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Abstract 11 

Aerosols are a complex compound with a great effect on the global radiation 12 

balance and climate system even human health, and concurrently are a large uncertain 13 

source in the numerical simulation process. The arid and semi-arid area has a fragile 14 

ecosystem, with abundant dust, but lacks related aerosol data or data accuracy. To solve 15 

these problems, we use the bagging trees ensemble model, based on 1 km aerosol 16 

optical depth (AOD) data and multiple environmental covariates, to produce monthly 17 

advanced-performance, full-coverage, and high-resolution (250 m) AOD products 18 

(named FEC AOD, Fusing Environmental Covariates AOD) in the arid and semi-arid 19 

areas. Then, based on FEC AOD, we analyzed the spatiotemporal pattern of AOD and 20 

further discussed the interpretation of environmental covariates to AOD. The result 21 

shows that the bagging trees ensemble model has a good performance, with its 22 

verification R2 always keeping at 0.90 and the R2 being 0.79 for FEC AOD compared 23 

with AERONET. The high AOD areas are located in the Taklimakan Desert and the 24 

Loess Plateau, and the low AOD area is concentrated in the south of Qinghai province. 25 

The higher the AOD is, the stronger the interannual variability. Interestingly, the AOD 26 

indicates a dramatic decrease in Loess Plateau and an evident increase in the southeast 27 

Taklimakan Desert, while the AOD in the southern Qinghai province almost shows no 28 
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significant change between 2000 and 2019. The annual variation characteristics present 29 

that AOD is the largest in spring (0.267) and the smallest in autumn (0.147); the AOD 30 

annual variation pattern shows a different feature, with two peaks in March and August 31 

respectively over Gansu province, but only one peak in April over other provinces. The 32 

farmland and construction land are at high AOD levels compared with other land cover 33 

types. The meteorological factors demonstrate a maximum interpretation of AOD on 34 

all set temporal scales, followed by the terrain factors, and the surface properties are 35 

the smallest, i.e., 77.1%, 59.1%, and 50.4% respectively on average. The capability of 36 

the environmental covariates for explained AOD varies with season, with a sequence 37 

being winter (86.6%) > autumn (80.8%) > spring (79.9%) > summer (72.5%). In this 38 

research, we pathbreaking provide high spatial resolution (250 m) and long time series 39 

(2000-2019) FEC AOD dataset in arid and semi-arid regions to support the atmosphere 40 

and related study in northwest China, with the full data available at 41 

https://doi.org/10.5281/zenodo.5727119 (Chen et al., 2021a). 42 

Keywords: Aerosol optical depth, Spatial downscaling, Machine learning, Gap filling, 43 

Arid areas 44 

 45 

1 Introduction 46 

Aerosols are a type of complex substance dispersed in the atmosphere that can be 47 

natural or anthropogenic sources (Kaufman et al., 2002). Aerosols can affect the global 48 

radiation balance and climate system directly, indirectly, or semi-indirectly by 49 

absorbing or scattering solar radiation (Myhre et al., 2013). Concurrently, aerosols 50 

seriously endanger human health by mixing, reacting, and dispersing dangerous 51 

compounds (Chen et al., 2020; Lelieveld et al., 2019). As one of the most significant 52 

optical characteristics of aerosols, the aerosol optical depth (AOD) is the integral of 53 

aerosol extinction coefficient in the vertical direction and indicates the attenuation 54 

impact of aerosols on solar energy (Chen et al., 2021b). AOD is frequently adopted to 55 

depict air pollution and also indirectly calculate various atmospheric parameters, such 56 

javascript:;
https://doi.org/10.5281/zenodo.5727119


3 

 

as particulate matter 2.5/10, with an extensive application in atmospheric environment-57 

related research (Goldberg et al., 2019; He et al., 2020). 58 

Generally, the primary AOD acquisition method is in-situ observation, which has 59 

high precision. However, in-situ observation is restricted by the distribution of 60 

observation stations, so the data lacks spatial continuity, which makes it difficult to 61 

meet the objectives of growing regional atmospheric environmental studies (Zhang et 62 

al., 2019). Remote sensing (RS) is an effective tool for collecting AOD information 63 

over a wide range of spatial scales, significantly offsetting the deficiency of in-situ 64 

observation. RS can tackle difficulties connected to insufficient data and an uneven 65 

geographical distribution to a certain extent (Chen et al., 2020). Nonetheless, RS is not 66 

always a silver bullet for AOD acquirement, with some problems, such as low spatial 67 

resolution and data missing in some particular situations (Li et al., 2020). Commonly 68 

utilized AOD satellite products derived from various sensors have different emphases 69 

in use (Table S1). Yet, the common point is that spatial resolution is coarse, and even 70 

has a large number of pixel values missing (Chen et al., 2022; Sun et al., 2021; Chen et 71 

al., 2021b; Wei et al., 2021). All these restrict the application of satellite AOD products 72 

on a regional scale, especially on an urban scale. Furthermore, the AOD spatial 73 

resolution scale often inevitably affects the following atmospheric pollutant prediction 74 

(Yang and Hu, 2018). These issues not just affect AOD analysis, but also mislead 75 

numerous pertinent uses of AOD data. 76 

Although methods for resolving AOD RS data deficiency have been studied, 77 

previous research has not addressed the problem completely (Li et al., 2020; Zhao et 78 

al., 2019). Considerable related work concentrates on multi-source AOD dataset fusion 79 

or AOD gap filling using different models. The initial and most extensive method is 80 

interpolations, but the AOD shows high spatiotemporal variability, thus it is not suitable 81 

to apply the approach to anticipating AOD missing data (Singh et al., 2017). Another 82 

widely used method is merging multiple AOD products, which can improve data quality 83 

but often fails to eliminate completely pixel value missing phenomenon, even bringing 84 

about offsetting consequences (Bilal et al., 2017; Ali and Assiri, 2019; Wei et al., 2021). 85 
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Some statistical models such as linear regression and additive are also employed to fill 86 

the pixel values missing and improve the spatial resolution of the AOD products. 87 

However, the performance in these models' is often dubious due to their simple structure 88 

(Xiao et al., 2017). Most current methods for high-resolution AOD forecasts are 89 

focused on the individual model technique, which relies on a set of assumptions that 90 

are not frequently met, leading to inaccurate predictions (Li et al., 2017; Zhang et al. 91 

2018). As computing technology advances, ensemble machine learning methods, by 92 

training multiple models through resampling the training data with the corresponding 93 

environmental covariates from their original distribution, provide new considerations 94 

and ways, which are less constrained by the hypothesis in a single model, with less 95 

over-fitting and outliers (Li et al., 2018). The strong data mining ability of the ensemble 96 

machine learning methods is good for fitting multisource data, and it can achieve higher 97 

precision at the same time (Zhao et al., 2019). As a result, the present research attempts 98 

to adopt ensemble machine learning methods to explore the production of advanced-99 

performance, high-resolution, full-coverage AOD dataset in arid and semi-arid areas. 100 

Currently, many previous studies have focused on AOD research in various regions 101 

and scales, which are concentrated on the eastern coastal areas and lack related 102 

exploration in arid and semi-arid areas. Arid and semi-arid areas, as important 103 

components of the earth's geography units, have extremely fragile bio-system and are 104 

extremely sensitive to climate change and human activities (Huang et al., 2017). Since 105 

the complex surface situation in arid and semi-arid areas, especially having huge deserts, 106 

many AOD retrieval algorithms are not suitable there. Although a minority of 107 

algorithms can acquire AOD in arid and semi-arid areas, such as the deep blue (DB) 108 

algorithm and multiangle implementation of atmospheric correction (MAIAC) 109 

algorithm, which still is limited by coarse resolution, high uncertainty, or a large no-110 

data phenomenon, so these AOD productions are hard to meet the needs of arid and 111 

semi-arid areas atmosphere environmental research (Wei et al., 2021). However, arid 112 

and semi-arid areas are crucial dust sources, with strong variability in the aspects of 113 

aerosol loading and optical characteristics. As a typical dust source and AOD data-114 
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scarce areas, the AOD variety in arid and semi-arid areas has significant influences on 115 

global climate change and model simulation. Therefore, manufacturing a higher-quality 116 

AOD dataset in arid and semi-arid areas is necessary for local and even global 117 

atmosphere environment research. 118 

To better solve the lack of AOD data in arid and semi-arid areas, this research aims 119 

to acquire advanced-performance, high-resolution, full-coverage AOD datasets that 120 

will serve as the foundation for future studies. To achieve this goal, the main work of 121 

this study includes: (1) based on MAIAC AOD, combined with multiple environmental 122 

covariates, utilized a machine learning method, FEC AOD is obtained for the periods 123 

2000–2019; (2) Aerosol Robotic Network (AERONET) ground observation data and 124 

the MCD19A2 and MxD04L2 AOD satellite products were collected to verify the 125 

applicability of FEC AOD; (3) the FEC AOD spatiotemporal change is analyzed; (4) 126 

the dominant environmental covariates of FEC AOD are explored. 127 

2 Materials and methods 128 

2.1 Study area 129 

Figure 1 shows the arid and semi-arid areas in northwest China (E 73°25’ - 110°55’, 130 

N 31°35’ - 49°15’), a typical arid and semi-arid region on the globe, in terms of the 131 

spatial location, surface cover, and the environmental problem (Ge et al., 2016). As a 132 

dust source and an ecosystem fragile area, the regional difference in climate is 133 

significant, which is perennial in drought and less precipitation (< 400 mm) conditions 134 

(Ding and Xingming, 2021). Furthermore, the area is extremely sensitive to climate 135 

change and human activities and has a large AOD variability, which brings great 136 

difficulty to global climate simulation and radiation balance quantification. With the 137 

development of society and technology, the force of people to change nature is 138 

increasing. More and more unreasonable human activities (deforestation, soil 139 

salinization) and poor land management policies (reclamation, water resources 140 

utilization) bring about regional vegetation degradation, desertification, rapid glacier 141 
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melting, and frequent dust weather, which eventually lead to the fast deterioration of 142 

the ecological environment in the whole arid and semi-arid areas. 143 

 144 

Figure 1. Study area. The figure shows typical arid and semi-arid areas, five provinces 145 

in northwest China. 146 

2.2 MODIS MAIAC data 147 

MAIAC AOD, which is named MCD19A2, is based on MODIS onboard Terra and 148 

Aqua, combined with the MAIAC algorithm produced. The MAIAC algorithm is an 149 

advanced AOD retrieval method, using time-series analysis and image-based spatial 150 

processing, which can acquire AOD data from densely vegetated areas as well as bright 151 

desert regions (Lyapustin et al., 2018; Lyapustin et al., 2011). The MAIAC AOD 152 

product's temporal and spatial resolutions are 1 day and 1 km × 1 km respectively, 153 

which is the highest spatial resolution in existing AOD products. The MAIAC AOD 154 

product also offers a long time-series AOD collection, which has been intended for air 155 

quality research on regional and even global scales. Compared with former AOD 156 

products, the MAIAC AOD data performance on bright surfaces and heavy AOD 157 

loadings areas generally is considered to make a significant improvement (Li et al., 158 

2018; Chen et al., 2021b). In this paper, we acquired MAIAC AOD for the entire study 159 

region from the NASA website (https://search.earthdata.nasa.gov/) over 20 years, from 160 
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March 2000 to February 2020. Based on the python tool, we preprocessed the data and 161 

computed the daily average AOD by combining the 550 nm AOD data from Terra and 162 

Aqua. 163 

2.3 MODIS MxD04L2 data 164 

MYD04L2 and MOD04L2 are the level 2 atmospheric aerosol products from Aqua 165 

and Terra respectively, where spatial and temporal resolutions are 10 km × 10 km and 166 

1 day respectively (Chen et al, 2021b). The MxD04L2 AOD product mainly provides 167 

two algorithms, the Dark Target (DT) and Deep Blue (DB) algorithms, to retrieve global 168 

AOD distribution. Based on the MODIS Collection 6.1, we chose 550 nm combined 169 

DT and DB AOD to validate FEC AOD. It is worth noting that the Aqua and Terra 170 

launch time is different, so we can acquire MOD04L2 data from March 2000 to 171 

February 2020, but as for MYD04L2, we only acquire data from July 2002 to February 172 

2020. All processes are realized through downloading from NOAA website 173 

(https://ladsweb.modaps.eosdis.nasa.gov/) and calculating and analyzing local 174 

computer, and main works, including geometric correction, projection conversion, 175 

image mosaics, clipping, computing daily and monthly mean of AOD, and numerical 176 

extraction, perform in MODIS Reprojection Tool (MRT) and ENVI and ArcGis 177 

software. 178 

2.4 AERONET data 179 

AERONET (Aerosol Robotic Network) is a network that monitors aerosols on the 180 

ground, providing 0.340-1.060 m aerosol optical characteristics at a high temporal 181 

resolution (15 min) (Holben et al., 1998). AERONET currently includes more than 500 182 

sites and covers major regions of the world with a long time series. AERONET AOD 183 

has low uncertainty (0.01–0.02), which is considered the highest accuracy AOD data 184 

and is widely used in RS AOD products validation as a reference (Almazroui, 2019). 185 

In this study, A total of 12 AERONET site data are selected in northwest China, most 186 

of which are from the third version of Level 2.0 AERONET AOD, except Mt_WLG 187 



8 

 

station (Level 1.5). Related information on the AERONET sites is provided in Table S2 188 

and Figure 1. Satellite products mostly provide 550 nm wavelength AOD, so the 189 

AERONET AOD at 550 nm is computed via the Ångström exponent algorithm to better 190 

match the AOD observed by satellite (Ångström, 1964). In the temporal dimension, we 191 

compute the average of AERONET AOD over Aqua and terra overpass period. In the 192 

spatial dimension, we match the satellite and in-situ observed AOD over a 3 × 3 pixels 193 

spatial window (Tao et al., 2017). The AERONET data and related information can be 194 

found at https://aeronet.gsfc.nasa.gov. 195 

2.5 Environmental covariates 196 

Environmental covariates selected in this study contain 12 covariates in three 197 

categories (meteorology, surface information, and topography). Covariates are selected 198 

based on two criteria: first, each variable is considered important to AOD and has a 199 

vital influence on AOD formation, accumulation, and migration process, referring to 200 

existing research and expert experience (Zhao et al., 2019; Chen et al., 2020; Yan et al., 201 

2022); the second, the data is released to the public for free, which means that the data 202 

set is freely available on the national or global scale (Li et al., 2020). The detailed 203 

information is listed in Table 1. In this study, we compute two sets of spatial resolution 204 

of environment variable data (1 km and 250 m). The 1 km spatial resolution data aim 205 

to model with MAIAC 1 km AOD, and a 250 m spatial resolution data is the target 206 

resolution of FEC AOD. To normalize the covariables on this basis, we interpolated the 207 

geo-datasets to 1 km and 250 m in ArcGIS (the bilinear method is used for continuous 208 

covariates and the nearest neighbor method is used for classified covariates) and 209 

reprojected them onto the 1984 coordinate system of the World Geodetic System 210 

(WGS). The environmental covariates can be divided into static and dynamic variables. 211 

As for dynamic covariates, the monthly average method is adopted to obtain the multi-212 

year average data. It is noted that the relevant operations are not limited to ArcGIS, and 213 

relevant open-source software such as QGIS can also be implemented. 214 

https://www.sciencedirect.com/science/article/pii/S1352231021000911?dgcid=author#tbl1
https://www.sciencedirect.com/science/article/pii/S1352231021000911?dgcid=author#fig2
https://aeronet.gsfc.nasa.gov/
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2.5.1 Meteorological parameters 215 

The meteorological parameters include temperature, precipitation, 216 

evapotranspiration, and wind speed. The temperature and precipitation data are 217 

obtained from the national Tibet Plateau data center (TPDC), whose temporal and 218 

spatial resolution is 1 month and 1 km × 1 km respectively. The evapotranspiration (ET) 219 

data is from TPDC’s terrestrial evapotranspiration dataset across China, whose 220 

temporal and spatial resolution is 1 month and 0.1° × 0.1° respectively (Szilagyi et al., 221 

2019). For ET data, we use a downscaling algorithm proposed by Ma (2017) to 222 

transform it into 1 km. The wind speed data is from National Earth System Science 223 

Data Center, whose temporal and spatial resolution is 1 month and 1 km × 1 km 224 

respectively (Sun et al., 2015). As for the four meteorological parameters, we have 225 

calculated the monthly average state every year for the next research. 226 

2.5.2 Surface properties 227 

The surface properties mainly employ land use and land cover (LUCC), normalized 228 

difference vegetation index (NDVI), and temperature vegetation dryness index (TVDI) 229 

to describe. LUCC data selects in the median of the whole study time, 2010, which is 230 

from Resource and Environment Science and Data Center. The LUCC data set is 231 

obtained by manual visual interpretation of the Landsat Series data as the data source. 232 

It includes 6 categories (farmland, forest, grassland, waterbody, construction land, and 233 

unused land) and 25 subcategories, with a spatial resolution of 30 m. NDVI data is 234 

obtained from NASA Global Inventory, Monitoring, and Modelling Studies (GIMMS) 235 

NDVI3g v1, whose temporal and spatial resolution is 15 days and 0.083° × 0.083° 236 

respectively. NDVI, the same as ET, is downscaled to 1 km. TVDI is a soil moisture 237 

inversion method based on NDVI and surface temperature. It can better monitor 238 

drought and be used to study the spatial variation characteristics of drought degree. 239 

TVDI temporal and spatial resolution is 1 month and 1 km × 1 km respectively. 240 
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2.5.3 Terrain factor 241 

The elevation is from Shuttle Radar Topography Mission 90 m Digital Elevation 242 

Model (SRTM). Based on elevation, geomorphology is realized under Geographic 243 

Resource Analysis Support System extension named r.geomorphon modular (Jasiewicz 244 

and Stepinski, 2013). Using System for Automated Geoscientific Analyses soft 245 

(https://sourceforge.net/projects/saga-gis/), plan curvature, slope length and slope 246 

steepness, and topographic wetness index is computed. 247 

https://sourceforge.net/projects/saga-gis/
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Table 1. Environmental covariates for AOD modeling 248 

Type Name Abbreviation Resolution Sources 

Dynamic covariate     

Meteorological 

parameters 

Temperature Tem 1 km × 1 km http://data.tpdc.ac.cn/ 

Precipitation Pre 1 km × 1 km http://data.tpdc.ac.cn/ 

Wind speed WS 1 km × 1 km http://www.geodata.cn/ 

Evapotranspiration ET 0.1° × 0.1° http://data.tpdc.ac.cn/ 

     

Surface properties 
Normalized difference vegetation index NDVI 0.083° × 0.083° 

https://ecocast.arc.nasa.gov/d

ata/pub/ 

Temperature vegetation dryness index TVDI 1 km × 1 km http://www.geodata.cn/ 

Static covariate     

Surface properties Land use and land cover LUCC 30 m × 30 m http://www.resdc.cn/ 

     

Terrain factor 

Elevation Elev 90 m × 90 m 

http://srtm.csi.cgiar.org/srtm

data/ 

Geomorphology Geoms 90 m × 90 m 

plan curvature Curpln 90 m × 90 m 

slope length and slope steepness LS 90 m × 90 m 

topographic wetness index TWI 90 m × 90 m 

249 
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2.6 Bagging trees ensemble 250 

The ensemble machine learning methods according to whether there exists 251 

dependency relation between learners are mainly divided into two categories, Boosting 252 

and Bagging (Figure S1) (González et al., 2020). If there is a strong dependency 253 

between individual weak learners and a series of individual weak learners needs to be 254 

generated serially (That means that the following weak learner is affected by the former 255 

weak learner), which is Boosting. In contrast, if there is no dependency between 256 

individual weak learners, and a series of individual learners can be generated in parallel 257 

(There is no constraint relationship between each learner), which is Bagging. The 258 

typical representative and extensive use algorithms of Boosting and Bagging are 259 

Gradient Boosting Decision Tree (GBDT) and Random Forest (RF) respectively 260 

(Zounemat-Kermani et al., 2021). Compared with Boosting, Bagging reduces the 261 

difficulty in training and has a strong generalization. 262 

Bagging (namely bootstrap aggregating) as a simple but powerful ensemble 263 

algorithm to obtain an aggregated predictor is more accurate than any single model 264 

(Breiman, 1996). Bagging is through multiple base learners or individual learners (such 265 

as decision trees, neural networks, and other basic learning algorithms) to construct a 266 

robust learner under certain combined strategies (Li et al., 2018). Generally, the bagging 267 

algorithm includes bootstrap resampling, decision tree growing, and out-of-bag error 268 

estimate. The main steps of the Bagging are as follows: (1) Bootstrap resampling, a 269 

random sample (return sampling) under abundant individual weak learners. (2) Model 270 

training, based on the origin samples to training for abundant individual weak learners 271 

in accordance with the self-serving sample set. (3) Result output, based on the decision 272 

tree, and calculates the average of all the regression results to obtain regression results. 273 

Therefore, bagging reduces the overfitting problem and prediction errors in decision 274 

trees and variance, thereby significantly improving the accuracy. Simultaneously, the 275 

influence of noise on the Bagging algorithm is comparatively less than the other 276 

available machine learning algorithms for AOD (Liang et al., 2021). 277 
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In this study, we use 12 environmental covariates (1 km) as downscaling method 278 

(bagging trees ensemble algorithms) input to acquire AOD-environmental covariates 279 

(AODe) model in 1 km and utilize AODe model and 250 m environmental covariates 280 

to acquire FEC AOD. Especifically, the basic idea for downscaling AOD with bagging 281 

trees ensemble machine learning (ML) models is to train the relationships between 282 

MAIAC AOD and the auxiliary environmental variables at coarse resolution (1 km) 283 

using ML algorithms. We then apply the trained relationships to generate a high-284 

resolution FEC AOD product at a fine resolution (250 m) (Duveiller et al., 2020; Yang 285 

et al., 2020; Ma et al., 2017). In case of the lack of environmental covariates in some 286 

periods, we use the multi-year monthly average to replace them. The reason why the 287 

250 m target resolution is selected is that existing studies show that aerosol RS research 288 

at the scale of 250 - 500 m spatial resolution is appropriate, which can better capture 289 

aerosols feature (Wang et al., 2021; Chen et al., 2020). Secondly, most high-resolution 290 

product data in the global are 250 m, especially soil, which is more convenient for peer 291 

comparison and further research and application (De Sousa et al., 2020; Hengl et al., 292 

2017). The model was built monthly from March 2000 to February 2020 to assure the 293 

model's accuracy in the inference process, whose specific parameters set include the 10 294 

cross-validation folds, the number of learners (N = 30), and the minimum leaf size (Lmin 295 

= 8). Each base learner was developed using a bootstrap sample generated individually 296 

from the input data. All steps were implemented in Matlab R2021a (Figure 2). 297 

Definitely, all modeling and application processes can also be implemented in R or 298 

Python. 299 
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 300 

Figure 2. Flow chart of experiment and model calculation process. 301 

3 Results and analysis 302 

3.1 Performance evaluation based on in-situ and satellite 303 

To verify the performance of the FEC AOD over arid and semi-arid areas, based 304 

on AERONET AOD data as reference, some generalized parameters are chosen to 305 

assess the performance of FEC AOD, such as the decision coefficient (R2), root mean 306 

square error (RMSE), expected error (EE), etc. (Levy et al., 2010; Ali et al., 2019; Feng 307 

et al., 2021). When R2 is higher and RMSE is lower, the performance of the model is 308 

better. EE can evaluate the degree of overestimation and underestimation of FEC AOD 309 

via three situations (within EE, above EE, and below EE). To examine the high 310 

resolution and full coverage FEC AOD performance, we computed the month average 311 
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AOD at each AERONET site in the whole study region. Specifically, we check data 312 

time range and data usability at every site, as for the daily scale, we only compute the 313 

average AOD from local time 9:00 am to 2:00 pm as the daily mean (if the valid data 314 

number in a day is less than 18, daily mean is considered missing). As for the monthly 315 

scale, if the number of the effective daily mean is less than 20 days, the monthly mean 316 

is considered missing, so 180 effective matching samples were obtained. As shown in 317 

Figure 3a, FEC AOD was highly correlated with AERONET monthly AOD (R2 = 0.787), 318 

with MAE of 0.049 and RMSE of 0.061. Approximately 83.9% of monthly collections 319 

fell within the EE, with RMB of 1.018 and Bias of 0.005, which means the FEC AOD 320 

products almost overcome some problems of overestimation and underestimation. 321 

Concurrently, the MAIAC AOD (Figure 3b), MOD04 L2 (Figure 3c), and MYD04 L2 322 

(Figure 3d) also conduct a comparison with AERONET AOD for the same period. It is 323 

easy to find that the performance of FEC AOD obviously outperforms others AOD 324 

products in terms of the number of valid data, consistency, and deviation. In addition, 325 

compared with previous studies, the FEC AOD also has a better applicability advantage 326 

(Chen et al., 2021b; Wei et al., 2019). 327 
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 328 
Figure 3. Comparison with AERONET AOD. (a) FEC AOD, (b) MAIAC AOD, (c) 329 

MOD04L2 AOD, (d) MYD04L2 AOD. The red line denotes the regression line, the 330 

black line shows the 1:1 line, and the blue area indicates the 95% prediction interval. 331 

 332 

The multi-year average AOD spatial distribution was calculated (Figure 4). The 333 

AOD spatial pattern has high consistency, and the high AOD is located in Taklimakan 334 

Desert and Loess Plateau, and the low AOD is distributed in high altitude areas (such 335 

as mountain zone and Qinghai). As for MxD04L2 AOD, the direct feeling is coarse 336 

spatial resolution, with some missing data. To further explore the improvement of FEC 337 

AOD based on MAIAC AOD, two typical cities (Urumqi and Lanzhou) in arid and 338 

semi-arid areas are selected to analyze the use on an urban scale. From Figure S2 and 339 

S3, we can easily find the difference in different AOD satellite products. Obviously, 340 

MOD04L2 and MYD04L2 AOD products are not suitable for urban air quality research, 341 

because it is difficult to characterize the variability of AOD in the local area. Shaybak 342 

and Chengguan districts are randomly selected for magnification in Urumqi and 343 
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Lanzhou cities respectively. Compared with MAIAC AOD, the FEC AOD has a strong 344 

potential to describe local AOD features or fine AOD distribution. Concurrently, the 345 

multi-year monthly average of four AOD products (FEC AOD, MAIAC AOD, 346 

MOD04L2 AOD, and MYD04L2 AOD) is counted (Figure S4). From January to 347 

December, the four AOD products show a trend of increasing first and decreasing next, 348 

reaching the lowest value in November. Of course, there are some differences in the 349 

AOD magnitude and fluctuation range, which are mainly due to the difference in AOD 350 

retrieval algorithms. 351 

 352 

Figure 4. The muti-years spatial average AOD for (a) FEC AOD, (b) MAIAC AOD, (c) 353 

MOD04L2 AOD, and (d) MYD04L2 AOD. 354 

 355 

The seasonal-trend decomposition procedure based on loess (STL) is used in time-356 

series decomposition for four AOD products to further analyze the consistency and 357 

difference in time scale (Figure 5). STL decomposes the time series data into additive 358 

variation three components: trend, seasonal, and the remainder (Chen et al., 2021b). 359 

Firstly, the four AOD data change in a similar manner, fluctuating and slightly 360 

decreasing, and the MxD04L2 AOD fluctuation range is significantly higher than that 361 

of FEC AOD and MAIAC AOD. It is worth noting that FEC AOD and MAIACAOD 362 
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major remain 0.2-0.3, and the MxD04L2 around 0.3, and the latter has a larger 363 

magnitude and amplitude compared with the former. As for seasonal characteristics, the 364 

four AOD products feature significant seasonal cycle variations. The spring and 365 

summer AOD remain at a high level, and the winter AOD is the lowest. When it comes 366 

to the general trend after the seasonal effect is removed, the four AOD products show 367 

a tortuous rise at first, beginning to decline around 2012, and rebounding about 2017. 368 

In terms of the remainder, obviously, MxD04L2 have more reside, namely random 369 

component. 370 

Through the above comparative analysis, the conclusion can be drawn that FEC 371 

AOD products demonstrate a reliable performance and ability to capture local 372 

information, even superior to MAIAC and MxD04 AOD products. 373 

 374 

Figure 5. Seasonal and trend decomposition using loess for (a) FEC AOD, (b) MAIAC 375 

AOD, (c) MOD04L2 AOD, and (d) MYD04L2 AOD. 376 

3.2 Spatiotemporal pattern of FEC AOD from 2000 to 2019 377 

Figure 6 shows annual mean FEC AOD maps for each year from 2000 to 2019 and 378 

multi-year mean AOD map. In general, spatial patterns are consistent over different 379 

years, where the highest AOD are found in the south of Xinjiang and the center of 380 

Shaanxi provinces, mainly due to special meteorological conditions, unique topography 381 
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and surface coverages. AOD is low in other areas, especially in the south of Qinghai 382 

province. The multi-year mean AOD is 0.193 ± 0.124 for the whole of the study areas. 383 

Figure 7 illustrates the spatial distributions of seasonal mean AOD from 2000 to 2019. 384 

The spatial patterns of AOD greatly differ at the seasonal level. In autumn, AOD is the 385 

lightest, with an average AOD value of 0.147 ± 0.089 and most AOD values < 0.2. By 386 

contrast, AOD is most severe in spring, with most AOD values > 0.2 (average = 0.267 387 

± 0.200). The summer and winter have similar spatial patterns and the former is higher 388 

than the latter, with AOD values being 0.198 ± 0.134 and 0.159 ± 0.103 respectively. 389 

The higher the AOD level is, the stronger the fluctuation of AOD. 390 

 391 

Figure 6. FEC AOD annual mean maps for each year from 2000 to 2019. 392 
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 393 

Figure 7. FEC AOD seasonal mean maps averaged over the period 2000-2019. 394 

 395 

To further investigate the spatiotemporal variety feature of AOD, the concepts of 396 

information entropy are introduced, which are temporal information entropy (TIE) and 397 

time-series information entropy (TSIE) respectively (Ebrahimi et al., 2010). TIE and 398 

TSIE are time series indicators that can depict the changing intensity and trend 399 

information of AOD. Generally, the higher (lower) the TIE is, the stronger (weaker) the 400 

changing intensity of AOD in the temporal dimension. As for TSIE, if TSIE >0, the 401 

shows AOD is increasing in this period, whereas TSIE <0 denotes a downward trend. 402 

Furthermore, the bigger the absolute value of TSIE is, the more significant the 403 

increasing (decreasing) trend. Figure 8 depicts the TIE and TISE of AOD from 2000 to 404 

2019 over the whole study area. We find that the overall change intensity of AOD over 405 

the past 19 years is large, especially in the south of Xinjiang (The Taklimakan Desert) 406 

and Shannxi province (The Loess Plateau). The areas with low variation intensity are 407 

mainly distributed in high elevations (mountainous areas and grassland areas). The 408 

characteristic of changing intensity is similar to the AOD change, which means the 409 

higher AOD is, the larger the multi-year change. The AOD in Xinjiang is increasing, 410 



21 

 

with the most obvious increases occurring around the Taklimakan Desert and the north 411 

of Xinjiang, whereas that in the east is decreasing, mainly concentrated in Shannxi 412 

province and southeast of Gansu province. Considering TIE and TSIE together, we can 413 

find that AOD has strongly increased in southeastern Taklimakan Desert while slightly 414 

increasing in northern Xinjiang and the northwestern Qinghai province. The AOD in 415 

the south of Qinghai province shows almost no change. The dramatic decrease can be 416 

found in the east, mainly distributed in the Shannxi, Ningxia, and southeastern Gansu 417 

provinces. A possible reason for this finding is that the Loess Plateau is experiencing 418 

greening, and the vegetation keeps increasing under artificial intervention. 419 

 420 

Figure 8. Temporal information entropy (TIE) and time-series information entropy 421 

(TSIE) of AOD distribution. 422 

 423 

The FEC AOD products with high spatial resolution and full coverage over arid 424 

and semi-arid areas provided new possible data sources to further research the air 425 

pollution in scarce data areas on fine scales. Based on the FEC AOD, we explore the 426 

regional distribution characteristics under different areas and surface coverage types. 427 

Figure 9 shows that AOD in Gansu province is the highest in all months, and AOD in 428 

Qinghai province is the lowest. From January to December, the AOD almost shows a 429 

trend of increasing at first and decreasing next, reaching a peak in March and April. It 430 

is worth noting that except for the Gansu province, where AOD is bimodal, other 431 

provinces are unimodal. Figure 10 describes the AOD season distribution under seven 432 

different land cover types (forest, grassland, waterbody, ice and snow, construction land, 433 

unused land, and farmland). The AOD over the ice and snow is the smallest and keeps 434 
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decreasing from spring to winter. AOD is at a high level over farmland and construction 435 

land, which is mainly related to human activities. Despite the land cover type, AOD in 436 

spring is still the highest. Except for ice and snow and unused land, else land cover type 437 

keeps a similar seasons distribution, with decrease and then increase, and autumn is the 438 

bottom. 439 

 440 

Figure 9. The monthly distribution characteristics of AOD in different provinces. 441 

 442 

 443 

Figure 10. AOD season distribution under different land cover types. 444 



23 

 

3.3 Variation partitioning of FEC AOD 445 

To examine the contribution of environmental covariates to the FEC AOD dynamic, 446 

the redundancy analysis (RDA) was used to explore the association between different 447 

seasons of FEC AOD and the environmental covariates. The twelve environmental 448 

covariates were divided into three groups, meteorology, surface properties, and terrain. 449 

The variance proportion driving the variation of FEC AOD on different temporal scales 450 

was tested from the environmental covariates groups. The variation of FEC AOD can 451 

be interpreted by every group of environmental covariates individually or the combined 452 

variation owing to two or more covariates set, and the residual represents the 453 

unexplained proportion. The variance partitioning results can be described as Venn’s 454 

diagram makes by R language (Waits et al., 2018). From Table 2 and Figure 11, the 455 

variation partitioning analysis reveals that the meteorological factors still explain a 456 

maximal proportion of variance of FEC AOD on different temporal scales, followed by 457 

terrain factor, and the surface properties are the smallest, i.e., 77.1%, 59.1%, and 50.4% 458 

respectively on average. In different seasons, the environmental covariates have 459 

different abilities to explain FEC AOD, with the sequence being winter (86.6%) > 460 

autumn (80.8%) > spring (79.9%) > summer (72.5%). Except for winter, the largest 461 

variance is explained by three groups' environmental covariates, with 40.7%, 38.9%, 462 

and 45.4% respectively. In winter, the largest variance is explained by meteorological 463 

and terrain factors (39.1%). From spring to winter, the explanatory ability of the three 464 

groups of covariates is always the highest in autumn, and meteorological parameters, 465 

surface properties, and terrain factors reach the lowest in summer, winter, and spring 466 

respectively. 467 

  468 
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Table 2. Three groups of environmental covariates for AOD variation partitioning 469 

Variance proportion Spring Summer Autumn Winter Average 

Meteorological parameters 78.8% 70.4% 80.5% 74.8% 77.1% 

Surface properties 44.5% 37.9% 52.5% 31.4% 50.4% 

Terrain factor 48.7% 49.5% 62.6% 62.8% 59.1% 

Residual 20.1% 27.5% 19.2% 13.4% 21.8% 

 470 

 471 

Figure 11. Variation partitioning for seasons and average AOD explained by (a) spring; 472 

(b) summer; (c) autumn. (d) winter. 473 

 474 

 475 

 476 

 477 
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4 Discussion 478 

4.1 Model uncertainty 479 

This study, based on MAIAC AOD and 12 environmental covariates data, adopting 480 

bagging trees ensemble approaches, produces monthly advanced-performance, full-481 

coverage, and high-resolution FEC AOD in northwest China. The bagging trees 482 

ensemble approach has a strong advantage in characteristics modeling and prediction, 483 

but also there exists some problems, for example, most of the base learners are a black 484 

box, which means the explanation is limited (Zounemat-Kermani et al., 2021). 485 

Concurrently, the model uncertainty that is also an issue to be considered possibly arises 486 

from the setting of hyperparameters and base learner and sample number selection 487 

(Khaledian and Miller, 2020). Therefore, the model robustness is critical to modeling 488 

and predicting. Simultaneously, providing mapping uncertainty helps users better 489 

understand the quality of FEC AOD in different regions, which further promotes users' 490 

reasonable use of AOD products. To check the reliability and stability of the AOD 491 

simulated model and consider the computing efficiency simultaneously, one month's 492 

data were randomly selected (August 2010), and we conducted 100 times 10-fold cross-493 

validation, that is, 100 times of prediction for each pixel, and the final prediction result 494 

is the average of 100 times (Rodriguez et al., 2010; Wei et al., 2021; Zhang et al., 2021; 495 

Ma et al., 2022). Then, we calculate model uncertainty, specifically, through the 496 

standard deviation, upper and lower limits 95% confidence interval to realize. From 497 

100 experiments, the validated R2 still remains at 0.90, and the RMSE and MAE range 498 

in 0.058 - 0.057 and 0.0319 - 0.0317 respectively. Concurrently, the case average and 499 

uncertainty results are shown in Figure 12. The FEC AOD mainly concentrates on the 500 

range 0 - 0.6, accounting for 96.2%, and the maximum distribution is 0.1 - 0.2 (36.8%). 501 

The uncertainty mainly concentrates on the range 0.2 - 0.6, accounting for 80.0%, and 502 

the maximum distribution is 0.4 - 0.5 (38.1%). We also calculated the average 503 

uncertainty corresponding to different levels of FEC AOD (Figure 13). The uncertainty 504 

is lower than 0.5, accounting for 77.3% of the region, and the lowest uncertainty (0.3) 505 
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corresponds to the largest proportion of FEC AOD (0.1 - 0.2). With the AOD increasing, 506 

the uncertainty also remains on rise, that is to say, the high AOD areas often feature 507 

high uncertainty. 508 

 509 

Figure 12. Distribution of mean and uncertainty in the prediction model of AOD. 510 

 511 

 512 

Figure 13. The average uncertainty corresponding to different levels of AOD. The light-513 

colored area surrounded by black lines is the AOD percentage, and the histogram is the 514 

uncertainty. 515 

 516 

4.2 AOD as affected by environmental covariates 517 

 The bagging trees ensemble method performance generally is affected by the 518 

selection of environmental covariates (Khaledian and Miller, 2020). Despite our 519 

selection of 12 environmental covariates that can explain most AOD variation, there are 520 

always about 13.4% - 27.5% that can not be well explained, and there are differences 521 
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in the interpretation of environmental covariates. Therefore, there is much space for 522 

improvement in the optimization of environmental covariates. There is no doubt that 523 

the meteorological parameter is the most significant contributor because of the 524 

temperature, precipitation, evapotranspiration, and wind speed through direct or 525 

indirect interaction to effectively influence AOD in the air (Chen et al., 2020). At the 526 

same time, the effect of terrain factors can not be ignored, which affects the propagation, 527 

diffusion, and settlement of AOD. The surface factors through the surface cover and 528 

soil wetness affect dust generation and reduction. However, there are also some 529 

questions that need further research, such as surface properties performance to explain 530 

AOD in summer lower spring, and the terrain factors having a higher AOD variance 531 

analytical power in autumn and winter compared with spring and summer. It is 532 

preliminarily speculated that this may be related to multi-factor interaction, which 533 

needs further analysis. In the following research, we consider introducing more related 534 

environmental covariates to try to improve prediction accuracy. In addition, we plan to 535 

further explore the internal correlation between various covariates and the relative 536 

contribution of individual covariates to AOD. Of course, the high spatial resolution and 537 

accuracy of environmental covariates are also necessary to take into consideration (add 538 

or replace). 539 

5 Data availability 540 

This monthly advanced-performance, full-coverage, high-resolution AOD dataset 541 

(FEC AOD) over northwest China is freely available via 542 

https://doi.org/10.5281/zenodo.5727119(Chen et al., 2021a). 543 

6 Conclusion 544 

 In this paper, the monthly advanced-performance, full-coverage, high-resolution 545 

AOD dataset, based on MAIAC AOD and multiple environmental covariates, and 546 

utilizing a machine learning method, is produced from 2000 to 2019 in the northwest 547 
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region of China. AERONET and MODIS AOD data were collected to verify the 548 

applicability of FEC AOD. Then, the FEC AOD spatiotemporal change is analyzed and 549 

the interpretation of environmental covariates to FEC AOD is explored. The result 550 

shows that the FEC AOD effectively compensates for the deficiency and constraints of 551 

in-situ observation and satellite AOD products. Meanwhile, FEC AOD products 552 

demonstrate a reliable performance and ability to capture local information, even 553 

superior to MAIAC and MxD04L2 AOD products, which has also indicated the 554 

necessity of the high spatial resolution of AOD data. The spatial patterns are consistent 555 

among different years and greatly differ at the seasonal level. The higher the AOD is, 556 

the stronger the time variability. The AOD shows a dramatic decrease in Loess Plateau 557 

and an evident increase in the southeast Taklimakan Desert between 2000 and 2019. 558 

The farmland and construction land are at high AOD levels in comparison with other 559 

land cover types. The meteorological factors demonstrate a maximum interpretation of 560 

AOD on all set temporal scales, and the capability of the environmental covariates for 561 

the explained AOD varies with season. 562 
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