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Abstract. Texture is a fundamental soil property for multiple applications in environmental and earth sciences. Knowing

its spatial distribution allows for a better understanding of the response of soil conditions to changes in the environment,

such as land use. This paper describes the technical development of Colombia´s first texture maps, obtained via
:
a
:
spatial

ensemble of national and global digital soil mapping products. This work compiles a new database with 4203
::::
4,203

:
soil

profiles, which were harmonized at five standard depths (5, 15, 30, 60, and 100
:::
0-5,

:::::
5-15,

::::::
15-30,

::::::
30-60,

:::
and

:::::::
60-100

:
cm)5

and standardized with additive log-ratio (ALR) transformation. A stack with
:::::::::
compilation

::
of

:
83 covariates was developed ,

including both quantitative and qualitative covariates, and
:::
and harmonized at 1 square kilometer of spatial resolution. The top

explanatory covariates were selected for each transformation in all standard depths through a recursive feature elimination.

Ensemble Machine Learning (EML) algorithms (MACHISPLIN and landmap) were trained to predict the distribution of soil

particle fractions (SPF
::::::::::
particle-size

:::::::
fractions

:::::
(PSF) (clay, sand, and silt), and a comparison with SoilGrids (SG) products was10

performed. Finally, a spatial ensemble function was created , which identified the fewest
::
to

:::::::
identify

:::
the

:::::::
smallest

:
prediction

errors between EML and SG, then selected the better of these algorithms for each pixel and standard depth
:
.
:::
Our

::::::
results

::
in

::
a

:::::
digital

:::
soil

::::::::
mapping

:::::::::
framework

::::::
signify

:::
the

::::
first

::::
effort

::
to
:::::
build

:
a
:::::::
national

::::::
texture

::::
map

:::::
(clay,

:::::
sand,

:::
and

:::
silt

::::::::
fractions). The results

of EML algorithms show that the accuracy of MACHISPLIN and landmap
:::::::
ensemble

:::::::::
algorithms

:::::::
showed

::::
that

::::
their

:::::::::
accuracies

were very similar in the SPF
::
to

:::
the

::::
PSF at each standard depth, and both were more accurate than SG. The amount of variance15

explained (AVE) was between 0.12 and 0.35 for EML, and -0.17 and -0.01 for SG; the concordance correlation coefficient

(CCC) was between 0.32 and 0.54 for EML, and 0.04 and 0.16 for SG. The best EML performance was found for the two

superficial layers (5 and 15 cm). The accuracy of the
::::::
largest

:::::::::::
improvement

::::
with

:::
the

:
spatial ensemble was higher compared

to the other algorithms at all standard depths, but the largest improvement was found at the first layer , where AVE values

increased between 0.04 and 0.13, and CCC values between 0.04 and 0.10
:::
(0-5

::::
cm). EML predictions were frequently selected20

for each PSF and depth in the total area; however, SG predictions were better when increasing soil depth in some specific

regionssuch as Orinoquía and Amazonía. The final error distribution in the study area showed that sand fraction presented

higher absolute error values than clay and silt fractions, specifically in eastern Colombia. The spatial distribution of soil texture

in Colombia is a potential tool to provide information for water related
:::::::::::
water-related applications, ecosystem services,

:
and

agricultural and crop modeling. However, some aspects must be attended in future efforts to accurately map soil texture; for25

example, the treatment of
:::::
future

:::::
efforts

:::::
need

::
to

:::::::
improve

::::::
aspects

::::
such

:::
as

::::::
treating

:
abrupt changes in the texture between depths
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, unbalanced data, and compositional data consistency in spatial ensemble products
::
and

::::::::::
unbalanced

::::
data. Our results and the

compiled database (??)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Varón-Ramírez and Araujo-Carrillo, 2022; Varón-Ramírez et al., 2022) provide new insights to solve

some of the aforementioned issues.
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1 Introduction

Soil texture is a complex variable characterized by the amount of clay
::::::
defined

:::
by

::
the

:::::::::
proportion

::
of

:::::::::::
particle-size

:::::::
fractions

::::::
(PSF),

:::::
called

::::
clay,

:::
silt, sand and siltsize particles forming soil aggregates. The spatial variability of soil properties and functions is a key

component of soil science research, because it allows to understand the response of soil conditions to global environmental or35

land use changes. Soil textural properties (e.g., particle size soil fraction and distribution) are specifically
:::
and

::::
sand

::::::::::::::::::::::::
(Richer-de Forges et al., 2022)

:
.
:::
Soil

::::::
texture

::
is important to understand soil processes related to agriculture and the environment from the field to the continental

scale (Radočaj et al., 2020; Malone et al., 2021; Bönecke et al., 2021; ?)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Radočaj et al., 2020; Malone et al., 2021; Bönecke et al., 2021; Caubet et al., 2019)

. For example, soil texture is a basic soil variable
::::::::::
fundamental

:::
soil

::::::::
property for characterizing soil productivity and soil fer-

tility (Patel et al., 2021; Soropa et al., 2021). Knowledge of soil texture spatial variability is also relevant for assessing soil40

health and developing strategies to reverse land degradation. Soil texture plays a fundamental role in quantifying the capac-

ity of soils to store carbon and to retain the water required for plants to grow (Dharumarajan and Hegde, 2020; Zhang and

Hartemink, 2021). Soil texture is directly measured by soil scientists collecting soil samples and performing soil textural

analysis in the field or in the laboratory. One common challenge for soil scientists or pedometricians is to accurately predict

soil texture (and other soil properties) across areas where no field samples have been collected in the past or at the global45

scale. At the national to continental scales, there is large uncertainty of current soil texture estimates mainly across large

regions and countries of the world where obtaining field soil samples to represent the spatial variability of soil texture is

difficult for multiple reasons such as limited funding or site inaccessibility.
::::::::::
Additionally,

:::
the

::::
soil

::::::
texture

:::::
study

::::
must

:::::::
include

:::
two

::::::::
principal

:::::::::
statements:

::::
this

:::
soil

:::::::
property

:::::::
changes

:::::
with

:::::
depth

::::::::
increasing

:::::::::::::::::::::::::::::::::::::::
(Orton et al., 2016; Poggio and Gimona, 2017)

:::
and

:
it
::
is

::::::::::::
compositional

::::
data,

:::::
which

::::::
means

:::
that

::::
PSF

::::
sum

::
to

:::::
100%

::::::::::::::::::
(%clay+%sand+%silt)

::::
and

:::
this

::::::::
statement

::::
must

:::
be

:::::::
satisfied

::
at

::::
each50

::::::
location

:::::::::::::::::::::::::
(Amirian-Chakan et al., 2019)

:
.

Soil texture estimates are available in different formats such as point data, polygon maps or digital soil maps (Poggio et al., 2021; Anderson et al., 2006; Batjes et al., 2017)

. Spatial predictions of soil properties (e.g., clay content
::::::::::
particle-size

::::::::
fractions

:::::::::
proportion) or classes (e.g., soil textural class)

across areas where no soil data exists is the main
::::
exist

::
is

:::
the

::::::
primary

:
motivation of digital soil mapping (or pedometric mapping)

(?)
::::::::::::::::::::
(McBratney et al., 2003). In digital soil mapping, soil texture

::::::::
properties

::::::::::
(continuous

::
or

::::::::::
categorical) for a specific soil depth55

and for a given location in the geographical space can be predicted as a function (e.g., empirical function) of the soil forming

or weathering environment (climate, organisms, topography, geology, ecology, atmosphere,
:
and human interventions to soils)
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(Grunwald et al., 2011). The available soil data collected in the field (e.g., content of sand, silt and clay particles) is used to train

algorithms or models in combination with gridded environmental information representing the soil weathering environment.

These layers of environmental information are then used as prediction factors for soil property data (continuous or categorical)60

extracted from soil samples collected at field. These environmental prediction factors
:::::
These

::::::::::::
environmental

:::::::::
prediction

::::::
factors

are commonly acquired from four main
:::::::
primary sources: remote sensing, digital terrain analysis, climate, and thematic maps

(e.g., soil type, rock type). The use of prediction algorithms or models that are able to
:::
can account for the spatial variability of

soil distribution is the basis of digital soil mapping , while the spatial support of prediction factors representing the soil forming

environment is the basis for generating digital soil maps
:::::::::::::::::::::::::::::::::::::::::
(Wadoux et al., 2021a; Khaledian and Miller, 2020).65

Digital soil maps are digital soil datasets that represent the continuous nature of soil variability. Predictions of quanti-

tative soil properties
::::
(e.g.,

::::::::::
percentages

:::
of

::::
clay,

::::
silt,

::::
and

:::::
sand)

:::::::::::::::::::::::::::
(Liu et al., 2020; Li et al., 2020) or the probability of pres-

ence/absence of a soil class (e.g., a soil textural class)
::::::::::::::::::::::::::::::::::::::::::
(Ramcharan et al., 2018; Kaya and Başayiğit, 2022) are represented on

digital soil maps for a given soil depth and for a specific periodof time. These predictions or probability estimates are derived

::::::::::
probabilities

:::::
come from the use of statistical models for supervised (at

:
in

:
the presence of training data for a response variable)70

or unsupervised statistical learning (in the absence of a response variable) (James et al., 2013). Statistical learning methods

for supervised learning (e.g., for upscaling soil texture data using digital elevation models) can be applied to categorical (e.g.,

to solve classification problems) or numerical (to solve prediction problems) datasets (Bischl et al., 2016). Currently, there

are literally
::::
There

:::
are

:
hundreds (if not thousands) of modeling approaches for solving regression and classification problems.

We could classify these methods in two main
:::
into

::::
two modeling cultures: one assumes that the data are generated by a given75

stochastic data model
::::::::
generates

:::
the

::::
data,

:
and the other uses algorithmic models and treats the data mechanism as unknown

(Breiman, 2001). However, it is difficult
::
not

::::
easy

:
to classify the large

:::::::
immense

:
diversity of modeling approaches and their

possible combinationsand therefore
:
.
::::::::
Therefore,

:
the problem of model or algorithm selection to perform predictions in digital

soil mapping is an emergent research question.

Geostatistics and machine learning are the two main
:::::::
principal

:
forms of statistical learning in digital soil mapping

:
-
:::::
DSM80

::::::::::::::::::::::::
(Hengl and MacMillan, 2019). Geostatistics is a branch of statistics that deals with the values associated with spatial or

spatial temporal datasets , whereas
:::::::::::::
spatial-temporal

:::::::
datasets

:::::::::::::::::::::::
(Webster and Oliver, 2007).

:::
In

:::::::
contrast,

:
machine learning is

a computer-assisted branch of statistics that uses algorithms developed to solve prediction problems . While geostatistics

relies on multiple assumptions about the spatial variability of the target variable, machine learning algorithms could be

considered as assumption-free models.
::::::::::::::::
(Witten et al., 2011)

:
. Machine learning models are commonly parameterized (selection85

of multiple modeling parameters) using multiple re-sampling
:::::::::
resampling

:
techniques, such as cross validation or bootstrapping

:::::::::::::
cross-validation

::
or

:::::::::::
bootstrapping

:::::::::::::::
(Brenning, 2012). These resampling techniques allow the algorithm to ’learn’ from the data

using the capacity of computers to store results from multiple data configurations following the same statistical treatment. This

computer-assisted learning allows machine learning algorithms to reproduce the relationship between the response and the

prediction factors in the statistical space , and can be applied to soil datasets to generate digital soil maps. Geostatistics has90

historically been the main statistical approach to the prediction problem of soil spatial variability and it is key to determining

the spatial structure of error estimates on digital soil maps. In recent decades, machine learning has also become a conventional
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approach for digital soil mapping of soil properties and classes. Machine learning algorithms can be roughly divided in
:::
into four

main groups: a) conventional machine learning based on trees, kernels, linear based or probabilistic algorithms, b) reinforce-

ment learning algorithms, c) deep learning algorithmsand e
:
,
:::
and

::
d) ensemble learning algorithms. The process of extracting95

information from the use of
:::::
These

::::::::
ensemble

:::::::
learning

:::::::::
algorithms

::::::
extract

::::::::::
information

::::
from

:
multiple modeling approaches and

combining
:::::::
combine

:
them to create a better solution for a given prediction problem . Machine learning and geostatistics are

valuable tools to extract new knowledge around the spatial variability of soil properties (e.g., soil texture) by the means of

digital soil mapping. These models and algorithms are rapidly evolving, with most developments or applications being in the

fields of artificial intelligence, pattern recognition and computer vision. Recent developments on geostatistics and
:::::::::::
(Yang, 2017)100

:
.

::::::
Recent

:::::::::::
developments

::
in

:
ensemble learning efforts have demonstrated great potential for improving the accuracy and spatial

detail of current estimates of soil functional properties across scales
:
(Hengl et al. (2021); Wadoux et al. (2020); Llamas et al.

(2020)
:
).
:::::::
Several

::::::::::
experiences

::::
with

:::
the

:::::::
mapping

::
of

::::
soil

::::::
texture

::
at

:::::::
different

::::::
depths

::::
have

::::
been

:::::
done:

::::::
France

:::::::::::::::::
(Mulder et al., 2016)

:
,

:::::::
Scotland

:::::::::::::::::::::::
(Poggio and Gimona, 2017),

::::::::
Hungary

::::::::::::::::::
(Laborczi et al., 2019),

::
or

:::::
China

:::::::::::::::
(Liu et al., 2020)

::
are

:::::
some

::::::::
examples.

::::::::
However,105

:::
few

::
of

:::::
them

:::::
have

::::
used

::::::
spatial

::::::::
ensemble

::::::::::
techniques.

::::
One

::::::::::::
representative

::::
case

::::
was

:::::::::
developed

:::
by

::::::::::::::::
Hengl et al. (2021)

:::
for

:::
the

:::::::
continent

:::
of

:::::
Africa

::
at

:::::
three

:::::
depths

:::
(0,

:::
20,

:::
and

:::
50

::::
cm)

:::
and

::
30

::
m
::::::
spatial

:::::::::
resolution.

There is a diversity of emerging research questions in digital soil mapping while coupling the available soil data with

the associated prediction factors in the statistical space. Some examples of these questions are: what is the right pixel size?

(Hengl, 2006) what are the best models and prediction factors? (Guevara et al., 2020). What is the sensitivity of models to110

the size of training data (Ng et al., 2020), or what are the best big-data management strategies for generating high-spatial

resolutionmaps across large areas (e. g., countries) ? (Shangguan et al., 2014) just to mention a few. Here, we compare and

test multiple machine learning approaches applied to predict soil texture datasets and provide a solution to identify the lowest

prediction bias of multiple soil texture predictions across the national scale of Colombia
::::
They

::::::::
produced

::::::::::
predictions

:::::
using

:::
two

:::::
scale

::
3D

:::::::::
ensemble

:::::::
machine

:::::::
learning

::::::
(EML)

::::::::::
framework;

::::
their

:::::
study

::::::
utilized

:::
an

::::::::
improved

::::::::
predictive

::::::::
mapping

::::::::::
framework:115

::::::::::::::
spatially-adjusted

::::::
EML,

:::
that

::::::
better

:::::::
accounts

:::
for

::::::
spatial

:::::::::
clustering

::
of

::::::
points.

::::
The

::::::
spatial

::::::::::::::
cross-validation

:::::::::::
methodology

::::
was

:
a
::::::
special

:::::
point

::
of

:::::
their

:::::
work,

::::::::
obtaining

:::
the

:::::::::
following

::::::
RMSE

:::
for

:::::::::
≈ 122,200

:::::::
training

::::::::
samples:

::::
clay

:::::
9.6%,

:::::
sand

::::::
13.7%,

::::
and

::
silt

::::::
8.9%.

:::::
Their

::::::
results

:::::::
proved

::
to

:::
be

:::::
more

:::::::
accurate

::::
than

::::::::
previous

::::::
works,

::::::
which

::
is
::::::::::

attributable
:::

to
:::
the

:::::::
addition

:::
of

::::::
higher

::::::::
resolution

::::::
remote

:::::::
sensing

::::::
images

::::
and

::::::
Digital

:::::::
Terrain

:::::::::
Parameters

:::::::
(DTM),

:::
the

::::::::
adoption

::
of

:::::::::::::
methodological

::::::::::::
improvements

:::
in

:::::::::::::
hyper-parameter

::::::
tuning,

::::::::
selection

::
of

:::::::
features,

::::
and

:::::::::::::
implementation

::
of

::::::::
ensemble

::::::
models

::::::::::::::::
(Hengl et al., 2021).120

Models or algorithms for digital soil mapping are evaluated using information criteria and bias indicators that are usually

estimated using resampling techniques, such as spatial and nonspatial cross validation (Wadoux et al., 2021b). Some of these

accuracy indicators are the root mean squared error, the mean absolute error, the explained variance or the concordance

correlation between observed and predicted values, among many others. Here, we use accuracy indicators to evaluate the

prediction capacity of multiple
::::::::
Colombia

::::
has

::::::::
produced

::::::
maps,

:::::
either

::::
PSF

:::
or

:::::::
textural

:::::::
classes,

::
at

::
a

:::::::
national

:::::
scale

:::::::
through125

::::::::::
conventional

::::::::
mapping

:::
and

:::::::
regional

::::
scale

:::::
using

::::::
digital

:::
soil

::::::::
mapping.

:::
On

:
a
:::::::
national

:::::
scale,

::::
these

:::::
maps

:::
use

::
a

:::::
series

::
of

::::::::::
delineations

:::::
based

::
on

:::::::::
qualitative

::::
soil

:::::::::::::
characteristics,

:::::
called

:::::::::::
cartographic

:::
soil

:::::
units

::::::
(CSU).

:::::
This

::::::
studies

::::
have

:::::
been

::::::::
produced

::
in

::::::::
different
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::::::
periods:

:::::::::::::::::
Cortés et al. (1982)

:::::
(scale

:::::::::::
1:5.000.000),

::::::::::::
IGAC (2003)

:::::
(scale

::::::::::
1:500.000),

::::
and

::::::::::::
IGAC (2015)

:::::
(scale

::::::::::
1:500.000).

::::
The

:::
map

:::::::
carried

:::
out

:::
by

::::::::::::
IGAC (2015)

:::::::::
represented

:::
the

::::
PSF

:::::::
through

:::::
four

::::::
textural

:::::::
groups

::
of

:::::
soils

:::::
(very

::::
fine,

::::
fine,

::::::::
medium,

::::
and

::::::
coarse)

::
in

:
a
:::::

layer
:::::
from

:
0
::
to
:::

50
::::
cm;

::::::::
however,

:::
this

:::::::::::
methodology

:::::::
ignores

:::
the

::::::
spatial

::::::::
variability

::::::
inside

:::
the

:::::
CSU.

:::
On

::
a

:::::::
regional130

::::
scale,

::::::::::::::::::::::::
Araujo-Carrillo et al. (2021)

::::
used machine learning algorithms to generate predictions of soil texture across Colombia.

Our objective is the development of a digital soil texturedataset across the country. We present a new dataset composed by

harmonized measurements of soil texture (n=4203)that we collect from multiple soil surveys. We harmonize the new dataset

with gridded environmental prediction factors and compare the accuracy of our predictions against global datasets. Finally, we

develop a pixel wise
::::
show

:::
the

::::::
spatial

::::::::::
distribution

::
of

::::
clay

::::
(%)

:::
and

:::
its

::::::::
prediction

:::::
error.

::::::::
However,

::::
they

::::::
ignore

:::
the

::::::::
statement

:::
of135

:::::::::::
compositional

::::
data

::
of

:::
the

::::
soil

::::::
texture,

::::
and

::::
their

:::::
study

:::
just

:::::::
included

:::
the

:::::::
surface

::::
layer

::
of

:::
the

::::
soil

::::::::
(0-20cm).

::
In

:::
this

::::::
work,

::::
first,

:::
we

::::::::
compared

::::
and

:::::
tested

::::
two

::::::::
ensemble

::::::::
machine

:::::::
learning

::::::::::
approaches

::::::
applied

:::
to

::::::
predict

:::
soil

:::::::
texture

::
at

::::::
national

::::::
scales

::
in

:::::::::
Colombia.

:::::::
Second,

::::
we

::::::::
compared

::::
our

:::::
results

:::::
with

:::
the

::::::
global

:::::::
product

::::::::
SoilGrids

:::::
(SG).

::::::
Third,

:::
we

::::
built

:::
an

::::::::
ensemble

::::
map

:::::::::
developing

::
a
:::::::::
pixel-wise

:
solution to identify the method with lower prediction bias of multiple soil texture

predictions as previously suggested (Gavilán-Acuña et al., 2021).140

::::
error.

:
We hypothesized that multiple prediction algorithms are able to

::::
could

:
capture the spatial variability of soil texture dif-

ferently , because they treat the data in different ways to solve prediction problems (e.g., using decision boundaries or probabil-

ity thresholds or hypothesis of the empirical relationship between the response and the prediction factors). Understanding which

are the prediction algorithms and approaches yield lower error levels at the pixel level could benefit model selection efforts in

digital soil mapping. The digital soil mapping dataset includes: a) point data to calibrate predictions in the form of a regression145

matrix, b) environmental prediction factors for soil texture and c) digital soil texture maps and their associated uncertainty.

Our model predictions improved the accuracy of global available estimates (e.g,. SoilGrids250m). The main implication of this

study is the opportunity to determine the geographical areas where our results improve the accuracy of previous estimates. The

digital soil texture dataset is publicly available at: doi:10.6073/pasta/6dded07af834834ee21a134b247507fd (?). The digital soil

texture maps across multiple soil depths are also available without restrictions at: doi:10.6073/pasta/91441b598d4480091cd7f86f5d3762bf150

(?). This work can have positive implications by increasing the quality of, quantity of and access to soil texture information

across Colombia.

2 Methodology

A total of five major stepswere performed by this work
:::
Our

::::::::
workflow

:::::::
contains

::::
five

::::::::
significant

:::::
steps: harmonization and transfor-

mation of soil data, adjustment and selection of covariates, spatial prediction with different algorithms, validation, and spatial155

ensemble.
::::
These

:::::::
sections

::::
will

::
be

::::::::
discussed

::
in
:::::
detail

::::::
below.

:

2.1 Dataset

A total of 4203
::::
4,203

::::::::::::
georeferenced

:::::::::::
(EPSG:4326)

:
soil profiles were collected from Sistema de Información de Suelos de Lati-

noamérica y el Caribe - SISLAC, a soil information system developed by FAO (FAO, 2020). Soil
:
,
:::
that

:::
all

::::::::
contained

::::::::::
information

5



::::
about

::::
soil particle-size fractions (PSF) such as (clay, sand, and siltwere collected, including geographical coordinates (EPGS:160

4326). The soil data covered five natural regions (geographic division made based on climatic, vegetation, reliefand soil classes

:
,
:::
and

:::
soil

::::
class

:
conditions) and 31 districts of the continental area of Colombia (Fig. 1)

:::::
Figure

::
1)

::::::::::::::::::::::::::
(Rangel-Ch and Aguilar, 1995)

. The regions wereCaribbean
:
:
::::::::
Caribean in the north, Pacific in the west, Andean in the center (corresponding to the Andes

Mountains), Orinoquia in the east, and Amazon in the south(Rangel-Ch and Aguilar, 1995).

Figure 1. Soil-sample points distribution at 5 standard depths in Colombia
:::
0-5

::
cm

:::::
depth

::::
(Left:

::::::
training

:::::::
samples.

:::::
Right:

:::::
testing

:::::::
samples)

2.2 Data harmonization and transformation165

Dataset quality was reviewed through consistency inspection. The inspection included two rules: PSF sum equal to
:::::::
ensured

:::
by:

:
i)
::::
sum

::
of

::::
PSF

:::::
equals

:
100 and no overlapping between horizons

::
%

:::
and

::
ii)

::
no

::::::::::
overlapping

::::::::
sampling

:::::
depth. PSF were transformed
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at
:::::::::
harmonized

:::
to five standard depths (5, 15, 30, 60, and 100

:::
0-5,

:::::
5-15,

:::::
15-30,

::::::
30-60,

:::
and

:::::::
60-100 cm), following the vertical

discretization as specified in the GlobalSoilMap specifications (?). That transformation wasconstructed
::::::::::::::::::
(Arrouays et al., 2014)

:
.
:::
The

::::::::::
distribution

::
of

:::
soil

:::::::
profiles

:::
by

::::
depth

:::::
was:

:::::
4,203

::
at

:::
0-5

:::
cm,

:::::
4,201

::
at
:::::
5-15

:::
cm,

:::::
4,153

::
at

:::::
15-30

::::
cm,

:::::
3,974

::
at

:::::
30-60

:::
cm,

::::
and170

:::::
3,597

::
at

::::::
60-100

:::
cm.

::::
The

::::
soil

::::::::::
information

:::
for

::::
each

:::::
depth

::::
was

:::::::
obtained

:
using a quadratic function of depth with equal areas

(spline) (Bishop et al., 1999), through the mpspline function of the aqp package
:::::::::::::::::::
(Beaudette et al., 2013) of R version 4.0.3.

PSF are compositional data and therefore require special treatment before spatial prediction. PSF at each
::
A

:::::
D-part

:::::::::::
composition

:
is
:::
an

::::::
element

::::::
where

::
all

:::
its

::::::::::
components

:::
are

::::::
strictly

::::::
positive

::::
real

:::::::
numbers,

::::
they

:::::
stock

::::::
relative

:::::::::::
information,

:::
and

:::::
these

::::::::::
components

::::
must

::::
sum

::
to

:::::
100%

:::::::::::::::::::::::::
(Amirian-Chakan et al., 2019).

::
In

::::
this

::::
way,

:::
soil

::::::
texture

::
is

:
a
::::::
3-part

:::::::::::
composition,

:::::
which

::::::
means

:::
that

::::
PSF

::::
sum175

::
to

:::::
100%

:::::::::::::::::::
(%clay+%sand+%silt),

:::
and

:::
this

:::::::::
statement

::::
must

::
be

:::::::
satisfied

::
at

::::
each

::::::::
location.

::
In

:::::
order

::
to

::::::
address

:::
this

:::::::::
statement,

::::
PSF

::
at

::::
each profile in standard depth were transformed based on additive log-ratio (ALR) transformation (Aitchison, 1986), instead of

other log-ratio transformations such as isometric, centered and symmetry. The properties of the transformations when applied to

regionalized compositions were discussed by Pawlowsky-Glahn and Olea (2004). ALR is commonly used for mapping soil PSF

(Odeh et al., 2003; Poggio and Gimona, 2017; Wang et al., 2020; ?)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Odeh et al., 2003; Poggio and Gimona, 2017; Wang et al., 2020; Li et al., 2020)180

, preserving information about spatial correlation
:
,
:::::::
showing

::
a
::::::::::
distribution

:::::
more

:::::
likely

::
to

:::
be

:::::
closer

:::
to

:
a
:::::::

normal
::::::::::
distribution

::::::::::::
(Li et al., 2020)

:
, and maintaining the compositional aspect of the variables (Lark and Bishop, 2007).

Let zi, i=1, 2, 3 (D) represent the clay, sand, and silt fractions, where D = 3 is the number of soil particle-size categories

. ALR and inverse ALR transformation are defined as
::::::::
D− 1 = 2

::
is
:::
the

:::::::
number

:::
of

:::::::::::::
transformations.

:::::
ALR

:::::::::::::
transformation

::
is

::::::
defined

::
in

:::::::
equation

::
1,
::::
and

:::
the

::::::
inverse

::::::::::::
transformation

::
to
::::::

obtain
:::
the

:::::::
original

:::::
values

:::
of

::::
clay,

::::
sand,

::::
and

:::
silt

::
is

::::::
defined

::
in

::::::::
equation185

:
2:

Trans_i= ln

(
zi
zD

)
, i= 1, 2, . . . , D− 1 (1)

zi =


exp (Trans_i)

1+
∑D−1

j=1 exp (Trans_j)
, i= 1, 2, . . . , D− 1

1
1+

∑D−1
j=1 exp (Trans_j)

, i=D
(2)

where
::::::
Where Trans_i is the transformed valueof ,

:::
and

:
zi by the ALR transformation. According with Poggio and Gimona (2017)

, in this study , clay was used
:
is

:::
the

:::::::
original

:::::
value.

:::::::::
According

:::
to

::::::::::::::::::::::
Poggio and Gimona (2017)

:::
and

:::::
after

::::::::
verifying

:::
the

:::::::
possible190

:::::::
selection

::
of

::::::::::::
denominators

::::::::::
(normality),

::::
this

:::::
study

::::
used

::::
clay

:
as the denominator variable.

::
In

:::
this

:::::
way,

:::::::::::::::::::
Trans_1 = ln

(
sand
clay

)
:::
and

:::::::::::::::::::
Trans_2 = ln

(
silt
clay

)
. The ALR transformation was implemented using the alr function in Compositional package

:::::::::::::::::
(Tsagris et al., 2022). The predictive results were back-transformed to PSF

::
the

:::::::
original

::::
PSF

:::::
values

:
(clay, sand, and silt) using

alrinv function.

2.3 Soil covariates195
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A
:::::
Using

:::::::
ArcGIS

::::::
version

:::::
10.3,

:
a
:
total of 83 environmental covariates were selected to broadly reflect soil forming factors, as

described by ?:
:::::::::::::::::::
McBratney et al. (2003):

:

Sa = f(s,c,o,r,p,a,n) (3)

where a soil attribute (Sa) is a function of other properties of the soil at a point (s), the climate (c), organisms (o), relief (r),

parent material (p), age (a), and space (s) (Table 1). The pixel size of the environmental covariates was adjusted to 1 square200

kilometer
:::::
using

:::
two

::::::::
methods:

::::::
nearest

::::::::
neighbor

:::
and

:::::::
bilinear

:::::::::::
interpolation. Then, a stack of covariates was created

:::::::::
(collection

::
of

::::::
rasters)

::::
was

::::::::
compiled for Colombia.

A recursive feature elimination (RFE) was run for each depth and transformation, using the function rfe of the caret

package
:::::::::::::::
(Kuhn et al., 2020). The RFE is an algorithm that implements backwards

:
a

::::::::
backward selection of covariates based on

predictor importance ranking (Kuhn et al., 2020). The goal was to find a subset of covariates that were used to produce the most205

accurate model possible. A regression matrix for each depth and transformation was built with the selected covariates, and this

allowed extraction of the covariate values at the coordinates of each soil sample. With the regression matrix the dataset was

divided using a bootstrapping technique (Kuhn et al. , 2020)
::
the

:::::::
function

::::::::::::::::::::::::
createDataPartition

::
of

:::
the

:::::::
caret

:::::::
package

:::::::::::::::
(Kuhn et al., 2020)

:
.
::::
This

:::::::
function

::::::::
generates

:
a
::::::::
stratified

:::::::
random

::::
split

::
of

:::
the

::::
data

:::
and

::::
aims

::
to
::::::
create

:::::::
balanced

:::::
splits

::
of

:::
the

::::
data:

a part for model training (75 %)
:::::::
(training

:::::::
samples

::
in

:::::
Figure

:::
1) and another independent part for validation purposes (25 %) (?)210

::::::
(testing

:::::::
samples

::
in

::::::
Figure

::
1)

::::::::::::::::::
(Guevara et al., 2018).

2.4 Prediction models

The spatial distribution of the PSF at each of the five standard depths was modeled through Ensemble Machine Learning

(EML) algorithms in two R packages: MACHISPLIN (Brown, 2021) and landmap (Hengl, 2021). EML consists of var-

ious approaches based on different methodologies, including stacking methods, averaging methods, bagging, and boosting215

approaches (Zounemat-Kermani et al., 2021).

MACHISPLIN evaluates different combinations from six algorithms to predict the input data, weighing and evaluating

the fit. The interp.rast function of the MACHISPLIN package interpolates noisy multi-variate
::::::::::::
MACHISPLIN

:::::::::
algorithm

:::::::::
interpolates

::::::::::
multivariate

:
data through EML using six algorithms: boosted regression trees (BRT), neural networks (NN), gener-

alized additive model (GAM), multivariate adaptive regression splines (MARS), support vector machines (SVM)
:
, and random220

forest (RF). Further, in MACHISPLIN the residuals of the final model are calculated from the full training datasetand these

values are interpolated using
::::
This

::::::::
approach

:::::::
evaluates

::::
(via

:::::
k-fold

:::::
cross

:::::::::
validation,

:::::
where

:
k
::::
=10)

:
a
::::::::
method’s

::::::
ability

::
to

::::::
predict

:::
the

::::
input

::::
data

:::
and

:::::::::
ensembles

:::
of

::
all

:::::::::::
combinations

:::
of

:::
the

:::
six

:::::::::
algorithms

::::::::
weighting

:::::
each

::::
from

::
0

::
to

::
1.

:::
The

::::
best

::::::
model

:::
will

:::::
have

:::
the

:::::
lowest

::::::
Akaike

::::::::::
information

::::::::
criterion

::::
with

:
a
:::::::::
correction

:::
for

:::::
small

::::
sizes

:::::::
(AICc).

::::
After

:::
the

::::
best

::::::
model

::
is

::::::::::
determined,

:::
the

:::::::
function

:::
runs

:::
the

::::::::
ensemble

:::
on

:::
the

:::
full

::::::
dataset.

:::::
Then,

::::::::
residuals

:::
are

:::::::::
calculated

:::
and

::::::::::
interpolated

:::::
using

:
a thin-plate-smoothing splines. This225

:::::
spline;

::::
this

:
creates a continuous error surface and is used to correct most of the residual errors in the final ensemble model

(Brown, 2021).
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Symbol SoilFormingfactor Number ofcovariates

s Soil 28 Soil index (Clay ratio and GSI). Sand and clay mineralogy.Moisture regime.Google Earth Engine, 2020Soil map, scale 1:100.000,

IGAC (2012)c Climate 3 1980 – 2011 annual mean precipitation, relative humidity, and average temperature.Climatological database, 1980

– 2011.IDEAM (2015)o Organisms 8 Land cover categories.NDVI, bands 6 and 7 from Landsat 8.Corine Land Cover Classification, scale

1:100.000, 2010–2012. IDEAM (2014)Google Earth Engine, 2020r Relief 23 Digital elevation model (derived parameters).Physiographic

landscape and topography.SRTM mission of 2000, at 90 m.Soil map, scale 1:100.000. IGAC (2012)p Parentalmaterial6 Lithology. Soil

map, scale 1:100.000.

IGAC (2012) a Age 10 Order of soils. Soil map, scale 1:100.000. IGAC (2012) n Space 5 Oblique geographic coordinates. Møller et al. (2020)

No Factor Covariate Source
Scale or

resolution
Type Unit

1

Soil

(s)

Clay ratio Google Earth Engine

(2020)
30 m

Cont Dimensionless

2 Grain Size Index - GSI Cont Dimensionless

3-22

Alofana-Kaolinite, Kaolinite, Kaolinite-Alofana,

Kaolinite-Gibsite, Kaolinite-Integrated, Kaolinite-

Micas, Kaolinite-Montmorillonite, Kaolinite-Quartz,

Montmorillonite-Vermiculite, Montmorillonite-

Kaolinite, Altered-Quartz, Feldspars-Altered, Feldspars-

Amphiboles, Feldspars-Quartz, Feldspars-VolcanicGlass,

Quartz-Amphiboles, Quartz-Altered, Quartz-Feldspars,

Quartz-Micas, Quartz.

Soil map. IGAC (2015) 1:100,000 Bin -

23-28 Udic, Ustic, Udic - Aquic, Aquic - Udic, Aquic, Aridic Soil map. IGAC (2015) 1:100,000 Bin -

29
Climate

(c)

Precipitation Climatological database

1980 - 2011.

IDEAM (2015)

1,000 m

Cont Millimeters

30 Relative humidity Cont Percentage

31 Mean air temperature Cont Celsius degree

32
Organisms

(o)

Pastures, Heterogeneous agriculture, Shrubs,

Forests, Permanent crops

Corine Land Cover

Classification 2010–2012.

IDEAM (2014)

1:100,000 Bin -

37 NDVI - index Google Earth Engine

(2020)
30 m

Cont Dimensionless

38-39 Averages Band 6 and Band 7 - Landsat 8 Cont Dimensionless

40-54

Relief

(r)

Saladares, Mesas, Hills, Glacis, Terraces, Filas - vigas,

Slopes, Fans, Crest, Vallecitos, Hogback, Flood Plan,

Dunes, Rocky Glacis, Flattening.

Soil map. IGAC (2015) 1:100,000 Bin -

55 Elevation

SRTM (2000) 90 m

Cont Meter

56 Aspect Cont Degree

57 Curvature Cont Dimensionless

58 Drainage Distance Cont Meter

59 Slope Cont Degree

60 Terrain Ruggedness Index - TRI Cont Dimensionless

61 Topographic Wetness Index - TWI Cont Dimensionless

62 Valley Depth Cont Meter

63-68

Parental

material

(p)

Alluvial Deposits, Colluvial Deposits,

Volcanic Ash, Igneous Rocks,

Sedimentary Rocks, Metamorphic Rocks

Soil map. IGAC (2015) 1:100,000 Bin -

69-78
Age

(a)

Andisols, Alfisols, Entisols, Mollisols, Inceptisols,

Oxisols, Ultisols, Histosols, Vertisols, Aridisols.
Soil map. IGAC (2015) 1:100,000 Bin -

79-83
Space

(n)
Oblique geographic coords 0.0π, 0.2π, 0.4π, 0.6π, 0.8π Møller et al. (2020) 1,000 m Bin Degree

Table 1.
:::::::::::
Environmental

::::::::
covariates

::
by

:::
soil

::::::
forming

:::::
factor.

:::::
Cont:

:::::::::
Continuous;

::::
Bin:

:::::
Binary
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Landmap
:::
The

::::::::
landmap

::::::::
algorithm

:
applies the stacking ensemble type. Stacking (sometimes called stacked generalization

or committee machine approach) learns in parallel, then fits a meta-model to predict ensemble estimates (Zhang and Ma,

2012). The “meta-model” is an additional model that basically combines all individual or “base learners” (Hengl, 2021).230

The train.spLearner function of the landmap package ensembles the following
::::::
landmap

::::::::
approach

:::::::::
ensembles

::::::::
different

machine learning algorithms:
:
, a fast implementation of RF (ranger), extreme gradient boosting (xgboost), support vector ma-

chines (ksvm), neural networks (nnet), and generalized linear models (GLM)
:
(with Lasso or Elastic Net Regularization(Cross

Validated Lambda)(cvglmnet)
:
). The landmap package extends

::
the

:
functionality of the mlr ’meta-package’ (Lang et al., 2019)

and is based in
::
on

:
super learner. It is a prediction method designed to find the optimal combination of a collection of prediction235

algorithms,
:
and its framework is built on the theory of cross-validation and allows for a general class of prediction algorithms

to be considered for the ensemble (Polley and Van der Laan, 2010).

The two packages share some machine learning algorithms : RF, NN, SVM; but other are different: BRT, GAM, and

MARS (in the case of MACHISPLIN ), and xgboost and cvglmnet (in the case of landmap ). There are other differences:

MACHISPLIN performs k-fold
::::
main

:::::::::
difference

:::::::
between

:::::
these

:::
two

:::::::::
algorithms

::
is
:::
the

:
cross-validation(k=10). The best model240

will have the lowest residual sum of squares during ;
:::::::::::::
MACHISPLIN

::::::::
randomly

::::::
makes

::::::::::::::
cross-validation,

:::::
while

:::::::
landmap

::::::
makes

:::::
spatial

:
cross-validation(Brown, 2021). While, landmap computes 5-fold cross-validation and then used to determine the meta-learner.

Nevertheless, cross-validation is spatial. Randomly splitting spatial data can lead to training points that are neighbors in space

with test points. Due to spatial autocorrelation, test .
:::

In
:::
the

:::::::
random

:::::::
process,

:::
the

::::::
testing

:
and training dataset would not be

independent in this scenario, with the consequence that cross-validation fails to detect a possible overfitting (Lovelace et al.,245

2019). That situation is performed by landmap, due it blocks some training points based on spatial proximity to prevent from

producing bias
:::::::::
dependence

:::
(it

:::::
makes

::
a
:::::::::::::
semivariogram

::::::
model)

::
to

:::::::
prevent

:::::::::
producing

::::::
biased

:::::::::
estimations

:
predictions (Hengl,

2021).
:::::::
However,

::::::::::::::::::::
Wadoux et al. (2021b)

::::::
indicate

::::
that

:::::
spatial

::::::::::::::
cross-validation

:::::::
methods

::::
may

:::::::
provide

::::::
biased

::::::::
estimates

:::
of

::::
map

:::::::
accuracy,

::::
but

:::::::
standard

:::::::::::::
cross-validation

::
is
::::::::

deficient
::
in

:::
the

::::
case

:::
of

:::::::
clustered

:::::
data.

:::::::::::
Additionally,

:::::::::::::
MACHISPLIN

:::::::::
constructs

:::
the

:::
best

:::::
linear

:::::::
model,

::::::::::::
systematically

::::::::
assigning

:
a
::::::
weight

:::
for

:::::
each

::::::::
algorithm

::::
and

:::::::::
evaluating

:::
the

::
fit

::
of

:::
the

:::::::::
ensemble

::::::::
algorithm.

:::
In250

:::::::
contrast,

:::::::
landmap

:::::::::
constructs

:::
the

::::::::::
meta-model

::::
with

::
the

::::::::::
predictions

::
of

:::
the

:::::::::::::
cross-validation

::::::::
(indicated

::
in

:::
the

::::::
method

:::
of

:::::::::
ensemble).

2.5 Validation

One
:::
The

:::::::::
validation

:::::::
process

::::
had

:::::
three

:::::
steps:

::
i)
::::::::
inclusion

:::
of

:::
SG

::::::
layers,

:::
ii)

::::::::::
calculation

::
of

:::::
map

::::::
quality

:::::::::
measures,

::::
and

:::
iii)

:::::::::::
identification

::
of

:::
the

:::::
spatial

::::::::::
distribution

::
of

:::
the

:::::::::
prediction

:::::
error.255

::
In

:::
the

:::
first

:::::
step,

:::
one

:
aim of the work was to compare the spatial prediction of techniques mentioned in section 2.4 against

the products from SoilGrids (SG )
::
SG

:
Version 2.0 (Poggio et al., 2021). SG layers

::
In

:::
this

::::
step,

:::
SG

::::::
layers

::::
(250

::
m

::::
pixel

:::::
size) of

the PSF at each standard depth were downloadedand resampled to the same spatial resolution as the environmental covariates.

After, external validation was performed in order to assess their quality, based on the prediction error (difference between

predicted and observed values). The quantitative statisticsused included the .
:

260
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::
In

::
the

::::::
second

:::::
step,

::
the

:::::::::
prediction

:::::
errors,

::::::
which

:
is
:::
the

:::::::::
difference

:::::::
between

::
the

::::::::
predicted

:::::
value

:::
and

::::::::
observed

::::
value

:::::::::::::::
(Brus et al., 2011)

:
,
::::
were

:::::::::
calculated

:::
for

:::::
each

::::::
testing

:::::::
sample.

:::::
After

::::
that,

:::::
were

:::::::::
calculated

:::::
some

::::::::::
quantitative

::::::::
statistics:

:
mean error (ME), root

mean square error (RMSE), amount of variance explained (AVE), and concordance correlation coefficient (CCC). ME mea-

sures bias in the prediction and is defined as the population mean of the prediction errors (Yigini et al., 2018). Values
:
,

:::::
values

:
close to 0 indicate that the predictions are unbiased. RMSE is a measure of prediction accuracy

:
,
:
and a perfect model265

would have a value ≈ 0 (Kempen et al., 2012). The AVE measures the fraction of the overall dispersion of the observed

values that is explained by the model , with
:::
the

::::::
model

::::::::
explains,

:::
and

::::
this

::::::::
measure

:::
has

:
an optimal value of 1 (Samuel-

Rosa et al., 2015). Finally, the CCC measures the level of agreement of predicted values with observed values (relationship

1:1)(Lawrence and Lin, 1989). These metrics were calculated for EML and SG layers. ,
::::::
where

:
1
::
is
::
a

::::::
perfect

::::::::::
concordance

::::
and

:
0
::
is

::
no

:::::::::
correlation

::::::::::::::::::::::
(Lawrence and Lin, 1989).

:
270

In the two EML algorithms and comparative dataset (SG)
::::
third

::::
step, the prediction errors were estimated with the validation

data at each depth. The prediction error was calculated at each point as the difference between the observed and the predicted

value (Brus et al., 2011). Each prediction error or independent residual was interpolated using ordinary kriging (OK), a widely

used geostatistical technique that assumes intrinsic stationarity (Webster and Oliver, 2007). These layers were obtained through

the automatic adjustment of the automap package (Hiemstra et al., 2009) and showed the approximated error tend of the275

estimations of each technique and depth.
::::
This

::::::
process

::::
was

::::
done

:::
for

:::::::::
prediction

:::::
errors

::
of

:::
the

::::
three

::::::::::
approaches

::::::::::::::
(MACHISPLIN,

:::::::
landmap,

::::
and

:::
SG)

::
in
:::
the

::::
five

:::::::
standard

::::::
depths

:::
and

::::
each

::::
PSF.

::::
The

:::::
layers

::::::::
obtained

::
in

:::
this

::::
step

::::
were

::::::::::
harmonized

::::::::
according

::
to
::::
this

::::::
study’s

::::::::
resolution

::::
and

:::::
extent

::::::::::
framework.

2.6 Spatial ensemble

The spatial ensemble was
::::
maps

:::
and

::::
their

::::::::
ensemble

:::::
errors

::::
were

:
generated for each depth from the results of the spatial modelling280

and its errors. The spatial ensemble was a function created that identified the best result for each depth and each pixel. The

created function performed
:::
and

::::
PSF

::::::
(Figure

::
2).

:::::
First,

::::
with

:::
the

::::
error

:::::::::
prediction

::::
maps

:::
for

::::
each

::::
PSF,

:
a
:::::
mean

:::::::
absolute

:::::
error

::::::
(MAE)

:::
was

:::::::::
calculated

::
for

:::::
each

::::
EML

::::
and

:::
SG.

:::::
After,

::
a
:::::
spatial

::::::::
ensemble

::::::::
function

:::
was

::::::
created

::
to
:::::::
perform

:
a conditional evaluation using

the maps of all the techniques
::::::::
prediction

:::::
maps and their respective errors, subsequently, for

:::::
MAE;

::
at each pixel, it

:::
the

:::::::
function

identified which model had the least error and selected it. In this way, a final
::::
(EML

:::
or

:::
SG)

::::
had

::
the

:::::::::
minimum

:::::
MAE

:::
and

:::::::
selected285

::
the

::::::::::
predictions

:::
for

::::
clay,

::::
sand,

::::
and

:::
silt

::
of

::
it.

::
At

::::
last,

::
an

::::::::
ensemble

:::::::::
prediction

::::
error

:
map was built with the best result including all

the created techniques. The quantitative
::
for

:::::
each

:::
PSF

:::::
doing

::
a

::::
mask

:::
by

:::::
model

:::::::
selected

::::
and

::::::::
assigning

::::
their

::::::::
respective

:::::::::
prediction

::::
error

:::::::::
(calculated

::
in

::::::
section

:::::
2.5).

:::::
After,

:::
the

::::
map

::::::
quality

::::::::
measures statistics were newly calculatedby the final calculated maps.

3 Results

The main product of this work is a group of maps that contains the PSF predictions for each standard depths. The predictions290

were made with EML algorithms , and these predictionswere compared with SG products. Additionally, a spatial ensemble

(with EML and SG)were constructed for each PSF in five standard depths. Following, the principal process steps
::::
This

:::::
study
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Figure 2.
:::::::::
Framework

:::
used

:::
for

::::::::
generating

:::::::
ensemble

:::::
maps.

:::
PSF

::::::
means:

:::::
inputs

::
or

:::::
outputs

:::
for

::::
clay,

::::
sand,

:::
and

:::
silt

::::::::
represents

:::
the

::::
first

::::
effort

::
to
:::::::
provide

:
a
:::::::
national

::::
map

::
of

::::
soil

:::::
texture

::::::
within

:::
the

:::::::::
framework

::
of

::::::
digital

:::
soil

::::::::
mapping.

::::
This

:::::
work

::::
used

::::
EML

:::::::::
algorithms

::
to
::::::::
improve

::
the

::::::::
accuracy

::
of

:::::::
national

::::
soil

::::::
texture

::::::::::
predictions,

::::
with

:
a
::::
fully

:::::::::::
independent

::::::
dataset,

::::::::::
concerning

:::
the

:::::
global

:::::::
product

:::::
(SG).

:::::
Also,

:
it
::::::::
provided

::::
new

:::::::
insights

:::
for

::::::::
assessing

:::
the

::::::
quality

:::
and

::::::::
accuracy

::
of
::::::

global
::::
soil

::::::
texture

::::::::::
predictions.295

:::
The

:::::
main

:::::
results

:
are going to be shown in the next

::::::::
following subsections.

3.1 Soil texture characterization and dataset

The textural classes for each sample point at 5
:::
five standard depths are shown in Fig. ??.

:::::
Figure

::
3.

:
In most USDA textural

classes, the dataset has soil samples. SL, L, CL, SCL and C
:::::
Sandy

:::::
loam,

:::::
loam,

::::
clay

:::::
loam,

:::::
sandy

::::
clay

:::::
loam,

::::
and

:::
clay

:
were the

most frequent textural classes in all standard depths, and SI and SIL textural classes ,
::::
silty

:::
and

::::
silty

:::::
loam

::::::
textural

::::::
classes

:
were300

less frequent. However, the silt-size particles increased in the deepest layers
::::
Also,

:
it
::
is
::::
easy

::
to

:::::::
identify

::::
that,

::
in

:::
the

::::::
dataset,

:::::
there

::
are

:::
not

:::::
many

::::
soil

:::::::
samples

::::
with

::::
high

::::::
content

::
of

::::
clay

::::
and

:::
silt,

:::::
while

:::::::
extreme

:::::::
contents

::
of

::::
sand

:::::::
fraction

:::
are

::::::::
frequent.

Descriptive statistics are shown in Table 2 for PSF and its transformations (Trans_1 and Trans_2). In all textural fractions,

the minimum contents were 1%or less for 5 standard depths and the maximum contents for silt fractions were less than clay
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and sand
:::
The

::::
PSF

:::::
covers

:::
the

:::::
entire

:::::
range

::
of

::::::::
measures

::
(0

::
to

::::
100

:::
%),

:::::
which

::
is

:::::::
expected

:::
for

::::::::::::
national-scale

:::::::
analysis. The mean and305

median for sand fraction was higher than clay and silt fractions in all standard depths. However, the differences between the

median for clay, sand and silt in the deepest standard depths were less than the most superficial. The SD ,
:::::::::

indicating
::::
that

::::
sand

:
is
:::
the

::::::::
dominant

:::::::::::
particle-size

:::::::
fraction

::
in

:::::::::
Colombian

:::::
soils.

:::
The

::::::::
standard

::::::::
deviation grows for all fractions in the last two depths

and
::::::
deepest

::::::
layers;

:
sand content was the fraction with highest SD

::
the

::::::
highest

::::::::
variation in all depths. Kurtosis coefficients were

negative for sand fraction in all depths and for the clay fraction in the last three depths; in contrast, for silt fractions, the kurtosis310

were always positive
::::
These

::::::
results

:::::::
suggest

:::
that

::::
sand

:::::::
fraction

:::
has

:::
the

:::::::
highest

::::::::
variability

::
in
:::

the
::::
PSF

:::
for

::::::::::
Colombian

::::
soils,

::::::
which

::::
rises

::::
with

:::::::::
increasing

:::::
depth. The skewness coefficients were positive and less than 1 for all textural fraction datasets. ,

::::
and

:::
the

::::
sand

::::::
fraction

:::::::
showed

::::
less

::::::::
deviation

::::
from

:::
the

::::::
normal

::::::::::
distribution,

::::::
except

:::
for

::::::
60-100

:::
cm

:::::
layer.

:::::::::
Regarding

::::::::::::::
transformations,

:::
the

:::::
ranges

::::
took

::::::
values

:::::
from

::::::::
negatives

::
to

:::::::
positives

:::::
with

:::::
means

::::::
around

:::::
zero;

::::
this

:::::::
signifies

:::
that

:::::
ALR

::::::::::::
transformation

:::::::::
improved

:::
the

::::
sand

:::
and

:::
silt

::::::::::
distribution

:::
for

::
all

::::::
depths,

::::::
except

:::
the

::::
sand

::
in

:::
the

::::
first

::::
three

::::::
layers.315

3.2 Covariate selection

The selection of the best covariate for each transformation was made, in all standard depths, using a recursive feature elimination

(rfe) algorithm (Table 3). Ten rfe
::
Ten

::::::::
recursive

::::::::::::::::
feature-elimination models were obtained,

:
and individual covariate stacks were

built for each transformation in all standard depths. For each standard depth
::::
layer, covariates were selected for Trans_1 and

Trans_2
:
,
::::::::::
respectively: 44 and 83 (5

::
0-5

:
cm), 54 and 54 (15

:::
5-15

:
cm), 59 and 83 (30

:::::
15-30

:
cm) 56 and 58 (60

::::
30-60

:
cm),320

and 56 and 83 (100
::::::
60-100 cm) (Table 3). The Top

:::
top 5 covariates for each selection

:::::
(Table

::
3)

:
included soil forming factors:

climatic (TEM, RH and PPT
::::::::::
temperature,

::::::
relative

::::::::
humidity,

::::
and

:::::::::::
precipitation), topographic (altitude, slope, and presence of

Flood Planes
::::
flood

::::::
planes), parent material (presence of Alluvial materials

::::::
alluvial

:::::::
deposits), activity of organisms (bands 6 and

7 of Landsat 8) and previous soil index information (Clay ratio and SGI). Only
:::::
Grain

::::
Size

::::::
Index).

::
It

::
is

::::::::
important

::
to

::::::::
highlight

:::
that

:::
the

::::::::
covariates

::::::::
selection

:::
had

::::
only two binary covariates (Alluvial and Flood Plains)were represented in this selection

::::::
alluvial325

:::
and

:::::
flood

:::::
plains).

3.3 Soil texture predictions and SG products validation

Boundary adjustment parameters of external validation
::::
Map

::::::
quality

:::::::
measures

:
are given in Table 4. Referring to ME, the highest

values were found in silt fraction , principally in the 100 cm layer with 3.16% and 2.82% for MACHISPLIN and landmap

algorithms, respectively. Clay and sand fractions for both algorithms showed negative MEvalues (underestimation), except330

for clay content in the 100
::
silt

:::::::
fraction

::::
was

::::::::::::
overestimated

:::::::
(positive

:::::
ME),

::::
and

::::
clay

:::
and

:::::
sand

:::::::
fractions

:::::
were

:::::::::::::
underestimated

:::::::
(negative

:::::
ME);

::::
this

::::::::
happened

:::
for

::
all

::::::
depths

::::
and

::::
EML

::::::::::
algorithms,

::::::
except

::::
clay

::
in

::::::
60-100

:
cm layer. Also, clay and sand in the

two deepest layers showed the closest to zero ME values
:::
For

::::
sand

:::::::
fraction,

:::
the

::::
bias

:::::
values

:::
of

:::::::
landmap

:::::::::
predictions

:::::
were

:::::
fewer

:::
than

:::::::::::::
MACHISPLIN

::::::::::
predictions.

::::
The

:::
ME

::::::
values

::::::
closets

::
to

::::
zero

::::
were

::::::
found

::
for

::::
clay

::
in
:::

the
:::::::

deepest
:::::
layer,

:::::::::
suggesting

::::::::
unbiased

:::::::::
predictions for both MACHISPLIN and landmap . For

:::::::::
algorithms.

:::::::::
Comparing

:
MACHISPLIN and landmap, the RMSE values335

were similar for each PSF and depth, with the lowest RMSE values found at 15 cm.
::::::::
However,

:::::::::
comparing

::::::
RMSE

::::::
values

:::::::
between

::::
PSF,

::::::
RMSE

:::::
values

:::
for

::::
sand

:::::
were

::::::
always

:::::
higher

::::
than

::::
clay

:::
and

:::
silt.
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Figure 3. Particle-size soil samples representation in a textural diagram for each standard depth. C: Clay, SC: Sandy clay, SCL: Sandy clay

loam, CL: Clay loam, SIC: Silt clay, SICL: Silt clay loam, L: Loam, SIL: Silt loam, S
::
SI: Silt, SL: Sandy Loam

:::
loam, LS: Loamy sand

:
, and

S: Sand.

The AVE values were from 0.12 to
:::::
under 0.35. For all standard depths and algorithms, sand fraction had higher AVE values

than clay and silt, except in the 60
:::::
60-100

:
cm layer, where AVE for sand and silt were equal. For MACHISPLIN algorithm,

the AVE decreased with increased depth. In contrast, for landmap algorithm, the behavior of AVE values were not correlated340

with depth
:::::
values

:::
for

::::
clay

::::
were

:::::
high.

::
In

:::::::
general,

:::
for

:::::::::::::
MACHISPLIN

:::
and

::::::::
landmap,

:::
the

::::::::
capacity

::
of

::::
each

::::::
model

::
to

:::::::
explain

:::
the

:::::::
variance

::::::::
decreased

:::::
when

:::::::::
increasing

:::::
depth;

::::::::
however,

:
it
::
is

::::::::
important

::
to

::::::::
highlight

:::
the

::::
AVE

::::::
values

:::
for

::
silt

:::::::
fraction

::
in

:::
0-5

::::
and

::::
5-15

::
cm

::::::
layers,

::::::
which

::::
were

::
so

:::::
close

::
to

::::
zero. On the other hand, the CCC values were from 0.32 to 0.54. The CCC values for sand

were higher than clay and silt for all depths and algorithms, and
::
in

::
all

::::::
cases.

:::::
Also, the lowest CCC value between standard

depths was found in the deepest layer (100 cm).
::::::
60-100

::::
cm),

::::::
where

:::
the

::::
data

:::
set

:::
had

:::::
fewer

::::::
sample

::::::
points

::::
than

:::
the

:::::::::
superficial345

:::::
layers.

::::::
These

:::::
results

:::::::
suggest

::::
that,

:::
for

::::
sand,

:::
the

::::::::
predicted

::::
and

:::::::
observed

::::::
values

:::::
agree

::::
more

::::
than

:::
the

::::
clay

:::
and

:::
silt

::::::::
fraction.
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Standard

depth (cm)

PSF and

transformations
Min Max Mean Median SD Kurtosis Skewness

5

Clay 0.02 95.07 27.88 25.17 17.23 0.43 0.82

Sand 0.13 99.19 42.69 42.00 22.45 -0.83 0.13

Silt 0.10 83.65 29.43 28.00 13.95 0.00 0.46

Trans_1 -6.06 7.68 0.44 0.50 1.44 1.20 -0.36

Trans_2 -6.33 7.87 0.14 0.15 0.89 4.19 -0.22

15

Clay 0.44 94.50 28.64 26.07 17.07 0.28 0.76

Sand 0.12 98.00 42.02 41.53 22.18 -0.83 0.17

Silt 1.00 81.74 29.33 28.00 13.61 0.00 0.47

Trans_1 -6.42 4.63 0.38 0.43 1.40 1.01 -0.40

Trans_2 -3.45 0.11 0.12 4.82 0.82 1.51 -0.26

30

Clay 0.29 94.78 30.47 28.40 17.75 -0.15 0.58

Sand 0.04 98.00 40.48 38.53 22.62 -0.82 0.27

Silt 0.36 76.76 29.05 27.34 13.75 0.05 0.55

Trans_1 -6.83 5.83 0.27 0.27 1.45 1.05 -0.32

Trans_2 -3.84 3.33 0.04 0.05 0.83 1.00 -0.07

60

Clay 0.01 94.50 32.32 30.10 19.16 -0.47 0.45

Sand 0.03 99.86 39.10 36.08 23.67 -0.79 0.38

Silt 0.05 90.13 28.58 26.13 14.61 0.15 0.66

Trans_1 -7.47 9.14 0.16 0.14 1.60 1.53 -0.20

Trans_2 -4.67 6.78 -0.03 -0.05 0.93 1.84 0.21

100

Clay 0.06 97.07 32.76 30.71 19.70 -0.55 0.41

Sand 0.01 99.80 38.57 34.76 24.38 -0.72 0.46

Silt 0.14 87.50 28.67 26.24 15.40 0.33 0.71

Trans_1 -8.43 7.35 0.13 0.08 1.64 1.22 -0.16

Trans_2 -4.25 4.19 -0.05 -0.07 0.94 1.04 0.14
Table 2.

::::::::
Descriptive

:::::::
statistics

::
of

:::
PSF

:::
and

::
its

::::::::::::
transformations

::
for

::::
each

::::::
standard

:::::
depth.

::::
Min:

::::::::
minimum;

::::
Max:

::::::::
maximum;

:::
SD:

:::::::
standard

:::::::
deviation

An evaluation of SG (250 m) products with the dataset validation (the same used for EML validation) was made, and is also

:
is
:
shown in Table 4. Negative MEvalues (underestimation) were found with a range between -8.28% to -6.21%

:::::
About

::::
ME,

:::
the

::::::
highest

::::
bias

:::::
values

:::::
were

:::::
found for sand fractionand positive values with range between 0.89% to 3.42% and 3.47% to 4.78%

for siltand clay , respectively. This ,
::::::::
followed

::
by

::::
clay

:::
and

::::
silt.

:::
For

::::
sand

:::::::
fraction,

:::
the

::::::::::
estimations

::::
were

:::::::::::::
underestimated

::::::::
(negative350

::::
ME)

::
in

::
all

::::::::
standard

::::::
depths;

::
in
::::::::

contrast,
:::
for

::::
clay

:::
and

:::
silt

::::::::
fractions,

::::
the

:::::::::
estimations

:::::
were

::::::::::::
overestimated

:::::::
(positive

:::::
ME),

::::::
except

::
by

:::
silt

::
in

:::
30

:
-
:::
60

:::
cm

:::::
layer.

:::::
These ME values were higher than EML predictions. In respect to

::::::::::
Concerning RMSE values,

:::
the

sand fraction had higher values than
::
the

:
clay and silt fractions

:::::::
fraction,

:
and the RMSE increased with increased depth, which
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Standard

depth (cm)
Variable

Covs

selected
RMSE Top 5 Covs selected

5
Trans_1 44 1.21 TEM, RH, PPT, Altitude, L8 b7

Trans_2 83 0.76 TEM, RH, PPT, Altitude, Alluvial

15
Trans_1 54 1.17 TEM, Altitude, RH, PPT, Clay ratio

Trans_2 54 0.74 TEM, RH, PPT, GSI, Altitude

30
Trans_1 59 1.24 TEM, RH, Altitude, Flood plane, PPT

Trans_2 83 0.73 Alluvial, PPT, RH, TEM, Altitude

60
Trans_1 56 1.34 RH, TEM, PPT, Altitude, Slope

Trans_2 58 0.82 L8 b6, PPT, Alluvial, RH, Clay ratio

100
Trans_1 56 1.34 PPT, RH, TEM, Altitude, L8 b6

Trans_2 83 0.84 L8 b6, PPT, GSI, Alluvial, Clay ratio
Table 3.

:::
Top

:
5
::::::::
covariates

:::::::
selection

::
for

::::
each

:::::::::::
transformation

:::
and

:::::::
standard

::::
depth.

:::::
TEM:

::::::::::
temperature,

:::
RH:

::::::
relative

:::::::
humidity,

::::
PPT:

::::::::::
precipitation,

::
L8

:::
b7:

::::::
Landsat

:
8
::::
band

::
7,

::
L8

:::
b6:

::::::
Landsat

::
8

::::
band

:
6,
::::
GSI:

:::::
Grain

:::
Size

:::::
Index.

was equal in EML predictions
:::::::::
increasing

:::::
depth. For AVE, negative and close to zero values were found in all standard depths

and fractions (-0.17 to -0.01), which were fewer than EML results
::::
-0.27

::
to

:::::
-0.08). Similarly, the CCC values were close to zero355

(0.04 to 0.16),
:
and the highest values were obtained for sand and silt fraction in the three most superficial layers.

::
In

::::::
Figure

::
4,

::::
there

::
is
::
a
:::::
visual

::::::::::
comparison

::
of

::::
our

:::::
results

::::
and

:::
SG

::::::::
products.

::
In

::::
this

::::::::::::
representation,

:::
we

::::
can

:::
see

:::::
some

:::::::
aspects:

::::
first,

:::
the

:::::
ranges

::
of

:::
the

::::::::
predicted

::::::
values

:::
are

:::::
wider

::
for

:::::::::::::
MACHISPLIN

:::
and

::::::::
landmap

:::
than

:::
SG

:::::
(low

::::::
contrast

::
of
:::::::
colors).

:::::::
Second,

:::
the

::::::
general

::::::
pattern

::
of

::::
PSF

::::::::::
distribution

::
is

:::::::
different

:::::::
between

::::
our

:::::
results

::::
and

:::
SG

::::::::
products.

::::::::::
Principally,

::
in

:::
the

::::::
Andean

::::
and

::::::::
Caribean

::::::
regions,

::::
our

::::::
results

::::::
suggest

::::
that

:::::
these

:::::
areas

::::
have

::::::
higher

::::::
values

::
of

::::
sand

:::::
(blue

::::::
colors)

::::
than

::::
clay

::::
and

:::
silt

::::::::
fractions,

:::::
while

::::
SG360

:::::::
suggests

::::
soils

::::
with

:::::
more

::::::
content

:::
of

::::
clay

:::
and

:::
silt

:::::::
(orange

:::
and

:::::
green

:::::::
colors);

::::
also,

:::
in

::::::::
Orinoquia

:::::::
region,

:::
our

::::::
results

::::
show

:::::
soils

::::
with

::::
high

::::::
content

:::
of

:::
silt

::::::
(green

::::::
colors)

:::
and

:::
SG

::::::::
displays

::::
soils

::::
with

:::::
more

:::::::
content

::
of

::::
clay

:::
and

:::::
sand

::::::
(purple

:::::::
colors).

::::::
Third,

::
in

::
the

::::::::
southern

:::
and

:::::::
eastern

:::::
areas,

:::
the

:::
SG

:::::::
products

:::
do

:::
not

::::
have

:::::::
artifacts

:::::::::
generated

::
for

:::
the

:::::::::
prediction

::
of

:::
the

::::::::::
algorithms;

:::
this

::
is
:::
an

::::::::
advantage

::
of

:::
SG

::::::::
products.

:

3.4 Spatial ensemble365

The Fig. 4, 5, 6, 7,
:::::
Figure

:
4
:::
to 8 display the final spatial ensemble maps for each PSF, which contain their final error and the

model selected at
::
for

:
each pixel at each standard depth. The spatial ensemble, which, as described above, is a collection of

best-fit data from 3 separate
:::::::
different algorithms (MACHISPLIN, landmap, and SG), contained common elements/features in

most standard depths.

The MACHISPLIN algorithm (Yellow colors) was the model with less percentages errors of clay at 5, 15, 30 and 100 cm ;370

at 60 cm, this algorithm was the best fit for both sand and clay. MACHISPLIN had representation in all natural regions, and
::
In

::
all

:::::::
standard

:::::::
depths,

:::::::::
predictions

::
of

:::::::::::::
MACHISPLIN

:::::::
(Yellow

:::::
color)

::::
and

:::::::
landmap

::::::
(Green

:::::
color)

::::::::::
represented

:::
the

::::
PSF

::::::::::
distribution
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::::
more

::::
than

:::
SG

:::::
(Gray

::::::
color).

::::
The

:::
SG

::::::::
selection

::::::::
increased

::::
with

:::::
depth,

:::::::::
especially

::
in

::::::
60-100

:::
cm

:::::
layer.

::::
The

::::
most

:::::::::
significant

:::::
areas

:::::
where

:::
SG

::::
had

:::
the

::::::
fewest

::::::::
prediction

::::::
errors

::::
were

::
in
:::::::::

Orinoquia
::::
and

:::::::
Amazon

:::::::
regions.

:::::::
Similar

::
to

::::
SG,

:::
the

:::::::
landmap

::::::::::
predictions

::::
were

:::::::::
frequently

:::::::
selected in the deepest layers . These

::::::
overall

::
in

:::
the

:::::::
southern

:::::
areas

::
of

:::::::::
Colombia.

:::::::::::::
MACHISPLIN

:
predictions375

were most commonly chosen in areas that were extensive and continuous
::::
areas, such as Orinoquía and Amazonía region for

sand at 60 cm and Caribe region for clay at 100 cm. At 30 cm layer, MACHISPLIS was the poor predictor for silt (less yellow

areas).
:::::::
Amazon

::::::
regions.

:

By the other hand, landmap (green colors) was the algorithm with less percentages errors of sand and silt at all standard

depths, except by the 60 cm, where this algorithm was the best predictor of clay. The landmap had representation in all natural380

regions. for silt at the deepest layers, landmap had areasthat were large and continuous; in contrast, for sand, landmap was

selected mostly in Orinoquia and Amazonía region.For clay at 5 cm, landmap was the less model selected
::::::::::
Concerning

::::
PSF

::::::::::
distribution,

::::
sand

:::::::
fraction

::::
had

:::
the

::::::
highest

::::::::
variation

:::
in

:::
the

:::::::::::
geographical

:::::
space

::
in
:::

all
:::::::
depths.

::::
The

::::::
highest

:::::::::
mountains

:::
in

:::
the

:::::
central

:::::
areas, and

:::
the

:::::
Sierra

:::::::
Nevada

::
in the areas were not continuous.

Concerning to SG (gray colors), with depth raising the SG selection increased, specially at 30
:::::::
northern,

:
and 100 cm layers.385

The largest areas that were represented by SG products are mainly in Orinoquía and Amazonía region for sandand silt; In

contrast, for clay , SG was chosen in continual areas in the country. This product had the fewest contribution in the most

superficial layers.
:::
hills

::
in

:::
the

::::::
eastern

:::::
areas

:::
had

:
a
:::::::::
significant

:::::::
content

::
of

::::
sand;

::
in
::::::::
contrast,

:::
the

::::
finest

::::::::
fractions

::::
(clay

::::
and

:::
silt)

:::::
were

:::::
found

:::::::::
principally

::
in

:::::
valley

:::::::::
landscapes

::::::::
between

::::::::
mountain

:::::
chains

::
in
::::::
central

:::::
areas

::
of

:::::::::
Colombia

:::
and

:::
hill

:::::::::
landscape

::
in

:::
the

::::::
eastern

:::::
areas.390

The external validation showed an improvement in their metrics vs. the use of
::::
using

:
a single algorithm (Table 5).

:::
The

::::
ME

:::::
values

:::::
were

:::::
closer

::
to

:::::
zero,

:::::::
showing

:::
an

:::::::::::
improvement

::
in

:::
the

::::::::::
prediction;

::::::::
however,

::
in

:::
this

:::::::::
ensemble

::::::
model,

:::::::::
predictions

:::
of

:::
silt

::::::
fraction

::::
had

:::
the

::::::
highest

::::
bias,

:::::
which

::
is
::
a

:::::::
different

:::::::
behavior

::
of

::::
EM,

::::::
where

::::
sand

:::::::
fraction

:::
had

:::
the

::::
most

::::::
biased

::::::::::
predictions. RMSE

values decreased for all PSF and standard depths, except for MACHISPLIN at 15 cm in silt fraction. By
:::::
which

:::::
means

::
a
::::::
raising

::
in

::
the

::::::::
precision

::
of

:::
the

:::::
map.

:::
On the other hand, AVE values increased with the spatial ensemble model; interesting that the

::::
AVE395

:::::
values

:::
for

:::
silt

::::::
fraction

::
at
::
0
:
-
:
5
::::
and

:
5
:
-
:::
15

:::
cm

::::
were

::::::
higher

::::::::
compared

::
to

:::::::
landmap

::::::::::
predictions

:::::
(Table

:::
4);

::::
also

:::
the sand fraction had

the most improvement
:::::::::
betterment respect to clay and silt fraction. Concern to CCC values, these still equal

::
are

::::
still

:::::
equal

::
to or

higher than individual algorithms, except by clay at 5 and 60 cm, and silt at 15 and 100 cm in MACHISPLIN. Finally, concern

to ME, these values were fewer than ME values of SG algorithm, however for MACHISPLIN and landmap the behavior of ME

increased and decreased randomly with the depth increase.
:
.400

4 Discussion

In this paper
:
, we developed a new digital soil texture dataset that contains legacy soil data, environmental covariates,

:
and the

first digital soil texture maps across Colombia. Soil texture is a key property required for many applications in environmental

sciences. Colombia’s literature on machine learning applied to soil texture mapping is limited. Our results are based on state

of the art ensemble learning. We improve
::
We

:::::::::
improved the accuracy and detail

:::::
spatial

:::::::::
resolution

:
of previous conventional405
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Depht

(cm)

Method
:::::
Method

:
MACHISPLIN landmap SoilGrids

PSF
:::
Size

::::::
Fraction

:
Clay Sand Silt Clay Sand Silt Clay Sand Silt

0 - 5

ME -1.00
:::
-0.96

:
-0.71

:::
-0.72

:
1.71

:::
1.68 -1.88 -0.06 1.94 3.68

:::
2.62 -7.82

:::
-8.86

:
3.42

:::
2.45

RMSE 15.13
::::
15.00 18.61

::::
18.57 12.07

::::
11.96 15.03

::::
15.38 18.53

::::
19.09 12.11

::::
13.94 18.24

::::
18.48 23.84

::::
24.54 14.37

::::
14.92

AVE 0.26
:::
0.28 0.34

:::
0.35 0.26

:::
0.28 0.27

:::
0.24 0.35

:::
0.31 0.26

:::
0.02 -0.07

:::
-0.10

:
-0.07

:::
-0.14

:
-0.05

:::
-0.13

:

CCC 0.42 0.51 0.44
:::
0.43 0.40 0.54 0.36 0.08 0.13

:::
0.14 0.15

:::
0.12

5 - 15

ME -0.30
:::
-0.34

:
-0.75

:::
-0.71

:
1.05 -0.90 -0.47 1.37 3.47

:::
2.16 -7.15

:::
-8.35

:
2.86

:::
1.73

RMSE 14.36
::::
14.24 18.05

::::
17.82 11.39

::::
11.30 14.49

::::
14.77 18.47

::::
19.01 11.70

::::
13.62 17.89

::::
18.41 22.94

::::
23.93 13.85

::::
14.55

AVE 0.31
:::
0.32 0.34

:::
0.36 0.29

:::
0.30 0.29

:::
0.27 0.31

:::
0.27 0.25

::::
-0.01

:
-0.08

:::
-0.14

:
-0.06

:::
-0.15

:
-0.05

:::
-0.16

:

CCC 0.46 0.52
:::
0.53 0.46 0.43 0.54 0.36 0.08

:::
0.06 0.13 0.13

:::
0.12

15 - 30

ME -0.50
:::
-0.48

:
-1.09

:::
-1.03

:
1.59

:::
1.50 -0.76 -0.47 1.23 3.62

:::
2.50 -6.95

:::
-7.89

:
2.42

:::
1.54

RMSE 15.73
::::
15.75 19.06

::::
19.02 11.81

::::
11.76 15.83 18.93 11.75 18.42

::::
18.64 23.59

::::
24.43 14.06

::::
14.38

AVE 0.23 0.31
:::
0.32 0.29 0.22 0.32 0.29 -0.06

:::
-0.08

:
-0.05

:::
-0.13

:
-0.01

:::
-0.06

:

CCC 0.37 0.48 0.45
:::
0.44 0.38 0.51 0.46 0.09 0.13

:::
0.12 0.16

30 - 60

ME -0.20
:::
-0.04

:
-0.78 0.98

:::
0.82 -0.08 -0.76 0.84 4.64

:::
3.55 -6.21

:::
-6.98

:
0.89

::::
-0.01

:

RMSE 17.11 20.74
::::
20.68 13.11

::::
13.13 17.08 20.87 13.30 20.35

::::
20.54 24.55

::::
25.15 15.39

::::
15.70

AVE 0.23 0.25
:::
0.26 0.25 0.23 0.24 0.23 -0.09

:::
-0.11

:
-0.05

:::
-0.10

:
-0.04

:::
-0.08

:

CCC 0.37
:::
0.36 0.42 0.41

:::
0.39 0.38 0.43 0.39 0.06

:::
0.07 0.09 0.10

:::
0.09

60 - 100

ME -0.03
:::
0.01

:
-3.12

:::
-3.16

:
3.16

:::
3.15 0.05 -2.87 2.82 4.78

:::
3.17 -8.28

:::
-9.83

:
2.39

:::
1.12

RMSE 17.35
::::
17.29 22.00

::::
21.89 14.18

::::
14.09 17.53 22.36 14.24 20.77

::::
21.44 26.55

::::
27.67 15.81

::::
16.39

AVE 0.23
:::
0.24 0.20 0.13

:::
0.14 0.21 0.17 0.12 -0.10 -0.17 -0.08

:::
-0.27

: :::
-0.16

:

CCC 0.35
:::
0.36 0.38 0.32

:::
0.31 0.37 0.38 0.34 0.06

:::
0.07 0.04

:::
0.03 0.08

Table 4.
:::

Map
:::::
quality

:::::::
measures

::
of
::::
each

::::::::
algorithm

::
for

::::
PSF

:
in
::::

five
::::::
standard

::::::
depths.

:::
ME:

:::::
Mean

:::::
Error;

::::::
RMSE:

::::
Root

:::::
Square

:::::
Mean

::::
Error;

:::::
AVE:

::::::
Amount

::
of

::::::
variance

:::::::::
Explained;

::::
CCC:

::::::::::
Concordance

:::::::::
Correlation

::::::::
Coefficient.

:::::
These

::::
map

:::::
quality

:::::::
measures

:::
are

::::
based

:::
on

::
the

::::::::
validation

::::::
dataset.

:::::
Depth

:::
(cm)

0 - 5 5 - 15 15 - 30 30 - 60 60 - 100

PSF :::
Size

:::::::
Fraction

Clay
:::
Clay Sand

::::
Sand Silt

::
Silt Clay

:::
Clay Sand

::::
Sand Silt

::
Silt Clay

:::
Clay Sand

::::
Sand Silt

::
Silt Clay

:::
Clay Sand

::::
Sand Silt

::
Silt Clay

:::
Clay Sand

::::
Sand Silt

::
Silt

ME
::

ME
:

2.54
::::
-0.92

:
-1.02

:::
-0.98

:
1.68

:::
1.81 -0.36

:::
-0.31

:
-0.70

:::
-0.61

:
1.02

:::
0.89 -0.16

:::
-0.44

:
-1.11

:::
-0.85

:
0.96

:::
1.26 -0.01

:::
0.00

:
-1.22

:::
-0.85

:
0.62

::::
0.82 0.11

:::
0.03 -2.12

:::
-2.11

:
1.68

:::
1.99

RMSE
:::::
RMSE 13.99

::::
14.30 16.91

::::
17.14 11.79

::::
12.61 14.14

::::
13.87 16.66

::::
16.94 11.71

::::
11.45 15.68

::::
15.54 18.09

::::
18.55 11.40

::::
11.60 16.63

::::
16.88 20.13

::::
20.32 13.03

::::
13.10

:
17.15

::::
17.26 21.75

::::
21.74 14.17

::::
13.86

AVE
::::
AVE 0.37

:::
0.34 0.46

:::
0.44 0.30

:::
0.19 0.33

:::
0.35 0.44

:::
0.42

:::
0.28

:
0.25 0.23

:::
0.35 0.38

:::
0.31 0.34

:::
0.25 0.27

:::
0.28 0.29 0.26 0.25

:::
0.24

:
0.21 0.13

:::
0.17

CCC
:::

CCC
:

0.19
:::
0.47 0.61

:::
0.60 0.48

:::
0.42 0.46

:::
0.49 0.59

:::
0.58 0.43

:::
0.45 0.38

:::
0.39 0.53

:::
0.51 0.48

:::
0.46 0.39

:::
0.38 0.45

:::
0.44 0.40 0.38

:::
0.37 0.38 0.26

:::
0.31

Table 5.
:::::::
Summary

::
of

::::
map

:::::
quality

:::::::
measures

:::
for

:::::
spatial

:::::::
ensemble

:::::
model

::
for

::::
PSF

::
in

:::
five

::::::
standard

::::::
depths.

:::
ME:

:::::
Mean

:::::
Error;

:::::
RMSE:

::::
Root

:::::
Mean

:::::
Square

:::::
Error;

::::::::::
AVE:Amount

::
of
:::::::
variance

::::::::
Explained;

:::::
CCC:

::::::::::
Concordance

:::::::::
Correlation

:::::::::
Coefficient.

:::::
These

:::
map

::::::
quality

:::::::
measures

:::
are

::::
based

:::
on

::
the

::::::::
validation

:::::
dataset
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Figure 4. Color composite map of soil texture fractions predictions with the algorithm selected
::
at

:::
two

:::::
depths: landmap for 5

:::
0-5 and 30

::::
5-15

cm; MACHISPLIN for 15, 60 and 100 cm
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Ensemble model, error distribution and best model selected at 5 cm

Figure 5. Ensemble model, error
::::::::::::
percentage-error

:
distribution,

:
and best model selected at 15

:::
0-5 cm

20



Figure 6. Ensemble model, error
::::::::::::
percentage-error

:
distribution,

:
and best model selected at 30

::::
5-15 cm
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Figure 7. Ensemble model, error
::::::::::::
percentage-error

:
distribution,

:
and best model selected at 60

:::::
15-30 cm
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Figure 8. Ensemble model, error
::::::::::::
percentage-error

:
distribution,

:
and best model selected at 100

::::
30-60

:
cm
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Figure 9.
:::::::
Ensemble

::::::
model,

::::::::::::
percentage-error

:::::::::
distribution,

:::
and

::::
best

:::::
model

::::::
selected

::
at

:::::
60-100

:::
cm

24



previous maps. While many studies focus on mapping soil properties such as pH and organic matter, less
:::::
fewer studies focus

on comparing and testing approaches for maximizing accuracy. We improve the accuracy of national soil texture predictions,

with a fully independent dataset, respect to global products. Also, we provide new insights for assessing the quality and

accuracyof global soil texture predictions. However, we also identify areas where global predictions suggest lower prediction

variance.
:::::
global

::::::::::
approaches,

::::
such

::
as

::::::::
SoilGrids,

:::
for

::::::::::
maximizing

::::::::
accuracy. Our results contribute with a nation-wide

::
to

:
a
:::::::
national410

benchmark of the reliability of global predictions compared to national predictions. We base our soil texture predictions in a

soil texture dataset with a transformation process. We deliver this soil texture dataset and demonstrate its applicability using

digital soil mapping to describe the geography of Colombia’s soil texture. We first discuss the general geography of soil texture

across the country and then we compare and discuss our findings with previous work.

Colombia has a great diversity of soil, which changes
::::
soils,

::::
and

::::
their

:::::::::
properties

::::::
change

:
with depth. In the 5

:::
five

:
standard415

depths, soil texture in Colombia has representation in all textural classes defined by Staff (2014). As depth increases, the soil

thins
:::::
texture

::
is
::::
finer, and the proportion of clay and silt rises. This is evident in southern, southeastern, eastern, and northeastern

Colombia, where Fig. ?? demarcates this with redder colors at 60 and 100 cm. On the other hand, coarse soils (blue colors)

are in central and northern areas, and these soil textures hold with increasing depth. This high diversity of soil texture is due to

the high number of interactions between soil forming factors, specifically
:::::::::
particularly

:
the great diversity of parent materials,420

within Colombia (IGAC, 2015; Araujo et al., 2017).

Some topography and parent material covariates were the principal drivers in texture modeling. The key
::::
focal areas with fine

and medium textures are found in the northwest (Floodplain and land depressions), in central areas (Magdalena River valley),

in the west (Cauca River valley), in the south (Amazon region), and in the east (Orinoquia region). All these regions have a

common soil forming factor
::::::
specific

:::
soil

:::::::
forming

:::::::
factors,

:
such as alluvial parent material that is deposited by one or many425

rivers, that are fine soil
::::
which

:::
are

::::
soil

:::::::
fine-size fractions driver (Flórez, 2003). 2003). On the other hand, medium to

:::
and

:
coarse

textures are principally found in the hillsides of mountain landscapes in central, southern, and southwestern regions. Mainly,

these coarse soil textures are due to the presence of sandstone, conglomerate sandstone, granites
:
, and gneisses, among others,

that have siliceous and quartz rocks (Catoni et al., 2016), volcanic materials,
:
and glacial clast (IGAC, 2015) that are presented

in these areas. Despite the relationship between soil texture distributionand relief
:
,
:::::
relief,

:
and parent material covariates, only430

altitude (quantitative), slope (quantitative), alluvial (binary)and Floodplane
:
,
:::
and

:::::
flood

:::::
plane (binary) covariates were shown

::::::
present in the top 5 predictors for each standard depth.

Although parental material is very important
::::::
critical in the soil texture spatial distribution, the covariates selection identified

that the climatic covariates were more important (i.e., TMED, RH, and PPT). The covariates used to describe the parental

material were binary class variables, maybe
:
;
:::::
maybe

:::
the

:
following exercises should include quantitative variables to identify435

this soil forming factor, for example
:
,
:
using radar remote sensing (Niang et al., 2014) or based in

::
on

:
the spectral response in

the visible and near infrared
:::::::::::
near-infrared spectrum (Vis-NIR), medium infrared (MIR), and Vis-NIR-MIR (Campbell et al.,

2019). In the PSF predictions (in specific
:
, the ALR components), the importance of the climatic covariates did not have obvious

:::::::
apparent changes with depth. The climate conditions of the country

:::::::
country’s

:::::::
climate

:::::::::
conditions have led to relatively strong

physical weathering in
:::
the soil forming process (Osman, 2013). Due to the country’

:
’s location, it is influenced climatologically440
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by the atmospheric circulation of the Caribbean Sea, Pacific Ocean, the Amazon basin, and the orographic barrier of the

three branches of the Andes Mountain (Poveda, 2004). Furthermore, in this study
:
,
:
the variables were chosen to maximize the

predictive power of the models,
:
not their explanatory capabilities.

Colombia has not produced maps on PSF at a national scale with DSM productsbut is has developed soils ,
:::
but

:::::::::
Colombia

:::
has

::::::::
developed

::::
soil surveys through conventional mapping . These maps use a series of delineated polygons based on qualitative445

soil characteristics called cartographic soil units (CSU), and have been produced in different periods: Cortés et al. (1982)

(scale 1:5.000.000), IGAC (2003) (scale 1:500.000), and IGAC (2015) (scale 1:500.000). The map carried out by IGAC (2015)

represented the PSF through four textural groups of soils: very fine, fine, medium, and coarse. In that study, each CSU’s

group texture was calculated whit a weighted average according with each soil profile representation in the CSU and the

textural group for each profile was calculated with a weighted average soils fraction between 0 and 50 cm depth according450

to horizon thickness. The best example of the subnational scale is the work developed by Araujo-Carrillo et al. (2021). In the

Cundiboyacense high plateau, their study represented the clay fraction and textural classes only for the surface layer of the soil

(0-20 cm) and used the random forest machine learning algorithm.

The textural soil
:::::::::::
(IGAC, 2015);

:::::
then,

:::
the

:::::::
textural

:::
soil

:
distribution of Colombia presented in this study is not directly com-

parable with previous national textural soil maps. Due to the methodology used in IGAC (2015), the depth studied is different,455

the polygons delineated (CSU) have a unique value for an entire area, and CSUs are not an uncertainty value associated. These

last two reasons are the major
:::::::
primary use limitations in traditional soil surveys (Angelini et al., 2016). Despite that, the maps

produced by this study and those of the IGAC project , both show 2 major
::::
show

:::
two

:::::::::
significant

:
areas with similar attributes.

In
:::
the northwest (Caribbean region) and southern (Amazon region), the IGAC study present

::::::
presents

:
a fine group texture (clay

between 40 and 60%),
:
and this current result shows that levels of clay percentages in that clay range. However, there are

:
is
:
a460

principal region in
::
the

:
western (Orinoquia region), where the two results are very different. The previous result shows these

areas with
:
a coarse textural group

:
, and this current result displays low percentages of sand fractions for 15, 30, and 60

::::
5-15,

:::::
15-30,

::::
and

:::::
30-60 cm depths. These differences are due to the low soil sampling density;

:
, where there is just one observation,

and in this current study, its nearest predictions are driven by soil data.

In other countries there have been several experiences with the mapping the PSF at different depths using DSM products:465

France (Mulder et al., 2016), Scotland (Poggio and Gimona, 2017), Hungary (Laborczi et al., 2019), or China (Liu et al., 2020)

are some examples. However, few have used the spatial ensemble techniques. One representative case was developed by

Hengl et al. (2021) for the continent of Africa at three depths (0, 20 and 50 cm) and at 30 m spatial resolution. They produced

predictions using 2 scale 3D EML framework implemented in the mlr R package. Their study utilized an improved predictive

mapping framework: spatially-adjusted EML, that better accounts for spatial clustering of points. A special point of their work470

was the spatial cross-validation methodology, obtaining the following RMSE for ≈ 122.200 training samples: clay 9.6%, sand

13.7%, and silt 8.9%. Their results proved to be more accurate that previous works, which is attributable to the addition of

higher resolution remote sensing images and Digital Terrain Parameters (DTM) ,
::::::::
Regarding

::::
map

::::::
quality

::::::::
measures,

::::::
RMSE

::::
had

::
the

:::::::
highest

:::::
values

:::
for

:::
the

::::
sand

:::::::
fraction.

::::
This

:
is
:
the adoption of methodological improvements in hyper-parameter tuning, feature

selection, and ensembling of models using the Super Learner algorithm (Hengl et al., 2021). Of the above considerations, we475
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did not work with higher resolution covariates from earth observations data or DTM derivatives, but we implemented several

concepts, like spatial cross validation, feature selection, and the use the EML.

Although it is a challenge to compare the results from several studies, especially as the focus of each study is different,

only as a reference point, a comparison was developed to obtain statistics with the works from France, Scotland, Hungary,

and China. At topsoil depth, the CCC obtained by Mulder et al. (2016) was similar in the sand (0.63), but more accurate in480

the clay (0.53) and the silt (0.61). The process employed regression tree modelling (cubist), a data-mining technique that was

not used in
::::
same

::::::::
behavior

:::::
found

:::
by

::::
other

::::::
studies

::::
that

:::::::::::
implemented

:::::::
different

:::::::::
algorithms

::::::::::::
(geoestatistics

::::
and

:::::::
machine

::::::::
learning)

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Poggio and Gimona, 2017; Laborczi et al., 2019; Liu et al., 2020)

:
;
:::::::
however,

:::
the

:::::
joint

::::::::
statement

::
in

:::::
those

::::::
studies

::::
was

::::
that,

:::
for

::::
sand

:::::::
fraction, the EML employed in

::::::
ranges

::::
were

:::::
wider

::::
and

::
the

::::
SD

:::
was

::::::
higher

::::::::
compared

::::
with

::::
clay

:::
and

:::
silt

::::::::
fraction.

:::
The

:::::
CCC

:::::
values

:::
for

::::
sand

::::
were

::::::
higher

::::
than

:::
clay

::::
and

:::
silt

::
in

::
all

:::::
cases,

:::
and

::::
this

:
is
:::
the

:::::
same

:::::::
behavior

:::::
found

:::
by

:::::::::::::::::
Mulder et al. (2016)

:
in
:::::::
France.485

::::::::::
Additionally,

:::
for

:::
all

::::
PSF,

::::
they

:::::
found

::::
that

:::
the

:::::::::
predictions

::::
were

::::
less

::::::
reliable

:::
for

:::::::
deepest

::::::
layers;

:::
this

::
is

:::
the

::::
same

:::::::::
statement

:::::
found

::
in this work. In the case of Scotland, between 0 to 100 cm depth,

::::
Their

::::
map

::::::
quality

::::::::
measures

:::
are

:::::
better

::::
than

:::::
ours;

::::::::
however,

the average RMSE was 7.10% in the clay, 15.86% in the sand and 11.44% in the silt. All the statistics were better
:::
soil

:::::::
samples

::::
used

::
in

:::
that

:::::
work

::::
were

:::::::
between

::::::
28.000

::::
and

:::::
3000,

:::::::::
decreasing

::::
with

:::::::::
increasing

:::::
depth.

:

:::
The

:::::::::
qualitative

:::::::::
evaluation

::
for

:::
SG

::
at

:
a
::::::
global

::::
scale

:::::::
showed

:::
that

::::::::::
coarse-scale

:::::::
patterns

:::
are

::::
well

:::::::::
reproduced

:::::::::::::::::
(Poggio et al., 2021)490

:
.
:::::::::::
Nevertheless,

::
in
::

a
::::::::::

quantitative
:::::::::

evaluation
:::::

with
::::::::::
Colombian

:::::
soils,

:::
SG

::::::::
products

::::::
cannot

:::::::
explain

:::
the

:::::::
variance

::::::
(AVE

::::::
values

:::::::
negative), and they used the hybrid geostatistical Generalized Additive Models (GAMs), combining GAM with Gaussian

simulations. About 9000 sampled locations were available for that model in almost 78.000 km2 (Poggio and Gimona, 2017)

. Laborczi et al. (2019) produced maps of PSF on Hungary through composite regression kriging directly compiled (D) and

synthetized (S), obtaining RMSE in the clay of 8.91% (D)
::::
their

:::::::::
predictions

:::
are

::::
not

::::::::
according

:::::
(CCC

:::::
close

::
to
:::::

zero)
::::
with

::::
our495

::::::::
validation

:::::::
dataset,

:::
and

:::::
their

::::::
RMSE

:::::
values

:::
are

:::::::::::
significantly

::::::
higher

::::
than

:::::
ours.

::::::::::::::
Liu et al. (2020)

:::
built

::
a
:::::::
national

::::
map

::
of

::::
silt

::
in

:::::
China,

:
and 9.32% (S), and the sand of 16.38% (D)

:::
they

:::::::::
compared

::::
their

::::::
results

::::
with

:::
SG

:::::::
products

:::::::
through

::::::
RMSE

::::::
values.

:::::
They

:::::
found

:::
that

::::
their

::::::
RMSE

::::::
values

::::
were

::::::
higher

::::
than

::
the

::::::
RMSE

:::
of

:::
SG,

:
and 16.92% (S). The results in Hungary were similar in sand

that calculated in this work. In China with spatial resolution of 90 m and with 4579 soil profiles, Liu et al. (2020) obtained

an RMSE of 9.79% in clay, 18.65% in sand and 14.76% in silt, with statistics very similar at other depths. They constructed500

random forest models with a limited number of sparse soil profiles sites, i.e., nearly one soil profile site per 2000 km2 on

average in their study area. We obtained better results in sand and silt, but worse in clay at the same depth.
::
in

:::::
many

:::::::
specific

:::::
areas,

:::
SG

:::
did

:::
not

:::::::::
represent

:::
the

::::
local

::::::::
behavior

::
of

::::
the

::::
PSF.

::
In

::::
this

::::
way,

:::
we

::::::::
suggest,

:::
for

::::::::::
applications

::::
that

::::
need

:::::::
textural

::::
soil

:::::::::
information

::
at
::

a
:::::::
national

:::::
scale,

::
to

::::
use

:::
our

::::::
results

:::::::
obtained

::::
with

:::::::::
individual

:::::::::
algorithms

::::::::::::::
(MACHISPLIN

:::
and

::::::::
landmap)

::::
and

:::
the

::::::::
ensemble

:::::
maps.

::::::::
However,

::
it
::
is

::::::::
important

:::
to

:::::
stand

:::
out

:::
that

:::
in

:::::
some

::::
areas

:::
of

::::::::
Orinoquia

::::
and

:::::::
Amazon

:::::::
region,

:::
the

:::
SG

::::
had

:::
the505

:::::
fewest

:::::::::
prediction

:::::
error;

::::
these

:::::::
regions

::::
have

::
in

:::::::
common

::::
that

::::
there

::
is
::
a

:::
low

::::
soil

:::::::
sampling

:::::::
density.

In the case of SG 2.0 the RMSE was 13% for clay, 18% for sand and 13% for silt. The qualitative evaluation showed

that coarse scalepatterns are well reproduced (Poggio et al., 2021). The SG products showed good results in silt in the spatial

ensembled generated, but in specific depths (30 cm and 100 cm) and regions (zones east and south of the country). In other

PSF and depths, the spatial ensembled showed better results with the EML worked.510
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According to the description above, the results of the spatial ensembles were acceptable in general terms, and this
:::
This

:
work

could identify the
:::::
PSF’s

:
better models, error trends, and prediction layersof the PSF. However, in many areas, depths, and

textural fractionsthe results did not have good quantitative statistics
:
,
:::
the

::::
map

::::::
quality

::::::::::::
measurements

:::
are

::::
low;

:::
for

::::::::
example,

:::
we

:::::
desire

::
to

:::::::
increase

:::::
AVE

:::
and

:::::
CCC

:::::
values. The causes can be many: the relations between some soil properties and landscape

attributes are nonlinear, complex, or unknown, a concept defined by Minasny and McBratney (2010). Linked to the aforemen-515

tioned is the distribution of the soil samples. The study had an unbalanced representation and spatial clustering, for example
:
;

::
for

::::::::
example,

:
the central zone (Andean region) was the most represented (bias towards potentially productive areas), while the

east and southeast zones were the least represented(Fig. 1), so many predictions were largely controlled by point data,
::::
then,

::::
some

:::::
large

:::::::
artifacts

::::
(e.g.

:::::
lines

:::
and

::::::
blocky

:::::::
outputs)

::::
are

:::::
shown

:::
in

::::
these

::::::
areas, a similar case to that reported by Hengl et al.

(2014). It is important to say that in the SISLAC database some legacy soil profiles had significant positional errors, due to the520

proposals of traditional soil surveys carried out by the IGAC.

Overall, this study used the best available environmental information, and it represented the PSF for all country at five

standard depths. However, the differential factor included maps that represent the best model (EML or SG) in each area of

the country at different depths, called in this work spatial ensembled. Nevertheless, the approach has limitations, for example

with the results of the spatial ensembled it is not possible to sum 100 with all PSF, because this technique is a combination the525

best EML or SG worked. Also, there is an abrupt change in the PSF through depths in some areas, a normal behavior in some

kinds of soils (for example from alluvial parent material), but not on soils like those found in the peneplain landscape
:::::
These

::::::
artifacts

:::
are

:::::::
derived

::::::
mainly

::::
from

::::::::
covariates

::::::
related

::
to

:::::::
satellite

:::::::
images,

::::
such

::
as

:::::
bands

:
6
::::
and

:
7
::::
from

:::::::
Landsat

::
8,

:::
and

:::
its

:::::::::
derivatives

::::
(Clay

:::::
ratio

:::
and

:::::
Grain

::::
Size

::::::
Index).

:::::
These

::::
four

::::::::
covariates

:::::
were

:::::::
obtained

::::
from

:::::::
Google

:::::
Earth

::::::
Engine

::::
with

::::
seam

:::::::
carving

:::
and

:::
had

::
a

::::::::
significant

::::::::::
importance

::
in

:::
the

:::::::
recursive

::::::
feature

::::::::::
elimination

::::::
model

:::
and

::::
their

:::::
score

:::::::::
importance

:::::::
(overall

::
in

:::
rfe

::::::
model)

:::
are

:::::::
between530

::
10

:::
and

::::
14%

:::::::
respect

::
to

:::
the

:::
best

::::::
subset

::
of

::::::::
covariates

:::::::::
(Appendix

::::
A1).

:::::::::::
Additionally,

:::
for

::::::::::
agricultural

::::::
studies,

:::
the

::::
use

::
of

:::
this

::::::
results

:::
will

::
be

:::::::::
straitened

::
to

:::
the

:::::::::
agricultural

:::::
limit

::::::
defined

::
in

:::::::::
Colombia,

::::::
places

:::::
where

:::
the

::::::
results

::
do

:::
not

::::
have

:::::::
artifacts

:::::::::
(Appendix

::::
A2).

In Colombia, DSM has new and great challenges to attend map-user’s requirements, such as soil texture predictions with un-

certainty improvements
:::
and

::::
soil

::::
maps

::::
with

:::::
better

::::::
spatial

::::::::
resolution. There are two

::::
three principal strategies to improve predic-

tions: treatment of unbalanced soil-data
::
soil

:::::
data,

::::::::::
management

::
of

::::
PSF

:::::::::::::
transformations,

:
and incorporation of new environmental-covariates535

:::::::::::
environmental

:::::::::
covariates related to soil texture drivers. Attending the first strategies,

::::::
strategy

:
is necessary to raise the soil data

base whit
:::::::
database

::::
with

:
available soil information from other sources such as detailed soil surveys, soil degradation, and soil

management studies made by national and governmental institutions (e.g. IGAC, IDEAM
:
, or UPRA); or obtaining soil textural

fractions from other kind
::
the

:::::::
amount

::
of

:::::
each

::::::
fraction

:::::
from

:::::
other

::::
kinds

:
of soil analysis, such as Visible Near InfraRed-Short

of soil minerals (Lagacherie et al., 2020). Also, model-building processes by soil group (Kempen et al., 2009) or homosoil540

(Angelini et al., 2020; Malone et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mallavan et al., 2010; Angelini et al., 2020; Malone et al., 2016) have been used to

get pedologically-plausible predictions in areas without high soil-sampling density. Finally, taking heed of second strategies

there are
::::
Other

::::::::
log-ratio

:::::::::::::
transformations

:::::
could

:::
be

::::::
applied

:::
as

:
a
:::::::

second
:::::::
strategy

::
to

:::::::
improve

:::::
ALR

::::::::::::
transformation

::::::
issues.

::::
For

:::::::
example,

::::::::::::::::::
Wang and Shi (2017)

::::::::
indicated

:::
that

::
in

:::::
some

:::::::
datasets,

:::
the

:::::::
changes

::
in
:::
the

:::::::::::
denominator

::::::::
selection

::
in

:::::::
Additive

::::::::
log-ratio

::::::::::::
transformation

:::::
could

::::::::
represent

:::::::
different

:::::::::
predictions

::::
and

:::::::
decrease

:::
the

::::::::
accuracy

::
of

:::
the

:::::::::
estimates;

::::
then,

:::::
using

:::::::
centered

::::::::
log-ratio545
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::::::::::::
transformation,

::::
this

::::
issue

:::::
could

:::
be

::::::
avoided

:::::::::::::::::::::::::
(Amirian-Chakan et al., 2019)

:
;
::::
also,

::::
data

:::
sets

::::
with

::::
zero

::::::
values

::::
must

:::
be

:::::::::
threatened

::::
with

::::::::
symmetry

::::
and

::::::::
isometric

:::::::
log-ratio

::::::::::::
transformation

:::::::::::::
(Li et al., 2020)

:
.
::::::
Finally,

:::
as

:
a
::::
third

::::::::
strategy, some qualitative and quan-

titative environmental covariates that could buttress the predictorsstack
:
’
:::::
stack,

:
such as depth to bedrock , and soil horizons

designations and thickness
:
;
::::
also,

::
to
::::::::

improve
:::
the

:::::
visual

::::::
quality

::
of

:::
the

:::::::
results,

:
a
::::::::
previous

::::::::
covariate

:::::::
analysis,

::::
such

:::
as,

::::::::
principal

::::::::::
components

::::::::::::::::
(Hengl et al., 2014)

::
or

:
a
:::::::::
smoothed

::::::
strategy.550

5 Conclusions

We provided the first comparison of the PSF across Colombia between EML models (MACHISPLIN and landmap) and the

::::
SG’s existing soil texture mapsprovided by SG. The study shows that the prediction of the spatial distribution of soil texture

::::::::
prediction

:
with national datasets wasbetter an average,

:::
on

:::::::
average, 17%

:::::
better (in terms of RMSE) using EML models than the

SG products. Between MACHISPLIN and landmap,
:
there was no better EML model , because the quantitative statistics were555

very similar. In function of the PSF, the spatial distributions did not exhibit a fraction with better results. While the silt had the

lowest RMSE at different depths, the sand had the highest AVE, and the clay had the lowest ME. However, in the case of the

depths, at 5, 15 and 30 cm were obtained the better resultsfor all the PSF, while at 60
:::::::
However,

::::::
layers

::
of

:::
0-5,

:::::
5-15, and 100 cm

the worst, which indicates
:::::
15-30

:::
cm

:::::::
obtained

:
the

:::
best

::::::
results,

::::::
which

:::::::
indicate

:::
the effectiveness in the depths closest to the soil

surface.560

Another valuable contribution developed in this study was the implementation of the spatial ensembled
::::::::
ensemble of soil

texture fraction
:::::::
fractions

:
on a national scale and at different depths. This implementation identified the best result for each

depth and each pixel. Although the SG products had the worst quantitative statisticsoverall, in some areas of the country,
:
these

products performed well, such as with 30 cm silt
:::::
mainly

:
in the south. However, with the spatial ensembledwas possible to get

:
, the best composition of the models worked

:::
was

::::::::
possible.565

The prediction of the spatial distribution of soil texture fraction obtained
::::::::::
particle-size

::::::::
fractions can provide soil information

for water related
:::::::::::
water-related

:
applications, ecosystem services,

:::
and

:
agricultural and crop modeling. However, the results

had limitations, especially with the abrupt change in the texture fraction through the depths in some areas and the handling

of the compositional data (sum equal to 100) in the spatial ensembled products
::::
some

:::::::
artifacts

:::
in

:::
the

::::::::
southern

:::
and

:::::::
eastern

::::
areas. Treatment of unbalanced soil-data

:::
soil

::::
data

:
and incorporation of more appropriate environmental-covariates are key570

:::::::::::
environmental

:::::::::
covariates

:::
are

::::::
crucial to improving accuracy in the future.

Dataset are available at: https://portal.edirepository.org/nis/mapbrowse?packageid=edi.746.1. This repository contains the

data set for each standard depth. For each sample point are shown PSF and ALR transformations (
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6 Code and data availability

Dataset are available at: https://portal.edirepository.org/nis/mapbrowse?packageid=edi.746.2. This repository contains the data575

set for each standard depth. For each sample point are shown PSF and ALR transformations (Trans_1 and Trans_2) (Varón-

Ramírez and Araujo-Carrillo, 2022).

Textural soil maps are available at: https://portal.edirepository.org/nis/mapbrowse?packageid=edi.972.3. In this repository

the users are going to find 9 raster stacks: PSF obtained with landmap and MACHISPLIN algorithms (2 stacks); PSF obtained

from SG (1 stack); residual of the PSF predictions for landmap and MACHISPLIN algorithms and SG (3 stacks); and finally580

PSF predictions obtained through spatial ensemble technique (3 stacks). All stacks contain information at 5 standard depths

(Varón-Ramírez et al., 2022)

Rproject scripts to reproduce the spatial ensemble procedure and models validation area are available at:

https://github.com/VimiVaron/Textural-maps-Colombia.git

Appendix A585

A1
::::::::::
Importance

:::
of

:::::::::
covariates

::
in

::::::::
recursive

:::::::
feature

::::::::::
elimination

:::
for

:::::::
Trans_1

::::
and

::::::::
Trans_2

:::::::::
prediction

Depth (cm) Variable
Covariates

selected

Sum of

total score

GSI, Clay_ratio, L8_b6, L8_b7

:::::
Score

::::::::::
Proportion

:::
(%)

0-5
Trans_1 and

::
44

:::::
501.1

:::
67.8

: :::
13.5

:

Trans_2 ) (?) Textural soil maps are available at: https://portal.edirepository.org/nis/mapbrowse?packageid=edi.972.1. In this repository the users are going to find 9 raster stacks: PSF obtained with landmap and MACHISPLIN algorithms (
::
83

:::::
451.0

:::
58.3

: :::
12.9

:

5-15 ::::::
Trans_1

: ::
54

:::::
549.8

:::
66.5

: :::
12.1

:

:::::
Trans_2 stacks); PSF obtained from SG (

::
54

:::::
494.7

:::
68.8

: :::
13.9

:

15-30 ::::::
Trans_1 stack); residual of the PSF predictions for landmap and MACHISPLIN algorithms and SG (3 stacks); and finally PSF predictions obtained through spatial ensemble technique (3 stacks). All stacks contain information at 5 standard depths (?)

::
59

:::::
704.1

:::
67.9

: :::
9.6

::::::
Trans_2

: ::
83

:::::
692.0

:::
75.9

: :::
11.0

:

30-60 ::::::
Trans_1

: ::
56

:::::
629.7

:::
64.8

: :::
10.3

:

::::::
Trans_2

: ::
58

:::::
651.2

:::
78.2

: :::
12.0

:

60-100 ::::::
Trans_1

: ::
56

:::::
564.5

:::
60.0

: :::
10.6

:

::::::
Trans_2

: ::
83

:::::
593.0

:::
70.6

: :::
11.9

:

Table A1.
:::::::::::
Representation

::
of

:::::::::
importance

:::::
scores

:::
for

::::::::::::
satellite-derived

::::::::
covariates.

::::
GSI:

:::::
Grain

::::
Size

:::::
Index,

::
L8

:::
b7:

:::::::
Landsat

:
8
::::
band

::
7,
:::
L8

:::
b6:

::::::
Landsat

:
8
::::
band

::
6.
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Appendix B

B1
:::::::::::
Agricultural

::::::::
Frontier

::
in

:::::::::
Colombia

Figure B1.
::::::::::

Compositional
::::::
texture

:::
map

:::::
(Clay,

::::
Sand,

:::
and

::::
Silt),

::::::::
integrated

::::
from

:
0
::
to

:::
100

:::
cm,

::
in
:::
the

:::::::::
agricultural

::::::
frontier

:
in
::::::::
Colombia.
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