positives with means around zero; this signifies that ALR

transformation improved the sand and silt distribution for all depths, except the sand in the first three layers.

3.2 Covariate selection

Ten recursive feature-elimination models were obtained, and individual covariate stacks were built for each transformation in

all standard depths. For each layer, covariates were selected for Trans_1 and Trans_2, respectively: 44 and 83 (0-5 cm), 54 and225

54 (5-15 cm), 59 and 83 (15-30 cm),
:
56 and 58 (30-60 cm), and 56 and 83 (60-100 cm) (Table 3). The top 5 covariates (Table

3) included soil forming factors: climatic (temperature, relative humidity, and precipitation), topographic (altitude, slope, and

presence of flood planes), parent material (presence of alluvial deposits), activity of organisms (bands 6 and 7 of Landsat 8)

and previous soil index information (Clay ratio and Grain Size Index). It is important to highlight that the covariates selection

had only two binary covariates (alluvial and flood plains).230

3.3 Soil texture predictions and SG products validation

Map quality measures are given in Table 4. Referring to ME, silt fraction was overestimated (positive ME), and clay and sand

fractions were underestimated (negative ME); this happened for all depths and EML algorithms, except clay in 60-100 cm layer.

For sand fraction, the bias values of landmap predictions were fewer than MACHISPLIN predictions. The ME values closets to

zero were found for clay in the deepest layer, suggesting unbiased predictions for both MACHISPLIN and landmap algorithms.235

Comparing MACHISPLIN and landmap, the RMSE values were similar for each PSF and depth. However, comparing RMSE

values between PSF, RMSE values for sand were always higher than clay and silt.
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Figure 3. Particle-size soil samples representation in a textural diagram for each standard depth. C: Clay, SC: Sandy clay, SCL: Sandy clay

loam, CL: Clay loam, SIC: Silt clay, SICL: Silt clay loam, L: Loam, SIL: Silt loam, SI: Silt, SL: Sandy loam, LS: Loamy sand, and S: Sand.

The AVE values were under 0.35. For all standard depths and algorithms, sand fraction had higher AVE values than clay and

silt, except in the 60-100 cm layer, where AVE values for clay were high
:::::
higher. In general, for MACHISPLIN and landmap,

the capacity of each model to explain the variance decreased when increasing depth; however, it is important to highlight the240

AVE values for silt fraction in 0-5 and 5-15 cm layers, which were so close to zero. On the other hand, the CCC values were

from 0.32 to 0.54. The CCC values for sand were higher than clay and silt in all cases. Also, the lowest CCC value between

standard depths was found in the deepest layer (60-100 cm), where the data set had fewer sample points than the superficial

layers. These results suggest that, for sand, the predicted and observed values agree more than the clay and silt fraction.

An evaluation of SG products with the dataset validation (the same used for EML validation) is shown in Table 4. About245

ME, the highest bias values were found for sand fraction, followed by clay and silt. For sand fraction, the estimations were

underestimated (negative ME) in all standard depths; in contrast, for clay and silt fractions, the estimations were overestimated

(positive ME), except by silt in 30 - 60
:::::
30-60

:
cm layer. These ME values were higher than EML predictions. Concerning
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Standard

depth (cm)

PSF and

transformations
Min Max Mean Median SD Kurtosis Skewness

5

Clay 0.02 95.07 27.88 25.17 17.23 0.43 0.82

Sand 0.13 99.19 42.69 42.00 22.45 -0.83 0.13

Silt 0.10 83.65 29.43 28.00 13.95 0.00 0.46

Trans_1 -6.06 7.68 0.44 0.50 1.44 1.20 -0.36

Trans_2 -6.33 7.87 0.14 0.15 0.89 4.19 -0.22

15

Clay 0.44 94.50 28.64 26.07 17.07 0.28 0.76

Sand 0.12 98.00 42.02 41.53 22.18 -0.83 0.17

Silt 1.00 81.74 29.33 28.00 13.61 0.00 0.47

Trans_1 -6.42 4.63 0.38 0.43 1.40 1.01 -0.40

Trans_2 -3.45 0.11 0.12 4.82 0.82 1.51 -0.26

30

Clay 0.29 94.78 30.47 28.40 17.75 -0.15 0.58

Sand 0.04 98.00 40.48 38.53 22.62 -0.82 0.27

Silt 0.36 76.76 29.05 27.34 13.75 0.05 0.55

Trans_1 -6.83 5.83 0.27 0.27 1.45 1.05 -0.32

Trans_2 -3.84 3.33 0.04 0.05 0.83 1.00 -0.07

60

Clay 0.01 94.50 32.32 30.10 19.16 -0.47 0.45

Sand 0.03 99.86 39.10 36.08 23.67 -0.79 0.38

Silt 0.05 90.13 28.58 26.13 14.61 0.15 0.66

Trans_1 -7.47 9.14 0.16 0.14 1.60 1.53 -0.20

Trans_2 -4.67 6.78 -0.03 -0.05 0.93 1.84 0.21

100

Clay 0.06 97.07 32.76 30.71 19.70 -0.55 0.41

Sand 0.01 99.80 38.57 34.76 24.38 -0.72 0.46

Silt 0.14 87.50 28.67 26.24 15.40 0.33 0.71

Trans_1 -8.43 7.35 0.13 0.08 1.64 1.22 -0.16

Trans_2 -4.25 4.19 -0.05 -0.07 0.94 1.04 0.14
Table 2. Descriptive statistics of PSF and its transformations for each standard depth. Min: minimum; Max: maximum; SD: standard deviation

RMSE values, the sand fraction had higher values than the clay and silt fraction, and the RMSE increased with increasing

depth. For AVE, negative and close to zero values were found in all standard depths and fractions (-0.27 to -0.08). Similarly,250

the CCC values were close to zero (0.04 to 0.16), and the highest values were obtained for sand and silt fraction in the three

most superficial layers.

In Figure 4 , there is a visual comparison of our results and SG products. In this representation, we can see some aspects:

first, the ranges of the predicted values are wider for MACHISPLIN and landmap than SG (low contrast of colors). Second, the

general pattern of PSF distribution is different between our results and SG products. Principally, in the Andean and Caribean255
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Standard

depth (cm)
Variable

Covs

selected
RMSE Top 5 Covs selected

5
Trans_1 44 1.21 TEM, RH, PPT, Altitude, L8 b7

Trans_2 83 0.76 TEM, RH, PPT, Altitude, Alluvial

15
Trans_1 54 1.17 TEM, Altitude, RH, PPT, Clay ratio

Trans_2 54 0.74 TEM, RH, PPT, GSI, Altitude

30
Trans_1 59 1.24 TEM, RH, Altitude, Flood plane, PPT

Trans_2 83 0.73 Alluvial, PPT, RH, TEM, Altitude

60
Trans_1 56 1.34 RH, TEM, PPT, Altitude, Slope

Trans_2 58 0.82 L8 b6, PPT, Alluvial, RH, Clay ratio

100
Trans_1 56 1.34 PPT, RH, TEM, Altitude, L8 b6

Trans_2 83 0.84 L8 b6, PPT, GSI, Alluvial, Clay ratio
Table 3. Top 5 covariates selection for each transformation and standard depth. TEM: temperature, RH: relative humidity, PPT: precipitation,

L8 b7: Landsat 8 band 7, L8 b6: Landsat 8 band 6, GSI: Grain Size Index.

::::::::
Caribbean

:
regions, our results suggest that these areas have higher values of sand (blue colors) than clay and silt fractions,

while SG suggests soils with more content of clay and silt (orange and green colors); also, in Orinoquia region, our results

show soils with high content of silt (green colors) and SG displays soils with more content of clay and sand (purple colors).

Third, in the southern and eastern areas, the SG products do not have artifacts generated for the prediction of the algorithms;

this is an advantage of SG products.260

3.4 Spatial ensemble

Figure 4 to 8
:
5

::
to

:
9
:
display the final spatial ensemble maps for each PSF, which contain their final error and the model selected

for each pixel at each standard depth. The spatial ensemble, which, as described above, is a collection of best-fit data from 3

different algorithms (MACHISPLIN, landmap, and SG), contained common elements/features in most standard depths.

In all standard depths, predictions of MACHISPLIN (Yellow
:::::
yellow

:
color) and landmap (Green

:::::
green color) represented the265

PSF distribution more than SG (Gray
:::
gray

:
color). The SG selection increased with depth, especially in 60-100 cm layer. The

most significant areas where SG had the fewest prediction errors were in Orinoquia and Amazon regions. Similar to SG, the

landmap predictions were frequently selected in the deepest layers overall in the southern areas of Colombia. MACHISPLIN

predictions were most commonly chosen in extensive and continuous areas , such as Orinoquía
::::::
chosen

::
in

:::
the

:::::
areas

::::
with

:::
the

:::::
lowest

::::::
sample

:::::::
density

:::::::::
(Orinoquia and Amazon regions

:
).270

Concerning PSF distribution, sand fraction had the highest variation in the geographical space in all depths. The highest

mountains in the central areas, the Sierra Nevada in the northern, and the hills in the eastern areas had a significant content

of sand; in contrast, the finest fractions (clay and silt) were found principally
::::::
mainly in valley landscapes between mountain

chains in central areas of Colombia and hill landscape in the eastern areas.
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Depht

(cm)

Method MACHISPLIN landmap SoilGrids

Size Fraction Clay Sand Silt Clay Sand Silt Clay Sand Silt

0 - 5

ME -0.96 -0.72 1.68 -1.88 -0.06 1.94 2.62 -8.86 2.45

RMSE 15.00 18.57 11.96 15.38 19.09 13.94 18.48 24.54 14.92

AVE 0.28 0.35 0.28 0.24 0.31 0.02 -0.10 -0.14 -0.13

CCC 0.42 0.51 0.43 0.40 0.54 0.36 0.08 0.14 0.12

5 - 15

ME -0.34 -0.71 1.05 -0.90 -0.47 1.37 2.16 -8.35 1.73

RMSE 14.24 17.82 11.30 14.77 19.01 13.62 18.41 23.93 14.55

AVE 0.32 0.36 0.30 0.27 0.27 -0.01 -0.14 -0.15 -0.16

CCC 0.46 0.53 0.46 0.43 0.54 0.36 0.06 0.13 0.12

15 - 30

ME -0.48 -1.03 1.50 -0.76 -0.47 1.23 2.50 -7.89 1.54

RMSE 15.75 19.02 11.76 15.83 18.93 11.75 18.64 24.43 14.38

AVE 0.23 0.32 0.29 0.22 0.32 0.29 -0.08 -0.13 -0.06

CCC 0.37 0.48 0.44 0.38 0.51 0.46 0.09 0.12 0.16

30 - 60

ME -0.04 -0.78 0.82 -0.08 -0.76 0.84 3.55 -6.98 -0.01

RMSE 17.11 20.68 13.13 17.08 20.87 13.30 20.54 25.15 15.70

AVE 0.23 0.26 0.25 0.23 0.24 0.23 -0.11 -0.10 -0.08

CCC 0.36 0.42 0.39 0.38 0.43 0.39 0.07 0.09 0.09

60 - 100

ME 0.01 -3.16 3.15 0.05 -2.87 2.82 3.17 -9.83 1.12

RMSE 17.29 21.89 14.09 17.53 22.36 14.24 21.44 27.67 16.39

AVE 0.24 0.20 0.14 0.21 0.17 0.12 -0.17 -0.27 -0.16

CCC 0.36 0.38 0.31 0.37 0.38 0.34 0.07 0.03 0.08
Table 4. Map quality measures of each algorithm for PSF in five standard depths. ME: Mean Error; RMSE: Root Square Mean Error; AVE:

Amount of variance Explained; CCC: Concordance Correlation Coefficient. These map quality measures are based on the validation dataset.

The external validation
::
for

:::
the

::::::
spatial

::::::::
ensemble

:::::
maps

:
showed an improvement in their metrics vs. using a single algorithm275

::
the

:::::
maps

:::::
using

:::::
EML

::::::::
algorithm

::
or

::::
SG

::::::
product

:
(Table 5). The ME values were closer to zero, showing an improvement in the

prediction; however, in this ensemble model, predictions of silt fraction had the highest bias, which is a different behavior

of EM
:::::
EML

:::::::::
algorithms

:::::::::::::
(MACHISPLIN

::::
and

::::::::
landmap), where sand fraction had the most biased predictions. RMSE values

decreased for all PSF and standard depths, which means a raising in the precision of the map. On the other hand, AVE values

increased with the spatial ensemble model; interesting that the AVE values for silt fraction at 0 - 5 and 5 - 15
::
0-5

::::
and

::::
5-15 cm280

were higher compared to landmap predictions (Table 4); also the sand fraction had the most betterment respect to clay and silt

fraction. Concern to CCC values, these are still equal to or higher than individual algorithms.
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Figure 4. Color composite map of soil texture fractions predictions at two depths: 0-5 and 5-15 cm
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Figure 5. Ensemble model, percentage-error distribution, and best model selected at 0-5 cm
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Figure 6. Ensemble model, percentage-error distribution, and best model selected at 5-15 cm
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Figure 7. Ensemble model, percentage-error distribution, and best model selected at 15-30 cm
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Figure 8. Ensemble model, percentage-error distribution, and best model selected at 30-60 cm
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Figure 9. Ensemble model, percentage-error distribution, and best model selected at 60-100 cm
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Depth

(cm)
0 - 5 5 - 15 15 - 30 30 - 60 60 - 100

Size

Fraction
Clay Sand Silt Clay Sand Silt Clay Sand Silt Clay Sand Silt Clay Sand Silt

ME -0.92 -0.98 1.81 -0.31 -0.61 0.89 -0.44 -0.85 1.26 0.00 -0.85 0.82 0.03 -2.11 1.99

RMSE 14.30 17.14 12.61 13.87 16.94 11.45 15.54 18.55 11.60 16.88 20.32 13.10 17.26 21.74 13.86

AVE 0.34 0.44 0.19 0.35 0.42 0.28 0.25 0.35 0.31 0.25 0.28 0.25 0.24 0.21 0.17

CCC 0.47 0.60 0.42 0.49 0.58 0.45 0.39 0.51 0.46 0.38 0.44 0.40 0.37 0.38 0.31
Table 5. Summary of map quality measures for spatial ensemble model for PSF in five standard depths. ME: Mean Error; RMSE: Root Mean

Square Error; AVE:Amount of variance Explained; CCC: Concordance Correlation Coefficient. These map quality measures are based on

the validation dataset

4 Discussion

In this paper, we developed a new digital soil texture dataset that contains legacy soil data, environmental covariates, and

the first digital soil texture maps across Colombia. Colombia’s literature on machine learning applied to soil texture mapping285

is limited. We improved the accuracy and spatial resolution of previous conventional maps. While many studies focus on

mapping soil properties such as pH and organic matter, fewer studies focus on comparing and testing global approaches, such

as SoilGrids, for maximizing accuracy. Our results contribute to a national benchmark of the reliability of global predictions

compared to national predictions. We first discuss the general geography of soil texture across the country and compare and

discuss our findings with previous work.290

Colombia has a great diversity of soils, and their properties change with depth. In the five standard depths, soil texture in

Colombia has representation in all textural classes defined by Soil Survey Staff (2014). As depth increases, the soil texture is

finer, and the proportion of clay and silt rises. On the other hand, coarse soils are in central and northern areas, and these soil

textures hold with increasing depth. This high diversity of soil texture is due to the high number of interactions between soil

forming factors, particularly the great diversity of parent materials , within Colombia (IGAC, 2015; Araujo et al., 2017).295

Some topography and parent material covariates were the principal drivers in texture modeling. The focal areas with fine

and medium textures are found in the northwest (Floodplain
::::::::
floodplain

:
and land depressions), in central areas (Magdalena

River valley), in the west (Cauca River valley), in the south (Amazon region), and the east (Orinoquia region). All these

regions have specific soil forming factors, such as alluvial parent material deposited by one or many rivers, which are soil

fine-size fractions driver (Flórez, 2003)). On the other hand, medium and coarse textures are principally in the hillsides of300

mountain landscapes in central, southern, and southwestern regions. Mainly, these coarse soil textures are due to the presence

of sandstone, conglomerate sandstone, granites, and gneisses, among others, that have siliceous and quartz rocks (Catoni et al.,

2016), volcanic materials, and glacial clast (IGAC, 2015) that are in these areas. Despite the relationship between soil texture
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distribution, relief, and parent material covariates, only altitude (quantitative), slope (quantitative), alluvial (binary), and flood

plane (binary) covariates were present in the top 5 predictors for each standard depth.305

Although parental material is critical in the soil texture spatial distribution, the covariates selection identified that the climatic

covariates were more important (i.e. , TMED, RH, and PPT
::::::::::
temperature,

:::::::
relative

::::::::
humidity,

::::
and

::::::::::
precipitation). The covariates

used to describe the parental material were binary class variables; maybe the following exercises should include quantitative

variables to identify this soil forming factor, for example, using radar remote sensing (Niang et al., 2014) or based on the

spectral response in the visible and near-infrared spectrum (Vis-NIR), medium infrared (MIR), and Vis-NIR-MIR (Campbell310

et al., 2019). In the PSF predictions (in specific, the ALR components), the importance of the climatic covariates did not have

apparent changes with depth. The country’s climate conditions have led to relatively strong physical weathering in the soil

forming process (Osman, 2013). Due to the country’s location, it is influenced climatologically by the atmospheric circulation

of the Caribbean Sea, Pacific Ocean, the Amazon basin, and the orographic barrier of the three branches of the Andes Mountain

(Poveda, 2004). Furthermore, in this study, the variables were chosen to maximize the predictive power of the models, not their315

explanatory capabilities.

Colombia has not produced maps on PSF at a national scale with DSM products, but Colombia has developed soil surveys

through conventional mapping (IGAC, 2015); then, the textural soil distribution of Colombia presented in this study is not

directly comparable with previous national textural soil maps. Due to the methodology used in IGAC (2015), the depth studied

is different, the polygons delineated (CSU) have a unique value for an entire area, and CSUs are not an uncertainty value320

associated. These last two reasons are the primary use limitations in traditional soil surveys (Angelini et al., 2016). Despite

that, the maps produced by this study and those of the IGAC project show two significant areas with similar attributes. In the

northwest (Caribbean region) and southern (Amazon region), the IGAC study presents a fine group texture (clay between 40

and 60%), and this current result shows that levels of clay percentages in that clay range. However, there is a principal region

in the western (Orinoquia region), where the two results are very different. The previous result shows these areas with a coarse325

textural group, and this current result displays low percentages of sand fractions for 5-15, 15-30, and 30-60 cm depths. These

differences are due to the low soil sampling density, where there is just one observation, and in this current study, its nearest

predictions are driven by soil data.

Regarding map quality measures, RMSE had the highest values for the sand fraction. This is the same behavior found by

other studies that implemented different algorithms (geoestatistics and machine learning) (Poggio and Gimona, 2017; Laborczi330

et al., 2019; Liu et al., 2020); however, the joint statement in those studies was that, for sand fraction, the ranges were wider

and the SD was higher compared with clay and silt fraction. The CCC values for sand were higher than clay and silt in all cases,

and this is the same behavior found by Mulder et al. (2016) in France. Additionally, for all PSF, they found that the predictions

were less reliable for deepest layers; this is the same statement found in this work. Their map quality measures are better than

ours; however, the soil samples used in that work were between 28.000 and 3000, decreasing with increasing depth.335

The qualitative evaluation for SG at a global scale showed that coarse-scale patterns are well reproduced (Poggio et al.,

2021). Nevertheless, in a quantitative evaluation with Colombian soils, SG products cannot explain the variance (AVE values

negative), their predictions are not according (CCC
::::
with

:::
our

::::::::
validation

:::::::
dataset

:::::
(CCC

::
is

:::
not close to zero)with our validation
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dataset, and their RMSE values are significantly higher than ours. Liu et al. (2020) built a national map of silt in China, and

they compared their results with SG products through RMSE values. They found that their RMSE values were higher than340

the RMSE of SG, and in many specific areas, SG did not represent the local behavior of the PSF. In this way, we suggest,

for applications that need textural soil information at a national scale, to use our results obtained with individual algorithms

(MACHISPLIN and landmap) and the ensemble maps. However, it is important to stand out that in some areas of Orinoquia

and Amazon region, the SG had the fewest prediction error; these regions have
:::
had

:
in common that there is

:::
was

:
a low soil

sampling density.345

This work could identify the PSF’s better models, error trends, and prediction layers. However, in many areas, depths, and

textural fractions, the map quality measurements are low; for example, we desire to increase AVE and CCC values. The causes

can be many: the relations between some soil properties and landscape attributes are nonlinear, complex, or unknown, a concept

defined by Minasny and McBratney (2010). Linked to the aforementioned is the distribution of the soil samples. The study had

an unbalanced representation and spatial clustering; for example, the central zone (Andean region) was the most represented350

(bias towards potentially productive areas), while the east and southeast zones were the least represented, so many predictions

were largely controlled by point data, then, some large artifacts (e.g. lines and blocky outputs) are shown in these areas, a similar

case to that reported by Hengl et al. (2014). These artifacts are derived mainly from covariates related to satellite images, such

as bands 6 and 7 from Landsat 8, and its derivatives (Clay ratio and Grain Size Index). These four covariates were obtained from

Google Earth Engine with seam carving and had a significant importance in the recursive feature elimination
::::
RFE model and355

their score importance (overall in rfe
::::
RFE model) are between 10 and 14% respect to the best subset of covariates (Appendix

A1). Additionally, for agricultural studies, the use of this results will be straitened to the agricultural limit defined in Colombia,

places where the results do not have artifacts (Appendix A2).

In Colombia, DSM has great challenges to attend map-user’s requirements, such as soil texture predictions with uncertainty

improvements and soil maps with better spatial resolution. There are three principal strategies to improve predictions: treat-360

ment of unbalanced soil data, management of PSF transformations, and incorporation of new environmental covariates related

to soil texture drivers. Attending the first strategy is necessary to raise the soil database with available soil information from

other sources such as detailed soil surveys, soil degradation, and soil management studies made by national and governmental

institutions (e.g. IGAC, IDEAM, or UPRA); or obtaining the amount of each fraction from other kinds of soil analysis, such as

Visible Near InfraRed-Short of soil minerals (Lagacherie et al., 2020). Also, model-building processes by soil group (Kempen365

et al., 2009) or homosoil (Mallavan et al., 2010; Angelini et al., 2020; Malone et al., 2016) have been used to get pedologically-

plausible predictions in areas without high soil-sampling density. Other log-ratio transformations could be applied as a second

strategy to improve ALR transformation issues. For example, Wang and Shi (2017) indicated that in some datasets, the changes

in the denominator selection in Additive log-ratio transformation could represent different predictions and decrease the accu-

racy of the estimates; then, using centered log-ratio transformation, this issue could be avoided (Amirian-Chakan et al., 2019);370

also, data sets with zero values must be threatened with symmetry and isometric log-ratio transformation (Li et al., 2020).

Finally, as a third strategy, some qualitative and quantitative environmental covariates could buttress the predictors’ stack, such
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as depth to bedrock and soil horizons designations and thickness; also, to improve the visual quality of the results, a previous

covariate analysis
::::
could

:::
be

::::
used, such as , principal components (Hengl et al., 2014)

:
, or a smoothed strategy.

5 Conclusions375

We provided the first comparison of the PSF across Colombia between EML models (MACHISPLIN and landmap) and SG’s

existing soil texture maps. The study shows that the spatial distribution of soil texture prediction with national datasets was, on

average, 17% better (in terms of RMSE) using EML models than the SG products. Between MACHISPLIN and landmap, there

was no better EML model because the quantitative statistics were very similar. In function of the PSF, the spatial distributions

did not exhibit a fraction with better results. However, layers of 0-5, 5-15, and 15-30 cm obtained the best results, which380

indicate the effectiveness in the depths closest to the soil surface.

Another valuable contribution developed in this study was the implementation of the spatial ensemble of soil texture fractions

on a national scale and at different depths. This implementation identified the best result for each depth and each pixel. Although

the SG products had the worst quantitative statistics, in some areas of the country, these products performed well, mainly in

the south. However, with the spatial ensembled, the best composition of the models was possible.385

The spatial distribution of soil particle-size fractions can provide soil information for water-related applications, ecosystem

services, and agricultural and crop modeling. However, the results had limitations, especially with some artifacts in the southern

and eastern areas. Treatment of unbalanced soil data and incorporation of more appropriate environmental covariates are crucial

to improving accuracy in the future.

6 Code and data availability390

Dataset are available at: https://portal.edirepository.org/nis/mapbrowse?packageid=edi.746.2. This repository contains the data

set for each standard depth. For each sample point are shown PSF and ALR transformations (Trans_1 and Trans_2) (Varón-

Ramírez and Araujo-Carrillo, 2022).

Textural soil maps are available at: https://portal.edirepository.org/nis/mapbrowse?packageid=edi.972.3. In this repository

the users are going to find 9 raster stacks: PSF obtained with landmap and MACHISPLIN algorithms (2 stacks); PSF obtained395

from SG (1 stack); residual of the PSF predictions for landmap and MACHISPLIN algorithms and SG (3 stacks); and finally

PSF predictions obtained through spatial ensemble technique (3 stacks). All stacks contain information at 5 standard depths

(Varón-Ramírez et al., 2022)

Rproject scripts to reproduce the spatial ensemble procedure and models validation area are available at:

https://github.com/VimiVaron/Textural-maps-Colombia.git400
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Appendix A

A1 Importance of covariates in recursive feature elimination for Trans_1 and Trans_2 prediction

Depth (cm) Variable
Covariates

selected

Sum of

total score

GSI, Clay_ratio, L8_b6, L8_b7

Score Proportion (%)

0-5
Trans_1 44 501.1 67.8 13.5

Trans_2 83 451.0 58.3 12.9

5-15
Trans_1 54 549.8 66.5 12.1

Trans_2 54 494.7 68.8 13.9

15-30
Trans_1 59 704.1 67.9 9.6

Trans_2 83 692.0 75.9 11.0

30-60
Trans_1 56 629.7 64.8 10.3

Trans_2 58 651.2 78.2 12.0

60-100
Trans_1 56 564.5 60.0 10.6

Trans_2 83 593.0 70.6 11.9
Table A1. Representation of importance scores for satellite-derived covariates. GSI: Grain Size Index, L8 b7: Landsat 8 band 7, L8 b6:

Landsat 8 band 6.
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Appendix B

B1 Agricultural Frontier in Colombia

Figure B1. Compositional texture map (Clay, Sand, and Silt), integrated from 0 to 100 cm, in the agricultural frontier in Colombia.
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