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 21 

Abstract: 22 

Surface soil moisture (SSM) is crucial for understanding the hydrological process of 23 

our earth surface. Passive microwave (PM) technique has long been the primary tool 24 

for estimating global SSM from the view of satellite, while the coarse resolution 25 

(usually >~10 km) of PM observations hampers its applications at finer scales. 26 

Although quantitative studies have been proposed for downscaling satellite PM-based 27 

SSM, very few products have been available to public that meet the qualification of 1-28 

km resolution and daily revisit cycles under all-weather conditions. In this study, we 29 

developed one such SSM product in China with all these characteristics.  The product 30 

was generated through downscaling the AMSR-E/AMSR-2 based SSM at 36-km, 31 

covering all on-orbit time of the two radiometers during 2003-2019. MODIS optical 32 

reflectance data and daily thermal infrared land surface temperature (LST) that had 33 

been gap-filled for cloudy conditions were the primary data inputs of the downscaling 34 

model, so that the “all-weather” quality was achieved for the 1-km SSM. Daily images 35 

from this developed SSM product have quasi-complete coverage over the country 36 

during April-September. For other months, the national coverage percentage of the 37 

developed product is also greatly improved against the original daily PM observations, 38 

through a specifically developed sub-model for filling the gap between seams of 39 

neighboring PM swaths during the downscaling procedure.  The product is well 40 

compared against in situ soil moisture measurements from 2000+ meteorological 41 

stations, indicated by station averages of the unbiased RMSD ranging from 0.052 42 
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vol/vol to 0.059 vol/vol. Moreover, the evaluation results also show that the developed 43 

product outperforms the SMAP-Sentinel (Active-Passive microwave) combined SSM 44 

product at 1-km, with a correlation coefficient of 0.55 achieved against that of 0.40 for 45 

the latter product. This indicates the new product has great potential to be used for 46 

hydrological community, agricultural industry, water resource and environment 47 

management. 48 

1. Introduction 49 

Surface soil moisture (SSM) is one of the most important variables that dominate 50 

the mass and energy cycles of earth surface system (Entekhabi et al., 2010b). Satellite-51 

based SSM datasets of sufficiently fine spatio-temporal resolutions over large-scale 52 

areas have significant implication on improved investigations at various research fields 53 

including hydrological signature identification (Zhou et al., 2021; Jung et al., 2010), 54 

agricultural yield production estimation(Ines et al., 2013; Pan et al., 2019), 55 

drought/waterlogging monitoring and warning (Vergopolan et al., 2021; Den Besten et 56 

al., 2021; Jing and Zhang, 2010), as well as weather prediction and future climate 57 

analysis (Koster et al., 2010; Jeffrey et al., 2001). Microwave bands with centimeter-58 

level or longer wavelengths (X-band, C-band, and L-band) are currently identified as 59 

the primary band channels suitable for SSM observations from view of satellite, due to 60 

their high penetration capabilities through cloud layers and vegetation canopies. In 61 

terms of sensor types, microwave SSM detection includes passive microwave 62 

(radiometer-based) techniques and active microwave (radar, scatterometer) techniques. 63 
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Satellite-based passive microwave (PM) radiometers, e.g. the Soil Moisture Active 64 

Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), and the Advance 65 

Microwave Scanning Radiometer-2 (AMSR-2), can obtain SSM observations at a 66 

revisit interval of 1-3 days, with relatively poor native spatial resolutions of tens of 67 

kilometers. Active microwave (AM) such as radar can achieve kilometer-level and even 68 

finer resolution of observations targeting at the earth surface. However, this usually 69 

sacrifices the swath width of radar configuration, because of which, most satellite-based 70 

synthetic aperture radars (SAR) have an obviously longer global revisit cycle (usually 71 

longer than 5 days, e.g. Sentinel-1 SAR data) than the typical radiometers. Moreover, 72 

AM radar backscatter signals are extremely sensitive to speckle noise (Entekhabi et al., 73 

2016), as well as influence from soil roughness, vegetation canopy structure and water 74 

content (Piles et al., 2009). All above influential factors have seriously impeded the use 75 

of AM radar techniques or combination of passive/active microwave datasets for 76 

producing high spatial resolution SSM products with a frequent revisit.  77 

Apart from microwave signals, solar reflectance or ground emission signals 78 

originated from optical and infrared band domains also have the potential to reflect 79 

SSM variation. Based on optical/infrared bands, however, SSM is typically estimated 80 

based on indirect relationships through intermediate variables like soil evaporation 81 

(Komatsu, 2003), vegetation condition (Zeng et al., 2004), or soil thermal inertia 82 

(Verstraeten et al., 2006). To overcome the spatio-temporally instable performance on 83 

SSM modelling that might be brought by such indirect relationships, they are typically 84 

fused with the PM SSM datasets. In this manner, it can well reconcile the advantage of 85 
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PM observations with respect to its high sensitivity to SSM variation, as well as that of 86 

optical/infrared observations with respect to its finer spatial resolutions at kilometer- or 87 

even hectometer-levels. Such data fusion techniques are also known as downscaling 88 

techniques of PM remote sensing SSM. Archetypal downscaling models include the 89 

“universal triangle feature space (UTFS)”-based models (Chauhan et al., 2003; Choi 90 

and Hur, 2012; Sanchez-Ruiz et al., 2014), the “DISaggregation based on a Physical 91 

And Theoretical scale CHange (DISPACTH)” model (Merlin et al., 2010; Merlin et al., 92 

2005; Merlin et al., 2013; Merlin et al., 2008), and the “University of California, Los 93 

Angeles (UCLA)” model (Peng et al., 2016). The physics of these models are mainly 94 

based on the response of SSM variation to changes in soil evaporation or land surface 95 

evapotranspiration. Another significant branch of such downscaling models are based 96 

on the sensitivity of SSM to soil thermal inertia, which is quantified by diurnal LST 97 

difference estimated from thermal-infrared wave bands (Fang and Lakshmi, 2013; Fang 98 

et al., 2018). 99 

Sabaghy et al. (2020) have shown that using optical and infrared data can achieve 100 

finer-resolution SSM estimates which are better consistent with ground soil moisture 101 

records, compared with using the radar datasets. Moreover, considering the short revisit 102 

cycle (daily) of optical/infrared sensors onboard typical polar-orbit satellites, using 103 

optical/infrared datasets to downscale PM SSM should be among the optimal methods 104 

for obtaining SSM data with high spatio-temporal resolutions over national, continental, 105 

or global scales. On the other hand, satellite remote sensing SSM products that are 106 

characterized by 1-km resolution of daily revisit intervals and stable long time series 107 
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dating back to at least 15-20 years ago, are urgently required for accelerating the 108 

development of various research fields, especially agriculture industry, water resources 109 

management, and hydrological disaster monitoring (Sabaghy et al., 2020; Mendoza et 110 

al., 2016). However, very seldom sets of such data products are publicly available to 111 

the remote sensing research community because of the following drawbacks,. First, 112 

there is a serious lack of cloud-free optical/infrared imagery, which means the method 113 

cannot deliver any SSM downscaling under cloudy/rainy weather. Second, most of the 114 

above-mentioned optical/infrared-data-based downscaling methods were mainly 115 

evaluated at regional or even smaller scales. This might raise concern on the 116 

universality of those methods. For example, the DISPATCH method has been 117 

recognized to be less effective in humid (energy-limited) regions compared with in arid 118 

and semi-arid (water-limited) regions (Molero et al., 2016; Song et al., 2021; Zheng et 119 

al., 2021). As far as the UTFS-based method is concerned, a poorer performance was 120 

obtained compared to the DISPATCH in a typical water-limited region in North 121 

America, according to the experiment conducted by Kim and Hogue (2012). 122 

To improve the above-mentioned issues, we produced an all-weather daily SSM 123 

data product at 1-km resolution all over China during 2003-2019, based on fusion of 124 

multiple remote sensing techniques, including reconstruction of optical/infrared 125 

observations under cloud as well as an improved PM SSM downscaling methodology 126 

proposed in our previous study (Song et al., 2021). The potential significance of this 127 

study includes  128 
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(i) to better serve and investigate the land surface hydrology processes and their 129 

sophisticated interactions to human society at multi-scale (from national to regional) 130 

resolutions in China because the country covers about 1/15 of the global terrestrial area 131 

with about 1/5 of the world population, and  132 

(ii) to provide a methodology framework that can inspire future studies on 133 

generating similar SSM datasets all over the globe, based on the plentifulness of 134 

resources on climate type, land covers, and topography in China. 135 

 136 

2. Methods and Materials 137 

2.1 Datasets 138 

2.1.1 PM SSM data 139 

Spatial downscaling of PM SSM is the fundamental theory for constructing the 140 

target finer-resolution data product in this study. Therefore, the native retrieval 141 

accuracy of the coarse-resolution PM SSM data product, based on which the 142 

downscaling procedures are performed, is considerably crucial to the performance of 143 

the downscaled data product (Busch et al., 2012; Im et al., 2016; Kim and Hogue, 2012). 144 

Although the L-band PM brightness temperature (TB) observed by satellite missions 145 

such as SMAP or SMOS are considered more suitable for SSM retrieval compared with 146 

C- or X-band TB, both above missions started their space operations after in the 2010s. 147 

This means that to obtain downscaled SSM of longer historical periods, we still require 148 

to rely on other C-/X-band-based radiometers which started their operations earlier than 149 
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SMAP and SMOS. An optimal satellite PM TB observation system dating back to 150 

earlier years of this century is composed of the “Advanced Microwave Scanning 151 

Radiometer of the Earth Observing System (AMSR-E)”, together with its successor of 152 

AMSR-2. AMSR-E operated during 2002-2011 onboard the Aqua satellite which is 153 

governed by National Aeronautics and Space Administration (NASA), whilst AMSR-154 

2 is operating onboard the Global Change Observation Mission1-Water (GCOM-W1) 155 

satellite developed by the Japan Aerospace Exploration Agency (JAXA) since 2012.  156 

Several classical PM SSM retrieval algorithms have been applied to the afore-157 

mentioned “AMSR series (including AMSR-E and AMSR-2)” TB for generating long-158 

term global SSM products at 25 km (Table 1Table 1), including the JAXA algorithm 159 

(Fujii et al., 2009; Koike et al., 2004), the “Land Parameter Retrieval Model (LPRM)” 160 

algorithm (Song et al., 2019b; Meesters et al., 2005; Owe et al., 2001), and the 161 

algorithm developed by the University of Montana (UMT) (Jones et al., 2009; Du et al., 162 

2016). A recent AMSR-based night-time SSM product during 2002-2019 has been 163 

produced through a neural network trained against SMAP descending SSM (hereafter 164 

referred to as “NN-SM product”) (Yao et al., 2021). The global validation results show 165 

that this NN-SM product is better than the JAXA and LPRM products.  166 

Besides, the NN-SM has also been compared with another long-term ~25-km all-167 

weather SSM dataset generated through the European Space Agency (ESA)’s Climate 168 

Change Initiative (CCI) program. The ESA-CCI SSM product is different from the rest 169 

products mentioned above in that it was implemented by fusion of observations from 170 

comprehensive AM- and PM-based satellite sensors, rather than only relying on the 171 
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radiometers of AMSR series. According to Yao et al. (2021), the ESA-CCI SSM has 172 

slightly better validation accuracy than the NN-SM product, but the number of available 173 

observations per pixel cell in an entire year is much smaller for the ESA-CCI SSM in 174 

Southeast China.  In view of all above coarse-resolution SSM data products, we finally 175 

selected the NN-SM product to implement the following spatial downscaling 176 

procedures rather than the ESA-CCI SSM, to make a balance between data accuracy 177 

and data availability per year. We have also made additional evaluations within China 178 

in Section Appendix-A to ensure the relatively outstanding performance of the NN-SM 179 

product as described above.   180 

Table 1 Information of all-weather microwave remote sensing coarse-resolution SSM data 181 

products that can be potentially downscaled to obtain high fine resolution SSM. 182 

Name Resolution Satellite radiometers 

involved 

Data availability (urlURL) 

NN-SM 

product 

36 km (by the 

EASE Grid 

projection) 

AMSR-E/ AMSR-2 

(2002-2011, 2012-present) 

https://data.tpdc.ac.cn/en/data/c26201fc-

526c-465d-bae7-5f02fa49d738/  

ESA-CCI v6.1 

product 

0.25° AMSR-E/ AMSR-2/ 

SMOS/ WindSat/ SMMR/ 

SSM/I/ TMI (1978-2020) 

https://www.esa-soilmoisture-

cci.org/v06.1_release  

JAXA product 0.25°/ 0.1° AMSR-E/ AMSR-2 

(2002-2011, 2012-present) 

https://gportal.jaxa.jp/  

LPRM 

product 

0.25°/ 0.1° AMSR-E/ AMSR-2 

(2002-2011, 2012-present) 

https://search.earthdata.nasa.gov/  

UMT product 25 km (by the 

EASE Grid 

projection) 

AMSR-E/ AMSR-2 

(2002-present) 

http://files.ntsg.umt.edu/data/LPDR_v2/  

https://data.tpdc.ac.cn/en/data/c26201fc-526c-465d-bae7-5f02fa49d738/
https://data.tpdc.ac.cn/en/data/c26201fc-526c-465d-bae7-5f02fa49d738/
https://www.esa-soilmoisture-cci.org/v06.1_release
https://www.esa-soilmoisture-cci.org/v06.1_release
https://gportal.jaxa.jp/
https://search.earthdata.nasa.gov/
http://files.ntsg.umt.edu/data/LPDR_v2/
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 183 

2.1.2 Optical remote sensing data and digital elevation model (DEM) 184 

 Optical remote sensing datasets provide finer spatial texture information on the 185 

daily basis for the downscaling purpose of PM SSM. Such data that can be used as 186 

inputs of our SSM product processing line are mainly provided by the Moderate-187 

resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. 188 

Specifically, they involve the 1-km daily night-time Aqua MODIS LST product 189 

(MYD21A1N.v061) and the 500-m daily “Bidirectional Reflectance Distribution 190 

Function (BRDF)” - Adjusted Reflectance dataset (MCD43A4.v061). MYD21A1 LST 191 

data can be recognized as a crucial proxy of land surface thermal capacity (Fang et al., 192 

2013) and soil evaporative rate (Merlin et al., 2008). The MCD43A4 nadir reflectance 193 

product, with view angle effect corrected using the BRDF model, is capable to provide 194 

observations from visible to shortwave-infrared bands that can characterize water 195 

content variation of the bare soils as well as the vegetation canopy. Overall, the above-196 

mentioned datasets were selected primarily because they deliver indicators (land 197 

surface thermal capacity, soil evaporative rate, or vegetation condition) that can well 198 

response to soil moisture dynamics from different aspects. Prior to being employed for 199 

SSM downscaling, conventional pre-processing procedure of pixel quality check was 200 

applied for both optical products by screening out pixels not classed as “good quality”, 201 

according to the 8-bit “Quality Assessment (QA)” field of each spectral band. Moreover, 202 

to normalize their natively different spatial resolutions, all MCD43A4 based reflectance 203 
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values at the 500-m pixel level were upscaled to the sinusoidally projected MODIS 1-204 

km grids using their spatial averages. 205 

 Apart from MODIS optical remote sensing data, all 90-m DEM tiles generated by 206 

the NASA Shuttle Radar Topography Mission (SRTM; http://srtm.csi.cgiar.org/, last 207 

access: July 10, 2020) were mosaicked over the entire all over China and then employed 208 

as another essential input variable for the procedures as described by Section 2.2.2 209 

below. Similar to that applied to the MCD43A4 product, spatial upscaling in 210 

correspondence to the MODIS 1-km grids is also an indispensable pre-processing step 211 

for the mosaicked DEM data.  212 

2.1.3 Ground validation data 213 

 214 

http://srtm.csi.cgiar.org/
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 215 

Fig. 1 The provincial-level administration map of China superposed with topographic information, as 216 

well as general locations for the 756 basic meteorological stations (http://data.cma.cn/, last access: 217 

January 20, 2021) that provide partial benchmark measurements for SSM and LST validation in this 218 

study.  219 

We utilized ground soil moisture measurements for validating the downscaled 220 

remote sensing SSM product.  The ground measurements are derived from 2417 221 

meteorological stations (including 756 basic stations of the National Climate 222 

Observatory and 1661 regionally intensified stations) of over China, as partially shown 223 

in Fig. 1Fig. 1. The soil moisture measurement devices in these stations, with uniform 224 

observation standards, are instrumented under the national project of “Operation 225 

Monitoring System of Automatic Soil Moisture Observation Network in China (Wu et 226 

al., 2014)”, the construction of which has been led by China Meteorological 227 

Administration since 2005. Until 2016, all stations have been in operation for 228 

http://data.cma.cn/
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automatically observing hourly in situ soil moisture dynamics at eight different depth 229 

ranges (0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-50 cm, 50-60 cm, 70-80 cm, 90-230 

100 cm). It has also been widely used by previous studies for evaluating satellite soil 231 

moisture estimates in China (Meng et al., 2021; Chen et al., 2020; Zhang et al., 2014; 232 

Zhu and Shi, 2014).  for evaluation of satellite soil moisture estimates in China. In our 233 

current study, ground measurements matching the shallowest depth range (0-10 cm) 234 

from the initial time of each station until the end of 2019 are employed as validation 235 

benchmark of the satellite SSM retrievals. At the temporal dimension, measurements 236 

made at 1:00 A.M. and 2:00 A.M are averaged, in order to match the mean satellite 237 

transit time of 1:30 A.M. for AMSR descending observations.  238 

Moreover, 0-cm top ground temperatures are simultaneously measured at all these 239 

meteorological stations on the daily basis, at the local time windows of 2:00 A.M./P.M. 240 

and 10:00 A.M./P.M., respectively. We therefore exploited such measurements 241 

recorded at 2:00 A.M. to validate the cloud gap-filled night-time (~1:30 A.M.) LST 242 

estimates over the Aqua-MODIS based 1-km pixels containing these stations (see 243 

Section 2.2.2). Our primary validation period covers the entire years of 2017, 2018, and 244 

2019.  245 

2.1.4 Ancillary SSM products for comparison  246 

In order to comprehensively demonstrate the validation performance of our 247 

proposed SSM product, there is necessity to make an inter-comparison against similar 248 

existing datasets. In this regard, we introduced the Level2 SMAP/Sentinel Active-249 
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Passive combined SSM product on 1-km earth-fixed grids, i.e., the SPL2SMAP_S_V3 250 

dataset (Das et al., 2020), and used its validation performance against in-situ 251 

measurements throughout the years of 2017, 2018, and 2019, as a baseline to better 252 

evaluate our proposed SSM product. The SPL2SMAP_S_V3 dataset contains global 253 

SSM at resolutions of 3 km and 1 km respectively, which were disaggregated from the 254 

SMAP SSM retrievals of 36-km/9-km footprints in conjunction with the high-255 

resolution Sentinel-1 C-band radar backscatter coefficients (Das et al., 2019).  To our 256 

knowledge, this dataset is possibly the only publicly available product which can 257 

provide global remote sensing SSM estimates at the 1-km resolution.  The sentinel 258 

backscatter coefficient inputs for this product are only those received in the descending 259 

orbit scenes (at ~6:00 A.M. of local time), whilst the closest SMAP SSM retrievals 260 

from either ascending (at ~6:00 P.M. of local time) or descending orbits are used to 261 

spatially match up with the sentinel-1 scene. It is noticed that at the descending 262 

observation time the soil moisture vertical profile has approached a hydrostatic balance 263 

(Montaldo et al., 2001), thereby providing the optimal chance for soil moisture fusion 264 

and validation with observations at different soil depths. Therefore, we only selected 265 

the 1-km disaggregated SSM estimates based on descending SMAP SSM retrievals (i.e., 266 

the subset with field name of ‘disagg_soil_moisture_1 km’ in the SPL2SMAP_S_V3 267 

dataset). Meanwhile, the 10-cm-depth0-10 cm in-situ soil moisture measurements 268 

observed at 6:00 A.M. were employed as the validation benchmark, in a manner similar 269 

to that applied to our proposed SSM product (Section 2.1.3).  270 

2.2 Methodology 271 
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The general methodological framework for producing the all-weather daily 1-km 272 

SSM product is shown as in Fig. 2Fig. 2, with details described in the following context 273 

of this section. 274 

 275 

Fig. 2 The overall methodological framework of this study. 276 

2.2.1 Reconstruction of thermal-infrared LST and remote sensing (vegetation) 277 

indices under cloud 278 

Reconstruction of missing pixels under cloud in the optical remote sensing input 279 

datasets is the prerequisite for achieving the “all-weather” property of the final 280 

downscaled SSM output. For reconstructing thermal-infrared LST, we adopted the 281 

cloud gap-filling method as proposed by our previous study (Song et al., 2019a). This 282 

method, also referred to as a typical “spatio-temporal data fusion” (STDF) method 283 

(Dowling et al., 2021), was built using clear-sky LST observations of spatially 284 

neighboring pixels observed at proximal dates, with concurrent NDVI and DEM also 285 

employed as additional data inputs. The STDF method can be expressed as follows: 286 

                    
1 0 1

* * * *

t t tLST a LST b NDVI c DEM d=  +  +  +                             (1)                                                    287 



 

16 

 

Where the superscript “*” indicates that this variable has been normalized to the range 288 

0 to 1.0 (Song et al., 2019a), based on the maximum and minimum values of that 289 

variable found across China (excluding invalid values representing states of snow, ice, 290 

and water bodies). Parameters a, b, c, and d are coefficients fitted between all pixels 291 

with clear-sky LST estimates on a specific date t1 (LST*t1) and their counterparts on 292 

one proximal date, t0 (LST*t0). NDVI*t1 indicates the corresponding (normalized) NDVI 293 

on the t1 date calculated using the MCD43A4 daily product. After deriving the 294 

coefficients of a, b, c, and d, Equation (1) was used to fill all cloudy MODIS LST pixels 295 

on the t1 date. For any t1 date included in the study period, the t0 date was iterated among 296 

all neighboring dates of t1 meeting the condition | t0- t1|<=30 (from the nearest date to 297 

the furthest date). The average of estimated LST values for t0 was then taken where a 298 

cloud gap pixel was filled more than once (based on the iterative t0 dates). The iteration 299 

was stopped when the fraction of pixels with effective LST values on t1 was equal to or 300 

exceeded 0.99.  301 

An important flaw of this STDF method should be noticed with regard to 302 

potentially existential bias of the cloud gap-filled LST outputs, because the outputs 303 

represent theoretically reconstructed LST under clear sky rather than under the real 304 

cloudy condition. Another of our previous studies (Dowling et al., 2021) concerning 305 

this STDF method proposed a follow-up step, which incorporated PM-derived surface 306 

temperature, to adjust that bias. In our current production pipeline, however, this 307 

follow-up step for cloud bias adjustment in LST was not carried out. This is because 308 

the results in Section Appendix-B show that using LST generated by the STDF alone 309 

leads to more accurate SSM outcomes in general. . The possible reasons for this are 310 

discussed below in Section 4.2. This is mainly because the gap-filled LST outputs are 311 

intended for SSM downscaling. The downscaling techniques as proposed in Section 312 
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2.2.1 was developed based on the “universal triangle feature (UTF)” theory (Carlson et 313 

al., 1994). In the UTF, clear-sky LST was employed to quantify the land surface 314 

evaporation when vegetation cover density was fixed. The degree of land surface 315 

wetness was then predicted implicitly through soil evaporation degree and surface soil 316 

thermal inertia. Under cloudy conditions, however, the satellite observed LST would 317 

be a proxy of not only surface soil property, but also of that related to cloud liquid water 318 

and crystals in the atmospheric layers. In comparison, therefore, LST generated by the 319 

STDF alone for clear-sky conditions would be a more competent input variable for 320 

quantifying surface soil wetness under cloudy conditions. We have made additional 321 

evaluations to confirm the validity of this assumption, with the results elaborated in 322 

Section Appendix-B of this paper. 323 

Reconstruction of the remote sensing vegetation indices under cloudy conditions, 324 

including NDVI and MNDI, was simply based on the modified time series filter of the 325 

Whiitaker Smoother (MWS) as developed by Kong et al. (2019).  This is reasonable 326 

because the dynamic trends of vegetation growth are relatively less volatile compared 327 

to LST on the daily basis, and can thus be gap-filled for missing values using a time-328 

series-filtering-like algorithm. 329 

2.2.2 Improved downscaling technique of SSM based on fusion of PM and 330 

optical/infrared data  331 

The core component of the SSM downscaling methodology is an improved linking 332 

model between PM SSM and (fine-resolution) optical remote sensing observations. 333 

This model enhances the relatively poorer performance of the conventional DISPATCH 334 

in energy-limited regions, whilst maintains the generally good quality of the 335 

DISPATCH in water-limited ones. Therefore, the improved model is more appropriate 336 
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to be applied in China which contains a wide range of geographical settings, compared 337 

to other conventional downscaling models.  Since this model origins from our previous 338 

study (Song et al., 2021), herein we simply give its mathematical expression as follows: 339 

                                       

ln(1 )

1

a SEE
SSM c

b NMDI

 −
= +

− 
                                                (2) 340 

In Equation (2), SEE denotes “soil evaporative efficiency” and is a mathematical 341 

function of LST and the typical Normalized Difference Vegetation Index (NDVI), with 342 

its specific form described in Merlin et al. (2008). NMDI is another remote sensing 343 

index calculated as  
𝑅𝑖𝑛𝑓𝑟,860𝑛𝑚−(𝑅𝑠𝑤,1600𝑛𝑚−𝑅𝑠𝑤,2100𝑛𝑚)

𝑅𝑖𝑛𝑓𝑟,860𝑛𝑚+(𝑅𝑠𝑤,1600𝑛𝑚−𝑅𝑠𝑤,2100𝑛𝑚)
 (Wang and Qu, 2007).  344 

𝑅𝑖𝑛𝑓𝑟,860𝑛𝑚, 𝑅𝑖𝑛𝑓𝑟,1600𝑛𝑚 , and 𝑅𝑖𝑛𝑓𝑟,2100𝑛𝑚 represent land surface reflectance signals 345 

derived from three different MODIS-MCD43A4 based near-infrared/shortwave-346 

infrared bands, with their wavelengths centering at 860 nm, 1600 nm, and 2100 nm 347 

respectively.  The parameters a, b, and, c are empirical coefficients that represent 348 

background information of local soil texture and vegetation types. In Song et al. (2021), 349 

these coefficients have been fitted and calibrated based on multi-temporal observations 350 

at the PM pixel scale. In our current study, however, we have discovered that coupling 351 

of multiphase observations at both the spatial and the temporal dimensions can lead to 352 

more optimal solution of the coefficients, as they can produce downscaled SSM images 353 

with notably declined effect of ‘mosaic’ against the original PM 36-km pixels. 354 

Therefore, the modified optimal cost function χ2 for deriving these coefficients is re-355 

defined as follows: 356 
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2

2

, , mod, ,

0

( )
dl N ws ws

i ob i d i d

d dl i

w SSM SSM
= 

=− =

=  −                                            357 

(3) 358 

Through the cost function, the spatial extent of each 36-km pixel P0 on any arbitrary 359 

date D0 obtains a unique set of coefficients. As shown by Equation (3), all  pixels were 360 

exploited within the N=7×7 spatial square window (with its side length equal to ws) 361 

centered at  P0 ranging from -5th dl-th day to dl-5th day relative to the date of D0 were 362 

exploited. To determine the optimum values for dl and ws, we have tested each member 363 

in the collection of [3, 5, 7, 9, 11, 13] for both of the parameters. Through eEvaluationg 364 

against in-situ data indicates that the optimum dl and ws are 5 and 7, respectively  365 

(which is like thatresults are similar to what is shown in Section 3.2, but is not 366 

demonstratednot presented here in this paper),. the optimum dl and ws are set as 5 and 367 

7 respectively. SSMob and SSMmod denote the AMSR NN-SM 36-km SSM observations 368 

as well as SSM observations modelled by Equation (2) based on upscaled optical 369 

datasets, respectively. wi is a weight coefficient used to ensure that neighboring 370 

observations near the centering pixel P0 play more dominating roles as compared with 371 

the far-end pixels in the cost function, considering the “Tobler’s First Law of 372 

Geography (Sui, 2004)” . wi is calculated using an adaptive bi-square function: 373 
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where disi indicates the distance between the i-th pixel and the centering pixel P0. b is 375 

named as the adaptive kernel bandwidth of the bi-square function (Duan and Li, 2016), 376 



 

20 

 

and is optimized as 200 km through using a cross validation method as recommended 377 

by Brunsdon et al. (1996). 378 

With the linking model obtained, we can subsequently utilize the spatial 379 

downscaling relationship function to produce 1-km high fine resolution SSM. The 380 

downscaling relationship function is constructed by transforming the linking model into 381 

its Taylor expansion formula and preserving all components with respect to the input 382 

optical variables of the linking model at first and second orders. This relationship is 383 

inspired from Malbéteau et al. (2016) and Merlin et al. (2010), and is mathematically 384 

described below: 385 

SSM1-km=SSM36km+(
𝜕𝑆𝑆𝑀

𝜕𝑆𝐸𝐸
)36𝑘𝑚 × (𝑆𝑆𝐸1𝑘𝑚 −< 𝑆𝑆𝐸 >36𝑘𝑚) + 0.5 × (

𝜕2𝑆𝑆𝑀

𝜕𝑆𝐸𝐸2) × (𝑆𝑆𝐸1𝑘𝑚 −386 

< 𝑆𝑆𝐸 >36𝑘𝑚)2+(
𝜕𝑆𝑆𝑀

𝜕𝑁𝑀𝐷𝐼
)36𝑘𝑚 × (𝑁𝑀𝐷𝐼1𝑘𝑚 −< 𝑁𝑀𝐷𝐼 >36𝑘𝑚) + 0.5 × (

𝜕2𝑆𝑆𝑀

𝜕𝑁𝑀𝐷𝐼2) ×387 

(𝑁𝑀𝐷𝐼1𝑘𝑚 −< 𝑁𝑀𝐷𝐼 >36𝑘𝑚)2                                                                                    (5)                                                                                                        388 

In the above relationship, <> denotes the spatial averaging operator of spatial averaging 389 

disaggregation for all of the 1-km optical remote sensing input variables at within the 390 

corresponding 36-km pixel, 
𝝏𝑺𝑺𝑴

𝝏𝑺𝑬𝑬
 (

𝝏𝟐𝑺𝑺𝑴

𝝏𝑺𝑬𝑬𝟐) and 
𝝏𝑺𝑺𝑴

𝝏𝑵𝑴𝑫𝑰
(

𝝏𝟐𝑺𝑺𝑴

𝝏𝑵𝑴𝑫𝑰𝟐) respectively denoting 391 

the first-(second-) order partial derivative of the linking model described in Equation 392 

(2).  393 

It should be noticed that there exist middle-/low-latitude gap regions between 394 

seams of neighboring daily AMSR-E(-2) swaths, indicating that SSM36km in Equation 395 

(5) is not always available on the daily basis (Song and Zhang, 2021b). For such PM-396 

seam gaps on a particular date t0, the corresponding SSM36km,t0 in Equation (5) is 397 

substituted by 0.5×（SSM36km,t0+1+ SSM36km,t0-1）+ΔSSM36km,t0. Herein SSM36km,t0-1 398 
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and SSM36km,t0+1 respectively denote the SSM estimate before and after the date of t0. 399 

ΔSSM36km,t0  is a component for correcting inter-day bias, with the following expression: 400 

( )

( ) ( )

36 , 0 36 , 0 36 , 0

36 , 0 1 36 , 0 1 36 , 0 1 36 , 0 1

,  

0.5 ( ,   ,  )

km t km t km t

km t km t km t km t

SSM SSM SEE NMDI

SSM SEE NMDI SSM SEE NMDI− − + +

 = −

 +

                    (6)                                                                                401 

In the above equation, SSM(SEE36km, NMDI36km) denotes SSM that is directly 402 

modelled based on Equation (1) using 36-km SEE and NMDI. The 36-km SEE and 403 

NMDI are obtained via averaging the variables spatially from their native resolution at 404 

1-km. If all SSM36-km during the three consecutive days (t0-1, t0, and t0+1) are missing 405 

due to other extreme conditions like snow, ice, or surface dominated by substantially 406 

large water bodies, the downscaling process cannot be fulfilled and all 1-km sub-pixels 407 

with the SSM36-km have to be set as null values. 408 

2.2.3 Evaluation metrics  409 

We employed the classic metrics of ‘Root Mean Square Difference (RMSD)’ and 410 

correlation coefficient (r-value) for evaluating satellite-based (SSM and LST) estimates 411 

against ground measurements. Herein RMSD is not referred to as ‘Root Mean Square 412 

Error (RMSE)’, although the latter term shares the same definition and has been used 413 

more commonly in previous studies.  This is because the ground benchmark data may 414 

also present measurement uncertainties in practice. For SSM evaluation, the unbiased 415 

RMSD, or ubRMSD (Entekhabi et al., 2010a; Molero et al., 2016), is calculated instead 416 

of RMSD in order to better investigate the time series similarity between satellite and 417 

ground soil moisture datasets by eliminating the systematic bias caused by spatial scale 418 

mismatch between them.  419 
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 The above-mentioned classic metrics are primarily suitable to evaluate the 420 

absolute reliability of an independent remote sensing product. However, we also require 421 

another metric for characterizing the relative improvement of the downscaled SSM 422 

estimates against the original PM observations on capturing local soil moisture 423 

dynamics. For this purpose, we employed the “gain metric” of Gdown, which was 424 

developed particularly by Merlin et al. (2015) for assessment of soil moisture 425 

downscaling methodology. Gdown is a comprehensive indicator for evaluating gains of 426 

the downscaled SSM against the original coarse-resolution PM data in terms of their 427 

mean bias, bias in variance (slope), and time series correlation with ground benchmark. 428 

It has a valid domain between -1 and 1, with positive (negative) value indicating 429 

improved (deteriorated) spatial representativeness of the downscaled SSM against the 430 

original PM data. Detailed definition and introduction of Gdown are given in Equation 431 

(8) and Section 3.3 of Merlin et al. (2015). 432 

3. Results 433 

3.1 Evaluation on reconstructed thermal-infrared LST under 434 

cloud 435 

The meteorological-station-based validation of reconstructed 1-km thermal-436 

infrared LST under cloud were preliminarily fulfilled, to ensure the high quality of input 437 

dataset variables for SSM downscaling. Since disadvantageous negative effects might 438 

be brought to this validation campaign by the potentially existing heterogeneity of the 439 

validated 1-km thermal-infrared remote sensing pixels, we firstly analyzed correlations 440 
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between estimated and benchmark datasets at each station, only based on satellite 441 

remote sensing observations obtained under clear sky. Stations that have their 442 

correlation coefficients (rclr) lower than 0.9 herein have to be screened out because there 443 

exist higher chances of cross-scale spatial mismatch within and around these stations 444 

in terms of the land surface thermal properties. Among all 2417 stations (see Section 445 

2.1.3) where 0-cm in-situ top-ground temperature measurements were available, we 446 

finally preserved 2107 stations characterized by rclr >0.9. In the subsequent step, remote 447 

sensing LST under cloud and under clear-sky conditions were respectively validated at 448 

these stations, with the results revealed in Fig. 3Fig. 3. It is manifested through Fig. 449 

3Fig. 3-(a) and -(b) that very close performances have been achieved between the clear-450 

sky and the cloudy scenarios, especially considering their almost equally high 451 

validating correlations between 0.94-0.965. For each independent station, we calculated 452 

the “RMSD difference (RMSD_diff)” between the two scenarios, based on the formula 453 

of “RMSDclr- RMSDcld (the subscripts of ‘clr’ and ‘cld’ denote clear-sky and cloudy 454 

conditions separately)”. The statistical distribution of this RMSD difference with regard 455 

to different stations is shown in Fig. 3Fig. 3-(c). Apparently, 1942 stations all over the 456 

country have obtained an RMSD difference value below 2.6 K, and the mean RMSD 457 

difference is only about 1.9 K. All above results have indicated that the uncertainty of 458 

our night-time LST reconstruction algorithm proposed for cloudy conditions is not very 459 

significant. The corresponsive uncertainty that could be propagated to downscaled SSM 460 

in this stage is analyzed below in Section 3.2.  461 
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 463 

Fig. 3 validation results of the cloud gap-filled LST in China. (a) Density plot of thermal infrared 464 

LST under clear-sky condition compared to the 0-cm ground temperature measurements for all 465 

stations. (b) Same to (a) but for thermal infrared LST under cloudy conditions. (c) Statistical 466 

distribution of difference between RMSD of clear-sky LST and RMSD of gap-filled LST under cloudy 467 

condition with regard to different meteorological stations over the study region. 468 
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 469 

3.2 Evaluation on the final 1-km SSM product 470 

The overall validation results of the finally downscaled 1-km SSM product is 471 

demonstrated in Fig. 4Fig. 4.  Fig. 4Fig. 4-(a) shows that about 85% (N: 1833) of the 472 

total 2154 stations (the remaining 263 stations are located in pixels with no effective 473 

PM observations and are thus removed) have obtained significantly positive 474 

downscaling gains (Gdown>0.03). This hints that the 1-km SSM product can better 475 

capture the dynamic behaviors of local ground soil moisture data than the original 36-476 

km PM NN-SM data, revealing higher spatial representativeness of the downscaled 477 

SSM data product over the country. According to Fig. 4Fig. 4-(b), the mean ubRMSD 478 

of all stations is about 0.054 vol/vol, while 90% of those stations have the number lower 479 

than 0.088 vol/vol. In addition, we made another analysis concerning the possible 480 

influence of land cover types on SSM downscaling performance in Fig. 4Fig. 4-(c). The 481 

spatial information of land cover types was derived from the MODIS MCD12Q1 482 

(10.5067/MODIS/MCD12Q1.006) IGBP-based land use image in 2019. For stations 483 

that experienced land use change throughout the years of the study period, the ubRMSD 484 

is only reported for data in the year of 2019. Clearly, better accuracies are observed 485 

mainly in grassland, cropland and bare soil surface, whilst relatively poorer 486 

performances (with averages of ubRMSD higher than 0.06 vol/vol) are seen in urban 487 

regions, (woody) savanna, and crop-to-natural-vegetation mosaic areas. Such a relative 488 

performance across land covers is logical because all the land cover types with their 489 

average ubRMSD higher than 0.06 vol/vol are characterized by lower hydrologic 490 

http://doi.org/10.5067/MODIS/MCD12Q1.006
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homogeneity in terms of their definition, e.g. savanna, which is a mixture of grass and 491 

tall trees, and urban areas, which are composed of impervious underlying surface. 492 
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Fig. 4 General validation results of the currently developed SSM product. (a) Gdown distribution for 494 

different stations over China. (b) ubRMSD distribution for different stations over China. (c) ubRMSD 495 

statistics reported for different land covers. The numbers in the parentheses of the x-axis labels 496 

represent the amount of meteorological stations corresponding to that specific land cover type. 497 

In Fig. 5Fig. 5-(b) we employed the downscaled SSM image on April 9, 2018, as 498 

an example to demonstrate the spatial features of the developed product. Meanwhile, 499 

we also show the map of SMAP/Sentinel combined SSM (SPL2SMAP_S_V3) obtained 500 

from April 6 to April 11, 2018 in Fig. 5Fig. 5-(a), as a contemporaneous comparison 501 

reference. Clearly, the SPL2SMAP_S_V3 map has a much lower coverage percentage 502 

over the study region compared with the map of the currently developed product on one 503 

single date, even though the former was generated based on multi-date images. Both 504 

maps show similar spatial texture depicting the relatively dry climate in northwestern 505 

China compared with the humid climate in the Middle-lower Yangtze River Plain. 506 

Nevertheless, there also exist cases where the details in texture differ prominently, like 507 

that in the far northeastern end of the country. For the sake of further analysis on this 508 

point, results of the quantitative comparison as proposed in Section 2.1.4, is 509 

demonstrated in Fig. 5Fig. 5-(c) and Fig. 5Fig. 5-(d). The currently developed SSM 510 

product obtained a 0.078 vol/vol ubRMSD and a correlation coefficient of 0.55 against 511 

the in-situ soil moisture measurements, converging more apparently to the 1:1 line 512 

when compared with validation result of the SPL2SMAP_S_V3 dataset. As with the 513 

area of China, therefore, the currently developed product is superior to the global 514 
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SMAP/Sentinel combined SSM in terms of both coverage percentage and estimate 515 

accuracy. 516 
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Fig. 5 Comparison results between the currently developed 1-km SSM product and the SMAP/Sentinel 519 

combined 1-km SSM (SPL2SMAP_S_V3). (a) SPL2SMAP_S_V3 SSM images over China at about 520 

6:00 a.m. systhesized by 6 continous dates from April 6, 2018 to April 11, 2018. (b) The SSM image at 521 

1:30 a.m. of April 9, 2018 from the currently developed product. (c) Validation results of the 522 

SPL2SMAP_S_V3 product against in-situ soil moisture measurements over China for years of 2017, 523 

2018, and 2019. The black solid line is the 1:1 line. (d) Same to (c) but for validaiton of the currently 524 

developed SSM product. 525 

In Fig. 6Fig. 6, we display the cumulative distribution frequency of coverage 526 

percentages of the downscaled SSM product and of the original PM NN-SM product 527 

for each season. We should be noted that in this statistical scheme, pixels identified as 528 

static water body by the MODIS MCD12Q1 land cover type product were not 529 

considered in the denominator of the coverage percentage. Besides, the gap time 530 

between the respective on-orbit period of AMSR-E and of AMSR-2 (from October 531 

2011 to June 2012, during which there are no effective observations from the PM NN-532 

SM product) were also excluded.  It is apparent that in Fig. 6Fig. 6-(b) and -(c), almost 533 

all downscaled daily SSM images over the 16-17 years have achieved a coverage 534 

percentage close to 100% (at least above 95%)higher than 85%. In comparison, the 535 

majority of the PM NN-SM daily images have their coverage percentages below 80% 536 

over the study region, primarily due to the PM-seam gaps particularly existing in low 537 

latitudes (see Section 2.2.2). In Fig. 6Fig. 6-(a) and -(d), the percentages of effective 538 

pixels in both the PM and the downscaled SSM images are far lower than their 539 

counterparts in the other two subfigures. This is mainly ascribed to extreme 540 
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meteorological conditions including snow, ice, and frozen soils that are typically 541 

persistent throughout most of these specified months in the northwestern regions of 542 

China. Such conditions can impede reliable estimates of SSM based on all satellite 543 

remote sensing techniques in the current time. The above inter-seasonal differences on 544 

data coverage are also reflected in Fig. 7 in another manner based on presenting the 545 

spatial distributions of number percentages of available dates in each three-month 546 

period. 547 
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 549 

Fig. 6 Cumulative distribution frequency of our proposed SSM product against the original 36-km SSM 550 

product for different seasons. The period between October 2011 and June 2012 is excluded in the 551 

current statistics. 552 

 553 
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 555 

Fig. 7 Spatial distributions on percentage of day numbers with available estimates for the currently 556 

developed 1-km SSM product and the original 36-km PM data during 2003-2019. The four different 557 
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periods (i.e., January-March, April-June, July-September, October-December) of a year are treated 558 

respectively. The period between October 2011 and June 2012 is excluded. 559 

The techniques behind coverage improvement of the downscaled SSM (against 560 

PM and optical data inputs) can be categorized into two classes, i.e. cloud gap-filling 561 

of the input optical datasets (see Section 2.2.1), as well as the filling of downscaled 562 

SSM in PM-seam gaps (see Section 2.2.2). Table 2Table 2 reports the specific 563 

validation results (using averages of all stations) of downscaled SSM in these coverage-564 

improved conditions, relative to that generated without using any coverage 565 

improvement technique, in order to evaluate the propagated effect of such techniques 566 

on the final product.  The very limited difference for ubRMSD values (0.053 vol/vol 567 

versus 0.056 vol/vol) between cloudy and clear-sky conditions suggest that the 1-km 568 

SSM estimates from our final product are cloud gap-filling techniques are generally 569 

compatible with SSM downscalingbetween cloudy and clear-sky conditions. To a 570 

certain extent, our pre-assumption that the theoretically hypothesized ‘clear-sky’ LST 571 

reconstruction is proved suitable for quantifying soil wetness variation. The 572 

downscaled SSM estimated for regions of PM-seam gaps have a slightly worse (but 573 

still acceptable) accuracy, considering its ubRMSD of 0.059 vol/vol compared to the 574 

0.052 vol/vol ubRMSD of the PM-observed 1-km pixels. In summary of Fig. 6Fig. 6 575 

and Table 2Table 2, the currently developed product has achieved a substantially 576 

improved spatial coverage against the original remote sensing input datasets, whilst 577 

successfully preserved the SSM downscaling accuracy of the observation-covered 578 

pixels at the same time. 579 
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Table 2  Comparisons between validation results for pixels under coverage-improved regions and 580 

for pixels under remote-sensing-observation-covered regions. 581 

Evaluation metric* Comparison between cloudy 

and clear-sky conditions 

Comparison between passive 

microwave (PM) observed regions 

and regions of PM-seam gaps 

 Clear-sky 

condition 

Cloudy condition PM-observed 

regions 

PM-seam gaps 

ubRMSD (vol/vol) 0.053 0.056 0.052 0.059 

Correlation coefficient 0.49 0.47 0.49 0.44 

*All evaluation metrics in this column indicate the average of all available stations 582 

4. Discussion 583 

4.1 Uncertainty on SSM evaluation between satellite- and 584 

ground- scales  585 

In this study, we made evaluations on remote sensing SSM products at different 586 

spatial resolutions, using measurements from 2000+ stations provided by the national-587 

level soil moisture observation network of China as standard benchmark. Through the 588 

evaluations, a ubRMSD of 0.074 vol/vol is reported for the original 36-km NN-SM 589 

SSM product (Fig.A1-b). We notice that this result is considerably poorer if compared 590 

with another previous evaluation campaign targeting at the same product (Yao et al., 591 

2021), which achieved a global RMSE (RMSD) of 0.029 vol/vol. However, this 592 

difference is not unexpected because the two campaigns were carried out in different 593 

regions of the world. Also, that particular study  (Yao et al., 2021) was conducted based 594 

on completely different ground soil moisture observations provided by the International 595 
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Soil Moisture Network (ISMN) (Dorigo et al., 2021). Compared to the observation 596 

network employed in this study, the observation sites of ISMN are more intensively 597 

distributed as an “integrated soil moisture station” so as to provide spatially average 598 

soil moisture within a grid of tens of kilometers. In this regard, we admit that the ISMN 599 

is generally more professional in evaluating satellite PM-based SSM retrievals at a 600 

coarser resolution. But on the other hand, only a few (≤4) of such “integrated stations” 601 

have been set up sporadically within China, making the ISMN data much less 602 

representative of our study region compared with the national-level soil moisture 603 

network of China exploited by our current study.  604 

Although the higher RMSD of the national-level soil moisture network of China 605 

may indicate larger measurement uncertainty than the ISMN, the negative influence 606 

that might be imposed on our study purpose should be inconsequential. This is because 607 

we focus more on the relative validation performance of different SSM products, rather 608 

than on the absolute value of any evaluation metric including ubRMSD and correlation 609 

coefficient calculated against ground measurements. Specifically, the 1-km downscaled 610 

SSM obtained an average ubRMSD of about 0.054 vol/vol among different stations 611 

according to Fig. 4Fig. 4-(b). Besides, result of the evaluation in Fig. 5Fig. 5-(d) based 612 

on combination of multi-station ground measurements shows a global ubRMSD of 613 

0.078 vol/vol for this product. Overall, the above-mentioned results can be identified 614 

as at least comparable to the global (multi-station based) ubRMSD of 0.074 vol/vol of 615 

the original NN-SM data as they are evaluated against the same benchmark. Therefore, 616 

conclusion is safely drawn that the currently developed product preserves the retrieval 617 
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accuracy of the coarse-resolution NN-SM data, whilst improving the spatial 618 

representativeness of the latter product substantially according to the mostly positive 619 

Gdown values in Fig. 4Fig. 4-(a).  620 

Moreover, one may also argue that the r-value of 0.55 for the currently developed 621 

product in Fig. 5Fig. 5-(d) is not sufficiently high compared with several previous 622 

studies (Wei et al., 2019; Sabaghy et al., 2020) obtaining r-values above 0.7 for 623 

temporal analysis of satellite remote sensing soil moisture. However, we should be 624 

noticed that these previous studies have conducted analyses respectively at the temporal 625 

and the spatial dimensions. Based on their results, the spatial analysis typically derived 626 

lower r-values (＜0.4) compared to that at the temporal dimension. This is probably 627 

because the heterogeneity degree of remote sensing pixels can vary significantly across 628 

different sites. Since the evaluation in Fig. 5-(d) was deployed at the ‘spatio-temporal’ 629 

integrated dimensions, such an r-value is expected. This is also close to the global r-630 

value of 0.6 for validation of the coarse-resolution NN-SM product as reported in Yao 631 

et al. (2021). 632 

4.2 Uncertainty on cloud gap-filling and validations of LST 633 

As has been mentioned in Section 2.2.1, we utilized LST gap-filled based on the 634 

STDF method was used alone as one of the main input datasets for SSM downscaling 635 

under cloudy weather. Although such LST inputs contain clear-sky bias from the real 636 

cloudy condition, it is found to performs better in driving the SSM downscaling model 637 

compared with its bias-adjusted counterpart (see Section Appendix-B for details). The 638 

reason may be linked to one of the basic theories behind our SSM downscaling 639 
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methodology, i.e. the “universal triangle feature space (UTFS)” theory (Carlson et al., 640 

1994). In the UTFS, clear-sky LST is employed to implicitly quantify the surface soil 641 

wetness degree as it correlates with the dynamics of soil evaporative efficiency and soil 642 

thermal inertia when vegetation cover density is fixed. Under cloudy conditions, 643 

however, the satellite observed LST would be a proxy of is subjected to not only surface 644 

soil property, but also to that related to cloud insulation effect from solar incoming 645 

radiation and ground long wave outgoing radiation. As a result, the actual relationship 646 

between SSM and cloudy LST could be much more complicated than the one that has 647 

been described by the UTFS-based SSM downscaling model (i.e. Equation-2). In 648 

comparison, LST generated by the STDF alone for assumed clear-sky conditions, as is 649 

free from interference of cloud, would be a comparatively more competent input 650 

variable for driving the UTFS-based SSM downscaling model under non-rainy clouds. 651 

This is especially the case for thin and short-time clouds with marginal direct feedbacks 652 

on surface soil wetness.  653 

However, we admit that when rainy clouds occur, the STDF-filled LST under rainy 654 

clouds is also not suitable for our study purpose. This may explain the slightly higher 655 

RMSD for SSM under cloud based on STDF-filled LST (0.056 vol/vol) compared to 656 

that under real clear sky (0.053 vol/vol), as shown in Table 2. In reality, the actual 657 

negative influence of cloud on the final SSM product may be even more serious than 658 

indication from the above RMSD difference (i.e. 0.056-0.053 = 0.003 vol/vol) has 659 

shown, due to the portion of “clear/cloudy-weather-mixed” spatial windows during the 660 

fitting process of the downscaling model. In these windows, uncertainty in cloud gap-661 
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filled LST may affect accuracy of the fitted model coefficients and thus deteriorate the 662 

final SSM estimates in clear-sky pixels within the same window. Consequently, the 663 

above RMSD difference has been more or less underestimated. Despite all of above, in 664 

our study area of China we regard the STDF-filled LST as a more optimal proxy of heat 665 

flux for estimating SSM under clouds, compared to the bias-adjusted LST. On the other 666 

hand, futurale efforts are encouraged to further clarify the mechanical relationships 667 

between STDF-filled/bias-adjusted LST and soil wetness degree under clouds.   668 

Different from a number of previous studies (Jiménez et al., 2017; Dowling et al., 669 

2021; Yang et al., 2019) validating satellite thermal-infrared-based LST based on 670 

longwave radiation observations made at footprint-level observation stations (e.g. flux 671 

towers), our study has used 0-cm top ground temperatures as the primary benchmark 672 

for this validation campaign instead. Similar to that for SSM validation, the most crucial 673 

motivation driving such an experimental design is the significantly intensive 674 

distribution of the meteorological stations compared to the very limited number of 675 

active and effective flux towers available in China. It is noticed that these measurement 676 

devices at all of the meteorological stations are required to have been instrumented 677 

under open environmental conditions with relatively lower fraction of tall trees and 678 

water bodies, in order to conduct efficient monitoring at the physics of near-surface air. 679 

This can also be reflected in Fig.4-(c), which reveals no stations built within forest 680 

covers. Moreover, as we only focus on the mid-night scenario when the states of all 681 

land observations are “most stable” during one diurnal cycle, uncertainties due to the 682 

possible temperature inconsistency between bare ground surface and high tree surface 683 
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as well as due to the temporal mismatch (from about 1:30 to 2:00 A.M.)  should have 684 

minimalmargional effect on our results. We have carried an extra test that can confirm 685 

this discussion, with the detailed procedures described in Section Appendix-C. Wang 686 

and Liang (2009) 687 

4.32 Major novelty, unique profit, and future prospect of the 688 

developed product 689 

Compared with the widely known active/passive microwave combined SSM 690 

product (e.g. the SPL2SMAP_S_V3) and other PM/optical-data combined counterparts 691 

which were also published recently but at the monthly scale (Meng et al., 2021), the 692 

major novelty of the currently developed product mainly lies in the fact that it has 693 

achieved progress on all of the three crucial dimensions of satellite remote sensing, 694 

including the temporal revisit cycle (daily), the spatial resolution (1-km), and the quasi-695 

complete coverage under all-weather conditions. To our knowledge, this has rarely been 696 

achieved by previously developed satellite soil moisture product at regional scales. For 697 

realization of the above-mentioned progresses, we have fused the SSM downscaling 698 

framework with other techniques including cloud gap-filling of thermal infrared LST, 699 

MWS-based temporal filtering of vegetation indices, as well as reconstruction of seams 700 

between neighboring PM swaths in low latitudes. The final SSM estimates under cloudy 701 

conditions and intersected with the PM-seam gaps were specially validated against the 702 

rest estimates under clear sky and in the regions covered by PM observations, 703 

respectively (Table 2Table 2). The comparable performances among all treatment 704 
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groups herein confirm that the accuracy of the product is stable and consistent among 705 

all weather conditions.  706 

With improvement achieved at the three dimensions, unique profit of the currently 707 

developed product can be taken by subsequent studies and various industrial 708 

applications. For example, the capability of this product can be investigated on 709 

capturing the short-term anomaly of local hydrological signals as well as improved 710 

monitoring on drought disasters, which used to be investigated mainly at a coarser 711 

resolution by PM SSM (Scaini et al., 2015; Champagne et al., 2011; Albergel et al., 712 

2012). For another, taking advantage of its all-weather daily time series, the product 713 

can be utilized together with precipitation data to isolate and quantify the anthropic 714 

influence on regional water resources from the natural hydrological dynamics. 715 

Examples of such anthropic signals include agricultural irrigation activities, as well as 716 

finer-scale information on agricultural crops which was previously interpreted based on 717 

PM-driven techniques (Song et al., 2018). In addition, we should realize the important 718 

role of soil moisture as a constraint for accurate estimation of surface 719 

evapotranspiration and runoff (Zhang et al., 2020; Zhang et al., 2019). Therefore, the 720 

profit of this product can be further enhanced if coupled with land-atmosphere coupled 721 

models to produce new insights into water-cycle processes of earth surface at a finer 722 

spatio-temporal scale. 723 

In the future, the methodological framework proposed in this paper is prospective 724 

to be universally applied in other regions of the world to serve for better monitoring of 725 

the global surface wetness in the following studies. If applied in continental and global 726 
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scales, however, the current process for gap-filling of PM seams may require further 727 

attention and improvement. In this study, SSM in regions intersected with PM-seam 728 

gaps were estimated using TB observations from PM swaths at neighboring dates (see 729 

Equation-5). Although the errors in the PM-seam gaps over China as reported by Table 730 

2Table 2 are only slightly larger compared to the PM-covered regions, they cannot be 731 

ignorable completely and may leave extra concern on the universality of this technique, 732 

especially in the low latitudinal tropical regions where the effect of PM-seam gap is 733 

more apparent than in our study area. Besides, another imperfection of this data product 734 

lies in the gap period between AMSR-E and AMSR-2. Considering the different 735 

systematic error patterns of various PM SSM products, we did not generate downscaled 736 

SSM based on other PM products (e.g. the SMOS SSM product) during this period but 737 

just left the period as null values. We suggest a more rigorous and universal inter-738 

calibration framework on different PM SSM products to be developed in the future for 739 

a long-term consistent 1-km downscaled SSM dataset.  740 

5. Conclusions 741 

This paper describes the main technical procedures of a recently developed remote 742 

sensing surface soil moisture (SSM) product over China covering the recent ten years 743 

and more. Based on combination of passive microwave SSM downscaling theory and 744 

other related remote sensing techniques, the product achieves multi-dimensional 745 

distinctive features including 1-km resolution, daily revisit cycle, and quasi-complete 746 

all-weather coverage. These were rarely satisfied completely by other existing remote 747 
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sensing SSM product at regional scales. Validations were conducted against 748 

measurements from 2000+ automatic soil moisture observation stations over China. 749 

Overall, an average ubRMSDE of 0.054 vol/vol across different stations is reported for 750 

the currently developed product. The mostly positive Gdown values show this product 751 

has significantly improved spatial representativeness against the 36-km PM SSM data 752 

(a major source for downscaling). Meanwhile, it generally preserves the retrieval 753 

accuracy of the 36-km data product. Moreover, additional validation results show that 754 

the currently developed product surpasses the widely used SMAP-sentinel combined 755 

global 1-km SSM product, with a correlation coefficient of 0.55 achieved against that 756 

of 0.40 for the latter product. The methodological framework for product generation is 757 

promising to be applied at the continental and global scales in the future, and the product 758 

is potential to benefit various research/industrial fields related to hydrological processes 759 

and water resource management. 760 

  761 
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Appendix 762 

A. Evaluation on different PM SSM products 763 

We have made evaluations on the various AMSR-based SSM products (as shown 764 

in Table 1Table 1) covering the recent 10 years or longer, based on our soil moisture 765 

observation network all over China. The L-band based SMAP SSM dataset was also 766 

evaluated as a reference. The evaluation period covers the three years of 2017, 2018, 767 

and 2019. All AMSR-based 25-km grids were re-set to the SMAP 36-km grid system 768 

using the nearest resampling method. Only grids that contain equal or more than 4 soil 769 

moisture measurement stations were employed, in which, the grid-based PM SSM 770 

estimate was compared with average of measurements from all interior stations. Finally, 771 

53 grids were selected, as shown by the green color in Fig.A1-(g). For AMSR-based 772 

products, only the mid-night descending datasets were evaluated, whist for the SMAP 773 

product, our evaluation only focused on its descending mode in the early morning. 774 

As manifested by Fig.A1-(a) to -(f), the selected SSM product in the current study, 775 

i.e., the NN-SM product has an unbiased RMSD of 0.074 vol/vol and a correlation 776 

coefficient of 0.49. This obviously outperforms the other three traditional AMSR-based 777 

SSM products (i.e. JAXA-AMSR, LPRM-AMSR, and UMT-AMSR products) and is 778 

only inferior to the SMAP SSM retrievals, whilst the later only covers the latest period 779 

since 2015. As far as CCI data are concerned, it has a similar performance against the 780 

selected NN-SM in general. Nevertheless, the region marked by red circle in Fig.A1-781 

(c) indicates that CCI estimates have a considerably larger proportion of overestimated 782 
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anomalies. But overall, the primary reason that we have abandoned CCI but selected 783 

NN-SM is because the latter can provide a higher coverage fraction of valid pixels in 784 

our study region, as has been stated in Section 2.1.1.  785 
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Fig. A1 (a)-(f) Comparison of different PM SSM products (as reported in Table 1Table 1) against the 787 

in situ SSM measurements in China. (g) Locations of the 36-km EASE-GRID-projection based pixels 788 

used for this comparison campaign. 789 

B. Evaluation on the influence of bias adjustment for 790 

reconstructed ‘clear-sky’ LST under cloud  791 

In Section 2.2.2, we have emphasized that the gap-filled LST for cloudy pixels 792 

reflects the theoretical surface temperature of that pixel under a hypothetical clear-sky 793 

condition. As this cloud gap-filled LST would suffer from a possible bias against the 794 

real surface temperature under cloud (Dowling et al., 2021), we made an additional 795 

experiment regarding to further improvement of this cloud gap-filled LST. The follow-796 

up step for bias adjustment of this hypothetical clear-sky LST (but actually under 797 

cloudy conditions), as expounded in Section 4.2 of Dowling et al. (2021), was 798 

conducted herein using remote sensing and in situ LST data over China but only in 799 

2018. We illustrate the validation results for bias adjusted and non-bias adjusted LST 800 

under cloudy conditions in Fig. A2-(b) and -(c), respectively. Similar to Fig. 3Fig. 3, 801 

validation results for clear-sky LST of that year are also displayed (Fig. A2-(a)) for 802 

comparison. The results generally show that the follow-up step is effective in reducing 803 

the bias of the originally gap-filled ‘clear-sky LST’ under cloudy conditions (from -1.7 804 

K to 0.4 K).  805 

In the subsequent step, we substituted the original non-bias adjusted LST under 806 

cloudy conditions with its bias adjusted counterpart, and used the latter as the input for 807 

SSM downscaling. The general validation results of the downscaled SSM are illustrated 808 
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in Fig. A3 (similar to that presented in Fig. 4Fig. 4-a and -b). Contrary to the above-809 

analyzed Fig. A2, the bias adjusted cloudy LST with better gap-filling accuracies, 810 

however, obtained inferior performance in SSM downscaling. This final validation 811 

result, to some degree, confirms our assumption in Section 2.2.2 that the reconstructed 812 

cloudy LST but for the hypothesized clear-sky condition is the better proxy of surface 813 

moisture dynamics. But overall, as all LST estimates discussed herein are for the 814 

midnight scenario (when the energy interaction between atmosphere and land surface 815 

is relatively weak), the RMSD difference for different weather conditions in Fig.A2 is 816 

expectedly marginal. As a consequence, the difference in ubRMSD of SSM in Fig.A3 817 

can hardly be identified as ‘very significant’. Therefore, we encourage further tests on 818 

this conclusion in specific future studies to confirm its universality, especially for 819 

situation of the ‘morning to noon’ time window.     820 

 821 

 822 
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 823 

Fig. A2 Validation of the clear sky LST (a), reconstructed LST under cloud but with no passive-824 

microwave based bias adjustment (b), as well as the reconstructed LST under cloud with passive-825 

microwave based bias adjustment (c) respectively, based on the 0-cm ground temperature 826 

measurements at meteorological stations. 827 

 828 
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 829 

Fig. A3 The statistical distribution of ubRMSD at different stations for SSM estimates driven by two 830 

respective kinds of cloudy LST inputs. 831 

C. Uncertainty test between 0-cm ground temperature 832 

observations and flux-tower-derived thermal infrared LST    833 

We herein utilized 4 flux towers to calculate their footprint-level (about 500-1000 834 

m) thermal infrared LST based on long wave radiation measurements, plus broad band 835 

emissivity data derived from the MODIS MYD21A1 product (MYD21A1N.V061). 836 

The 4 towers are all characterized by moderate or low vegetation (grassland) and are 837 

dispersedly located at different eco-regions of China, namely the towers of Changling, 838 

Huailai, Yakou, and Naqu (see the inset map in Fig.A4-b). Data from Changling are 839 

derived from the FLUXNET community (FLUXNET2015 Dataset - FLUXNET ) in 2010. 840 

https://fluxnet.org/data/fluxnet2015-dataset/
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Data from the other three towers are derived from the National Tibetan Plateau Data 841 

Center, with data DOIs of  http://dx.doi.org/10.11888/Meteoro.tpdc.271094 for Huailai 842 

in 2018, http://dx.doi.org/10.11888/Meteoro.tpdc.270781 for Yakou in 2018, and 843 

http://dx.doi.org/10.11888/Meteoro.tpdc.270910 for Naqu in 2016. These data have 844 

been preprocessed by their providers to record the dynamics of those variables at a half-845 

hour interval. The algorithm for calculating LST based on flux-tower-derived long 846 

wave radiation is inherited from Wang and Liang (2009). We first compared the flux-847 

tower-derived night-time LST estimates between 1:00-1:30 A.M. and 1:30-2:00 A.M.. 848 

As shown by Fig.A4-(a), the very slight RMSD of 0.72 K suggests that LST is generally 849 

stable between 1:00 and 2:00 A.M. at night. In Fig.A4-(b), we also found marginal bias 850 

and RMSD within 1 K between average flux-tower-derived LST of 1:00- 2:00 A.M. 851 

and the corresponding 0-cm ground temperature at close meteorological sites (within 1 852 

km and at 2:00 A.M.).  853 

In Fig.A4-(c) we demonstrate time series for monthly average NDVI (derived as 854 

in Section 2.2.1) at the 1-km pixels containing each of the four sites from 2003-2019. 855 

Clearly, there are very rare cases with NDVI values exceeding 0.5, corroborating the 856 

“open environmental conditions” met by the meteorological stations.  In view of above, 857 

it is feasible for our study to have used the 0-cm ground temperature at pixels of such 858 

moderate to low vegetation covers as the evaluation benchmark of the satellite-derived 859 

thermal infrared LST. 860 

http://dx.doi.org/10.11888/Meteoro.tpdc.271094
http://dx.doi.org/10.11888/Meteoro.tpdc.270781
http://dx.doi.org/10.11888/Meteoro.tpdc.270910%20for%20Naqu%20in%202016
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 861 

Fig. A4 (a) Comparison of LST between 1:00-1:30 A.M. and 1:30-2:00 A.M. for the four selected flux 862 

towers. (b) Comparison of flux-tower-derived LST averaged for 1:00-2:00 A.M. at the four towers and 863 

corresponding night-time 0-cm ground temperature at proximal meteorological stations. The inset map 864 

shows the location of the four flux towers. (3) Monthly NDVI time series for 1-km pixels containing 865 

each of the four flux towers.   866 
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