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 21 

Abstract: 22 

Surface soil moisture (SSM) is crucial for understanding the hydrological process of 23 

our earth surface. Passive microwave (PM) technique has long been the primary tool 24 

for estimating global SSM from the view of satellite, while the coarse resolution 25 

(usually >~10 km) of PM observations hampers its applications at finer scales. 26 

Although quantitative studies have been proposed for downscaling satellite PM-based 27 

SSM, very few products have been available to public that meet the qualification of 1-28 

km resolution and daily revisit cycles under all-weather conditions. In this study, we 29 

developed one such SSM product in China with all these characteristics.  The product 30 

was generated through downscaling the AMSR-E/AMSR-2 based SSM at 36-km, 31 

covering all on-orbit time of the two radiometers during 2003-2019. MODIS optical 32 

reflectance data and daily thermal infrared land surface temperature (LST) that had 33 

been gap-filled for cloudy conditions were the primary data inputs of the downscaling 34 

model, so that the “all-weather” quality was achieved for the 1-km SSM. Daily images 35 

from this developed SSM product have quasi-complete coverage over the country 36 

during April-September. For other months, the national coverage percentage of the 37 

developed product is also greatly improved against the original daily PM observations, 38 

through a specifically developed sub-model for filling the gap between seams of 39 

neighboring PM swaths during the downscaling procedure.  The product is well 40 

compared against in situ soil moisture measurements from 2000+ meteorological 41 

stations, indicated by station averages of the unbiased RMSD ranging from 0.052 42 
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vol/vol to 0.059 vol/vol. Moreover, the evaluation results also show that the developed 43 

product outperforms the SMAP-Sentinel (Active-Passive microwave) combined SSM 44 

product at 1-km, with a correlation coefficient of 0.55 achieved against that of 0.40 for 45 

the latter product. This indicates the new product has great potential to be used for 46 

hydrological community, agricultural industry, water resource and environment 47 

management. 48 

1. Introduction 49 

Surface soil moisture (SSM) is one of the most important variables that dominate 50 

the mass and energy cycles of earth surface system (Entekhabi et al., 2010b). Satellite-51 

based SSM datasets of sufficiently fine spatio-temporal resolutions over large-scale 52 

areas have significant implication on improved investigations at various research fields 53 

including hydrological signature identification (Zhou et al., 2021; Jung et al., 2010), 54 

agricultural yield production estimation (Ines et al., 2013; Pan et al., 2019), 55 

drought/waterlogging monitoring and warning (Vergopolan et al., 2021; Den Besten et 56 

al., 2021; Jing and Zhang, 2010), as well as weather prediction and future climate 57 

analysis (Koster et al., 2010; Jeffrey et al., 2001). Microwave bands with centimeter-58 

level or longer wavelengths (X-band, C-band, and L-band) are currently identified as 59 

the primary band channels suitable for SSM observations from view of satellite, due to 60 

their high penetration capabilities through cloud layers and vegetation canopies. In 61 

terms of sensor types, microwave SSM detection includes passive microwave 62 

(radiometer-based) techniques and active microwave (radar, scatterometer) techniques. 63 
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Satellite-based passive microwave (PM) radiometers, e.g. the Soil Moisture Active 64 

Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), and the Advance 65 

Microwave Scanning Radiometer-2 (AMSR-2), can obtain SSM observations at a 66 

revisit interval of 1-3 days, with relatively poor native spatial resolutions of tens of 67 

kilometers. Active microwave (AM) such as radar can achieve kilometer-level and even 68 

finer resolution of observations targeting at the earth surface. However, this usually 69 

sacrifices the swath width of radar configuration, because of which, most satellite-based 70 

synthetic aperture radars (SAR) have an obviously longer global revisit cycle (usually 71 

longer than 5 days, e.g. Sentinel-1 SAR data) than the typical radiometers. Moreover, 72 

AM radar backscatter signals are extremely sensitive to speckle noise (Entekhabi et al., 73 

2016), as well as influence from soil roughness, vegetation canopy structure and water 74 

content (Piles et al., 2009). All above influential factors have seriously impeded the use 75 

of AM radar techniques or combination of passive/active microwave datasets for 76 

producing high spatial resolution SSM products with a frequent revisit.  77 

Apart from microwave signals, solar reflectance or ground emission signals 78 

originated from optical and infrared band domains also have the potential to reflect 79 

SSM variation. Based on optical/infrared bands, however, SSM is typically estimated 80 

based on indirect relationships through intermediate variables like soil evaporation 81 

(Komatsu, 2003), vegetation condition (Zeng et al., 2004), or soil thermal inertia 82 

(Verstraeten et al., 2006). To overcome the spatio-temporally instable performance on 83 

SSM modelling that might be brought by such indirect relationships, they are typically 84 

fused with the PM SSM datasets. In this manner, it can well reconcile the advantage of 85 
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PM observations with respect to its high sensitivity to SSM variation, as well as that of 86 

optical/infrared observations with respect to its finer spatial resolutions at kilometer- or 87 

even hectometer-levels. Such data fusion techniques are also known as downscaling 88 

techniques of PM remote sensing SSM. Archetypal downscaling models include the 89 

“universal triangle feature space (UTFS)”-based models (Chauhan et al., 2003; Choi 90 

and Hur, 2012; Sanchez-Ruiz et al., 2014), the “DISaggregation based on a Physical 91 

And Theoretical scale CHange (DISPACTH)” model (Merlin et al., 2010; Merlin et al., 92 

2005; Merlin et al., 2013; Merlin et al., 2008), and the “University of California, Los 93 

Angeles (UCLA)” model (Peng et al., 2016). The physics of these models are mainly 94 

based on the response of SSM variation to changes in soil evaporation or land surface 95 

evapotranspiration. Another significant branch of such downscaling models are based 96 

on the sensitivity of SSM to soil thermal inertia, which is quantified by diurnal LST 97 

difference estimated from thermal-infrared wave bands (Fang and Lakshmi, 2013; Fang 98 

et al., 2018). 99 

Sabaghy et al. (2020) have shown that using optical and infrared data can achieve 100 

finer-resolution SSM estimates which are better consistent with ground soil moisture 101 

records, compared with using the radar datasets. Moreover, considering the short revisit 102 

cycle (daily) of optical/infrared sensors onboard typical polar-orbit satellites, using 103 

optical/infrared datasets to downscale PM SSM should be among the optimal methods 104 

for obtaining SSM data with high spatio-temporal resolutions over national, continental, 105 

or global scales. On the other hand, satellite remote sensing SSM products that are 106 

characterized by 1-km resolution of daily revisit intervals and stable long time series 107 
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dating back to at least 15-20 years ago, are urgently required for accelerating the 108 

development of various research fields, especially agriculture industry, water resources 109 

management, and hydrological disaster monitoring (Sabaghy et al., 2020; Mendoza et 110 

al., 2016). However, very seldom sets of such data products are publicly available to 111 

the remote sensing research community because of the following drawbacks. First, 112 

there is a serious lack of cloud-free optical/infrared imagery, which means the method 113 

cannot deliver any SSM downscaling under cloudy/rainy weather. Second, most of the 114 

above-mentioned optical/infrared-data-based downscaling methods were mainly 115 

evaluated at regional or even smaller scales. This might raise concern on the 116 

universality of those methods. For example, the DISPATCH method has been 117 

recognized to be less effective in humid (energy-limited) regions compared with in arid 118 

and semi-arid (water-limited) regions (Molero et al., 2016; Song et al., 2021; Zheng et 119 

al., 2021). As far as the UTFS-based method is concerned, a poorer performance was 120 

obtained compared to the DISPATCH in a typical water-limited region in North 121 

America, according to the experiment conducted by Kim and Hogue (2012). 122 

To improve the above-mentioned issues, we produced an all-weather daily SSM 123 

data product at 1-km resolution all over China during 2003-2019, based on fusion of 124 

multiple remote sensing techniques, including reconstruction of optical/infrared 125 

observations under cloud as well as an improved PM SSM downscaling methodology 126 

proposed in our previous study (Song et al., 2021). The potential significance of this 127 

study includes  128 
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(i) to better serve and investigate the land surface hydrology processes and their 129 

sophisticated interactions to human society at multi-scale (from national to regional) 130 

resolutions in China because the country covers about 1/15 of the global terrestrial area 131 

with about 1/5 of the world population, and  132 

(ii) to provide a methodology framework that can inspire future studies on 133 

generating similar SSM datasets all over the globe, based on the plentifulness of 134 

resources on climate type, land covers, and topography in China. 135 

 136 

2. Methods and Materials 137 

2.1 Datasets 138 

2.1.1 PM SSM data 139 

Spatial downscaling of PM SSM is the fundamental theory for constructing the 140 

target finer-resolution data product in this study. Therefore, the native retrieval 141 

accuracy of the coarse-resolution PM SSM data product, based on which the 142 

downscaling procedures are performed, is considerably crucial to the performance of 143 

the downscaled data product (Busch et al., 2012; Im et al., 2016; Kim and Hogue, 2012). 144 

Although the L-band PM brightness temperature (TB) observed by satellite missions 145 

such as SMAP or SMOS are considered more suitable for SSM retrieval compared with 146 

C- or X-band TB, both above missions started their space operations in the 2010s. This 147 

means that to obtain downscaled SSM of longer historical periods, we still require to 148 

rely on other C-/X-band-based radiometers which started their operations earlier than 149 
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SMAP and SMOS. An optimal satellite PM TB observation system dating back to 150 

earlier years of this century is composed of the “Advanced Microwave Scanning 151 

Radiometer of the Earth Observing System (AMSR-E)”, together with its successor of 152 

AMSR-2. AMSR-E operated during 2002-2011 onboard the Aqua satellite which is 153 

governed by National Aeronautics and Space Administration (NASA), whilst AMSR-154 

2 is operating onboard the Global Change Observation Mission1-Water (GCOM-W1) 155 

satellite developed by the Japan Aerospace Exploration Agency (JAXA) since 2012.  156 

Several classical PM SSM retrieval algorithms have been applied to the afore-157 

mentioned “AMSR series (including AMSR-E and AMSR-2)” TB for generating long-158 

term global SSM products at 25 km (Table 1), including the JAXA algorithm (Fujii et 159 

al., 2009; Koike et al., 2004), the “Land Parameter Retrieval Model (LPRM)” algorithm 160 

(Song et al., 2019b; Meesters et al., 2005; Owe et al., 2001), and the algorithm 161 

developed by the University of Montana (UMT) (Jones et al., 2009; Du et al., 2016). A 162 

recent AMSR-based night-time SSM product during 2002-2019 has been produced 163 

through a neural network trained against SMAP radiometer-based descending SSM 164 

(hereafter referred to as “NN-SM product”) (Yao et al., 2021). The global validation 165 

results show that this NN-SM product is better than the JAXA and LPRM products.  166 

Besides, the NN-SM has also been compared with another long-term ~25-km all-167 

weather SSM dataset generated through the European Space Agency (ESA)’s Climate 168 

Change Initiative (CCI) program. The ESA-CCI SSM product is different from the rest 169 

products mentioned above in that it was implemented by fusion of observations from 170 

comprehensive AM- and PM-based satellite sensors, rather than only relying on the 171 
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radiometers of AMSR series. According to Yao et al. (2021), the ESA-CCI SSM has 172 

slightly better validation accuracy than the NN-SM product, but the number of available 173 

observations per pixel cell in an entire year is much smaller for the ESA-CCI SSM in 174 

Southeast China.  In view of all above coarse-resolution SSM data products, we finally 175 

selected the NN-SM product to implement the following spatial downscaling 176 

procedures rather than the ESA-CCI SSM, to make a balance between data accuracy 177 

and data availability per year. We have also made additional evaluations within China 178 

in Section Appendix-A to ensure the relatively outstanding performance of the NN-SM 179 

product as described above.   180 

Table 1 Information of all-weather microwave remote sensing coarse-resolution SSM data 181 

products that can be potentially downscaled to obtain fine resolution SSM. 182 

Name Resolution Satellite radiometers 

involved 

Data availability (URL) 

NN-SM 

product 

36 km (by the 

EASE Grid 

projection) 

AMSR-E/ AMSR-2 

(2002-2011, 2012-present) 

https://data.tpdc.ac.cn/en/data/c26201fc-

526c-465d-bae7-5f02fa49d738/  

ESA-CCI v6.1 

product 

0.25° AMSR-E/ AMSR-2/ 

SMOS/ WindSat/ SMMR/ 

SSM/I/ TMI (1978-2020) 

https://www.esa-soilmoisture-

cci.org/v06.1_release  

JAXA product 0.25°/ 0.1° AMSR-E/ AMSR-2 

(2002-2011, 2012-present) 

https://gportal.jaxa.jp/  

LPRM 

product 

0.25°/ 0.1° AMSR-E/ AMSR-2 

(2002-2011, 2012-present) 

https://search.earthdata.nasa.gov/  

UMT product 25 km (by the 

EASE Grid 

projection) 

AMSR-E/ AMSR-2 

(2002-present) 

http://files.ntsg.umt.edu/data/LPDR_v2/  

https://data.tpdc.ac.cn/en/data/c26201fc-526c-465d-bae7-5f02fa49d738/
https://data.tpdc.ac.cn/en/data/c26201fc-526c-465d-bae7-5f02fa49d738/
https://www.esa-soilmoisture-cci.org/v06.1_release
https://www.esa-soilmoisture-cci.org/v06.1_release
https://gportal.jaxa.jp/
https://search.earthdata.nasa.gov/
http://files.ntsg.umt.edu/data/LPDR_v2/
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 183 

2.1.2 Optical remote sensing data and digital elevation model (DEM) 184 

 Optical remote sensing datasets provide finer spatial texture information on the 185 

daily basis for the downscaling purpose of PM SSM. Such data that can be used as 186 

inputs of our SSM product processing line are mainly provided by the Moderate-187 

resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. 188 

Specifically, they involve the 1-km daily night-time Aqua MODIS LST product 189 

(MYD21A1N.v061) and the 500-m daily “Bidirectional Reflectance Distribution 190 

Function (BRDF)” - Adjusted Reflectance dataset (MCD43A4.v061). MYD21A1 LST 191 

data can be recognized as a crucial proxy of land surface thermal capacity (Fang et al., 192 

2013) and soil evaporative rate (Merlin et al., 2008). The MCD43A4 nadir reflectance 193 

product, with view angle effect corrected using the BRDF model, is capable to provide 194 

observations from visible to shortwave-infrared bands that can characterize water 195 

content variation of the bare soils as well as the vegetation canopy. Overall, the above-196 

mentioned datasets were selected primarily because they deliver indicators (land 197 

surface thermal capacity, soil evaporative rate, or vegetation condition) that can well 198 

response to soil moisture dynamics from different aspects. Prior to being employed for 199 

SSM downscaling, conventional pre-processing procedure of pixel quality check was 200 

applied for both optical products by screening out pixels not classed as “good quality”, 201 

according to the 8-bit “Quality Assessment (QA)” field of each spectral band. Moreover, 202 

to normalize their natively different spatial resolutions, all MCD43A4 based reflectance 203 
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values at the 500-m pixel level were upscaled to the sinusoidally projected MODIS 1-204 

km grids using their spatial averages. 205 

 Apart from MODIS optical remote sensing data, all 90-m DEM tiles generated by 206 

the NASA Shuttle Radar Topography Mission (SRTM; http://srtm.csi.cgiar.org/, last 207 

access: July 10, 2020) were mosaicked all over China and then employed as another 208 

essential input variable for the procedures as described by Section 2.2.2 below. Similar 209 

to that applied to the MCD43A4 product, spatial upscaling in correspondence to the 210 

MODIS 1-km grids is also an indispensable pre-processing step for the mosaicked 211 

DEM data.  212 

2.1.3 Study area and validation data 213 

Our study area is set up as the total terrestrial extent of China. To comprehensively 214 

evaluate the SSM downscaling performances for different geographic regions (see 215 

Section 3.3), we divided the country further into six different geographic-climate 216 

regions using elevation, precipitation, hydrogeology, vegetation type, and topography. 217 

The six regions include the Northeast Monsoon (NEM) region, the Northwest Arid 218 

(NWA) region, the Qinghai–Tibet Plateau (QTP) region, the North China Monsoon 219 

(NCM) region, the South China Monsoon (SCM) region, and the Southwest Humid 220 

(SWH) region. The detailed delimitation principle of these geographic-climate regions 221 

was originally described in Meng et al. (2021). The geographic zoning map is shown 222 

in Fig. 1, while the corresponding shapefile boundary files can be accessed from the 223 

http://srtm.csi.cgiar.org/
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Resource and Environment Science and Data Center of the Chinese Academy of 224 

Sciences (http://www.resdc.cn/, last access: May 22, 2021).  225 

 226 

 227 

Fig. 1 The geographic zoning map of China (delineated using the purple color) superposed with 228 

topographic information, as well as general locations for the 756 basic meteorological stations 229 

(http://data.cma.cn/, last access: January 20, 2021) that provide partial benchmark measurements for 230 

SSM and LST validation in this study.  231 

We utilized ground soil moisture measurements for validating the downscaled 232 

remote sensing SSM product at the local scale. The ground measurements are derived 233 

from 2417 meteorological stations (including 756 basic stations of the National Climate 234 

Observatory and 1661 regionally intensified stations) of over China, as partially shown 235 

in Fig. 1. The soil moisture measurement devices in these stations, with uniform 236 

observation standards, are instrumented under the national project of “Operation 237 

http://www.resdc.cn/
http://data.cma.cn/
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Monitoring System of Automatic Soil Moisture Observation Network in China (Wu et 238 

al., 2014  )”, the construction of which has been led by China Meteorological 239 

Administration since 2005. Until 2016, all stations have been in operation for 240 

automatically observing hourly in situ soil moisture dynamics at eight different depth 241 

ranges (0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-50 cm, 50-60 cm, 70-80 cm, 90-242 

100 cm). It has also been widely used by previous studies for evaluating satellite soil 243 

moisture estimates in China (Meng et al., 2021; Chen et al., 2020; Zhang et al., 2014; 244 

Zhu and Shi, 2014). In our current study, ground measurements matching the shallowest 245 

depth range (0-10 cm) from the initial time of each station until the end of 2019 are 246 

employed as validation benchmark of the satellite SSM retrievals. At the temporal 247 

dimension, measurements made at 1:00 A.M. and 2:00 A.M are averaged, in order to 248 

match the mean satellite transit time of 1:30 A.M. for AMSR descending observations.  249 

Moreover, 0-cm top ground temperatures are simultaneously measured at all these 250 

meteorological stations on the daily basis, at the local time windows of 2:00 A.M./P.M. 251 

and 10:00 A.M./P.M., respectively. We therefore exploited such measurements 252 

recorded at 2:00 A.M. to validate the cloud gap-filled night-time (~1:30 A.M.) LST 253 

estimates over the Aqua-MODIS based 1-km pixels containing these stations (see 254 

Section 2.2.2). Our primary validation period covers the entire years of 2017, 2018, and 255 

2019.  256 

In addition to the ground soil moisture measurements, the SMAP Level3 257 

radiometer-based daily 36-km SSM product 258 

(https://dx.doi.org/10.5067/OMHVSRGFX38O  ) in its descending orbit scenes (at 259 

https://dx.doi.org/10.5067/OMHVSRGFX38O
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~6:00 A.M. of local time) from 2016 to 2019, was employed as another complemental 260 

validation benchmark. This dataset is potential for providing more comprehensive 261 

evaluations to our developed product at regional/national scales, especially on account 262 

of its notably creditable performance (see Fig. A1 in Appendix A). The latest version 263 

of this dataset (SPL3SMP, Version 8) contains soil moisture retrievals based on 264 

different algorithms including the dual channel algorithm and the single channel 265 

algorithm. In this study we only extracted SSM estimates derived with the dual channel 266 

algorithm because this algorithm was reported to outperform the single channel 267 

algorithm over some agricultural cropland core validation sites (O'neill et al., 2021). 268 

2.1.4 Ancillary SSM products for comparison  269 

In order to comprehensively demonstrate the validation performance of our 270 

proposed SSM product, there is necessity to make an inter-comparison against similar 271 

existing datasets. In this regard, we introduced the Level2 SMAP/Sentinel Active-272 

Passive combined SSM product on 1-km earth-fixed grids, i.e., the SPL2SMAP_S_V3 273 

dataset (Das et al., 2020), and used its validation performance against in-situ 274 

measurements throughout the years of 2017, 2018, and 2019, as a baseline to better 275 

evaluate our proposed SSM product. The SPL2SMAP_S_V3 dataset contains global 276 

SSM at resolutions of 3 km and 1 km respectively, which were disaggregated from the 277 

SMAP radiometer-based SSM retrievals of 36-km/9-km footprints in conjunction with 278 

the high-resolution Sentinel-1 C-band radar backscatter coefficients (Das et al., 2019).  279 

To our knowledge, this dataset is possibly the only publicly available product which 280 



 

15 

 

can provide global remote sensing SSM estimates at the 1-km resolution.  The sentinel 281 

backscatter coefficient inputs for this product are only those received in the descending 282 

orbit scenes (at ~6:00 A.M. of local time), whilst the closest SMAP SSM retrievals 283 

from either ascending (at ~6:00 P.M. of local time) or descending orbits are used to 284 

spatially match up with the sentinel-1 scene. It is noticed that at the descending 285 

observation time the soil moisture vertical profile has approached a hydrostatic balance 286 

(Montaldo et al., 2001), thereby providing the optimal chance for soil moisture fusion 287 

and validation with observations at different soil depths. Therefore, we only selected 288 

the 1-km disaggregated SSM estimates based on descending SMAP SSM retrievals (i.e., 289 

the subset with field name of ‘disagg_soil_moisture_1 km’ in the SPL2SMAP_S_V3 290 

dataset). Meanwhile, the 0-10 cm in-situ soil moisture measurements observed at 6:00 291 

A.M. and the SMAP radiometer-based descending SSM estimates were employed as 292 

the validation benchmarks, in a manner similar to that applied to our proposed SSM 293 

product (Section 2.1.3).  294 

2.2 Methodology 295 

The general methodological framework for producing the all-weather daily 1-km 296 

SSM product is shown as in Fig. 2, with details described in the following context of 297 

this section. 298 
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 299 

Fig. 2 The overall methodological framework of this study. 300 

2.2.1 Reconstruction of thermal-infrared LST and remote sensing (vegetation) 301 

indices under cloud 302 

Reconstruction of missing pixels under cloud in the optical remote sensing input 303 

datasets is the prerequisite for achieving the “all-weather” property of the final 304 

downscaled SSM output. For reconstructing thermal-infrared LST, we adopted the 305 

cloud gap-filling method as proposed by our previous study (Song et al., 2019a). This 306 

method, also referred to as a typical “spatio-temporal data fusion” (STDF) method 307 

(Dowling et al., 2021), was built using clear-sky LST observations of spatially 308 

neighboring pixels observed at proximal dates, with concurrent NDVI and DEM also 309 

employed as additional data inputs. The STDF method can be expressed as follows: 310 

                    
1 0 1

* * * *

t t tLST a LST b NDVI c DEM d=  +  +  +                             (1)                                                    311 

Where the superscript “*” indicates that this variable has been normalized to the range 312 

0 to 1.0 (Song et al., 2019a), based on the maximum and minimum values of that 313 

variable found across China (excluding invalid values representing states of snow, ice, 314 

and water bodies). Parameters a, b, c, and d are coefficients fitted between all pixels 315 

with clear-sky LST estimates on a specific date t1 (LST*t1) and their counterparts on 316 
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one proximal date, t0 (LST*t0). NDVI*t1 indicates the corresponding (normalized) NDVI 317 

on the t1 date calculated using the MCD43A4 daily product. After deriving the 318 

coefficients of a, b, c, and d, Equation (1) was used to fill all cloudy MODIS LST pixels 319 

on the t1 date. For any t1 date included in the study period, the t0 date was iterated among 320 

all neighboring dates of t1 meeting the condition | t0- t1|<=30 (from the nearest date to 321 

the furthest date). The average of estimated LST values for t0 was then taken where a 322 

cloud gap pixel was filled more than once (based on the iterative t0 dates). The iteration 323 

was stopped when the fraction of pixels with effective LST values on t1 was equal to or 324 

exceeded 0.99.  325 

An important flaw of this STDF method should be noticed with regard to 326 

potentially existential bias of the cloud gap-filled LST outputs, because the outputs 327 

represent theoretically reconstructed LST under clear sky rather than under the real 328 

cloudy condition. Another of our previous studies (Dowling et al., 2021) concerning 329 

this STDF method proposed a follow-up step, which incorporated PM-derived surface 330 

temperature, to adjust that bias. In our current production pipeline, however, this 331 

follow-up step for cloud bias adjustment in LST was not carried out. This is because 332 

the results in Section Appendix-B show that using LST generated by the STDF alone 333 

leads to more accurate SSM outcomes in general. The possible reasons for this are 334 

discussed in Section 4.2.  335 

Reconstruction of the remote sensing vegetation indices under cloudy conditions, 336 

including NDVI and MNDI, was simply based on the modified time series filter of the 337 

Whiitaker Smoother (MWS) as developed by Kong et al. (2019).  This is reasonable 338 

because the dynamic trends of vegetation growth are relatively less volatile compared 339 

to LST on the daily basis, and can thus be gap-filled for missing values using a time-340 

series-filtering-like algorithm. 341 
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2.2.2 Improved downscaling technique of SSM based on fusion of PM and 342 

optical/infrared data  343 

The core component of the SSM downscaling methodology is an improved linking 344 

model between PM SSM and (fine-resolution) optical remote sensing observations. 345 

This model enhances the relatively poorer performance of the conventional DISPATCH 346 

in energy-limited regions, whilst maintains the generally good quality of the 347 

DISPATCH in water-limited ones. Therefore, the improved model is more appropriate 348 

to be applied in China which contains a wide range of geographical settings, compared 349 

to other conventional downscaling models.  Since this model origins from our previous 350 

study (Song et al., 2021), herein we simply give its mathematical expression as follows: 351 

                                       

ln(1 )

1

a SEE
SSM c

b NMDI

 −
= +

− 
                                                (2) 352 

In Equation (2), SEE denotes “soil evaporative efficiency” and is a mathematical 353 

function of LST and the typical Normalized Difference Vegetation Index (NDVI), with 354 

its specific form described in Merlin et al. (2008). NMDI is another remote sensing 355 

index calculated as  
𝑅𝑖𝑛𝑓𝑟,860𝑛𝑚−(𝑅𝑠𝑤,1600𝑛𝑚−𝑅𝑠𝑤,2100𝑛𝑚)

𝑅𝑖𝑛𝑓𝑟,860𝑛𝑚+(𝑅𝑠𝑤,1600𝑛𝑚−𝑅𝑠𝑤,2100𝑛𝑚)
 (Wang and Qu, 2007).  356 

𝑅𝑖𝑛𝑓𝑟,860𝑛𝑚, 𝑅𝑖𝑛𝑓𝑟,1600𝑛𝑚 , and 𝑅𝑖𝑛𝑓𝑟,2100𝑛𝑚 represent land surface reflectance signals 357 

derived from three different MODIS-MCD43A4 based near-infrared/shortwave-358 

infrared bands, with their wavelengths centering at 860 nm, 1600 nm, and 2100 nm 359 

respectively. The parameters a, b, and c are empirical coefficients that represent 360 

background information of local soil texture and vegetation types. In Song et al. (2021), 361 

these coefficients have been fitted and calibrated based on multi-temporal observations 362 

at the PM pixel scale. In our current study, however, we have discovered that coupling 363 
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of multiphase observations at both the spatial and the temporal dimensions can lead to 364 

more optimal solution of the coefficients, as they can produce downscaled SSM images 365 

with notably declined effect of ‘mosaic’ against the original PM 36-km pixels. 366 

Therefore, the modified optimal cost function χ2 for deriving these coefficients is re-367 

defined as follows: 368 

                     

2

2

, , mod, ,

0

( )
dl N ws ws

i ob i d i d

d dl i

w SSM SSM
= 

=− =

=  −                                        (3) 369 

Through the cost function, the spatial extent of each 36-km pixel P0 on any arbitrary 370 

date D0 obtains a unique set of coefficients. As shown by Equation (3), all pixels were 371 

exploited within the spatial square window (with its side length equal to ws) centered 372 

at P0 ranging from -dl-th day to dl-th day relative to the date of D0. To determine the 373 

optimum values for dl and ws, we have tested each member in the collection of [3, 5, 7, 374 

9, 11, 13] for both parameters. Evaluation against in-situ data indicates that the 375 

optimum dl and ws are 5 and 7, respectively (results are similar to what is shown in 376 

Section 3.2, but not presented here). SSMob and SSMmod denote the AMSR NN-SM 36-377 

km SSM observations as well as SSM observations modelled by Equation (2) based on 378 

upscaled optical datasets, respectively. wi is a weight coefficient used to ensure that 379 

neighboring observations near the centering pixel P0 play more dominating roles as 380 

compared with the far-end pixels in the cost function, considering the “Tobler’s First 381 

Law of Geography (Sui, 2004)” . wi is calculated using an adaptive bi-square function: 382 
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where disi indicates the distance between the i-th pixel and the centering pixel P0. b is 384 

named as the adaptive kernel bandwidth of the bi-square function (Duan and Li, 2016), 385 

and is optimized as 200 km through using a cross validation method as recommended 386 

by Brunsdon et al. (1996). 387 

With the linking model obtained, we can subsequently utilize the spatial 388 

downscaling relationship function to produce 1-km fine resolution SSM. The 389 

downscaling relationship function is constructed by transforming the linking model into 390 

its Taylor expansion formula and preserving all components with respect to the input 391 

optical variables of the linking model at first and second orders. This relationship is 392 

inspired from Malbéteau et al. (2016) and Merlin et al. (2010), and is mathematically 393 

described below: 394 

SSM1-km=SSM36km+(
𝜕𝑆𝑆𝑀

𝜕𝑆𝐸𝐸
)36𝑘𝑚 × (𝑆𝑆𝐸1𝑘𝑚 −< 𝑆𝑆𝐸 >36𝑘𝑚) + 0.5 × (

𝜕2𝑆𝑆𝑀

𝜕𝑆𝐸𝐸2) × (𝑆𝑆𝐸1𝑘𝑚 −395 

< 𝑆𝑆𝐸 >36𝑘𝑚)2+(
𝜕𝑆𝑆𝑀

𝜕𝑁𝑀𝐷𝐼
)36𝑘𝑚 × (𝑁𝑀𝐷𝐼1𝑘𝑚 −< 𝑁𝑀𝐷𝐼 >36𝑘𝑚) + 0.5 × (

𝜕2𝑆𝑆𝑀

𝜕𝑁𝑀𝐷𝐼2) ×396 

(𝑁𝑀𝐷𝐼1𝑘𝑚 −< 𝑁𝑀𝐷𝐼 >36𝑘𝑚)2                                                                                    (5)                                                                                                        397 

In the above relationship, <> denotes the spatial averaging operator for all of the 1-km 398 

optical remote sensing input variables within the corresponding 36-km pixel, 399 

𝜕𝑆𝑆𝑀

𝜕𝑆𝐸𝐸
 (

𝜕2𝑆𝑆𝑀

𝜕𝑆𝐸𝐸2 )  and 
𝜕𝑆𝑆𝑀

𝜕𝑁𝑀𝐷𝐼
(

𝜕2𝑆𝑆𝑀

𝜕𝑁𝑀𝐷𝐼2)  respectively denoting the first-(second-) order 400 

partial derivative of the linking model described in Equation (2).  401 

It should be noticed that there exist middle-/low-latitude gap regions between 402 

seams of neighboring daily AMSR-E(-2) swaths, indicating that SSM36km in Equation 403 

(5) is not always available on the daily basis (Song and Zhang, 2021a). For such PM-404 

seam gaps on a particular date t0, the corresponding SSM36km,t0 in Equation (5) is 405 
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substituted by 0.5×（SSM36km,t0+1+ SSM36km,t0-1）+ΔSSM36km,t0. Herein SSM36km,t0-1 406 

and SSM36km,t0+1 respectively denote the SSM estimate before and after the date of t0. 407 

ΔSSM36km,t0  is a component for correcting inter-day bias, with the following expression: 408 

( )

( ) ( )

36 , 0 36 , 0 36 , 0

36 , 0 1 36 , 0 1 36 , 0 1 36 , 0 1

,  

0.5 ( ,   ,  )

km t km t km t

km t km t km t km t

SSM SSM SEE NMDI

SSM SEE NMDI SSM SEE NMDI− − + +

 = −

 +
                    (6)                                                                                409 

In the above equation, SSM(SEE36km, NMDI36km) denotes SSM that is directly 410 

modelled based on Equation (1) using 36-km SEE and NMDI. The 36-km SEE and 411 

NMDI are obtained via averaging the variables spatially from their native resolution at 412 

1-km. If all SSM36-km during the three consecutive days (t0-1, t0, and t0+1) are missing 413 

due to other extreme conditions like snow, ice, or surface dominated by substantially 414 

large water bodies, the downscaling process cannot be fulfilled and all 1-km sub-pixels 415 

with the SSM36-km have to be set as null values. 416 

2.2.3 Evaluation metrics  417 

We employed the classic metrics of ‘Root Mean Square Difference (RMSD)’ and 418 

correlation coefficient (r-value) for evaluating satellite-based (SSM and LST) estimates 419 

against ground measurements. Herein RMSD is not referred to as ‘Root Mean Square 420 

Error (RMSE)’, although the latter term shares the same definition and has been used 421 

more commonly in previous studies.  This is because both ground observations  and 422 

other benchmark data (i.e. SMAP radiometer-based SSM) may also present 423 

measurement uncertainties in practice. For SSM evaluation, the unbiased RMSD, or 424 

ubRMSD (Entekhabi et al., 2010a; Molero et al., 2016), is calculated instead of RMSD 425 

when validated against ground soil moisture measurements. This can better investigate 426 
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the time series similarity between satellite and in situ datasets by eliminating the 427 

systematic bias caused by spatial scale mismatch between them.  428 

 The above-mentioned classic metrics are primarily suitable to evaluate the 429 

absolute reliability of an independent remote sensing product. However, we also require 430 

another metric for characterizing the relative improvement of the downscaled SSM 431 

estimates against the original PM observations on capturing local soil moisture 432 

dynamics. For this purpose, we employed the “gain metric” of Gdown, which was 433 

developed particularly by Merlin et al. (2015) for assessment of soil moisture 434 

downscaling methodology. Gdown is a comprehensive indicator for evaluating gains of 435 

the downscaled SSM against the original coarse-resolution PM data in terms of their 436 

mean bias, bias in variance (slope), and time series correlation with ground benchmark. 437 

It has a valid domain between -1 and 1, with positive (negative) value indicating 438 

improved (deteriorated) spatial representativeness of the downscaled SSM against the 439 

original PM data. Detailed definition and introduction of Gdown are given in Equation 440 

(8) and Section 3.3 of Merlin et al. (2015). 441 

3. Results 442 

3.1 Evaluation on reconstructed thermal-infrared LST under 443 

cloud 444 

The meteorological-station-based validation of reconstructed 1-km thermal-445 

infrared LST under cloud were preliminarily fulfilled, to ensure the high quality of input 446 

dataset variables for SSM downscaling. Since disadvantageous effects might be 447 
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brought to this validation campaign by the potentially existing heterogeneity of the 448 

validated 1-km thermal-infrared remote sensing pixels, we firstly analyzed correlations 449 

between estimated and benchmark datasets at each station, only based on satellite 450 

remote sensing observations obtained under clear sky. Stations that have their 451 

correlation coefficients (rclr) lower than 0.9 herein have to be screened out because there 452 

exist higher chances of cross-scale spatial mismatch within and around these stations 453 

in terms of the land surface thermal properties. Among all 2417 stations (see Section 454 

2.1.3) where 0-cm in-situ top-ground temperature measurements were available, we 455 

finally preserved 2107 stations characterized by rclr >0.9. In the subsequent step, remote 456 

sensing LST under cloud and under clear-sky conditions were respectively validated at 457 

these stations, with the results revealed in Fig. 3. It is manifested through Fig. 3-(a) and 458 

-(b) that very close performances have been achieved between the clear-sky and the 459 

cloudy scenarios, especially considering their almost equally high validating 460 

correlations between 0.94-0.96. For each independent station, we calculated the 461 

“RMSD difference (RMSD_diff)” between the two scenarios, based on the formula of 462 

“RMSDclr- RMSDcld (the subscripts of ‘clr’ and ‘cld’ denote clear-sky and cloudy 463 

conditions separately)”. The statistical distribution of this RMSD difference with regard 464 

to different stations is shown in Fig. 3-(c). Apparently, 1942 stations all over the country 465 

have obtained an RMSD difference value below 2.6 K, and the mean RMSD difference 466 

is about 1.9 K. All above results have indicated that the uncertainty of our night-time 467 

LST reconstruction algorithm proposed for cloudy conditions is not very significant. 468 
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The corresponsive uncertainty that could be propagated to downscaled SSM in this 469 

stage is analyzed below in Section 3.2.  470 

 471 

Fig. 3 validation results of the cloud gap-filled LST in China. (a) Density plot of thermal infrared 472 

LST under clear-sky condition compared to the 0-cm ground temperature measurements for all 473 

stations. (b) Same to (a) but for thermal infrared LST under cloudy conditions. (c) Statistical 474 
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distribution of difference between RMSD of clear-sky LST and RMSD of gap-filled LST under cloudy 475 

condition with regard to different meteorological stations over the study region. 476 

 477 

3.2 Evaluation on the final 1-km SSM product 478 

The overall validation results of the finally downscaled 1-km SSM product against 479 

ground soil moisture data is demonstrated in Fig. 4.  Fig. 4-(a) shows that about 85% 480 

(N: 1833) of the total 2154 stations (the remaining 263 stations are located in pixels 481 

with no effective PM observations and are thus removed) have obtained significantly 482 

positive downscaling gains (Gdown>0.03). This hints that the 1-km SSM product can 483 

better capture the dynamic behaviors of local ground soil moisture data than the original 484 

36-km PM NN-SM data, revealing higher spatial representativeness of the downscaled 485 

SSM data product over the country. According to Fig. 4-(b), the mean ubRMSD of all 486 

stations is about 0.054 vol/vol, while 90% of those stations have the number lower than 487 

0.088 vol/vol. In addition, we made another analysis concerning the possible influence 488 

of land cover types on SSM downscaling performance in Fig. 4-(c). The spatial 489 

information of land cover types was derived from the MODIS MCD12Q1 490 

(10.5067/MODIS/MCD12Q1.006) IGBP-based land use image in 2019. For stations 491 

that experienced land use change throughout the years of the study period, the ubRMSD 492 

is only reported for data in the year of 2019. Clearly, better accuracies are observed 493 

mainly in grassland, cropland and bare soil surface, whilst relatively poorer 494 

performances (with averages of ubRMSD higher than 0.06 vol/vol) are seen in urban 495 

regions, (woody) savanna, and crop-to-natural-vegetation mosaic areas. Such a relative 496 

http://doi.org/10.5067/MODIS/MCD12Q1.006
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performance across land covers is logical because all the land cover types with their 497 

average ubRMSD higher than 0.06 vol/vol are characterized by lower hydrologic 498 

homogeneity in terms of their definition, e.g. savanna, which is a mixture of grass and 499 

tall trees, and urban areas, which are composed of impervious underlying surface. 500 
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Fig. 4 General validation results of the currently developed SSM product. (a) Gdown distribution for 502 

different stations over China. (b) ubRMSD distribution for different stations over China. (c) ubRMSD 503 

statistics reported for different land covers. The numbers in the parentheses of the x-axis labels 504 

represent the amount of meteorological stations corresponding to that specific land cover type. 505 

In Fig. 5, we compared time series of regionally aggregated SSM from our 506 

developed 1-km SSM product to  that from the SMAP 36-km descending SSM, for each 507 

of the six different geographic-climate regions (as shown in Fig. 1) from 2016 to 2019. 508 

Via this effort, we mainly aim to reveal the consistency degree on reflecting soil 509 

moisture temporal dynamics at different geographical settings between the two SSM 510 

products. This also provides another view to evaluate the reliability of our developed 511 

product. Because the SMAP radiometer has a slightly longer revisit cycle (~2-3 days) 512 

than AMSR-2, the time series data are also aggregated and averaged at the temporal 513 

dimension, with a displayed revisit cycle equal to three days. Overall, the time series 514 

data correlate well with each other for all six regions. The relatively lower RMSDs 515 

(<0.02 vol/vol) are found in regions with comparatively sparser vegetation covers 516 

including the NWA region, the QTP region, and the NCM region. For other three dense-517 

vegetation regions, the performances of our developed product are slightly poorer. This 518 

is especially the case for the SCM region, with a lower r-value of 0.84. The reason can 519 

be attributed to the enlarged difference on penetration depth into the soil layers between 520 

L-band (SMAP) and C-/X-/K- band (AMSR-2) emissions under dense vegetation 521 

covers (Ulaby and Wilson, 1985). 522 
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 523 

Fig. 5 Time series of SSM aggregated at each of the 6 different geographic-climate regions (as 524 

shown in Fig.1) in China for our developed 1-km product as well as for the SMAP 36-km SSM dataset. 525 

The time series range from 2016 to 2019, with a revisit cycle of three days. 526 

In Fig. 6-(b) we employed the downscaled SSM image on May 29, 2018, as an 527 

example to demonstrate the spatial features of the developed product. Meanwhile, we 528 

also show the map of SMAP/Sentinel combined SSM (SPL2SMAP_S_V3) obtained 529 

from May 26 to May 31, 2018 in Fig. 6-(a), as a contemporaneous comparison reference. 530 

Clearly, the SPL2SMAP_S_V3 map has a much lower coverage percentage over the 531 

study region compared with the map of the currently developed product on one single 532 
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date, even though the former was generated based on multi-date images. Both maps 533 

show similar spatial texture depicting the relatively dry climate in northwestern China 534 

compared with the humid climate in the Middle-lower Yangtze River Plain. 535 

Nevertheless, there also exist cases where the details in texture differ prominently, like 536 

that in the far northeastern end of the country.  537 

For the sake of further analysis on this point, results of the quantitative comparison 538 

as proposed in Section 2.1.3 and Section 2.1.4, is demonstrated in Fig. 6-(c), -(d), -(e), 539 

and -(f). Fig. 6-(c) and -(d) show the RMSD maps of the two respective products against 540 

SMAP radiometer-based SSM estimates at the 36-km pixel scale. For both products it 541 

is manifested that compared with the lower averaged RMSD of 0.04 vol/vol in the 542 

NWA region, the uncertainty can increase (shown in yellow) in the densely vegetated 543 

NEM and the SCM regions, with averaged RMSDs of 0.07-0.08 vol/vol. However, our 544 

developed product has noticeably lower RMSD (0.05 vol/vol) than the 545 

SPL2SMAP_S_V3 data (0.07-0.09 vol/vol) in the SWH and part of the QTP regions. 546 

Considering their relatively higher elevations, it may be roughly drawn that our 547 

downscaled SSM product is more reliable than that downscaled based on active-passive 548 

microwave combined datasets in areas with increased topographic effects. Fig. 6-(e) 549 

shows that the currently developed SSM product obtained a 0.078 vol/vol ubRMSD 550 

and a correlation coefficient of 0.55 against the in-situ soil moisture measurements. It 551 

converges more apparently to the 1:1 line when compared with validation result of the 552 

SPL2SMAP_S_V3 dataset in Fig. 6-(f). As with the area of China, therefore, the 553 
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currently developed product is generally superior to the global SMAP/Sentinel 554 

combined SSM in terms of both coverage percentage and estimate accuracy. 555 
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 556 

Fig. 6 Comparison results between the currently developed 1-km SSM product and the SMAP/Sentinel 557 

combined 1-km SSM (SPL2SMAP_S_V3). (a) SPL2SMAP_S_V3 SSM images over China at about 558 

6:00 a.m. systhesized by 6 continous dates from May 26, 2018 to May 31, 2018. (b) The SSM image at 559 
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1:30 a.m. of May 29, 2018 from the currently developed product. (c) Spatial uncertainty (RMSD) map 560 

of the SPL2SMAP_S_V3 product against SMAP radiometer-based SSM retrievals at the 36-km pixel 561 

scale over China for years of 2017, 2018, and 2019. (d) Same to (c) but for validaiton of the currently 562 

developed SSM product. The black numbers in each of the geographic-climate regions indicate 563 

averaged uncertainty (RMSD, unit: vol/vol) of the region. (e) Validation results of the 564 

SPL2SMAP_S_V3 product against in-situ soil moisture measurements over China for years of 2017, 565 

2018, and 2019. The black solid line is the 1:1 line. (f) Same to (e) but for validaiton of the currently 566 

developed SSM product. 567 

In Fig. 7, we display the cumulative distribution frequency of coverage 568 

percentages of the downscaled SSM product and of the original PM NN-SM product 569 

for each season. We should be noted that in this statistical scheme, pixels identified as 570 

static water body by the MODIS MCD12Q1 land cover type product were not 571 

considered in the denominator of the coverage percentage. Besides, the gap time 572 

between the respective on-orbit period of AMSR-E and of AMSR-2 (from October 573 

2011 to June 2012, during which there are no effective observations from the PM NN-574 

SM product) were also excluded.  It is apparent that in Fig. 7-(b) and -(c), almost all 575 

downscaled daily SSM images over the 16-17 years have achieved a coverage 576 

percentage higher than 85%. In comparison, the majority of the PM NN-SM daily 577 

images have their coverage percentages below 80% over the study region, primarily 578 

due to the PM-seam gaps particularly existing in low latitudes (see Section 2.2.2). In 579 

Fig. 7-(a) and -(d), the percentages of effective pixels in both the PM and the 580 

downscaled SSM images are far lower than their counterparts in the other two 581 
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subfigures. This is mainly ascribed to extreme meteorological conditions including 582 

snow, ice, and frozen soils that are typically persistent throughout most of these 583 

specified months in the northwestern regions of China. Such conditions can impede 584 

reliable estimates of SSM based on all satellite remote sensing techniques in the current 585 

time. The above inter-seasonal differences on data coverage are also reflected in Fig. 8 586 

in another manner based on presenting the spatial distributions of number percentages 587 

of available dates in each three-month period. 588 

 589 
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Fig. 7 Cumulative distribution frequency of our proposed SSM product against the original 36-km SSM 590 

product for different seasons. The period between October 2011 and June 2012 is excluded in the 591 

current statistics. 592 

 593 
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 594 

Fig. 8 Spatial distributions on percentage of day numbers with available estimates for the currently 595 

developed 1-km SSM product and the original 36-km PM data during 2003-2019. The four different 596 
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periods (i.e., January-March, April-June, July-September, October-December) of a year are treated 597 

respectively. The period between October 2011 and June 2012 is excluded. 598 

The techniques behind coverage improvement of the downscaled SSM (against 599 

PM and optical data inputs) can be categorized into two classes, i.e. cloud gap-filling 600 

of the input optical datasets (see Section 2.2.1), as well as the filling of downscaled 601 

SSM in PM-seam gaps (see Section 2.2.2). Table 2 reports the specific validation results 602 

(using averages of ground measurements at all stations) of downscaled SSM in these 603 

coverage-improved conditions, relative to that generated without using any coverage 604 

improvement technique, in order to evaluate the propagated effect of such techniques 605 

on the final product.  The very limited difference for ubRMSD values (0.053 vol/vol 606 

versus 0.056 vol/vol) between cloudy and clear-sky conditions suggest that the 1-km 607 

SSM estimates from our final product are generally compatible between cloudy and 608 

clear-sky conditions. The downscaled SSM estimated for regions of PM-seam gaps 609 

have a slightly worse (but still acceptable) accuracy, considering its ubRMSD of 0.059 610 

vol/vol compared to the 0.052 vol/vol ubRMSD of the PM-observed 1-km pixels. In 611 

summary of Fig. 7 and Table 2, the currently developed product has achieved a 612 

substantially improved spatial coverage against the original remote sensing input 613 

datasets, whilst successfully preserved the SSM downscaling accuracy of the 614 

observation-covered pixels at the same time. 615 
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Table 2  Comparisons between validation results for pixels under coverage-improved regions and 616 

for pixels under remote-sensing-observation-covered regions. 617 

Evaluation metric* Comparison between cloudy 

and clear-sky conditions 

Comparison between passive 

microwave (PM) observed regions 

and regions of PM-seam gaps 

 Clear-sky 

condition 

Cloudy condition PM-observed 

regions 

PM-seam gaps 

ubRMSD (vol/vol) 0.053 0.056 0.052 0.059 

Correlation coefficient 0.49 0.47 0.49 0.44 

*All evaluation metrics in this column indicate the average of all available stations 618 

4. Discussion 619 

4.1 Uncertainty on SSM evaluation between satellite- and 620 

ground- scales  621 

In this study, we made evaluations on remote sensing SSM products at different 622 

spatial resolutions, using measurements from 2000+ stations provided by the national-623 

level soil moisture observation network of China as standard benchmark. Through the 624 

evaluations, a ubRMSD of 0.074 vol/vol is reported for the original 36-km NN-SM 625 

SSM product (Fig.A1-b). We notice that this result is considerably poorer if compared 626 

with another previous evaluation campaign targeting at the same product (Yao et al., 627 

2021), which achieved a global RMSE (RMSD) of 0.029 vol/vol. However, this 628 

difference is not unexpected because the two campaigns were carried out in different 629 

regions of the world. Also, that particular study  (Yao et al., 2021) was conducted based 630 

on completely different ground soil moisture observations provided by the International 631 



 

39 

 

Soil Moisture Network (ISMN) (Dorigo et al., 2021). Compared to the observation 632 

network employed in this study, the observation sites of ISMN are more intensively 633 

distributed as an “integrated soil moisture station” so as to provide spatially average 634 

soil moisture within a grid of tens of kilometers. In this regard, we admit that the ISMN 635 

is generally more professional in evaluating satellite PM-based SSM retrievals at a 636 

coarser resolution. But on the other hand, only a few (≤4) of such “integrated stations” 637 

have been set up sporadically within China, making the ISMN data much less 638 

representative of our study region compared with the national-level soil moisture 639 

network of China exploited by our current study.  640 

Although the higher RMSD of the national-level soil moisture network of China 641 

may indicate larger measurement uncertainty than the ISMN, the negative influence 642 

that might be imposed on our study purpose should be inconsequential. This is because 643 

we focus more on the relative validation performance of different SSM products, rather 644 

than on the absolute value of any evaluation metric including ubRMSD and correlation 645 

coefficient calculated against ground measurements. Specifically, the 1-km downscaled 646 

SSM obtained an average ubRMSD of about 0.054 vol/vol among different stations 647 

according to Fig. 4-(b). Besides, result of the evaluation in Fig. 6-(d) based on 648 

combination of multi-station ground measurements shows a global ubRMSD of 0.078 649 

vol/vol for this product. Overall, the above-mentioned results can be identified as at 650 

least comparable to the global (multi-station based) ubRMSD of 0.074 vol/vol of the 651 

original NN-SM data as they are evaluated against the same benchmark. Therefore, 652 

conclusion is safely drawn that the currently developed product preserves the retrieval 653 
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accuracy of the coarse-resolution NN-SM data, whilst improving the spatial 654 

representativeness of the latter product substantially according to the mostly positive 655 

Gdown values in Fig. 4-(a).  656 

Moreover, one may also argue that the r-value of 0.55 for the currently developed 657 

product in Fig. 6-(d) is not sufficiently high compared with several previous studies 658 

(Wei et al., 2019; Sabaghy et al., 2020) obtaining r-values above 0.7 for temporal 659 

analysis of satellite remote sensing soil moisture. However, we should be noticed that 660 

these previous studies have conducted analyses respectively at the temporal and the 661 

spatial dimensions. Based on their results, the spatial analysis typically derived lower 662 

r-values (＜0.4) compared to that at the temporal dimension. This is probably because 663 

the heterogeneity degree of remote sensing pixels can vary significantly across different 664 

sites. Since the evaluation in Fig. 5-(d) was deployed at the ‘spatio-temporal’ integrated 665 

dimensions, such an r-value is expected. This is also close to the global r-value of 0.6 666 

for validation of the coarse-resolution NN-SM product as reported in Yao et al. (2021). 667 

4.2 Uncertainty on cloud gap-filling and validations of LST 668 

As mentioned in Section 2.2.1, LST gap-filled based on the STDF method was 669 

used alone as one of the main input datasets for SSM downscaling under cloudy weather. 670 

Although such LST inputs contain clear-sky bias from the real cloudy condition, it 671 

performs better in driving the SSM downscaling model compared with its bias-adjusted 672 

counterpart (see Section Appendix-B for details). The reason may be linked to one of 673 

the basic theories behind our SSM downscaling methodology, i.e. the “universal 674 

triangle feature space (UTFS)” theory (Carlson et al., 1994). In the UTFS, clear-sky 675 
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LST is employed to implicitly quantify the surface soil wetness degree as it correlates 676 

with the dynamics of soil evaporative efficiency and soil thermal inertia when 677 

vegetation cover density is fixed. Under cloudy conditions, however, the satellite 678 

observed LST is subjected to not only surface soil property, but also to that related to 679 

cloud insulation effect from solar incoming radiation and ground long wave outgoing 680 

radiation. As a result, the actual relationship between SSM and cloudy LST could be 681 

much more complicated than the one that has been described by the UTFS-based SSM 682 

downscaling model (i.e. Equation-2). In comparison, LST generated by the STDF alone 683 

for assumed clear-sky conditions, as is free from interference of cloud, would be a 684 

comparatively more competent input variable for driving the UTFS-based SSM 685 

downscaling model under non-rainy clouds. This is especially the case for thin and 686 

short-time clouds with marginal direct feedbacks on surface soil wetness.  687 

However, we admit that the STDF-filled LST under rainy clouds is also not suitable 688 

for our study purpose. This may explain the slightly higher RMSD for SSM under cloud 689 

based on STDF-filled LST (0.056 vol/vol) compared to that under real clear sky (0.053 690 

vol/vol), as shown in Table 2. In reality, the actual negative influence of cloud on the 691 

final SSM product may be even more serious than indication from the above RMSD 692 

difference (i.e. 0.056-0.053 = 0.003 vol/vol), due to the portion of “clear/cloudy-693 

weather-mixed” spatial windows during the fitting process of the downscaling model. 694 

In these windows, uncertainty in cloud gap-filled LST may affect accuracy of the fitted 695 

model coefficients and thus deteriorate the final SSM estimates in clear-sky pixels 696 

within the same window. Consequently, the above RMSD difference has been more or 697 
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less underestimated. Despite all of above, in our study area of China we regard the 698 

STDF-filled LST as a more optimal proxy of heat flux for estimating SSM under clouds, 699 

compared to the bias-adjusted LST. On the other hand, future efforts are encouraged to 700 

further clarify the mechanical relationships between STDF-filled/bias-adjusted LST 701 

and soil wetness degree under clouds.   702 

Different from a number of previous studies (Jiménez et al., 2017; Dowling et al., 703 

2021; Yang et al., 2019) validating satellite thermal-infrared-based LST based on 704 

longwave radiation observations made at footprint-level observation stations (e.g. flux 705 

towers), our study has used 0-cm top ground temperatures as the primary benchmark 706 

for this validation campaign instead. Similar to that for SSM validation, the most crucial 707 

motivation driving such an experimental design is the significantly intensive 708 

distribution of the meteorological stations compared to the very limited number of 709 

active and effective flux towers available in China. It is noted that these measurement 710 

devices at all of the meteorological stations are required to have been instrumented 711 

under open environmental conditions with relatively lower fraction of tall trees and 712 

water bodies, in order to conduct efficient monitoring at the physics of near-surface air. 713 

This can also be reflected in Fig.4-(c), which reveals no stations built within forest 714 

covers. Moreover, as we only focus on the mid-night scenario when the states of all 715 

land observations are “most stable” during one diurnal cycle, uncertainties due to the 716 

possible temperature inconsistency between bare ground surface and high tree surface 717 

as well as due to the temporal mismatch (from about 1:30 to 2:00 A.M.)  should have 718 
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marginal effect on our results. We have carried an extra test that can confirm this 719 

discussion, with the detailed procedures described in Section Appendix-C.  720 

4.3 Major novelty, unique profit, and future prospect of the 721 

developed product 722 

Compared with the widely known active/passive microwave combined SSM 723 

product (e.g. the SPL2SMAP_S_V3) and other PM/optical-data combined counterparts 724 

which were also published recently but at the monthly scale (Meng et al., 2021), the 725 

major novelty of the currently developed product mainly lies in the fact that it has 726 

achieved progress on all of the three crucial dimensions of satellite remote sensing, 727 

including the temporal revisit cycle (daily), the spatial resolution (1-km), and the quasi-728 

complete coverage under all-weather conditions. To our knowledge, this has rarely been 729 

achieved by previously developed satellite soil moisture product at regional scales. For 730 

realization of the above-mentioned progresses, we have fused the SSM downscaling 731 

framework with other techniques including cloud gap-filling of thermal infrared LST, 732 

MWS-based temporal filtering of vegetation indices, as well as reconstruction of seams 733 

between neighboring PM swaths in low latitudes. The final SSM estimates under cloudy 734 

conditions and intersected with the PM-seam gaps were specially validated against the 735 

rest estimates under clear sky and in the regions covered by PM observations, 736 

respectively (Table 2). The comparable performances among all treatment groups 737 

herein confirm that the accuracy of the product is stable and consistent among all 738 

weather conditions.  739 
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With improvement achieved at the three dimensions, unique profit of the currently 740 

developed product can be taken by subsequent studies and various industrial 741 

applications. For example, the capability of this product can be investigated on 742 

capturing the short-term anomaly of local hydrological signals as well as improved 743 

monitoring on drought disasters, which used to be investigated mainly at a coarser 744 

resolution by PM SSM (Scaini et al., 2015; Champagne et al., 2011; Albergel et al., 745 

2012). For another, taking advantage of its all-weather daily time series, the product 746 

can be utilized together with precipitation data to isolate and quantify the anthropic 747 

influence on regional water resources from the natural hydrological dynamics. 748 

Examples of such anthropic signals include agricultural irrigation activities, as well as 749 

finer-scale information on agricultural crops which was previously interpreted based on 750 

PM-driven techniques (Song et al., 2018). In addition, we should realize the important 751 

role of soil moisture as a constraint for accurate estimation of surface 752 

evapotranspiration and runoff (Zhang et al., 2020; Zhang et al., 2019). Therefore, the 753 

profit of this product can be further enhanced if coupled with land-atmosphere coupled 754 

models to produce new insights into water-cycle processes of earth surface at a finer 755 

spatio-temporal scale. 756 

There are still some limitations on our current product to be further improved. First, 757 

there may exist the ‘mosaic effect’ at the original PM (36-km) pixel edge. As mentioned 758 

in Section 2.2.2, we have used a parameter of ‘spatial square window (ws)’ in Equation-759 

(3) to minimize this negative effect. However, it is still difficult to utterly avoid such 760 

negative effect. This is a challenge for all existing SSM downscaling methods (Molero 761 
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et al., 2016; Stefan et al., 2020; Peng et al., 2016), especially considering the large 762 

spatial scale of our study and all uncertainties discussed in Sections 4.1 and 4.2. Besides, 763 

other negative influences can be imposed by potential imperfections identified from the 764 

original PM product, e.g. from PM SSM retrievals in the QTP region with complicated 765 

topography, melt snow or partially frozen soils that cannot been completely screened 766 

out by the original product flag in winter.  For these extreme conditions, the accuracy 767 

of the downscaled SSM may need further validation campaigns like field surveys and 768 

experiments, based on which the data quality flag can be better built for the product’s 769 

futural version. 770 

The methodological framework proposed in this paper is prospective to be 771 

universally applied in other regions of the world to serve for better monitoring of the 772 

global surface wetness in the following studies. If applied in continental and global 773 

scales, however, the current process for gap-filling of PM seams may require further 774 

attention and improvement. In this study, SSM in regions intersected with PM-seam 775 

gaps were estimated using TB observations from PM swaths at neighboring dates (see 776 

Equation-5). Although the errors in the PM-seam gaps over China as reported by Table 777 

2 are only slightly larger compared to the PM-covered regions, they cannot be ignorable 778 

completely and may leave extra concern on the universality of this technique, especially 779 

in the low latitudinal tropical regions where the effect of PM-seam gap is more apparent 780 

than in our study area. Besides, another imperfection of this data product lies in the gap 781 

period between AMSR-E and AMSR-2. Considering the different systematic error 782 

patterns of various PM SSM products, we did not generate downscaled SSM based on 783 



 

46 

 

other PM products (e.g. the SMOS SSM product) during this period but just left the 784 

period as null values. We suggest a more rigorous and universal inter-calibration 785 

framework on different PM SSM products to be developed in the future for a long-term 786 

consistent 1-km downscaled SSM dataset.  787 

5. Conclusions 788 

This paper describes the main technical procedures of a recently developed remote 789 

sensing surface soil moisture (SSM) product over China covering the recent ten years 790 

and more. Based on combination of passive microwave SSM downscaling theory and 791 

other related remote sensing techniques, the product achieves multi-dimensional 792 

distinctive features including 1-km resolution, daily revisit cycle, and quasi-complete 793 

all-weather coverage. These were rarely satisfied completely by other existing remote 794 

sensing SSM product at regional scales. Validations were conducted against 795 

measurements from 2000+ automatic soil moisture observation stations over China. 796 

Overall, an average ubRMSD of 0.054 vol/vol across different stations is reported for 797 

the currently developed product. The mostly positive Gdown values show this product 798 

has significantly improved spatial representativeness against the 36-km PM SSM data 799 

(a major source for downscaling). Meanwhile, it generally preserves the retrieval 800 

accuracy of the 36-km data product. Moreover, additional validation results show that 801 

the currently developed product surpasses the widely used SMAP-sentinel combined 802 

global 1-km SSM product, with a correlation coefficient of 0.55 achieved against that 803 

of 0.40 for the latter product. At the regional scale, time series patterns of our developed 804 
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data product are highly correlated with that of the widely recognized SMAP radiometer-805 

based SSM for all geographic settings. The methodological framework for product 806 

generation is promising to be applied at the continental and global scales in the future, 807 

and the product is potential to benefit various research/industrial fields related to 808 

hydrological processes and water resource management. 809 

  810 
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Appendix 811 

A. Evaluation on different PM SSM products 812 

We have made evaluations on the various AMSR-based SSM products (as shown 813 

in Table 1) covering the recent 10 years or longer, based on our soil moisture 814 

observation network all over China. The SMAP radiometer-based SSM dataset, as 815 

described in Section 2.1.4, was also evaluated as a reference. The evaluation period 816 

covers the three years of 2017, 2018, and 2019. All AMSR-based 25-km grids were re-817 

set to the SMAP 36-km grid system using the nearest resampling method. Only grids 818 

that contain equal or more than 4 soil moisture measurement stations were employed, 819 

in which, the grid-based PM SSM estimate was compared with average of 820 

measurements from all interior stations. Finally, 53 grids were selected, as shown by 821 

the green color in Fig.A1-(g). For AMSR-based products, only the mid-night 822 

descending datasets were evaluated, whist for the SMAP product, our evaluation only 823 

focused on its descending mode in the early morning. 824 

As manifested by Fig.A1-(a) to -(f), the selected SSM product in the current study, 825 

i.e., the NN-SM product has an unbiased RMSD of 0.074 vol/vol and a correlation 826 

coefficient of 0.49. This obviously outperforms the other three traditional AMSR-based 827 

SSM products (i.e. JAXA-AMSR, LPRM-AMSR, and UMT-AMSR products) and is 828 

only inferior to the SMAP SSM retrievals, whilst the later only covers the latest period 829 

since 2015. As far as CCI data are concerned, it has a similar performance against the 830 

selected NN-SM in general. Nevertheless, the region marked by red circle in Fig.A1-831 
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(c) indicates that CCI estimates have a considerably larger proportion of overestimated 832 

anomalies. But overall, the primary reason that we have abandoned CCI but selected 833 

NN-SM is because the latter can provide a higher coverage fraction of valid pixels in 834 

our study region, as has been stated in Section 2.1.1.  835 
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Fig. A1 (a)-(f) Comparison of different PM SSM products (as reported in Table 1) against the in situ 837 

SSM measurements in China. (g) Locations of the 36-km EASE-GRID-projection based pixels used for 838 

this comparison campaign. 839 

B. Evaluation on the influence of bias adjustment for 840 

reconstructed ‘clear-sky’ LST under cloud  841 

In Section 2.2.2, we have emphasized that the gap-filled LST for cloudy pixels 842 

reflects the theoretical surface temperature of that pixel under a hypothetical clear-sky 843 

condition. As this cloud gap-filled LST would suffer from a possible bias against the 844 

real surface temperature under cloud (Dowling et al., 2021), we made an additional 845 

experiment regarding to further improvement of this cloud gap-filled LST. The follow-846 

up step for bias adjustment of this hypothetical clear-sky LST (but actually under 847 

cloudy conditions), as expounded in Section 4.2 of Dowling et al. (2021), was 848 

conducted herein using remote sensing and in situ LST data over China but only in 849 

2018. We illustrate the validation results for bias adjusted and non-bias adjusted LST 850 

under cloudy conditions in Fig. A2-(b) and -(c), respectively. Similar to Fig. 3, 851 

validation results for clear-sky LST of that year are also displayed (Fig. A2-(a)) for 852 

comparison. The results generally show that the follow-up step is effective in reducing 853 

the bias of the originally gap-filled ‘clear-sky LST’ under cloudy conditions (from -1.7 854 

K to 0.4 K).  855 

In the subsequent step, we substituted the original non-bias adjusted LST under 856 

cloudy conditions with its bias adjusted counterpart, and used the latter as the input for 857 

SSM downscaling. The general validation results of the downscaled SSM are illustrated 858 
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in Fig. A3 (similar to that presented in Fig. 4-a and -b). Contrary to the above-analyzed 859 

Fig. A2, the bias adjusted cloudy LST with better gap-filling accuracies, however, 860 

obtained inferior performance in SSM downscaling. This final validation result, to 861 

some degree, confirms our assumption in Section 2.2.2 that the reconstructed cloudy 862 

LST but for the hypothesized clear-sky condition is the better proxy of surface moisture 863 

dynamics. But overall, as all LST estimates discussed herein are for the midnight 864 

scenario (when the energy interaction between atmosphere and land surface is relatively 865 

weak), the RMSD difference for different weather conditions in Fig.A2 is expectedly 866 

marginal. As a consequence, the difference in ubRMSD of SSM in Fig.A3 can hardly 867 

be identified as ‘very significant’. Therefore, we encourage further tests on this 868 

conclusion in specific future studies to confirm its universality, especially for situation 869 

of the ‘morning to noon’ time window.     870 

 871 
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 872 

Fig. A2 Validation of the clear sky LST (a), reconstructed LST under cloud but with no passive-873 

microwave based bias adjustment (b), as well as the reconstructed LST under cloud with passive-874 

microwave based bias adjustment (c) respectively, based on the 0-cm ground temperature 875 

measurements at meteorological stations. 876 

 877 
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 878 

Fig. A3 The statistical distribution of ubRMSD at different stations for SSM estimates driven by two 879 

respective kinds of cloudy LST inputs. 880 

C. Uncertainty test between 0-cm ground temperature 881 

observations and flux-tower-derived thermal infrared LST    882 

We herein utilized 4 flux towers to calculate their footprint-level (about 500-1000 883 

m) thermal infrared LST based on long wave radiation measurements, plus broad band 884 

emissivity data derived from the MODIS MYD21A1 product (MYD21A1N.V061). 885 

The 4 towers are all characterized by moderate or low vegetation (grassland) and are 886 

dispersedly located at different eco-regions of China, namely the towers of Changling, 887 

Huailai, Yakou, and Naqu (see the inset map in Fig.A4-b). Data from Changling are 888 

derived from the FLUXNET community (FLUXNET2015 Dataset - FLUXNET ) in 2010. 889 

https://fluxnet.org/data/fluxnet2015-dataset/
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Data from the other three towers are derived from the National Tibetan Plateau Data 890 

Center, with data DOIs of  http://dx.doi.org/10.11888/Meteoro.tpdc.271094 for Huailai 891 

in 2018, http://dx.doi.org/10.11888/Meteoro.tpdc.270781 for Yakou in 2018, and 892 

http://dx.doi.org/10.11888/Meteoro.tpdc.270910 for Naqu in 2016. These data have 893 

been preprocessed by their providers to record the dynamics of those variables at a half-894 

hour interval. The algorithm for calculating LST based on flux-tower-derived long 895 

wave radiation is inherited from Wang and Liang (2009). We first compared the flux-896 

tower-derived night-time LST estimates between 1:00-1:30 A.M. and 1:30-2:00 A.M.. 897 

As shown by Fig.A4-(a), the very slight RMSD of 0.72 K suggests that LST is generally 898 

stable between 1:00 and 2:00 A.M. at night. In Fig.A4-(b), we also found marginal bias 899 

and RMSD within 1 K between average flux-tower-derived LST of 1:00- 2:00 A.M. 900 

and the corresponding 0-cm ground temperature at close meteorological sites (within 1 901 

km and at 2:00 A.M.).  902 

In Fig.A4-(c) we demonstrate time series for monthly average NDVI (derived as 903 

in Section 2.2.1) at the 1-km pixels containing each of the four sites from 2003-2019. 904 

Clearly, there are very rare cases with NDVI values exceeding 0.5, corroborating the 905 

“open environmental conditions” met by the meteorological stations.  In view of above, 906 

it is feasible for our study to have used the 0-cm ground temperature at pixels of such 907 

moderate to low vegetation covers as the evaluation benchmark of the satellite-derived 908 

thermal infrared LST. 909 

http://dx.doi.org/10.11888/Meteoro.tpdc.271094
http://dx.doi.org/10.11888/Meteoro.tpdc.270781
http://dx.doi.org/10.11888/Meteoro.tpdc.270910%20for%20Naqu%20in%202016
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 910 

Fig. A4 (a) Comparison of LST between 1:00-1:30 A.M. and 1:30-2:00 A.M. for the four selected flux 911 

towers. (b) Comparison of flux-tower-derived LST averaged for 1:00-2:00 A.M. at the four towers and 912 

corresponding night-time 0-cm ground temperature at proximal meteorological stations. The inset map 913 

shows the location of the four flux towers. (3) Monthly NDVI time series for 1-km pixels containing 914 

each of the four flux towers.   915 
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