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Abstract

From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape where
droughts, floods, conflict, and economic market accessibility pose challenges for agricultural
livelihoods and food security. The ability to remotely monitor environmental conditions is critical to
support decision making for humanitarian assistance. The Famine Farly Warning Systems Network
(FEWS NET) Land Data As31m11at10n System (FLDAS) global and Central Asia data streams

prov1de information on throloglc states for routlne 1nte,qrated food securltV analvs1s Whlle

developed for a specific project, these data are publicly available and useful for other applications
that require hydrologic estimates of snow-covered-fraction; snow-water-equivalentsotl-meoisture;
fune#—aﬂd—eﬂqer—vaﬂables—ﬁep%eseﬁtmg—the water and energy balance Jihas—appmaeh—a-l-lews—us—te—ﬁ-l-l

eeﬁ-ﬁgmzaﬂeﬂ—ef—ﬂqe—%A—S—aﬁd—t-h&These two resul-taﬂt—data streams:—ene,— are unique because of
their suitability for routine monitoring, as well as a historical record for computing relative
indicators of water availability. The global; stream is available at ~1 month latency, prevides
monthly average outputs on a 10-ks*-km grid from 1982-present. The second data stream, Central
Asia; ( 30-100 °E, 21- 56 °N) at~1 day latency, prov1des da11y average outputs ona lkmggﬁd—frem

e%ﬁmate%aswvel—k%quakt&tw&ﬁeld—repeﬁq#he@% km grld from 2000 present This paper

describes the configuration of the two FLDAS data streams, background on the software modeling
framework, selected meteorological inputs and parameters, and results from previous evaluation
studies. We also provide additional analysis of precipitation and snow cover over Afghanistan. We
conclude with an example of how these data and-value-added-produets(e-g-anomalies-and
interactive-timeseries)are-are used in integrated food security analysis. These data are hosted by the
National Aeronautlcs and Space Admmlstratlon (NASA) and USGSU S. Geologlcal Survey data
portals for pu use: al-data a a usefy B

teﬁegmﬁhyﬁfe%meﬂitemgmewpaeleaﬂd—ﬂeed—%use in new and innovative studies that will

improve understanding of this region.

1 Introduction

CFormatted: Font color: Auto

From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape where
droughts, floods, conflict, and economic market accessibility pose challenges for agricultural
livelihoods and food security. The ability to remotely monitor environmental conditions is critical to
support decision making for economic development, humanitarian assistance, water resource
management, agriculture and more. Environmental datasets can be combined with socio-economic




variables and transformed into customized products to support decision making. This is the

definition of a ‘climate service’” (Hewitt et al., 2012).

Hydrologic and land surface datasets are particularly relevant for agriculture and water resources
decision making. When these datasets are credible, updated routinely, and made publicly available
the influences of climate variability and climate change can be incorporated into specialized
analyses by intermediary users'. One example of an intermediary user central to this data descriptor
is the food security analysts of the Famine Early Warning Systems Network (FEWS NET). FEWS
NET analysts combine environmental information, largely from remote sensing and earth system
models, with information on nutrition, livelihoods, markets, and trade to provide decision support to
the U.S. Agency for International Development (USAID) Bureau of Humanitarian Assistance.
Additional examples and discussion of the production of climate service inputs can be found in the
literature (e.g., Vincent et al., 2018; McNally et al., 2019).

While these data are tailored to specific needs, they are also applicable to other climate services and

research e.g., Desert Locusts movement forecasting (Tabar et al., 2021). To that end, this paper
describes the FEWS NET Land Data Assimilation System (FLDAS) global and Central Asia data
streams. The inputs (e.g., precipitation) and resulting hydrologic estimates (a) provide a 40+ year

historical record for contextualizing estimates in terms of departures from average (i.e., anomalies)
b) are low latency (< 1-month) for timely decision support, and (¢) are familiar to the food and

water security user-community.

The purpose of this data descriptor is four-fold:

e to describe the development of the moderate resolution, low latency FLDAS hydrologic
monitoring system for Central Asia, specifically Afghanistan

e toincrease awareness of these data resources, which are intended to be a public good,

e to demonstrate how our methods inform critical investigations that ultimately improve
general understanding of water resources in this important region of the world, and

e to describe a ‘convergence of evidence’ approach to hydrologic monitoring in locations
where all sources of information contain some level of uncertainty.

An outline of this data descriptor is as follows. +-}-Central- Asia-Weather-and-ChmateSection 1.1
provides background on Afghanistan Weather and Climate. Section 1.2 reviews previous studies
that have conducted evaluations of the meteorological inputs and hydrologic outputs of Land Data
Assimilation Systems in the Central Asia region. Section 2 (Methods) describes the hydrologic
modeling system, parameters and meteorological inputs, and model outputs. Section 3 (Results)
presents comparisons of precipitation inputs, and comparisons of modeled snow estimates to
remotely sensed snow observations. Finally, Section 4 describes an application of these data to the

Afghanistan drought of 2018.

' The WMO defines intermediate (intermediary) users as those who transform climate information into a climate service
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100 1.1 Afghanistan Weather and Climate
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Central Asia, a region that includes Afghanistan, is water-scarce. receiving roughly 75% of its
annual precipitation during November—April (Oki-andKanae;552006)-(Oki and Kanae, 2006). In

Afghanistan, rainfall is highest in the northeast Hindu Kush Mountains and decreases toward the
arid southwest Registan Desert (Fig. 1a). Temperature follows a similar pattern with cooler
temperatures in the high elevation-and, wetter northeast and warmer temperaturetemperatures in the

NN AN

south; and southwest (Fig. 1b). Regional precipitation is strongly influenced by the EINifio- - (Formatted: Font color: Auto
Southern Oscillation (ENSO). -La Nifia eenditionconditions are associated with below average (Formatted: Font color: Auto
precipitation (FEWS NET, 2020b) and El Nifio conditions asseciated-with-abeveaverage _ (Formatted: Eont color: Auto
s e L e e e el e

EEWSNET,2020a)are associated with above average precipitation (Barlow et al., 2016; Hoell et

al., 2017; Rana et al., 2018; Hoell et al., 2018, 2020; FEWS NET, 2020a). Other-dynamieal factors
with an important influence on precipitation include orography, storm tracks, and the Madden—
Julian oscillation (M ¢ 005; Nazcmosadat and- Ghacdamini ¢




122 2048y (Barlow et al., 2005; Nazemosadat and Ghaedamini, 2010; Hoell et al., 2018). The last

123  several years have experienced a-numberofseveral ENSO events, with recent La Nifia events in ) (Formatted: Font color: Auto

124  2016-17,2017-18, and 2020-26212022 (NOAA CPC ENSO Cold & Warm Episodes by Season,
125  2021) that corresponded to droughts (FEWS NET, 2017b, 2018c, 2021).
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127
128  Figure la. Average annual precipitation in Afghanistan from 1991-2020, with overlayed province
129  boundaries. Map source (USGS Knowledge Base, 2021).
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Figure 1b. Average maximum monthly temperature from (1986-2015), overlayed with province
boundaries. Map source (USGS Knowledge Base, 2021).

Despite Afghanistan’s semi-arid climate, agriculture is an important sector, contributing 23% of
theits gross domestic product and employing 44% of the national labor force (CIA World Factbook).
High mountain snowpack and snowmelt runoff are important for agricultural water supplys-and

o o-the o E A ot N etwo EEYA NE AR

according to-the Fan arly-Warning Sy WO —2018b). According to
FEWS NET (2018b) snowmelt runoff is responsible for “providing over 80% of irrigation water
used. The timing and duration of the snowmelt is a key factor in determining the volume of
irrigation water and the length of time that it is available, as well as its availability for use in
marginal areas that experience [variable] rainfall.” Therefore, routine hydrologic monitoring, with a
particular emphasis on snow, is critical for tracking agricultural conditions and provides early
warning for food insecurity.
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1.2 PrecipitationHydrologic Data Availability inand Uncertainty

Remote sensing and models are important inputs to climate services (Qamer et al., 2019). In the
Central Asia region, and especially Afghanistan estimates of meteorological inputs, and model
parameters have considerable uncertainty due to sparse in situ environmental observations. To
address these challenges, the NASA High Mountain Asia project (https://www.himat.org/) has
broadly aimed to explore the driving changes in hydrology as well as model validation and data
assimilation, and water budget processes from the Himalayas in the south and east to the Hindu
Kush in the west. These efforts and other studies of satellite derived rainfall informed the
configuration and interpretation of the FLDAS Central Asia and global data streams.

The primary challenge to producing and evaluating hydrologic estimates is that sparse in situ
precipitation observations lead to uncertainty in gridded, satellite-based precipitation estimates.

Precipitation station observations are used for (a) bias correction of satellite estimates and (b)
validation of gridded products. In terms of gridded dataset development, Hoell et al. (2015) describe
how lack of station observations and complex topography in Afghanistan, Iraq, and Pakistan makes
this issue particularly problematic. Barlow et al. (2016) also highlight the station availability across
the region and how that influences uncertainties in the Global Precipitation Climatology Center
(GPCC) version 6 (Schneider et al., 2017) dataset over Central Asia (Fig. 2a) and specifically

Afghanistan over time (Fig. 2b).
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177  Figure 2. (a) Station data availability underlying the GPCC version 6 dataset, for the +951—

178 2646819502016 period, on the 0.5°-resolution grid over Central Asia. (b) Fraction of gridcells with
179  Number of Statiensstations used as input to the GPCC rainfall dataset in Afghanistan from 1932-
180  2016.

181

182  In the absence of abundant in situ observations, one approach for remote sensing and model

183  evaluation is to compare multiple input datasets and evaluate the water balance. Independent

184  observations from the different components of the water balance (e.g., evapotranspiration, soil

185  moisture, streamflow) help constrain estimates. We provide some background here and refer readers
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and data users to literature from the NASA High Mountain Asia project, specifically Yoon et al.

(2019) and Ghatak et al. (2018), who explored similar configurations to the FLDAS system. This

background allows the reader to appreciate the uncertainties in inputs, outputs and derived products
and climate services over Afghanistan and the broader Central Asia region.

Meteorological forcing is known to be the primary source of uncertainty in land surface model
simulations (Kato and Rodell, 2007). Thus, its evaluation is important to understand the quality of

model inputs and outputs. For this reason, Ghatak et al. (2018) compare four unique precipitation
data sources: daily Climate Hazards center Infrared Precipitation with Stations (CHIRPS) (Funk et
al., 2015), NOAA’s Global Data Assimilation System (GDAS) (Derber et al., 1991), and two
estimates from NASA’s Modern Era Reanalysis for Research and Applications version 2 (MERRA-
2) (Gelaro et al., 2017). They find that annual CHIRPS and GDAS precipitation estimates had
similar bias and root mean squared error over Afghanistan with respect to APHRODITE (Asian
Precipitation Highly Resolved Observational Data Integration Toward Evaluation) rain-gauge
derived product (Yatagai et al., 2012). CHIRPS had a higher correlation with APHRODITE. Ghatak
et al. (2018) further evaluated the quality of rainfall inputs based on the performance of
evapotranspiration and other derived outputs. The authors caution that gridded precipitation
estimates that have in situ inputs, like CHIRPS, may systematically underestimate precipitation in
mountainous regions. We keep this consideration in mind when interpreting differences between
FLDAS global and Central Asia data streams.

Yoon et al. (2019) compare precipitation estimates from 10 different products including
APHRODITE, CHIRPS, GDAS. and MERRA-2, across a broad region of High Asia, including a
portion of Afghanistan. They find that all datasets generally capture the spatial pattern of rainfall

and that the products tend to agree more at high elevations, where it is unlikely there are station
observations. Like Ghatak et al. (2018), they found CHIRPS and APHRODITE to have a lower

average precipitation than GDAS, attributable to the incorporation of sparse gauge data.

In addition to precipitation, other meteorological inputs are important for accurate hydrologic
estimates. Yoon et al. (2019) conducted an intercomparison of near surface air temperature
estimates from three model analysis products (European Centre for Medium-Range Weather
Forecasts (ECMWEF; Molteni et al., 1996), GDAS, and MERRA-2). They noted a statistically
significant upward trends in GDAS and ECMWF temperature, as well as consistently higher
temperatures in MERRA-2. We see the same pattern when averaging across Afghanistan. Yoon et

al. (2019),conclude that improvements in the meteorological boundary conditions would be needed . ( Formatted: Font: +Body (Times New Roman)
to reduce the uncertainty in the terrestrial budget estimates. These sentiments are echoed in Qamer
etal. (2019).

- (Formatted: Font: Not Italic

Despite known uncertainties, Schiemann et al. {26083(2008) find that gridded precipitation estimates
can qualitatively identify large scale spatial distribution of precipitation, seasonal eyelecycles, and
interannual variability (i.e., wet and dry years) across Central Asia. Long—-term estimates of rainfall
from satellite derived products, as well as derived historichistorical time series from hydrologic
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modetingmodeling, can be used as a baseline of “observations,” from which we can have a sense of
relative conditions, i.e., anomalies and variability. When this historical record is harmonized with a
routine monitoring system, current conditions can be placed in historical context. Anomaly-based
representation of hydrologic extremes can provide confidence in modeled estimates that have the
potential to influence agricultural, water resources and food security outcomes. For these reasons
one of the requirements for FLDAS input is that there is a sufficiently long historical record for

contextualizing estimates in terms of anomalies.

%9—1-4—)—1-n—s+&u—strea-m—ﬂew—From a chmate serv1ces perspectlve the rehance on the representatlon of
relatively wet and dry conditions, as well as a “convergence of evidence” approach, provide useable
information despite the above-mentioned uncertainties. A convergence of evidence approach that
draws on (quasi-) independent sources of information is useful to understand actual conditions. For
convergence of Earth observations, hydrologic models can generate ensembles of historical, current,
or future estimates of snow, streamflow, soil moisture, and evapotranspiration, which can then be
compared to satellite derived estimates of surface water (e.g., McNally et al., 2019), soil moisture
(e.g., McNally et al., 2016), vegetation conditions and evapotranspiration (e.g., Jung et al., 2019;

Pervez et al., 2021) snow cover (e g., Arsenault et al., 2014), in situ streamﬂow (e.g. Jung et al - (Formatted: Font: +Body (Times New Roman)

Afgh&msta& and others. Hvdrologlc estlmates can also be compared to outcomes in crop production
(e.g.., (e.g., McNally et al., 2015; Davenport et al., 2019; Shukla et al., 2020), and nutrition, health,
and food security (e.g., Grace and Davenport, 2021) to provide a qualitative understanding of both
hydrologic model performance and conditions on the ground. In this paper we provide an example
for 2018 where drought conditions were associated with crisis levels of acute food insecurity over

most of Afghanistan (FEWS NET, 2018c), ) - (Formatted: Font: +Body (Times New Roman)

h (Formatted: Font: +Body (Times New Roman)

NN

seeumlfeemmumtyLTo summarize, our experience and the hterature have characterlzed
uncertainties in available meteorological forcing for the region. GDAS, CHIRPS, and MERRA-2
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were chosen for the FLDAS system based on our project requirements of (a) a sufficiently long

historical record for contextualizing estimates in terms of anomalies (b) low latency (< 1-month) for

timely decision support, (¢) familiar to the FEWS NET user-community, and (d) prior evaluation by

our team and the broader community. We note here and describe in more detail later that the
Integrated Multi-satellite Retrievals for the Global Precipitation Mission (IMERG), a NASA

precipitation product (Huffman et al., 2020) also meets these requirements, since version 6 which

was released in 2019 (after these studies and initial FLDAS configuration). We will a describe
IMERG, GDAS. and MERRA-2 comparison in the Results (Section 3).
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2 Methods
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A. Global: 10 km, monthly,
CHIRPS + MERRA2

2-

2.1 Land Surface Modeling System & Parameters,

; (Formatted: Font color: Auto

LandA land surface models(ESMsmodel (LSM) can provide spatially and temporally continuous
information about the water and energy budgets of the land surface. This information is useful for
food and water security applications in places where in situ measurements of rainfall, soil moisture,
snow and runoff are sparse. This is particularly relevant in mountainous places like Afghanistan
where heterogeneous geography 11m1ts the representatlveness of sparse in 31tu measurements. We

th%Laﬂd—Bata—ToeHﬂP@&rseﬂarﬂ&ePal—ZQ%S} he FLDAS gMcNally et al . 2017) utlhzes th

NASA’s Land Information System Framework (LISF), which is composed of a pre-processor, the
Land surface Data Toolkit (Arsenault et al., 2018), the Land Information System (Kumar et al.,
2006; Peters-Lidard et al. 2007), and the Land Verlﬁcatlon Toolklt (Kumar et al. 2012) fPonuiaport

appl-te&ﬁeﬂs—ln thlS data descrlptor we descrlbe the two conﬁguratlons of the FLDAS data streams
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used for Central Asia food and water security applications. It uses the Noah 3.6 Land-Surface
MedelLSM (Chen-et-al51996; Elket-al;2003)(Chen et al., 1996; Ek et al., 2003) and-hasfor the
two data streams—Oune; (Fig. 3 and Table 1). The first data stream is global, at ~1 month latency, and
provides monthly average outputs on a 10-km*-km grid from 1982-present. The second data stream;
centered on Central Asia, ~1 day latency, provides daily average outputs at 1-km?-km from 2001-
present.

One important feature, added by the NASA LISF software development team, is the radiation
correction described in Kumar et al. (2013), which improves the representation of snow dynamics
with respect to slope and aspect corrections on the downward solar radiation field. Another
noteworthy feature is the method of the Central Asia data stream restart (i.e., annual initialization
based on climatology), which was developed to address an issue of excessive inter-annual snow
accumulation found in the Noah LSM. First, a nine-year spin-up of the system was performed to
produce stable snow and soil moisture conditions. Next, the resulting model states were compared
with the Moderate Resolution Imaging Spectroradiometer (MODIS) Maximum Snow Extent data

originally computed by NOAA National Operational Hydrologic Remote Sensing Center (Greg Fall,

NOAA Operational Data Center, written communication., 2014) . Then, the model-estimated
conditions were adjusted to produce a climatological model state for 1 October that is used to
initialize each year. This approach ensures that the ‘water year,” beginning 1 October, is initialized
with a reasonable initial amount of snowpack. While this method does effectively manage excessive
inter-annual modeled snow accumulation, the user should be aware that using the climatological
model state will persist for ~1-2 months in the water and energy balance of the LSM until they are
superseded by “observed” meteorological inputs for the current water year. Preliminary work
indicates that this issue will be resolved in future updates. In contrast, the global data stream does

not use this 1 October initialization procedure.
Although the two data stream specifications are largely the same, there are some differences related

to the input forcings, parameters and specifications (Table 1) and also model spin-up
proeedureprocedures.
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(a) Global: 10-km, monthly,
CHIRPS + MERRA-2
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Figure 3. The FEWS NET Land Data Assimilation System (FLDAS) domains for (a) the global data
stream at 10-km spatial resolution and ~1 month latency for monthly averaged hydrologic estimates
and (b) the Central Asia data stream at 1-km spatial resolution and ~1 day latency for daily averaged
hydrologic estimates.

Table 1. FEWS NET Land Data Assimilation System (FLDAS) specifications for (A) global data
stream, 10-km?;-km monthly with CHIRPS+MERRA-2:; and (B) Central Asia data stream, 1-km?-
km, daily with GDAS.

Global Central Asia

179.95°W- 179.95°E, 59.95°S-

Spatial Extent 89.95°N 30-100°E, 21-56°N
Land Data Toolkit (LDT)
generatedGenerated from MODIS
(Atrsenauttetal2048)using LISF- S e e
LDT, with MOD44w mask applied |20+49MOD44w (Carroll et al.
Landmask post-processing. 2017)
Landcover IGBP landcover IGBP landcover
I e el
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Shuttle Radar Topography Mission

Elevation SRTM (NASA JPL, 2013) SRTM < (Formatted Table
Albedo Gutiman 1999) NCEP albedo

2005)-National Centers for

Environmental Prediction (NCEP)

albedo (Csiszar and Gutman, 1999) & NativeNCEP albedo &
MODIS-based Max Snow Albedo MODIS-based Max Snow

Albedo (Barlage et al., 2005) Albedo < (Formatted Table
and-lgnatov1997)NCEP greenness
Vegetation Parameters  fraction (Gutman and Ignatov, 1998) NCEP greenness fraction < (Formatted Table
Non-Precipitation GDAS meteerelogical
Meteorological Inputs  MERRA-2 meteorelogical-variables  variables
EAO-STATSGO-seittextureFood and

Agricultural Organization (FAO) soil
texture & properties (Reynolds et al., FAO STATSGO-soil texture

Soil Texture 2000) & properties

CHIRPS daily precipitation,
Precipitation Inputs downscaled to 36-hourly with LDT ~ GDAS 3-hourly precipitation

Specifications Noah 3.6.1 Noah 3.6.1
Geographic Latitude-
Map Projection Geographic Latitude-Longitude Longitude
Software Version 72 7.3
Spatial Resolution O-1-degreel 0-km 0:01-degreel-km
Temporal Coverage 1982-01-01 to present 200+2000-10-01 to present
Model Timestep 3015-min timestep 4+530-min timestep
2m2-m Air Temperature (Tair),
Met. Forcing Heights 10m10-m Wind 2m2-m Tair, +0m10-m Wind
Soil layers (meters) 0-0.1;0.1-0.4; 0.4-1.0; 1-2 0-0.1;0.1-0.4; 0.4-1.0; 1-2
Features radiation correction radiation correction
349
B50  The parameters and specifications listed in Table 1 are largely default settings defined by the Noah (Formattedz Font: +Body (Times New Roman)

B51  LSM community (NCAR Research Applications Library, 2021)-. Ongoing research aims to identify
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where model output performance can be improved with parameter updates. Evaluating parameter
updates had similar challenges as evaluating input forcing described in Section 1.2: without reliable
reference data it is difficult to determine a “best” input. For example, we have explored changing
soil parameters from FAO to International Soil Reference and Information Centre (ISRIC) SoilGrids
database (Hengl et al., 2017). This change did not result in improvements in streamflow statistics in

southern Africa. nor in soil moisture anomalies’ ability to represent drought events. We expect
similar results in Afghanistan where, e.g., streamflow will be sensitive to a change in soil

parameters and the lack of referenced data to evaluate if there is an improvement. Moreover, our
model runs at 0.1 and 0.01 degrees may not fully exploit the added value of the 250m soil grids as
noted in Ellenburg et al. (2021) for a LISF application in East Africa.

Vegetation parameters are also potential sources of improvement whose importance to LDAS
hydrologic estimates has been highlighted (e.g.. Miller et al., 2006). We have found the NCEP
estimates of green vegetation fraction (GVF) to be sufficient for this configuration of Noah 3.6. We
found that a time series of GVF derived from the Normalized Difference Vegetation Index (NDVI
did not improve representation of droughts in eastern Africa. However, future FLDAS global and
Central Asia versions can be run with Noah-Multi parameterization (Noah-MP) (Niu et al., 2011)

which has multiple vegetation options and relies on either Leaf Area Index rather or GVF. This
model update is expected to open possibilities for choice of datasets to meet our application needs

and potentially improve representation of the water balance.
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2.2 Meteorological Forcing Inputs

As previously discussed, precipitation is a critical input to land surface models. The lower-latency
Central Asia data stream is a daily product, forced with GDAS (Derber et al., 1991) 3-hourly
precipitation, which is available from 2001to present at <1-day latency. This dataset was chosen
because of'its latency. The global data stream is driven by the daily CHIRPS product (Funk et al.
2015), which is available from 1981 to present at ~ 5-day latency for CHIRPS Preliminary and ~1.5-
month latency for CHIRPS Final. The CHIRPS products were chosen as inputs because of their
proven performance in the literature, which has made it the “gold standard” for food and water
security monitoring by organizations like FEWS NET, the World Food Program, and others who
need up-to-date estimates and a 40+ year historical record. As mentioned earlier, lack of rainfall
stations for bias correction of satellite-derived estimates and evaluation poses a major challenge.
However, we find that the GDAS rainfall product and the CHIRPS rainfall product are adequate for
routine monitoring and, along with additional sources of remote sensed information, are important
for convergence of evidence when making a best estimate at land surface states and fluxes.

Before the daily CHIRPS rainfall data can be used as input to the FLDAS models, the daily
precipitation must-beis pre-processed to a sub-daily timestep, using the LDT component of the
HISLISF software. LDT temporally disaggregates the daily CHIRPS rainfall; using an approach
similar to the North American LDAS precipitation temporal downscaling sethed-(Cosgrove et al.,
2003). For this approach, we use a finer timescale MERRA-2 precipitation timescale as a reference
dataset to representsrepresent an accurate diurnal cycle. EearserWe note that this step in our
methodology facilitates the solving of FLDAS water and energy balances at a sub-daily timestep.
However, for Central Asia we do not have sufficient reference data available to assess the
importance of sub-daily precipitation distribution, as was demonstrated by Sarmiento et al. (2021)

for the United States where adequate reference data are available. For spatial downscaling, coarser
scale meteorological forcings are spatially disaggregated to the output resolution (0.01, and 0.1
degree for Central Asia and global, respectively) in the EESLISF using bilinear interpolation.
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The FLDAS models require additional meteorological inputs, including air temperature, humidity,

radiation, and wind. The lower-latency Central Asia data stream uses GDAS 3-hourly
meteorological inputs available from 2001-present at <l-day latency. For a longer historical record,
the global data stream uses MERRA-2 (Gelaro et al., 2017) (1979-present) 1-hourly products with a
two-week latency. Over the Afghanistan domain GDAS temperature has an upward trend, whereas
MERRA-2 is consistently warmer before 2010. We find that GDAS and MERRA-2 temperature
estimates are of similar magnitude during 2011-2020. Similar results were noted by Yoon et al.
(2019) who found an upward trend in GDAS temperature, as well as consistently higher
temperatures in MERRA-2 across a broad High Asia domain.

2.3 Model Evaluation Statistics and Comparison Data

Fe-assessIn addition to guidance from previous studies (Section 1.2), we assessed the quality of our
modeling outputs;we-cenduet by conducting comparisons between (1) FLDAS satellite rainfall
inputs and other satellite precipitation estimates, and (2) model estimated snow cover fraction and
satellite derived snow cover fraction estimates.

For the precipitation analysis, we compare CHIRPS and GDAS inputs to the Integrated Multi-
satellite Retrievals for the Global Precipitation Mission (IMERG), a NASA precipitation product
that integrates passive microwave and infrared satellite data with surface station observations
(Huffman-et-al52020)(Huffman et al., 2020). The IMERG Final Run precipitation product,
available at ~ 2-month latency (thus not suitable for our monitoring applications) has been used in
numerous verification studies, including studies over Africa (Bezfuli-et-al;20+7)(Dezfuli et al.,
2017), South America (Gadethaetal; 2019 Manzetal; 2047 (Gadelha et al., 2019; Manz et al.

2017), and the mid-Atlantic region of the United States {Fan-et-al;20+6)Thesestudies
demonstrated-that IMERGFinal(Tan et al., 2016). These studies demonstrated that IMERG Final

Run was able to capture large spatial patterns and seasonal and interannual patterns of rainfall.
However, fewer studies have explored the performance of the lower latency IMERG Late Runs
PO1Run (doi: 10.5067/GPM/IMERGDL/DAY/06) product that we use here. Kirshbaum et al.
(2016) include a qualitative comparison for CHIRPS Final and IMERG Late Run for the Southern
Africa start-of-season 2015. IMERG Late Run appears to perform similarly to the 1.5-month latency
CHIRPS Final and outperform the 1-day latency NOAA Rainfall Estimate version 2 (RFE2) product
Cle-and-Arkin, 1996)-(Xie and Arkin, 1996). Differences in the daily rainfall distribution patterns
between IMERG Final Run and CHIRPS Final have also been shown to impaetaffect the resulting
hydrological modeled output in simulations done using the NASA EISframewerkLISF (Sarmiento
etal., 2021).
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For the Sneow-CeverFraetionsnow cover fraction (SCF) analysis, we compare the global and Central
Asia data streams with the MODIS daily SCF product, MOD10A1 Collection 6 {Hall-and Riges;
20+6)(Hall and Riggs, 2016). MOD10A1 data isare available at 500--m spatial resolution from
February 2000 to the present. SCF is generated using the Normalized Difference Snow Index
(NDSI) and additional filters to reduce error and flag uncertainty. Routine qualitative comparisons,
which can be viewed on the NASA EISLISF FEWS NET project website, generally show
agreement between the model and MODIS SCF, as well as occurrence of cloud cover
(https://ldas.gsfc.nasa.gov/fldas/models/central-asia). Following Arsenault et al. (2014), we
aggregated pixels to 0.01 degree to reduce error related to sensor viewing angles and gridding
artifacts. For this analysis, using MODIS SCF as “truth™;,” we determined True Positives (TP), True
Negatives (TN), False Negatives (FN) and False Positives (FP). We then computed probability of
detection (POD) where POD = (TP/(TP + FN)) and False Alarm Rate (FAR) where FAR =

(FP/(FP + TN)). We computed these for the total area of Afghanistan; (60-76E. 28-39N), as well as
by basin (Fig. 3-a-&b)-4). This paper does not compare modeled snow water equivalent (SWE) to
independent snow observations because, as noted by Yoon et al. (2019), direct evaluation of snow
mass and snew—watereguivalent{SSWE)-is difficult over Central Asia due to poor coverage of
accurate snow observations. We follow the Yoon et al. (2019) recommendation to conduct
quantitative SCF comparisons and provide qualitative SWE analysis in Applications, Section 4.

In addition to rainfall and snow comparisons, we conducted monthly pixel-wise comparison of
Central Asia and the global run’s estimates of evapotranspiration (ET) and soil moisture versus
Operational Simplified Surface Energy Balance (SSEBop. (Senay et al., 2013)). ET and Soil
Moisture Active Passive (SMAP) Level 3 (Entekhabi et al., 2010, 2016) using the Normalized
Information Contribution (NIC) metric following Sarmiento et al., (2021). The analysis was
performed for the period 2016-2021 to match the SMAP record. The NIC metric first computes
anomaly correlations between the model runs and the reference dataset and then computes the
difference between the performance of each model run using a scale of -1 to +1 to highlight if the
global or Central Asia data stream performs better with respect to the reference. To make the
comparisons, the reference datasets (SMAP and SSEBop) were re-gridded to match the grid spacin
and locations of the experiment model outputs.

3 Results
3.1 Gridded Rainfall Comparison

FerWe have two data streams for Central Asia applications we-have-twe-data-streams-with different
precipitation inputs: 1) the global data stream with CHIRPS precipitation at 10-km?-km spatial
resolution provides a long-term consistent data record;; and 2) the Central Asia data stream with
GDAS precipitation at 1-km?-km provides near real time, finer spatial resolution updates. These two
data streams have their respective errors and allow data users to apply a convergence of evidence
approach for food and water security applications. f-this This section we-presentpresents a
comparison of thesethe GDAS, and CHIRPS precipitation inputs used for the Central Asia and
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global data streams, respectively. — We also include IMERG Late Run for comparison as a high
quality, low latency product. Future work s#iHmay incorporate the IMERG Late Run precipitation
inputs into FLDAS simulations. We also include MERRA-2 precipitation for comparison. Pair-wise
eorrelationcorrelations are shown in Table 2. CHIRPS Final, IMERG Late Run and GDAS (R 2
0.90) are well correlated in terms of average daily precipitation (mm/day) at the monthly and annual
(i.e., water year) timestep. MERRA-2 correlations with these datasets are lower at the monthly
timestep-(0.75 £ R < 0.81) and annual timestepwater year (0.64 < R £ 0.69)-) timesteps. Fig. 4
shows the time series of the precipitation products for their overlapping period of record (2001-
2020), which illustrates how they ee-vary in time, and shows some general patterns in terms of
relative precipitation in mm/day: GDAS (redblue) and IMERG Late {dashed-blaekRun (purple) tend
to have the highest average-precipitation per-daytotals, CHIRPS (blaegreen) has lower
m/daysprecipitation but is higher than MERRA-2 (dashed-greenyellow) which tends to have the
lowest average-precipitation-per-day, until 2019 when it is notably higher than the other products.
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Table 2. Afghanistan spatial average Spearman Rank Correlation (R) of monthly (annualwater year)
recipitation 2001-2020

GDAS CHIRPS Final IMERG Late Run
GDAS X - -
CHIRPS Final 0.91 (0.92) X -
IMERG Late Run 0.91 (0.89) 0.92 (0.90) X
MERRA-2 0.75 (0.64) 0.78 (0.68) 0.81(0.69)

3.2 Remotely Sensed and Modeled Snow comparisons

The estimation of snow is important for Afghanistan and Central Asia because it is an-impertanta
critical contributor to water resources and irrigated agriculture. Here~we-cempare-meanWe

compared average SCF (Fig. Sa6a), POD, and FAR statistics (Fig. 5b6b) relative to MODIS SCF
over eight hydrologic basins in Afghanistan.
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46
47  Figure 5a6a. Mean snow cover fraction for the entire area and by hydrologic basin for MODIS

48  Snow Cover Fraction (SCF), Central Asia (CA) and global (GL) data streams _for water year 2020.
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Figure 5b6b. Probability of Detection (POD) of snow presence, and False Alarm Rate (FAR) for the

Central Asia (CA) and global data streams relative to the MODIS SCF for water year 2020,

) ,,,,,.v———"CFormatted: Font color: Auto

Overall, both model runs estimate greater meanaverage SCF than the MODIS SCF product. The
Central Asia (€A)-data stream has consistently higher meanaverage snow cover for all basins

compared to MODIS SCF estimates and the global data stream. Perhaps not surprisingly thea-tthat
the Central Asia data stream performs consistently better in POD (by basin = ~80%) except for the
Western {Helmand]-Basin. Similarly, the FAR of the €ACentral Asia data stream is higher where

POD is higher except for the Northern Basin. The difference in statistics may be related to the
different inputs-forcing inputs or the higher spatial resolution of the Central Asia data stream.
Kumar et al. (2013) note that higher spatial resolution was important for snow dominated basins.
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s .
In addition to precipitation and snow cover comparisons we conducted comparisons with remotely

sensed soil moisture and ET (not shown). We found that in general, GDAS derived estimates of ET
consistently performed better over Afghanistan in terms of pixel-wise anomaly correlation and NIC
with SSEBop ET. Meanwhile, neither modeled estimate of soil moisture consistently outperformed
the other with respect to SMAP. The ET results lend some support to the quality of the Central Asia
data stream estimates. However, the lack of signal in the soil moisture comparisons suggests that

more careful analysis of the model and remote sensing errors is required before drawing conclusions
regarding which data stream is “best.”

3.3 Discussion of results compared to previous studies

Despite the lack of ground-based observations, our analysis shows that the remotely sensed
estimates and the models have good correspondence with other sources of evidence in terms of
seasonal timing and performance. This provides analysts with confidence when using the FLDAS

snow estimates, in tandem with other sources, as an input to food security assessments. Our
approach is supported by other studies that have explored the challenges of evaluating hydrologic

estimates over the region (Immerzeel et al., 2015; Ghatak et al., 2018; Yoon et al., 2019; Qamer et

al., 2019).

Yoon et al. (2019) show that their LSM ensembles of SCF have an average POD of 72% and FAR
of 36%, which is within the range of our POD and FAR statistics (60-80% POD; 20-40% FAR)
compared to MODIS SCF. The categorical statistics indicate that Central Asia (GDAS) tends to
have both a higher probability of detection and false alarm rate, indicating higher averages than
MODIS SCF and global (CHIRPS).

With respect to the soil moisture and ET comparisons, we found that the Central Asia data stream
estimates of ET were better correlated with SSEBop ET, but neither data stream was consistently
better correlated with SMAP. These differences could be a function of non-precipitation differences,
or higher spatial resolution. Ghatak et al. (2018) also found that the choice of reference dataset (with
its own characteristics and errors) was an important factor.

27



21  In general, given the lack of clarity on “best” FLDAS data stream, the convergence of evidence
22 approach allows us to consult both data streams, leveraging the longer time series of CHIRPS and
23 the lower latency of GDAS.

24 3.4 Limitations and Future Developments
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637  Given the need for multiple data streams for convergence of evidence, we have summarized the pros
638  and cons of the Central Asia and global data streams in Table 3.

639
640  Table 3. Pros and cons of the two data streams
Central Asia: Noah 3.6 with GDAS | Global: Noah 3.6 with - (Formatted Table
(2000-present) CHIRPS+MERRA-2 (1982-present)
PROS 14m’-km less computationally intensive
Pros
1--day latency, daily timestep longer time record

Snow estimates available in USGS CHIRPS & MERRA-2 forcing spatial

Early Warning eXplorer resolution does not change over time (stable
https://earlywarning.usgs.gov/fews/ew | climatology)
x/

Water and Energy balance available in
NASA GIOVANNI;
https://giovanni.gsfc.nasa.gov/giovanni/;
Google Earth Engine;
https://developers.google.com/earth-
engine/datasets/tags/fldas; Climate Engine
https://climateengine.com/
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CONSCons | more computationally intensive lower resolution (10-ks’-km)

shorter time record ~30-day latency

GDAS forcing resolution changes
over time (unstable climatology)
(NOAA NCEP

not publicly available at daily timestep

Jhttps://www.emc.ncep.noaa.gov/gmb/

STATS/html/model_changes.html)

large data volume, difficult to move

IMERG version 6 was released in 2019 and includes rainfall estimates processed back to 2000. Prior
to this change we had found encouraging results when comparing the onset of rainy season using
both IMERG Late Run and CHIRPS (Kirschbaum et al., 2016). However, at that time the period of
record was a limitation for computing anomalies. We now have an adequate period of record, and
IMERG Late Run is planned to be part of the upcoming FLDAS global and FLDAS Central Asia
releases. We are also encouraged by the quality of IMERG at the daily timestep when compared to
CHIRPS over the United States where accurate reference data are available (Sarmiento et al., 2021).

In addition to IMERG other promising rainfall datasets are in development. Ma et al. (2020) have
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developed the AIMERG dataset that combines IMERG Final Run with the APHRODITE rain-gauge
derived product (Yatagai et al., 2012). Another promising dataset is CHIMES (Funk et al., 2022). a
blend of CHIRPS and IMERG, whose developers have been exploring the strengths and limitations
of these two datasets and their fusion to produce an optimal product.

With respect to other FLDAS developments, FLDAS global and Central Asia are planned to be
transition to Noah-MP. This will allow for improved representation of snowpack and groundwater.
This will also necessitate the use of different parameters, e.g., leaf area index, as well as the
potential to explore different parameter sets like ISRIC soils. . In the meantime, multi-forcing and
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multi-model ensembles, and convergence of evidence with other remotely sensed data and field
reports, are a viable approach for providing hydrologic estimates for various applications,
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4 Applications
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These data from global and Central Asia data streams are routinely used in several FEWS NET
information products listed in Table 4. There-is-a-weekly-briefingfrom-NOAA’s Climate Prediction
Center (CPC) International Desks provide a weekly briefing on the past week’s weather conditions
and 1- 2-week forecasts for EEWFEWS NET regions of interest, including Central Asia. There is
also a monthly FEWS NET Seasonal Monitor and a monthly Seasonal Forecast Review for which
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these data provide information on the current state of the snowpack, soil moisture, and runoff. These
“observed conditions" can then be qualitatively combined with forecasts rangingfrom-1 week to
3many months_in the future to assess potential hydro-meteorological hazards. To demonstrate the

role of these data in the early warning process, at different points in the season, we provide an
example of the 2017-2018 wet season in Afghanistan during a La Nifia event that contributed to

CFormatted: Font color: Auto

drought.
Table 4. Routine Applications of FLDAS Central Asia’s Afghanistan hydrologic data.
Routine application of Weblink to updates Notes <
these data
FEWS NET Global https://fews.net/global/global-weather-hazards/ shapefiles
Weather Hazards https://ftp.cpc.ncep.noaa.gov/
Summary produced by https://www.cpc.ncep.noaa.gov/products/internatio | fews/weather_hazards/
NOAA CPC nal/index.shtml

USGS-Seasonal Monitor

hitns:-LearbhAvarnineuses vfews/search/AsialC
nHpST7rearrywarking-uSgs-govAews/Searen A starce

toni
topiesrs

tors/agroclimatologyhttps://earlywarning
.usgs.gov/fews/afghanistan/seasonal-monitor,

Updated menthlynear the
middle of each month from

October - May, during-the
preeipitationwet season.

(Formatted Table

(Formatted: Font color: Auto

CFormatted: Font color: Auto

(Formatted: Font color: Auto

FEWS NET Food https://fews.net/central-asia/afghanistan Information on snow or other

Security Outlook Brief hydrology included if
applicable

Crop Monitor for Early https://cropmonitor.org/index.php/cmreports/early | Information on early warning

Warning warning-report/ and crop conditions

4.1 Snow meniteringMonitoring & Seasonal Outlooks

As previously mentioned,

>

and as shown in Fig.

7, Alghanistan and the broader region is strongly

3 S

. anomalies_re e-sprinstime-streamflow—and sk-and-reduce-su -_g-
availability-and-petentially-erop-yields7, Afghanistan and the broader region is strongly influenced

by La Nifia, which tends to increase the likelihood of below average precipitation. Depending on

this and antecedent conditions there in an increased likelihood of below average snowpack, reduce

springtime streamflow and flood risk, reduce summer irrigation water availability, and crop yield

losses.
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Figure 7. Timing of wet and dry conditions related to La Nina. Increased likelihood of dry
conditions from NevNovember-May for Afghanistan during La Nifia events.
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A La Nina Watch was issued by NOAA in September 2017 (NOAA, 2017). The FEWS NET
October 2017 Food Security Outlook (FEWS NET, 2017a) stated that La Nifia conditions were

(Formatted: Font color: Auto

expected throughout the northern hemisphere fall and winter and that below-average precipitation
was likely over much of Central Asia, including Afghanistan, during the 2017-2018 wet season.
With the expectation of below average rainfalprecipitation coupled with above average temperature
foreeaststemperatures, FEWS NET anticipated that snowpack would most likely be below average.
In the context of food security outcomes, it was assumed that areas planted with winter wheat were
likely to be lowerless than usual, reducing land preparation activities and associated demand for
labor. Two provinces of particular concern were Daykundi and Wardak (Fig. 8a brown borders),
both located in the Helmand River Basin (Fig. 8a; ereygray shading). Precipitation deficits in these
provinces would lead to poor rangeland resources and pasture availability and would likely result in
decreased livestock productivity and milk production through May. However, given that October
was the-very start of the wet season, there remained a large spread of possible outcomes: spatial and
temporal rainfall distributions, and snowpack totals necessitating routine updates to assumptions.

Monitoring continued enward-induring the wet season#@m—@e&eb%r tracklng observatlons from
remote sensing, models, and field reports as well as sves al-forecasts
across timescales. This information was used to regularly update expectations of end of season
outcomes. Using the FLDAS Central Asia data stream, a December 21, 2017, NOAA CPC Weather

Hazards Brief reported that parts of northern and central Afghanistan remained atypically snow free,

and north-eastern high elevation areas exhibited snew-waterequivalent{SWE) deficits. SWE is a
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commonly used measurement of the amount of liquid water contained within the snowpack, and an
indicator of the amount of water that will be released from the snowpack when it melts. By January
17,2018, an abnormal dryness polygon was placed over nertheastnortheastern Afghanistan; and the
central highlands-ef Afchanistan, based on below--average snow-waterequivalentSWE values from
the FLDAS Central Asia estimates. Abnormal dryness is defined for an area that has registered
cumulative 4-week precipitation and soil moisture ranking less than the 30th percentile, with a
Standardized Precipitation Index (SPI) of 0.4 standard deviation below the meanaverage. In
addition, it is required that forecasts indicate below-average precipitation (less than 80% of normal)
for that area during the 1-week outlook period. By late February 2018, precipitation deficits and
related SWE (Fig. 9) increased and met the criteria for “drought” (Fig. 8b). Drought is defined as an
area that has previously been defined as “Abnormal Dryness” and has continued to register seasonal
precipitation and soil moisture deficits since the beginning of the rainfall season. Specifically, an
eight-week cumulative precipitation, soil moisture, and runoff below the 20th percentile rank, and
an SPI of 0.8 standard deviation below the meanaverage are classification guidelines.
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Figure 8. -(a) Map showing hydrological basins, with Helmand Basin in darker greygray and
location of Daykundi and Wardak provinces (outlined in red) where food security conditions were
of particular concern, (b) NOAA CPC Afghanistan HazardHazards Report for February 22-28, 2018
(CPC NOAA, 2018);map showing widespread abnormal dryness and drought, defined by 90-day
precipitation deficits and extremely low snow water equivalent.
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Figure 9. FLDAS Central Asia snow water equivalent (SWE) estimates for February 22, 2018.
SWE deficits of >=300--mm were widespread at this time.

The February 2018 Food Security Outlook (FEWS NET, 2018b) provided the following updates,
based on the CPC Hazards Reports and Seasonal Monitors: “Snow accumulation and cumulative
precipitation were well below average for the season through February 2018, with some basins at or
near record low snowpack, with data since 2002....These factors will likely have an adverse impact
on staple production in marginal irrigated areas and in many rainfed areas. [Moreover, with]
forecasts for above-average temperatures during the spring and summer, rangeland conditions are
expected to be poor during the period of analysis through September 2018. This could have an
adverse impact on pastoralists and agro-pastoralists, particularly in areas where livestock
movements are limited by conflict.” The Crop Monitor for Early Warning reports for February and
March 2018+eperts (GEOGLAM, 2018a, b) also cited reduced snowpack in Afghanistan and the
negative impacts on winter wheat crops as well as irrigation water availability in the Spring. The

story was also highlighted in NASA Earth Observatory March 2018 “Record Low Snowpack in
Afghanistan” (Reeord-Low-Snewpackin-AfshanistanNASA Farth Observatory, 2018). (Field Code Changed
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The USGS*sUSGS Early Warning eXplorer (EWX) (Shukla-et-al52021)(Shukla et al., 2021) allows
analysts to look at maps and time series for a variety of variables and specific provinces and river
basins. Plots from EWX in Fig. 10 show below average precipitation infor provinces in the Helmand
Basin for January and February. CHIRPS cumulative rainfall for 2017-18 wsversus the 18-year
average for Day Kundi (a.k.a. Daykundi) Province showed near average conditions until December.
From January. cumulative rainfall remained below the 2000-2018 average throughout the rest of the
season ending in May; the same pattern occurred in nearby Uruzgan Province. In neighboring
Maydan Wardak (a.k.a Wardak) Province, below average conditions were experienced in January
and February, but cumulative rainfall recovered in March to remain slightly above average. Day
Kundi (Fig. +6a10b) and Wardak (Fig. +0b10c) are provinces located in the upper reaches of the
Helmand Basin. Fig. +0d10c shows SWE averaged across the entire Helmand basin. The greygray
shading indicates the range of the minimum and maximum values, and the dashed blue line is the
average. Initial snow conditions start above average until December-when, after which SWE deficits
are near record low values through the beginning of February, and then persist at below-average
levels.

Afghanistan+Day Kundi b) res— Maydan Wardak
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\
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Figure 10c. Helmand Basin

Basin-snow-water-equivalent{SWE) from the Central Asia data stream. The grey shadlng indicates
the range of the minimum and maximum values, dashed blue line is the average, and black line is

2017-18. Figure from USGS EWX (https://earlywarning.usgs.gov/fews/ewx/).

By the end of the season in April 2018, FEWS NET (2018c) concluded that “below-average
precipitation throughout most of the country during the October 2017 — May 2018 wet season has
led to very low snowpack ...Low irrigation water availability is likely to have an adverse impact on
yields for winter wheat and other ...barley, maize, and others.. particularly in downstream areas in
regions with limited rainfall. ...The poor performance of the wet season and above average
temperatures... exacerbated dry rangeland conditions in many areas, particularly in -...Sari Pul, [and
surrounding] ...provinces. Pastoralists and agropastoralists in these areas will likely attempt to
mlgrate to areas w1th better pasture and water avallablllty or sell hvestock at below -average prices.”

A#ghamﬁaﬂ—%@%%&%t the same tlme UNI( EF (2018) reported in Aprll 20] 8 that among (Formatted: Font color: Auto

“the [drought] affected provinces, Baghis, Bamyan, Daykundi, Ghor, Helmand, ... and Uruzgan are
of critical priority for nutrition and water, sanitation and hygiene assistance™.”

Several months after a season has ended. and harvest has-endedis complete, more statistics become
available for further verification of the drought outcomes. The FEWS NET October 2018 Food
Security Outlook (2018a) reported that the 2017/-18 drought had significant negative impacts on
rainfed wheat production and livestock pasture and body conditions across the country. Reporting
statistics from the Afghanistan Ministry of Agriculture, Irrigation, and Livestock, the total wheat
production for the 2017/ 18-agrieulture season was about 20% below average, where irrigated
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agriculture performed about average. However, rainfed agrieultureagricultural production was only
about 50% of average, most severely impactingaffecting households in in-Badakhshan, Badhis, and
Daykundi provinces-where. In these locations dry conditions, seeurityconflict, poor incomes, and
depleted assets were expected to continue to face emergency food insecurity theughthrough May
2019 P 1 P I < 1 . 3 1o P 111 - 1

S. Data Availability

(Formatted:

Font color: Auto

The Central Asia data described in this manuscript can be accessed at the NASA GES DISC
repository under data doi 10.5067/VQ4CD3Y9YCOR. The data citation is the following:

AN A

N (Formatted: Font color: Auto
Jacob, Jossy and Slinski, Kimberly (NASA/GSFC/HSL) (2621)(2021), FLDAS Noah Land Surface (Formatted: Font color: Auto
Model L4 Central Asia Daily 0.01 x 0.01 degree, Greenbelt, MD, USA, Goddard Earth Sciences

Data and Information Services Center (GES DISC);-Aceessed:{Data-Aeccess Datel;), (Formatted: Font color: Auto
10.5067/VQ4CD3Y9YCOR (Formatted: Font color: Auto
N (Formatted: Font color: Auto
The Glebalglobal data described in this manuscript can be accessed at the NASA GES DISC

repository under data doi 10.5067/5NHC22T9375G. The data citation is the following:

McNally, Amy. NASA/GSFC/HSL (2018), FLDAS Noah Land Surface Model L4 Global Monthly

0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and

Information Services Center (GES DISC), Aecessed:{Data-AceessDate};-10.5067/SNHC22T9375G

Currently the USGS EROS Center provides images from these data:
https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia, as well as an interactive data (Formatted: Font color: Auto

viewer, the USGS Early-Warning-eXplorer-(EWX)https:Hearlywarnineuses-sovifews/sottware

toolsd(Shuklaetal. 2021)-EWX (https://earlywarning.usgs.gov/fews/ewx/).

6. Code availability (Formatted: Font color: Auto
The NASA Land Information System Framework (LISF) is publicly available and an open-source
software. The software and technical support are available at https://github.com/NASA-LIS/LISF.
7 . Conclusion (Formatted: Font color: Auto

This paper describes a comprehensive hydrologic analysis system for food security monitoring in
Central Asia, with analysis focusing on Afghanistan. While these data are tailored to specific needs
they are also applicable to other climate services and research. Our intent is to provide the reader
with substantial-information regarding the configuration and specification of both the current global
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and Central Asia data streams. These data are publicly available and available at near-real time for
food security decision support. An-impertantnote-isNote that, as an on-going initiative, FLDAS
model version and parameters are routinely updated, and the user should consult the version updates
provided by the NASA Goddard Earth Science Data and Information Services Center (GES DISC)
data provider and documentation on USGS Early Warning website. For example, efforts are
currently underway to upgrade to the Noahw&hﬂm&ﬂﬁaﬂm&emaﬂef&%ﬁh MP) Niv-et-al;
204 (Niu et al., 2011) land surface model, which requires some changes in parameters for snow,
glaciers and groundwater. This, and future changes-will, can be informed by the strengths and
weaknesses of the data stream configurations that we have discussed in this paper.

This paper also provides model-model and model-remote sensing comparisons; as well as a review
of other research that highlights the challenges of quantitative evaluation of models and remote
sensing in this region. A key challenge to hydrologic modeling is the considerable uncertainty in the
meteorological forcing available for this region, particularly precipitation;-available-for-thisregion.
Advancements in remote sensing and modeling should help reduce these uncertainties. In addition,
the current land surface modeling and-river routing-frameweorksrefleetreflects natural conditions,
i.e., they do not include representation of anthropogenic impaetseffects such as human water
abstractions (e.g., dams for flood control or irrigation, water diversions, groundwater pumping;
ete)) or land application of abstracted water (i.e., irrigation). These factors impact-streamflow
éﬂafeughﬂb%&aeﬂeﬁﬂﬂd—&ﬁg&ﬂeﬁﬂews—)ﬂwe%atfucl estimates of runoff, soil moisture,
evapotranspiration, and sensible heat flux (land surface temperatures) in irrigated areas. Therefore, it
is important to be aware of the limitations and combine with other products (e.g., Nermalized
Difference Vegetationndex (INDVHNDVI or Actual Evapotranspiration (ETa) in irrigated areas)
when exploring water and energy balance. Even with improvements to meteorological forcing and
modeling parameterizations, errors will remain. Therefore, the ‘convergence of evidence’ approach
that-we-advocate-for here-will-continue-tois beneficial and would be important when assessing
hydro-meteorological hazards and associated risks to food and water security. We-hope-that byBy
making the data publicly available the broader food security and water resources communities will
be able to provide insights that wilican lead to improvements in our understanding of the water and
energy balance that wilcan ultimately lead to improvements to food and water security decision
support systems.
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