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Abstract. Openly accessible global scale surface water chemistry datasets are urgently needed to detect widespread trends 

and problems, to help identify their possible solutions, and identify determine critical spatial data gaps where more 

monitoring is required. Existing datasets are limited in availability, sample size/sampling frequency, and geographic scope. 10 

These limitations inhibit the answering of emerging transboundary water chemistry questions, for example, the detection and 

understanding of delayed recovery from freshwater acidification. Here, we begin to address these limitations by compiling 

the global surface water chemistry (SWatCh) database, available on Zenodo (DOI: 

10.5281/zenodo.648493910.5281/zenodo.4559696). We collect, clean, standardize, and aggregate open access data provided 

by six national and international agencies to compile a database consisting of three relational datasets:containing information 15 

on sites, methods, and samples, and one a GIS shapefile of site locations. We remove poor quality data (for example, values 

flagged as “suspect” or “rejected”), standardize variable naming conventions and units, and perform other data cleaning steps 

required for statistical analysis. The database contains water chemistry data for streams, rivers, canals, ponds, lakes, and 

reservoirs across seven continents, 1724 variables, 38,59833,722 sites, and over 95 million samples collected between 1960 

and 201922. Similar to prior research, Wwe identify critical spatial data gaps oin the equatorial and arid climate 20 

regionsAfrican and Asian continents, highlighting the need for more data collection and sharing initiatives in these areas, 

especially considering freshwater ecosystems in these environs are predicted to be among the most heavily impacted by 

climate change. We identify the main challenges associated with compiling global databases – limited data availability, 

dissimilar sample collection and analysis methodology, and reporting ambiguity – and provide recommendedations to 

address themsolutions. By addressing these challenges and consolidating data from various sources into one standardized, 25 

openly available, high quality, and trans-boundary database, SWatCh allows users to conduct powerful and robust statistical 

analyses of global surface water chemistry. 

  



2 

 

 

1 Introduction 30 

Globally, 159 million people are reliant on untreated surface water, with only one in three people having access to safely- 

managed drinking water services (World Health Organization and United Nations Children’s Fund (WHO and UNCF), 

2017). With two-thirds of the global population (4.0 billion people) already experiencing water shortages at least one month 

per year (Mekonnen and Hoekstra, 2016), and a number projected to increase to 4.8-5.7 billion people projected to 

experience water shortages by 2050 (Burek et al., 2016), maintaining the quality of these redrinking water sources is 35 

paramount to human health and society. One of the main obstacles to achieving this goal is a lack of openly available, high 

quality, transboundary data (WHO and UNCFWorld Health Organization and United Nations Children’s Fund, 2017). 

Existing large-sample water quality datasets have: 1) limited availability, for example, raw data may not be published with 

journal articles (Alsheikh-Ali et al., 2011); 2) limited sample size, for example, datasets may only include one water body 

type (Hartmann et al., 2014); or 3) limited geographic scope, for example, national datasets only include data for one 40 

country. 

Delayed acidification recovery is an example of a transboundary problem which would benefit from a large-sample dataset. 

Here, we define a “transboundary problem” to be a water quality issue, or cause of a water quality issue, which crosses 

international borders. For example, a main driver of freshwater acidification in Atlantic Canada is acid deposition originating 

from all the major production regions in North America, including those in the United States of America (Shaw, 1979). A 45 

similar definition of “transboundary problem” is often used when discussing water availability issues which cross 

international borders (for example, Thu & Wehn, 2016). Ecosystem acidification and associated elevated 

aluminiumaluminum (Al) concentrations are responsible for the loss of economically- significant fish species (Committee on 

the Status of Endangered Wildlife in Canada, 2011; Dennis and Clair, 2012), reductions in crop success (Collignon et al., 

2012), reduced forest health (Collignon et al., 2012; DeHayes et al., 1999; de Wit et al., 2010) and therefore carbon 50 

sequestration, and increased cost of water treatment (Letterman and Driscoll, 1988); further, high Al, in drinking water 

resources and may contribute to human osteological and neurological diseases (World Health OrganizationWHO, 2010). 

Prior large-sample (Björnerås et al., 2017; Monteith et al., 2007), and global scale (Weyhenmeyer et al., 2019) studies on 

freshwater acidification indicate that recovery is delayed in some regions. But, so far, there is no openly available global 

scale database of acidification related water chemistry which includes Al, increased concentrations of which are one of the 55 

most biotically toxic effects of acidification (Gensemer and Playle, 1999). 

There is a need for harmonized large-sample hydrological research (Blöschl et al., 2019), and g.lobal datasets are required to 

develop global water chemistry models (Harrison, Caraco, et al., 2005; Harrison, Seitzinger, et al., 2005). The majority of 

water quality research has focussedfocused on catchment scale datasets, which limitsnarrows our understanding of 

transboundary hydrochemical processes to catchments which have historically been studied. Catchment scale analyses make 60 
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valuable contributions to our understanding of hydrochemical processes,. butHowever, phenomena observed at the 

catchment scale may not generalize across regionsvariability in catchment response to perturbation, which is potentially 

indicative of variability in hydrochemical processes, is difficult to evaluate in a robust manner without an approach which 

assesses multiple catchments/regions in a harmonized way. For example, wIn the case ofith freshwater acidification, 

catchmentwater chemistry response to acid deposition may be altered by its geology and land use/land cover,; thus, 65 

observations made in one watershed/region may not generalize to others . (for example, Clair et al., 2011; Rotteveel & 

Sterling, 2020). SpecificallyFor example, watershed response to acid deposition is influenced by weak acids in regions with 

slow-weathering, base cation (CB) poor, bedrock,  are more strongly effected by acid deposition but not in than thoseregions 

with with higher CB geology (Clair et al., 2011; Stoddard et al., 1999), and watersheds with high-intensity forest harvesting 

may be more strongly affected by acid deposition than those with less disturbance (Aherne et al., 2008; Feller, 2005).  70 

Obtaining and consolidating water chemistry datasets for transboundary hydrological research is challenging due to limited 

data access, and disparate (that is, dissimilar) data collection programs and data reporting formats. Access may be limited 

because data is are not published and/or kept confidential, as is the case for some sites within the United Nations 

International Centre for Water Resources and Global Change’s Global Water Quality Database and Information System 

(GEMStat). Data collection programs are dissimilar largely due to a lack of international variable and analysis method 75 

definitions (WHO and UNCFWorld Health Organization and United Nations Children’s Fund, 2017). For example, Al 

measurements may not be comparable across different functional, operational, and classical species definitions (Namieśnik 

and Rabajczyk, 2010; Ščančar and Milačič, 2006). Lastly, disparate variable naming conventions, units, and censored data 

notation complicates consolidation of datasets from different sources, as these notations must first be standardized. 

Here, we aim to address the above limitations by contributing an openly available, standardized, easy-to-use, global water 80 

chemistry database. We focus on providing data to address the problem of delayed freshwater acidification recovery by 

collecting, cleaning, standardizing, and compiling datasets of acidification related water chemistry variables. Specifically, 

our research goals are 1) to develop a global database of acidification related surface water chemistry, 2) to identify the main 

limitations associated with compiling this database, 3) to identify and characterize critical spatial data gaps within existing 

datasets, and 4) to provide recommendations for data reporting and storage to facilitate its easy access and use by other 85 

researchers. 

2 Methods 

2.1 Data Sources 

We obtained input data for SWatCh from openly available datasets published by national and international agencies and 

from datasets available on open-access servers (Table 1). Our search terms were “water chemistry data” or “water quality 90 

data” and “global” or a country name, as listed in the United Nations member countries (United Nations, 2009). We assume 

that water chemistry data available from these reputable sources have undergone standard laboratory quality assurance and 
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control; spot-checks of available methodology information support this assumption. Our data search did not have a 

geographic focus, although our sources were limited to datasets available in English. Datasets likely missed by this approach 

include those hosted on servers or websites without (or without English) Search Engine Optimization (SEO); that is, those 95 

which have not been optimized with keywords identifiable by search engines to provide results (Google, 2020). For example, 

the search “water quality data AND Sweden” does not return a website with Swedish water quality data. This data does 

exist; it is hosted by the Swedish University of Agricultural Sciences at https://miljodata.slu.se/MVM/, but cannot be found 

using our English search terms. Please note that this data is included in SWatCh, as it is included in the European 

Environment Agency’s Waterbase, one of our data sources. All datasets were originally downloaded in September 100 

2019September 2019 and updated during the manuscript review process in April and March 2022 so newly published data 

could be included. The GloRiCh dataset was not re-downloaded because it not been updated since the prior download, and 

the National Water Quality Monitoring Council Water Quality Portal dataset was not re-downloaded due to unresolved 

internal server errors. 

2.2 Data Inclusion 105 

SWatCh includes 1724 water chemistry variables collected in untreated surface water bodies. We define “untreated” as water 

that is not wastewater or receiving treatment plant effluent near to the sample collection site (for example, sites described as 

“wastewater” or “effluent”). The included water body types are streams, rivers, canals, ponds, lakes, and reservoirs. The 

included water chemistry variables are metals: Al, and iron (Fe); CB’s: calcium (Ca), magnesium (Mg), potassium (K), and 

sodium (Na); other measures of buffering capacity: acid neutralization capacity (ANC), alkalinity, carbonate (CO3), and 110 

bicarbonate (HCO3); acid anions: sulfphate (SO4), nitrate (NO3), and nitrite (NO2); other anions: fluoride (F), and chloride 

(Cl); nutrients: phosphorus (P), phosphate (PO4), and ammonium (NH4); physical parameters: pH, and temperature; carbon: 

carbon dioxide (CO2), total inorganic carbon (TIC), dissolved inorganic carbon (DIC), total organic carbon (TOC), and 

dissolved organic carbon (DOC). The included water body types are streams, rivers, canals, ponds, lakes, reservoirs, and 

impoundments. The included sample fractions are unfiltered, filtered, and extracted (that is, acid digested). We screened out 115 

sites identified as confidential or with other publication restrictions (Error: Reference source not found). A visual 

representation of the data processing completed during the preparation of SWatCh is presented in Fig. 1. 

2.2.1 RemovalFlagging of Low QualityLow-Quality Data 

We removedidentified low quality data using the flag “Rejected”; for example, samples flagged as “unreliable”, “suspect”, 

or “poor quality” in the source databases. Additionally, we removedflagged values below zero for all variables except 120 

temperature, alkalinity, and ANC; these values are assumed to have been entered incorrectly. A total of 79,910 data points 

were considered to have low data quality, representing 1.48% of data in SWatCh. 

https://miljodata.slu.se/MVM/
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2.2.2 Removal of Duplicates 

We removed duplicate site and sample data. Three of our source databases, GEMStat, the Global River Chemistry Database 

(GloRiCh), and Waterbase are compilations of water chemistry data from several sources, and thus repeat some 125 

measurements. We removed duplicated sites based on the unique site identification code and the country the site was located 

in. We removed duplicated samples based on the site identification code, country, date, variable name, variable fraction, 

variable speciation, and sample value. We define “variable fraction” as the component part of a water sample, such as 

filtered or total (unfiltered sample) and dissolved (filtered sample). “Variable speciation” is defined as the speciation of a 

reported parameter; for example, NH4 may be reported as nitrogen (N) or NH4.Country is included as a parameter in the 130 

duplicate removal process, as some site codes are replicated across different countries; this primarily occurs for numeric or 

single-letter site codes. 

2.2.3 Flagging of Potential Outliers 

We identify potential outliers for each timeseries in SWatCh using a four-times median absolute deviation (MAD) cut-off 

value. The MAD is preferred to other methods of outlier removal when the data have a skewed distribution or large outliers 135 

are present (Leys et al., 2013; Rousseeuw & Hubert, 2011), as is common in water chemistry data (for example, Rotteveel & 

Sterling, 2020). Water chemistry data in SWatCh have a skewed distribution for most variables; thus, the MAD is suitable 

outlier screening approach. The equation for the MAD is presented in Eq. (1). 

       𝑀𝐴𝐷 =  
1

𝑛
∑ |𝑥𝑖 −  𝑥̃|𝑛

𝑖=1  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑛         (1) 

Here, MAD is median absolute deviation, xi an observation, and 𝑥̃ ~  the median (Rousseeuw & Hubert, 2011). A total of 140 

0.27% (13,309 values) were flagged as potential outliers. 

2.3 Data Standardization 

2.3.1 Database Format 

We formatted tThe SWatCh database to conforms to the DataStream Water Quality (DS-WQX) schema, a standardized data 

format which specifies the allowable elements and dataset structure. The DS-WQX schema is a simplified adaptation of the 145 

United States Environmental Protection Agency (US EPA) WQX schema. The US EPA WQX schema is an implementation 

of the Environmental Sampling, Analysis, and Results data standard which conforms to the National Environmental 

Information Exchange Network (EN) standards (US EPA, 2021). The complexity of the US EPA WQX schema presents a 

barrier to entry (DataStream Initiative, 2022), which is addressed by the simplified DS-WQX schema. The US EPA WQX 

schema is simplified compared to the DS-WQX schema in the following ways: most optional columns are removed, data are 150 

stored as one database as opposed to multiple relational datasets, column names are simplified, and date and time 

information is conformed to the ISO 8601 format to simplify parsing and ensure universal readability (DataStream Initiative, 

2022). For further details, please see https://github.com/datastreamapp/schema. 
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We made two changes to the DS-WQX format: the minimum value for the “MonitoringLocationLatitude” field (that is, 

minimum allowable latitude value) was updated from 0 to -90 so that sites located in the southern hemisphere could be 155 

included; and “OTHER” was added as an allowable value to the “ResultAnalyticalMethodContext” field (that is, the context 

associated with the analysis identifier code; for example, the agency which published the analysis method specifications), so 

method information which was undefined in the DS-WQX schema could be included. For samples where the 

“ResultAnalyticalMethodContext” was specified as “OTHER”, information on the analysis identifier code context is 

provided in the “ResultComment” column. 160 

reduce storage requirements and simplify use. To reduce storage requirements, we provide SWatCh as a relational database 

containing three datasets: 1) sites, 2) methods, and 3) samples. These three datasets are linked via site and method 

identification codes. We formatted each dataset after the input dataset we found the most straightforward to analyse and 

manipulate; that is, the sites and methods datasets are modelled after the United Nations’ GEMStat, and the samples dataset 

is modelled after the European Environment Agency’s Waterbase. 165 

2.3.2 Variable Naming and Measurement Units 

We standardized variable naming conventions in accordance with DS-WQX. to prevent confusion due to inconsistent 

spelling and abbreviation (Table 2). For example, aluminium (British spelling) and aluminum (American spelling) are both 

abbreviated to Al. We keep vVariable names are indicated separately from variable fractions and speciation to 

simplifyfacilitate analysis examiningof different fractions simultaneously. In the input datasets, the fractions are not 170 

specified for all variables; for these, we denote the fraction as “uUnspecified”. 

 

We simplified and standardized measurement units to prevent analysis and encoding errors (Table 2). Several input datasets 

did not include their encoding type, causing corrupted characters and measurement unit ambiguity. To prevent these errors, 

we omit non-ASCII (American Standard Code for Information Interchange) characters; for example, micrograms (μg), are 175 

denoted as ug. We harmonized the measurement units and variable speciation for each parameter to simplify data analysis. 

Measurements were reported in different units in the input datasets; we standardized them to the most common International 

System of Unit (SI unit) we observed for each variable. For example, Ca was reported in μg L-1, mg L-1, eq L-1, and Mol, but 

was most commonly reported as mg L-1, thus, we standardized the measurement unit to mg L-1. Concentrations are provided 

in mg L-1, other than Al and Fe (μg L-1), ANC (mmol L-1), pH (no unit: “None”), and temperature (°C). 180 

Several input datasets did not include their encoding type, causing corrupted characters and measurement unit ambiguity. To 

prevent these errors, we omit non-ASCII (American Standard Code for Information Interchange) characters; for example, 

micrograms (μg), are denoted as ug. Measurement units in SWatCh conform to the DS-WQX standard. 
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2.3.3 Censored Data Notation 

We standardized censored data notation to facilitate easier handling of these values. Censored data notation varied across the 185 

input datasets and included abbreviations such as “bdl”, “<”, or the numeric value of the detection limit. The input datasets  

did not distinguish between samples measured at or below the detection limit. Detection limits differed across and within 

datasets; thus, we standardized below detection limit values by flagging them and providing the detection limit in separate 

columns, allowing for various approaches of handling these results. 

2.4 Mapping 190 

We standardizedharmonized the coordinate reference systems (CRSs) of the sample site locations to simplify geographic 

analysis. Site location coordinates are provided in various CRSs in the input datasets; thus, we first mapped the sites in their 

original coordinate systems, then re-projected them to the World Geodetic System 1984 (WGS 84) geographic CRS. We 

selected WGS 84, as this provides good mean solution across the globe and can easily be projected to local datums (Bajjali, 

2018). 195 

3 Results 

The SWatCh database contains water chemistry data across 2417 variables, sixfour fractions, 33,72238,598 sites, and 

5,062,9809,608,026 samples collected between 1960 and 202219 (Table 2Table 3). SWatCh is available on Zenodo (DOI: 

10.5281/zenodo.6484939; Rotteveel and Heubach, 2021)). Sample collection frequency ranges from approximately twice a 

dayily to one-time samples, depending on the data sourceparameter and water body type. The parameters with the highest 200 

average annual sampling frequency are temperature (791) and pH (359). Average annual sampling frequency across all 

parameters is similar between water body types: four samples per year for lacustrine and riverine systems, and eight samples 

per year for reservoirs. Not all samples included collection and analysis methodologies; for the samples where this 

information was available, there are over 600 565 different methods. 

Sites in SWatCh are located across the globe, but are concentrated in North America, South America, and Europe (Fig. 2), 205 

and encompass a variety of bedrock types (United States Geological Survey, n.d.) and, land use types (Goldewijk et al., 

2011), and climate zones (Kottek et al., 2006)(Figure 2). The spatial distribution of sampling locations varies by water body 

type; notably, only riverine sites are available in northern North America and several island nations, such as Guam and New 

Zealand, and reservoir sites are concentrated in the equatorial and arid climate zones, such as Central America (Fig. 2). 

The number of sites available to study freshwater acidification, and their spatial extent, decreases with number of included 210 

parameters and timeseries length (Table 3; Fig. 3). We allocated the available parameters in SWatCh into five groupings, 

each of which allows freshwater acidification to be studied with increasing detail and certitude. The parameter groupings, in 

order of decreasing importance, are as follows: 

1. Acidity (pH): pH is assigned the to the first grouping because it is the primary indicator of freshwater acidification. 
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2. Basicity (alkalinity, hardness, ANC, CO3, HCO3, Ca, and Mg): the primary measures of basicity are assigned to the 215 

second grouping because they are also used as primary indicators of freshwater acidification and can be used to 

determine the stage of freshwater acidification. For example, Stage 2 is characterized by an increase in freshwater 

CB concentrations as cation exchange from cation exchange sites in soils buffers acid anion deposition (Galloway et 

al., 1983). K and Na are not included in the basicity grouping because they are usually present in minor 

concentrations compared to Ca and Mg (Maybeck, 2004).  220 

3. Acid anions (SO4, NO3, and NO2): acid anions are assigned to the third grouping because acid deposition is usually 

the primary driver of freshwater acidification (Galloway et al., 1983), but may not be a good indicator of freshwater 

acidification in low CB waters, or waters with high DOC concentrations (Rotteveel & Sterling, 2020). 

4. Metallic cations (Al and Fe): metallic cations are assigned to the fourth group because soils undergo Al or Fe 

buffering in response to acid deposition once soil CB are depleted (Björnerås et al., 2017; Galloway et al., 1983), 225 

and are thus a secondary indicator of freshwater acidification.  

5. Weak acids (CO2, TOC/DOC, and NH4): although weak acids are not a primary driver of freshwater acidification in 

most catchments, they are an important driver of freshwater response to acid deposition in some catchments with 

low buffering capacity (Clair et al., 2011; Rotteveel & Sterling, 2020); thus, they are assigned to the fifth grouping. 

6. Other (temperature, K, Na, Cl, F, P, PO4, and DIC): the remaining parameters are assigned to the last group because 230 

they characterize catchment-scale processes which may have secondary effects on freshwater response to acid 

deposition (for example, Berger et al., 2015; Harriman et al., 1995; Kopáček et al., 2001). DIC is included in this 

group because the speciation (that is, CO2, CO3, or HCO3) is unknown, although it can be calculated using pH. 

7.6.  

 235 

4 Discussion 

Here, we discuss the main limitations we encounter when compiling and analysinganalyzing datasets and provide 

recommendations for data sharing to facilitate more large-sample and global scale water chemistry research. 

4.1 Data Availability and Spatial Gaps 

Some variables have smaller sample sizes. The number of reported measurements differs greatly per variable, with metals 240 

(Fe and Al) and F having the smallest sample sizes and lowest sampling frequencies and pH and temperature having the 

largest and highest. This discrepancy is possibly due to these parameters being relevant to a wider range of research topics or 

the cost of measurement, where pH and temperature can be measured with a variety of field or laboratory-based 

multiparameter probes, whereas metals and anions require laboratory analysis. What is currently unknown, is if analysis 

results are under-reported for some variables; that is, if all laboratory analysis results are reported for each sample included 245 
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in the input databases. Prior research on one of the main variables with low sample size (Fe), includes an openly available 

research dataset of 340 water bodies in Europe and eastern North America (Björnerås et al., 2017). Despite the 

qualitygeographical coverage and size of this dataset, it is not included in SWatCh because the data do not adhere to the DS-

WQX data schema due to missing site identification codes, variable fractionation information, and analysis methodology 

information. These types of published research datasets are uncommon (Alsheikh-Ali et al., 2011) and highlight the potential 250 

contribution of unpublished raw research data. 

Critical data gaps exist across large areas on the African, Asian, Australian, and Antarctic continents, representing mainly 

the equatorial, arid, snowy, and polar climate zones (Kottek et al., 2006). The zones of missing data represent regions where 

freshwater acidification is an emerging issue, for example in China (Li et al., 2019), and regions where climate change 

induced alteration of freshwater discharge regimes is projected the greatest by 2050 (Döll and Zhang, 2010). The lower data 255 

coverage in some of these regions represents a limitation in the development of global water chemistry models (Harrison, 

Caraco, et al., 2005; Harrison, Seitzinger, et al., 2005), and may inhibit the detection – and therefore treatment – of emerging 

water quality problems related to climate change induced perturbation of freshwater discharge regimesConcentrations of 

many water chemistry variables are discharge dependant (Moatar et al., 2017)(M(Moatar et al., 2017)oatar et al., 2017); thus, 

these data gaps may inhibit the detection– and therefore treatment – of emerging climate change induced water quality 260 

problems. The observed lower data availability may be because of our reliance on English datasets, less data sharing in these 

regions due to concerns about “parachute research” (where researchers abscond with local data to their home countries) 

(Serwadda et al., 2018), a lack of funding for scientific research (Serwadda et al., 2018), a lack of national data sharing 

regulations (Serwadda et al., 2018; Thu and Wehn, 2016), or outdated information management systems (Thu and Wehn, 

2016).,  or preferential research focus. For example, research on freshwater acidification predominantly focusses on Europe 265 

and North America (for example, Björnerås et al., 2017; Holland et al., 2005; Stoddard et al., 1999) where this is an 

established environmental issue, and focusses less on other regions such as China, where this is an emerging concern (for 

example, Li et al., 2019). 

Despite the aforementioned data gaps, some of the most acidified regions of the world can be studied with a high degree of 

detail and certitude using SWatCh. Sites with sufficient available parameters (as defined in Results) and timeseries length 270 

(that is, ten to 15 years) to study drivers and trends are concentrated in the northern hemisphere, and encompass the some of 

the most acidified regions of North America and Europe (Björnerås et al., 2017; Clair, 2012; Clair et al., 2011; Driscoll et al., 

2016) (Fig. 3). We chose a timeseries length of ten to 15 years because this (Howden et al., 2011)is the minimum duration 

required to distinguish between short-term hydrological variability and underlying system behavior (Howden et al., 2011), 

and is comparable to timeseries lengths commonly used to study freshwater acidification (for example, Burns et al., 2008; 275 

Clair et al., 2011; Driscoll et al., 2016). Based on the available parameters for locations with a 10- or 15-year timeseries, the 

following aspects of freshwater acidification can be studied using SWatCh: acidification stage(Galloway et al., 1983), extent 

of base cation depletion, catchment buffering processes, the importance of natural and/or weak acids, and other influential 

catchment-scale processes. The lack of water chemistry data relevant to freshwater acidification in some regions may be 
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related to historical preferential research focusor preferential research focus. That is, freshwater acidification research has 280 

historically predominantly been focusedses on Europe and North America (for example, Björnerås et al., 2017; Holland et 

al., 2005; Stoddard et al., 1999) where this is an established environmental issue, and less focusedes on other regions such as 

China, where this is an emerging concern (for example, Li et al., 2019). 

Alleviating the issue of data availability is complex (Serwadda et al., 2018), but can be facilitated through journals more 

consistently implementing and enforcing data sharing policies (Alsheikh-Ali et al., 2011), ensuring coherence of and balance 285 

between data sharing policies and protecting national interests (Thu and Wehn, 2016), and engaging and crediting the people 

and organizations collecting the data (Serwadda et al., 2018). 

 

Alleviating the issue of data availability is complex (Serwadda et al., 2018), but can be facilitated through journals more 

consistently implementing and enforcing data sharing policies (Alsheikh-Ali et al., 2011), ensuring coherence of and 290 

balance between data sharing policies and protecting national interests (Thu and Wehn, 2016), and engaging and 

crediting the peoples and organizations who collected the data (Serwadda et al., 2018). 

4.2 Methodology Changes and Dissimilarity 

The analysis of timeseries and intercomparison of data collected at different sites is challenging due to dissimilarity of 

sample collection programs and methodology changes. Methodology changes throughout a timeseries may result in spurious 295 

trend test results. For example, at site AL05BE0013, located in the Bow River approximately 4.5 km upstream of Canmore, 

Alberta, Canada, dissolved Al was analyzed using Variable Method Variable (VMV) 100195 prior to 2003, and VMV 

methods 107941 and 97963 after 2003 (Fig. 4). VMV methods 107941 and 97963 both use inductively coupled plasma mass 

spectrometry (ICP-MS) and have comparable low-level detection limits, whereas VMV 100195 uses inductively coupled 

argon plasma emission spectroscopy (ICAP) and has a higher detection limit. Because most values in this timeseries are 300 

lower than the detection limit for  VMV 100195 (that is, 20 μg·L-1), analysis of the timeseries without removing samples 

analyzed via VMV 100195 would result in the detection of a spurious negative trend.spurious negative Al trends may result 

from changing from inductively-coupled plasma optical emission spectroscopy (ICP-OES) to inductively-coupled plasma 

mass spectrometry (ICP-MS) if the measured values are at or near the detection limit, as ICP-MS has a lower detection limit 

than ICP-OES. Spurious positive Al trends may result from changing from extractable Al (Alext; comprising the dissolved 305 

fraction and weakly bound or sorbed molecules) to Alt (comprising dissolved, weakly bound or sorbed, and particulate 

molecules), as was done by Environment and Climate Change Canada in Atlantic Canada in 2011. Similarly, disparate 

analysis methods across geographic regions may hinder comparability and consolidation of data collected by different 

sources (WHO and UNCFWorld Health Organization and United Nations Children’s Fund, 2017). For example, in the USA, 

Al samples may be analysedanalyzed by United States Environmental Protection Agency (US EPA) method 200.7, with an 310 

estimated detection limit of 45 μg L-1 (US EPA, 2015), whereas in Europe, Al samples may be analysedanalyzed by 

International Organization for Standardization (ISO) method 15586:2003, with an estimated detection limit of 1 μg L-1 
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(ISO/TC 147 SC2, 2003); samples analysedanalyzed by these two methods cannot be compared if Al concentrations below 

are 45 μg L-1. Trend analysis can also not be robustly performed if different sample fractions are present throughout the 

timeseries. For example, Environment and Climate Change Canada (ECCC) analyzed the unfiltered Al fraction as 315 

extractable Al (Alext; comprising the dissolved fraction and weakly bound or sorbed molecules) prior to 2011 in Atlantic 

Canada and as total Al (Alt: comprising dissolved, weakly bound or sorbed, and particulate molecules) after 2011 (Rotteveel 

& Sterling, 2020). To facilitate intercomparison of data and trend analysis, the creation of internationally standardized 

variable definitions and cross-boundary analysis methodology is needed (WHO and UNCFWorld Health Organization and 

United Nations Children’s Fund, 2017). 320 

4.3 Ambiguity and Inconsistency 

We encounter ambiguity and inconsistency in variable and faction naming conventions, reporting units, analysis 

methodology, and dataset encoding. Firstly, we find variable and fraction definitions and consistency to be lacking in most 

input datasets. For example, an Ald sample may be filtered through a 0.45 or 0.10 μm filter; both samples are considered Ald 

but represent a different set of Al molecules. Since naming conventions are variable, and there are no internationally 325 

standardized variable definitions (WHO and UNCFWorld Health Organization and United Nations Children’s Fund, 2017), 

defining variables and their fractions is required to prevent confusion regarding comparability. Similarly, reporting units and 

censored data notation should be defined and consistent throughout the dataset; this includes spelling, abbreviations, and 

capitalization. We also observe ambiguity regarding analysis methodology, where analysis methods are inadequately 

described or missing entirely. Ideally, analysis method reporting includes all ofall the following which are applicable: filter 330 

size and type, analysis instrument, acid preservative type, location of acid preservation (in field or laboratory), and the 

analysis/speciation method, method code, its publishing agency, and link to a reference document. Lastly, we encounter 

corrupted characters due to unknown dataset encoding; to prevent this ambiguity, the encoding of the dataset should be 

known and published, this is especially important for datasets not encoded in 8-bit Unicode (UTF-8), which preferred for 

data exchange (ISO/IEC JTC 1/SC 2, 2017). 335 

4.4 Limitations and Future Work 

In addition to the challenges noted above, the main limitations of SWatCh are a lack of discharge data and information on 

watershed land use and land cover. We did not include discharge information, as there are numerous openly available global 

scale river discharge datasets which cover manysome of the sites available in the SWatCh database. For example, those 

available via the European Environmental Agency’s Waterbase contains a water quality dataset (used in the SWatCh 340 

database) and a water quantity datasetor the Global Runoff Data Centre. Further development is needed to integrate existing 

discharge datasets into SWatCh, allowing discharge-weighted water chemistry concentrations to be computed. Most of the 

input datasets to SWatCh do not includeThe DS-WQX schema does not allow for the inclusion of watershed information 

such as land use and land cover information; thus, we do not include these data in the SWatCh database. Some of these 
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datathis information are is available in the input datasets, for example, the GloRiCh database (Hartmann et al., 2014). 345 

Catchment characteristics can be identified for sites by using existing global datasets such as HydroATLAS, which provides 

information on hydrologic, physiographic, climate, land use and land cover, soils and geology, and anthropogenic influences 

for catchments at a resolution of up to 15 arc-seconds (approximately 463 m at the equator) (Linke et al., 2019). 

Delineating the watersheds and computing land use and land cover information is beyond the scope of this research; 

but is a key area of improvement for future research and updates to the database. 350 

5 Conclusion 

Prior research demonstrates that despite variability in sample size, geographic coverage, and analysis methodology, large-

sample datasets facilitate the understanding of global water chemistry processes and the identification of transboundary 

problems (for example, Björnerås et al., 2017; Monteith et al., 2007; Weyhenmeyer et al., 2019). Despite these clear 

benefits, there are few global scale water chemistry datasets. We created SWatCh to begin to fill this gap; it is a global 355 

database of surface water chemistry focussedfocused on freshwater acidification-related variables. This database contains 

water chemistry data across 1724 variables, sixfour variable fractions, 38,59833,722 sites, and 9,608,0265,062,980 unique 

samples collected between 1960 and 202219. The numerous available variables and large sample sizes in SWatCh allows 

users to conduct powerful and robust statistical analyses to answer emerging global surface water chemistry questions. To 

facilitate data use in databases like SWatCh and by other researchers, we recommend making research data openly available, 360 

standardizing analysis methodology, and avoiding ambiguity/inconsistency in variable and fraction names, reporting units, 

censored data notation, analysis method descriptions, and dataset encoding. Future work should focus on filling the spatial 

data gaps identified in Asia, Africa, and Australia, and adding discharge data, and adding catchment land use/land cover 

information. With more people experiencing decreased water quantity (Burek et al., 2016; Mekonnen and Hoekstra, 2016), 

maintaining water quality is paramount. By facilitating the global exchange of their data, researchers can contribute toward 365 

this goal. 

Data and Code Availability 

The SWatCh database is available on Zenodo: https://zenodo.org/record/4559696 (DOI: 

10.5281/zenodo.648493910.5281/zenodo.4559696); it can be accessed by navigating to https://zenodo.org/ and searching for 

dataset number 6484939. No account or sign-up is required to download the data.. The code used to generate the SWatCh 370 

database is published on Github:  https://github.com/LobkeRotteveel/SWatCh. SWatCh is composed of third-party data, as 

listed in Table 1Table 1. GEMStat data, 3,0347,401 sites (7.921.95 % of sites), are not available in SWatCh due to a 

publication ban (Supplement S1). Users may add these data by requesting the GEMStat dataset from the United Nations 

https://zenodo.org/
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Environment Programme and running the SWatCh data processing scripts available from the GitHub repository listed 

indicated abovebelow. 375 

Code Availability 

The code used to generate the SWatCh database is published on GithubGitHub:  

https://github.com/LobkeRotteveel/SWatCh. 
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Disclaimer 

While substantial efforts are made to eliminate errors from the SWatCh database, complete accuracy of the data and 

metadata cannot be guaranteed. All data and metadata are made available "as is". Neither Lobke Rotteveel, Franz Heubach, 

and Dr. Shannon M. Sterling nor their current or future affiliated institutions, including the Sterling Hydrology Research 

Group and Dalhousie University, can be held responsible for harms, damages, or other consequences resulting from the use 390 

or interpretation of information contained within the SWatCh database. 

The SWatCh database is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative 

Commons, PO Box 1866, Mountain View, CA 94042, USA. 
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Figure 1: Workflow for creating SWatCh. Below detection limit is abbreviated as BDL and coordinate reference system is 615 
abbreviated as CRS. 
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Figure 2: Sample sites in the SWatCh database, colored by dataset source (a), and separated by site type: lakes/ponds (b), 

rivers/streams/canals (c), and reservoirs (d). Points overlap where sites are in close vicinity. Projection: Natural Earth, scales: 

1:275,000,000 (a) and 1:725,000,000 (b, c, and d). 620 

Figure 2:  The SWatCh database sample site locations, coloured by data source. Points overlap where sites are in close vicinity. 

Projection: Natural Earth, scales: 1:250,000,000. 
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Figure 3: Sample size (sites) for waterbody types based on timeseries duration and data availability in the following parameter 

categories: acidity (a and b), basicity (c and d), acid anions (e and f), metallic cations (g and h), weak acids (i and j), and other 625 
parameters (k and l). Sites included in consecutive parameter categories also meet all the prior category requirements. Sites with 

at least one observation are shown in the left panes, and sites with a minimum timeseries length of 15 years are shown on in the 

right panes. Points overlap where sites are in close vicinity. Projection: Natural Earth, scales: 1:550,000,000. 
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 630 

Figure 4: Example of change in analysis methodology on detected concentrations. Colored points represent different analysis 

methodologies. For non-detect concentrations, the detection limit is shown. 
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Table 1: Data sources. 635 

Dataset/Database Source 

Global Water 

Quality database 

and information 

system (GEMStat) 

United Nations Environment Programme (2017). GEMStat database of the Global 

Environment Monitoring System for freshwater (GEMS/Water) Programme. International 

Centre for Water Resources and Global Change, Koblenz. Accessed 10 August 201924 

March 2022. Available upon request from GEMS/Water Data Centre: gemstat.org 

Global River 

Chemistry Database 

(GloRiCh) 

Hartmann, J., Lauerwald, R., Moosdorf, N. (2019). GLORICH - Global river chemistry 

database. PANGAEA. Accessed 18 August 2019. Available from: 

https://doi.org/10.1594/PANGAEA.902360. Supplement to: Hartmann, J. et al. (2014). A 

Brief Overview of the GLObal RIver Chemistry Database, GLORICH. Procedia Earth and 

Planetary Science, 10, 23-27, https://doi.org/10.1016/j.proeps.2014.08.005. 

National Long-

Term Water Quality 

Monitoring 

Database 

Environment and Climate Change Canada (2019). National Long-term Water Quality 

Monitoring Data. Accessed 8 September 201919 March 2022. Available from: 

http://data.ec.gc.ca/data/substances/monitor/national-long-term-water-quality-monitoring-

data/  

Water Quality 

Database 

National Water Quality Monitoring Council (2019). Water Quality Portal. Accessed 7 

September 2019. Available from: 

https://www.waterqualitydata.ushttps://www.waterqualitydata.us/apps_using_portal/. 

Waterbase European Environment Agency - European Environment Information and Observation 

Network (Eionet) (2019). Waterbase - Water Quality ICM. Accessed 8 September 20195 

April 2022. https://www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-icm-

1https://www.eea.europa.eu/data-and-maps/data/waterbase-water-quality-2.. 

McMurdo Dry 

Valleys Long Term 

Ecological 

Research Network 

Gooseff, M.N., Lyons, W. (2022). Dissolved organic carbon (DOC) concentrations in glacial 

meltwater streams, McMurdo Dry Valleys, Antarctica (1990-2020, ongoing). Environmental 

Data Initiative. Accessed 4 April 2022. doi: 

10.6073/pasta/878eccb6e5c8e492f933381b8c257d79. 

Gooseff, M.N., Lyons, W. (2022). Ion concentrations in glacial meltwater streams, 

McMurdo Dry Valleys, Antarctica (1993-2020, ongoing). Environmental Data Initiative. 

Accessed 4 April 2022. doi: 10.6073/pasta/275ee580f3c93f077dd7ddcce1f2ecdd. 

Gooseff, M.N., Lyons, W. (2022). Nitrogen and phosphorus concentrations in glacial 

meltwater streams, McMurdo Dry Valleys, Antarctica (1993-2020, ongoing). Environmental 

Data Initiative. Accessed 4 April 2022. doi: 

10.6073/pasta/f6131f5ef67901bc98027e9df55ec364. 

Lyons, W. (2015). Dissolved Inorganic Carbon in Streams. Environmental Data Initiative. 

Accessed 4 April (2022). doi: 10.6073/pasta/4d64208bd91fc6a336c9c388436b1634. 

Lyons, W. (2015). Stream Nutrients for Reactivated Channel. Environmental Data Initiative. 

Accessed 4 April (2022). doi: 10.6073/pasta/b3d212996e5e4cb7f91b82090b4f550d. 

Lyons, W., Mcknight, D.M. (2015). Stream Chemistry for Reactivated Channel. 

Environmental Data Initiative. Accessed 4 April 2022. doi: 

10.6073/pasta/ed143e49e82d0aaa1494447ebcee17c1. 

Priscu, J. (2018). Dissolved inorganic carbon (DIC) concentrations in discrete water column 

samples collected from lakes in the McMurdo Dry Valleys, Antarctica (1993-2017, 

ongoing). Environmental Data Initiative. Accessed 4 April 2022. doi: 

10.6073/pasta/e68682ea6614259b4f091be206a773b8.  

Priscu, J. (2019). Hydrogen ion concentrations (pH) in discrete water column samples 

collected from lakes in the McMurdo Dry Valleys, Antarctica (1993-2018, ongoing). 

Environmental Data Initiative. Accessed 4 April 2022. doi: 
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Dataset/Database Source 

10.6073/pasta/a0c17e313c63f6b5e5e5e071e5ba6b4a. 

McMurdo Dry 

Valleys Long Term 

Ecological 

Research Network 

Priscu, J. (2022). Dissolved organic carbon (DOC) concentrations in discrete water column 

samples collected from lakes in the McMurdo Dry Valleys, Antarctica (1993-2022, 

ongoing). Environmental Data Initiative. Accessed 4 April 2022. doi: 

10.6073/pasta/a5d82d5d2167679c8ecff0d8ad06c0ee 

Priscu, J. (2022). Nitrogen and phosphorus concentrations in discrete water column samples 

collected from lakes in the McMurdo Dry Valleys, Antarctica (1993-2020, ongoing). 

Environmental Data Initiative. Accessed 4 April 2022. doi: 

10.6073/pasta/5cba7e25aa687c1e989c72c3ee0a0f69. Dataset accessed 4 April 2022. 

Priscu, J., Welch, K.A., Lyons, W. (2022). Ion concentrations in discrete water column 

samples collected from lakes in the McMurdo Dry Valleys, Antarctica (1991-2019, 

ongoing). Environmental Data Initiative. Accessed 4 April 2022. doi: 

10.6073/pasta/31f7354d1a05679eb3ce7c384c6e2b22. 
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Table 2 Variable naming and measurement unit conventions in the SWatCh database. 640 

SWatCh variable 

notation 

SWatCh 

unit 

notation 

Unit 

Al ug/l μg L-1 

Fe ug/l μg L-1 

Ca mg/l mg L-1 

Mg mg/l mg L-1 

K mg/l mg L-1 

Na mg/l mg L-1 

Cl mg/l mg L-1 

F mg/l mg L-1 

SO4 mg/l mg L-1 

NO3 mg/l mg L-1 

NO2 mg/l mg L-1 

NH4 mg/l mg L-1 

P mg/l mg L-1 

PO4 mg/l mg L-1 

OC mg/l mg L-1 

pH unit unit 

temperature Deg_c oC 
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Table 2: Summary of The SWatCh database ssample size, timeseries start and end dates, and average annual sampling frequency 

throughout timeseries separateds by water body type and variable and fraction. Minimum and maximum are abbreviated as min. 

and max., respectively. Field measurements are only applicable to pH and temperature. Organic carbon is abbreviated as OC and 645 
temperature is abbreviated as temp. 
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Al 2,515 27,113 170 5,959 642 2,604 4,144 120,216       

Fe 103 9,866 164 5,941 89 766 277 29,905       

Ca 12,199 591,313 155 5,694 797 5,094 1,433 19,340       

Mg 12,734 590,961 155 5,678 802 5,079 7,708 96,790       

Na 11,639 560,572 161 5,686 589 2,910 6,599 86,296       

K 11,980 549,954 161 5,689 490 2,657 6,205 99,386 189 257   

Cl 12,414 668,247         9,357 144,919 368 6,340   

F 5,567 424,997         901 6,771 25 3,335   

SO4 13,347 637,383         8,840 117,968 108 3,805   

NO3 8,434 228,049         4,022 74,668 2,566 65,234   

NO2 9,148 205,258         2,606 36,721 2,139 51,176   

NH4 11,241 506,116         5,677 146,000       

P 2,967 103,980         10,306 361,460 35 270   

PO4 10,351 494,427         968 21,929 13 96   

OC 11,128 301,467         6,642 184,455       

pH                 27,183 1,144,310 135 

temp                 27,296 849,130 195 

Site 

Type 
Parameter 

Sample Size 
Earliest Data Point 

(yr) 

Latest Data Point  

(yr) 

Average Annual  

Sampling Frequency 

Sites Samples Min. Max. Mean Min. Max. Mean Min. Max. Median 

Lake/ 

Pond 

ANC 285 5,151 2013 2019 2015 2013 2020 2016 1 74 4 

Al 472 5,553 2000 2018 2013 2000 2019 2016 1 29 2 

Alkalinity 210 12,317 1977 2019 2001 1982 2020 2010 1 34 6 

CO2 2 53 1979 1980 1980 1980 1985 1983 1 9 5 

Ca 2,592 24,385 1993 2019 2012 1995 2020 2013 1 73 2 

Cl 3,105 67,153 1993 2019 2010 1995 2020 2013 1 107 4 

F 491 3,976 1994 2019 2014 2002 2019 2015 1 21 2 

Fe 266 6,282 2000 2019 2012 2000 2019 2017 1 23 7 

HCO3 520 14,222 1969 2018 2014 1974 2020 2018 1 63 6 

Hardness 508 12,141 1990 2019 2012 1996 2019 2017 1 80 2 

TIC/DIC 65 1,384 1993 2010 2001 1995 2017 2009 1 4 2 

K 1,315 15,551 1993 2019 2010 1995 2020 2012 1 50 1 

Mg 1,923 20,467 1993 2019 2011 1995 2020 2012 1 70 1 

NH4 1,037 32,022 1993 2019 2014 2003 2020 2017 1 79 6 

NO2 1,176 25,152 1993 2020 2012 2000 2020 2015 1 75 4 

NO3 1,502 30,696 1993 2020 2012 2000 2020 2014 1 122 4 

Na 1,694 18,865 1993 2019 2010 1995 2020 2012 1 62 2 

TOC/DOC 529 15,032 1993 2019 2012 2000 2022 2016 1 52 5 

P 8,384 227,921 2000 2020 2009 2000 2020 2013 1 105 4 
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Al 2,515 27,113 170 5,959 642 2,604 4,144 120,216       

Fe 103 9,866 164 5,941 89 766 277 29,905       

Ca 12,199 591,313 155 5,694 797 5,094 1,433 19,340       

Mg 12,734 590,961 155 5,678 802 5,079 7,708 96,790       

Na 11,639 560,572 161 5,686 589 2,910 6,599 86,296       

K 11,980 549,954 161 5,689 490 2,657 6,205 99,386 189 257   

Cl 12,414 668,247         9,357 144,919 368 6,340   

F 5,567 424,997         901 6,771 25 3,335   

SO4 13,347 637,383         8,840 117,968 108 3,805   

NO3 8,434 228,049         4,022 74,668 2,566 65,234   

NO2 9,148 205,258         2,606 36,721 2,139 51,176   

NH4 11,241 506,116         5,677 146,000       

P 2,967 103,980         10,306 361,460 35 270   

PO4 10,351 494,427         968 21,929 13 96   

OC 11,128 301,467         6,642 184,455       

pH                 27,183 1,144,310 135 

temp                 27,296 849,130 195 

Site 

Type 
Parameter 

Sample Size 
Earliest Data Point 

(yr) 

Latest Data Point  

(yr) 

Average Annual  

Sampling Frequency 

Sites Samples Min. Max. Mean Min. Max. Mean Min. Max. Median 

PO4 1,272 23,537 2000 2019 2012 2000 2020 2014 1 33 4 

SO4 2,616 22,553 1993 2019 2011 1995 2020 2013 1 80 1 

Temperature 8,302 1,053,822 2000 2020 2009 2000 2020 2012 1 791 5 

pH 6,490 566,977 1993 2019 2009 1994 2020 2012 1 359 6 

Reservoir 

Al 9 301 2000 2014 2005 2004 2015 2010 1 9 5 

Alkalinity 44 9,836 1976 2016 1986 1981 2020 2001 1 159 9 

CO2 1 79 1980 1980 1980 1995 1995 1995 7 7 7 

Ca 30 4,091 2000 2015 2006 2002 2018 2013 1 155 7 

Cl 49 4,013 2000 2014 2001 2000 2018 2011 1 15 5 

F 13 2,928 2000 2006 2000 2002 2012 2009 4 123 11 

HCO3 2 101 2016 2016 2016 2017 2017 2017 24 27 25 

Hardness 600 8,634 1976 2019 2013 1996 2019 2018 1 60 2 

K 27 3,771 2000 2015 2007 2000 2018 2013 1 148 8 

Mg 30 3,837 2000 2015 2006 2002 2018 2013 1 154 7 

NO2 107 6,789 2000 2015 2005 2004 2015 2012 1 24 6 

NO3 130 7,456 2000 2015 2005 2005 2017 2012 1 29 6 

Na 29 3,851 2000 2015 2006 2001 2018 2012 1 151 8 

TOC/DOC 1 255 2001 2001 2001 2015 2015 2015 18 18 18 

P 6 250 2000 2014 2009 2011 2015 2013 1 11 2 

PO4 52 5,747 2000 2009 2004 2008 2010 2010 5 133 10 

SO4 29 4,074 2000 2015 2006 2002 2018 2013 1 155 8 

Reservoir 
Temperature 161 9,753 2000 2015 2004 2000 2018 2012 1 35 6 

pH 210 15,688 2000 2014 2004 2000 2018 2012 1 155 7 
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Al 2,515 27,113 170 5,959 642 2,604 4,144 120,216       

Fe 103 9,866 164 5,941 89 766 277 29,905       

Ca 12,199 591,313 155 5,694 797 5,094 1,433 19,340       

Mg 12,734 590,961 155 5,678 802 5,079 7,708 96,790       

Na 11,639 560,572 161 5,686 589 2,910 6,599 86,296       

K 11,980 549,954 161 5,689 490 2,657 6,205 99,386 189 257   

Cl 12,414 668,247         9,357 144,919 368 6,340   

F 5,567 424,997         901 6,771 25 3,335   

SO4 13,347 637,383         8,840 117,968 108 3,805   

NO3 8,434 228,049         4,022 74,668 2,566 65,234   

NO2 9,148 205,258         2,606 36,721 2,139 51,176   

NH4 11,241 506,116         5,677 146,000       

P 2,967 103,980         10,306 361,460 35 270   

PO4 10,351 494,427         968 21,929 13 96   

OC 11,128 301,467         6,642 184,455       

pH                 27,183 1,144,310 135 

temp                 27,296 849,130 195 

Site 

Type 
Parameter 

Sample Size 
Earliest Data Point 

(yr) 

Latest Data Point  

(yr) 

Average Annual  

Sampling Frequency 

Sites Samples Min. Max. Mean Min. Max. Mean Min. Max. Median 

River/ 

Stream/ 

Canal 

ANC 479 8,802 2013 2019 2015 2013 2019 2017 1 24 4 

Al 967 59,043 2000 2019 2010 2000 2019 2016 1 74 4 

Alkalinity 4,263 350,531 1960 2019 1994 1968 2020 2001 1 112 3 

CO2 65 6,966 1979 2007 2000 1981 2019 2017 1 33 4 

CO3 1,272 78,474 1960 2015 1979 1961 2020 1988 1 41 6 

Ca 2,495 72,758 1971 2020 2012 1971 2020 2015 1 52 4 

Cl 2,909 69,272 1972 2019 2012 1972 2020 2015 1 57 5 

F 2,925 62,930 1967 2019 1994 1967 2020 1999 1 44 2 

Fe 998 69,307 2000 2020 2012 2011 2020 2018 1 74 11 

HCO3 2,631 112,069 1960 2020 1989 1962 2020 1996 1 43 3 

Hardness 4,364 331,545 1960 2020 2010 1970 2020 2016 1 104 5 

TIC/DIC 353 18,266 1973 2016 1994 1974 2019 2002 1 41 3 

K 2,271 57,642 1972 2019 2009 1973 2020 2013 1 40 4 

Mg 2,414 72,945 1973 2020 2011 1973 2020 2014 1 52 4 

NH4 7,504 111,903 1971 2019 2003 1972 2020 2006 1 52 3 

NO2 8,477 145,325 1970 2020 2003 1973 2020 2006 1 52 3 

NO3 6,005 144,335 1986 2020 2009 1989 2020 2013 1 52 4 

Na 2,023 60,865 1975 2020 2011 1980 2020 2015 1 52 4 

TOC/DOC 2,943 91,423 1971 2019 2010 1971 2020 2013 1 81 5 

P 8,663 171,177 1970 2020 2007 1972 2020 2009 1 290 4 

PO4 7,393 107,069 1969 2019 2002 1972 2019 2005 1 39 2 

SO4 2,923 75,552 1970 2019 2010 1971 2020 2013 1 57 4 

Temperature 9,610 230,617 1982 2020 2009 1984 2020 2012 1 52 4 
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Al 2,515 27,113 170 5,959 642 2,604 4,144 120,216       

Fe 103 9,866 164 5,941 89 766 277 29,905       

Ca 12,199 591,313 155 5,694 797 5,094 1,433 19,340       

Mg 12,734 590,961 155 5,678 802 5,079 7,708 96,790       

Na 11,639 560,572 161 5,686 589 2,910 6,599 86,296       

K 11,980 549,954 161 5,689 490 2,657 6,205 99,386 189 257   

Cl 12,414 668,247         9,357 144,919 368 6,340   

F 5,567 424,997         901 6,771 25 3,335   

SO4 13,347 637,383         8,840 117,968 108 3,805   

NO3 8,434 228,049         4,022 74,668 2,566 65,234   

NO2 9,148 205,258         2,606 36,721 2,139 51,176   

NH4 11,241 506,116         5,677 146,000       

P 2,967 103,980         10,306 361,460 35 270   

PO4 10,351 494,427         968 21,929 13 96   

OC 11,128 301,467         6,642 184,455       

pH                 27,183 1,144,310 135 

temp                 27,296 849,130 195 

Site 

Type 
Parameter 

Sample Size 
Earliest Data Point 

(yr) 

Latest Data Point  

(yr) 

Average Annual  

Sampling Frequency 

Sites Samples Min. Max. Mean Min. Max. Mean Min. Max. Median 

pH 10,363 257,499 1980 2020 2008 1980 2020 2011 1 114 4 
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Table 3: Sample size (sites) for waterbody types based on available parameters and timeseries duration. Sites included in 

consecutive parameter categories also meet all the prior category requirements. 

Site Type Category 
Minimum Timeseries Length (yr) 

1 5 10 15 20 

River/ 

Stream/ 

Canal 

1. Acidity 10,363 2,712 1,013 237 2 

2. Basicity 5,026 964 325 208 1 

3. Acid Anions 4,029 801 291 184 1 

4. Metallic Cations 1,049 390 193 125 0 

5. Weak Acids 717 380 184 120 0 

6. Other 717 380 184 120 0 

Lake/ 

Pond 

1. Acidity 6,490 1,635 735 420 5 

2. Basicity 2,474 408 71 55 5 

3. Acid Anions 1,989 371 66 55 5 

4. Metallic Cations 447 73 44 1 0 

5. Weak Acids 242 73 44 1 0 

6. Other 242 73 44 1 0 

Reservoir 

1. Acidity 210 137 75 26 0 

2. Basicity 33 27 14 4 0 

3. Acid Anions 31 19 11 3 0 

4. Metallic Cations 5 3 2 0 0 

5. Weak Acids 1 1 0 0 0 

6. Other 1 1 0 0 0 

 650 


