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Abstract 23 
 24 
From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape where 25 
droughts, floods, conflict, and economic market accessibility pose challenges for agricultural 26 
livelihoods and food security. The ability to remotely monitor environmental conditions is critical to 27 
support decision making for humanitarian assistance. The Famine Early Warning Systems Network 28 
(FEWS NET) Land Data Assimilation System (FLDAS) global and Central Asia data streams 29 
described here combine meteorological reanalysis datasets and land surface models to generate 30 
provide information on hydrologic states for routine integrated food security analysis. While 31 
developed for a specific project, these data are publicly available and useful for other applications 32 
that require hydrologic estimates of snow-covered fraction, snow water equivalent, soil moisture, 33 
runoff and other variables representing the water and energy balance. This approach allows us to fill 34 
the gap created by the lack of in situ hydrologic data in the region. First, we describe the 35 
configuration of the FLDAS and the These two resultant data streams: one,  are unique because of 36 
their suitability for routine monitoring, as well as a historical record for computing relative 37 
indicators of water availability. The global, stream is available at ~1 month latency, provides 38 
monthly average outputs on a 10 km2-km grid from 1982-present. The second data stream, Central 39 
Asia, (30-100 °E, 21-56 °N), at ~1 day latency, provides daily average outputs on a 1 km2 grid from 40 
2001-present. We describe our verification of these data that are compared to other remotely sensed 41 
estimates as well as qualitative field reports. These -km grid from 2000-present. This paper 42 
describes the configuration of the two FLDAS data streams, background on the software modeling 43 
framework, selected meteorological inputs and parameters, and results from previous evaluation 44 
studies. We also provide additional analysis of precipitation and snow cover over Afghanistan. We 45 
conclude with an example of how these data and value-added products (e.g., anomalies and 46 
interactive time series) are are used in integrated food security analysis. These data are hosted by the 47 
National Aeronautics and Space Administration (NASA) and USGSU.S. Geological Survey data 48 
portals for public use. The global data stream with a longer record, is useful for exploring 49 
interannual variability, relationships with atmospheric-oceanic teleconnections (e.g., ENSO), trends 50 
over time, and monitoring drought. Meanwhile, the higher spatial resolution Central Asia data 51 
stream, with lower latency, is useful for simulating snow-hydrologic dynamics in complex 52 
topography for monitoring snowpack and flood risk. use in new and innovative studies that will 53 
improve understanding of this region. 54 

1 Introduction 55 

From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape where 56 
droughts, floods, conflict, and economic market accessibility pose challenges for agricultural 57 
livelihoods and food security. The ability to remotely monitor environmental conditions is critical to 58 
support decision making for economic development, humanitarian assistance, water resource 59 
management, agriculture and more. Environmental datasets can be combined with socio-economic 60 
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variables and transformed into customized products to support decision making. This is the 61 
definition of a ‘climate service’ (Hewitt et al., 2012). 62 
 63 
Hydrologic and land surface datasets are particularly relevant for agriculture and water resources 64 
decision making. When these datasets are credible, updated routinely, and made publicly available, 65 
the influences of climate variability and climate change can be incorporated into specialized 66 
analyses by intermediary users1. One example of an intermediary user central to this data descriptor 67 
is the food security analysts of the Famine Early Warning Systems Network (FEWS NET). FEWS 68 
NET analysts combine environmental information, largely from remote sensing and earth system 69 
models, with information on nutrition, livelihoods, markets, and trade to provide decision support to 70 
the U.S. Agency for International Development (USAID) Bureau of Humanitarian Assistance. 71 
Additional examples and discussion of the production of climate service inputs can be found in the 72 
literature (e.g., Vincent et al., 2018; McNally et al., 2019). 73 
 74 
While these data are tailored to specific needs, they are also applicable to other climate services and 75 
research e.g., Desert Locusts movement forecasting (Tabar et al., 2021). To that end, this paper 76 
describes the FEWS NET Land Data Assimilation System (FLDAS) global and Central Asia data 77 
streams. The inputs (e.g., precipitation) and resulting hydrologic estimates (a) provide a 40+ year 78 
historical record for contextualizing estimates in terms of departures from average (i.e., anomalies), 79 
(b) are low latency (< 1-month) for timely decision support, and (c) are familiar to the food and 80 
water security user-community. 81 
 82 
The purpose of this data descriptor is four-fold:  83 

•  to describe the development of the moderate resolution, low latency FLDAS hydrologic 84 
monitoring system for Central Asia, specifically Afghanistan 85 

•  to increase awareness of these data resources, which are intended to be a public good,  86 
•  to demonstrate how our methods inform critical investigations that ultimately improve 87 

general understanding of water resources in this important region of the world, and  88 
• to describe a ‘convergence of evidence’ approach to hydrologic monitoring in locations 89 

where all sources of information contain some level of uncertainty. 90 
 91 
An outline of this data descriptor is as follows. 1.1 Central Asia Weather and ClimateSection 1.1 92 
provides background on Afghanistan Weather and Climate. Section 1.2 reviews previous studies 93 
that have conducted evaluations of the meteorological inputs and hydrologic outputs of Land Data 94 
Assimilation Systems in the Central Asia region. Section 2 (Methods) describes the hydrologic 95 
modeling system, parameters and meteorological inputs, and model outputs. Section 3 (Results) 96 
presents comparisons of precipitation inputs, and comparisons of modeled snow estimates to 97 
remotely sensed snow observations. Finally, Section 4 describes an application of these data to the 98 
Afghanistan drought of 2018. 99 

 
1 The WMO defines intermediate (intermediary) users as those who transform climate information into a climate service 
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1.1 Afghanistan Weather and Climate 100 

 101 

 102 
Figure 1a. Mean annual precipitation in Afghanistan from 1991-2020, overlayed on province 103 
boundaries. Map (USGS Knowelge Base, 2021) with data from Funk et al. (2015). 104 

Formatted: Normal



 

5 
 

 105 
Figure 1b. Average maximum monthly temperature from (1986-2015), overlayed on province 106 
boundaries. Map (USGS Knowelge Base, 2021) with data from Verdin et al. (2020). 107 
 108 
Central Asia, a region that includes Afghanistan, is water-scarce, receiving roughly 75% of its 109 
annual precipitation during November–April (Oki and Kanae, S., 2006).(Oki and Kanae, 2006). In 110 
Afghanistan, rainfall is highest in the northeast Hindu Kush Mountains and decreases toward the 111 
arid southwest Registan Desert (Fig. 1a). Temperature follows a similar pattern with cooler 112 
temperatures in the high elevation and, wetter northeast and warmer temperaturetemperatures in the 113 
south, and southwest (Fig. 1b). Regional precipitation is strongly influenced by the El Niño-114 
Southern Oscillation (ENSO).  La Niña conditionconditions are associated with below average 115 
precipitation (FEWS NET, 2020b) and El Niño conditions associated with above average 116 
precipitation (Barlow et al., 2016; Hoell et al., 2017; Rana et al., 2018; Hoell et al., 2018, 2020; 117 
FEWS NET, 2020a)are associated with above average precipitation (Barlow et al., 2016; Hoell et 118 
al., 2017; Rana et al., 2018; Hoell et al., 2018, 2020; FEWS NET, 2020a). Other dynamical factors 119 
with an important influence on precipitation include orography, storm tracks, and the Madden–120 
Julian oscillation (MJO) (Barlow et al., 2005; Nazemosadat and Ghaedamini, 2010; Hoell et al., 121 
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2018).(Barlow et al., 2005; Nazemosadat and Ghaedamini, 2010; Hoell et al., 2018). The last 122 
several years have experienced a number ofseveral ENSO events, with recent La Niña events in 123 
2016-17, 2017-18, and 2020-20212022 (NOAA CPC ENSO Cold & Warm Episodes by Season, 124 
2021) that corresponded to droughts (FEWS NET, 2017b, 2018c, 2021). 125 
 126 

 127 
Figure 1a. Average annual precipitation in Afghanistan from 1991-2020, with overlayed province 128 
boundaries. Map source (USGS Knowledge Base, 2021). 129 
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 130 
Figure 1b. Average maximum monthly temperature from (1986-2015), overlayed with province 131 
boundaries. Map source (USGS Knowledge Base, 2021). 132 
 133 
Despite Afghanistan’s semi-arid climate, agriculture is an important sector, contributing 23% of 134 
theits gross domestic product and employing 44% of the national labor force (CIA World Factbook). 135 
High mountain snowpack and snowmelt runoff are important for agricultural water supply, and 136 
according to the Famine Early Warning Systems Network (FEWS NET, 2018b). According to 137 
FEWS NET (2018b) snowmelt runoff is responsible for “providing over 80% of irrigation water 138 
used. The timing and duration of the snowmelt is a key factor in determining the volume of 139 
irrigation water and the length of time that it is available, as well as its availability for use in 140 
marginal areas that experience [variable] rainfall.”  Therefore, routine hydrologic monitoring, with a 141 
particular emphasis on snow, is critical for tracking agricultural conditions and provides early 142 
warning for food insecurity.  143 
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1.2 PrecipitationHydrologic Data Availability inand Uncertainty 144 

Remote sensing and models are important inputs to climate services (Qamer et al., 2019). In the 145 
Central Asia region, and especially Afghanistan estimates of meteorological inputs, and model 146 
parameters have considerable uncertainty due to sparse in situ environmental observations. To 147 
address these challenges, the NASA High Mountain Asia project (https://www.himat.org/) has 148 
broadly aimed to explore the driving changes in hydrology as well as model validation and data 149 
assimilation, and water budget processes from the Himalayas in the south and east to the Hindu 150 
Kush in the west. These efforts and other studies of satellite derived rainfall informed the 151 
configuration and interpretation of the FLDAS Central Asia and global data streams. 152 
Sparse in-situ precipitation observations lead to uncertainty in gridded and satellite-based 153 
precipitation estimates which are important for environmental monitoring and driving hydrologic 154 
models. Precipitation station observations are used for (a) bias correction of satellite estimates and 155 
(b) validation of gridded products. In terms of gridded dataset development, Hoell et al. (2015) 156 
describe lack of station observations in Afghanistan, Iraq and Pakistan and how complex 157 
topography in these locations makes this issue particularly problematic. Barlow et al. (2016) also 158 
highlight the station availability across the region and how that influences uncertainties in the 159 
Global Precipitation Climatology Center (GPCC) version 6 dataset over Central Asia (Fig. 2a) and 160 
specifically Afghanistan over time (Fig. 2b). Related to validation, Yoon et al. (2019) highlight that 161 
the representativeness of the sparse in-situ data is a serious limitation in their evaluation of 162 
precipitation over High Mountain Asia.  163 
 164 
The primary challenge to producing and evaluating hydrologic estimates is that sparse in situ 165 
precipitation observations lead to uncertainty in gridded, satellite-based precipitation estimates. 166 
Precipitation station observations are used for (a) bias correction of satellite estimates and (b) 167 
validation of gridded products. In terms of gridded dataset development, Hoell et al. (2015) describe 168 
how lack of station observations and complex topography in Afghanistan, Iraq, and Pakistan makes 169 
this issue particularly problematic. Barlow et al. (2016) also highlight the station availability across 170 
the region and how that influences uncertainties in the Global Precipitation Climatology Center 171 
(GPCC) version 6 (Schneider et al., 2017) dataset over Central Asia (Fig. 2a) and specifically 172 
Afghanistan over time (Fig. 2b). 173 
 174 
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  175 

  176 
Figure 2. (a) Station data availability underlying the GPCC version 6 dataset, for the 1951–177 
20101950–2016 period, on the 0.5°-resolution grid over Central Asia. (b) Fraction of gridcells with 178 
Number of Stationsstations used as input to the GPCC rainfall dataset in Afghanistan from 1932-179 
2016. 180 
 181 
In the absence of abundant in situ observations, one approach for remote sensing and model 182 
evaluation is to compare multiple input datasets and evaluate the water balance. Independent 183 
observations from the different components of the water balance (e.g., evapotranspiration, soil 184 
moisture, streamflow) help constrain estimates. We provide some background here and refer readers 185 
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and data users to literature from the NASA High Mountain Asia project, specifically Yoon et al. 186 
(2019) and Ghatak et al. (2018), who explored similar configurations to the FLDAS system. This 187 
background allows the reader to appreciate the uncertainties in inputs, outputs and derived products 188 
and climate services over Afghanistan and the broader Central Asia region.  189 
 190 
Meteorological forcing is known to be the primary source of uncertainty in land surface model 191 
simulations (Kato and Rodell, 2007). Thus, its evaluation is important to understand the quality of 192 
model inputs and outputs. For this reason, Ghatak et al. (2018) compare four unique precipitation 193 
data sources: daily Climate Hazards center Infrared Precipitation with Stations (CHIRPS) (Funk et 194 
al., 2015), NOAA’s Global Data Assimilation System (GDAS) (Derber et al., 1991), and two 195 
estimates from NASA’s Modern Era Reanalysis for Research and Applications version 2 (MERRA-196 
2) (Gelaro et al., 2017). They find that annual CHIRPS and GDAS precipitation estimates had 197 
similar bias and root mean squared error over Afghanistan with respect to APHRODITE (Asian 198 
Precipitation Highly Resolved Observational Data Integration Toward Evaluation) rain-gauge 199 
derived product (Yatagai et al., 2012). CHIRPS had a higher correlation with APHRODITE. Ghatak 200 
et al. (2018) further evaluated the quality of rainfall inputs based on the performance of 201 
evapotranspiration and other derived outputs. The authors caution that gridded precipitation 202 
estimates that have in situ inputs, like CHIRPS, may systematically underestimate precipitation in 203 
mountainous regions. We keep this consideration in mind when interpreting differences between 204 
FLDAS global and Central Asia data streams. 205 
 206 
Yoon et al. (2019) compare precipitation estimates from 10 different products including 207 
APHRODITE, CHIRPS, GDAS, and MERRA-2, across a broad region of High Asia, including a 208 
portion of Afghanistan. They find that all datasets generally capture the spatial pattern of rainfall 209 
and that the products tend to agree more at high elevations, where it is unlikely there are station 210 
observations. Like Ghatak et al. (2018), they found CHIRPS and APHRODITE to have a lower 211 
average precipitation than GDAS, attributable to the incorporation of sparse gauge data.  212 
 213 
In addition to precipitation, other meteorological inputs are important for accurate hydrologic 214 
estimates. Yoon et al. (2019) conducted an intercomparison of near surface air temperature 215 
estimates from three model analysis products (European Centre for Medium-Range Weather 216 
Forecasts (ECMWF; Molteni et al., 1996), GDAS, and MERRA-2). They noted a statistically 217 
significant upward trends in GDAS and ECMWF temperature, as well as consistently higher 218 
temperatures in MERRA-2. We see the same pattern when averaging across Afghanistan. Yoon et 219 
al. (2019) conclude that improvements in the meteorological boundary conditions would be needed 220 
to reduce the uncertainty in the terrestrial budget estimates. These sentiments are echoed in Qamer 221 
et al. (2019). 222 
 223 
Despite known uncertainties, Schiemann et al. (2008)(2008) find that gridded precipitation estimates 224 
can qualitatively identify large scale spatial distribution of precipitation, seasonal cyclecycles, and 225 
interannual variability (i.e., wet and dry years) across Central Asia. Long -term estimates of rainfall 226 
from satellite derived products, as well as derived historichistorical time series from hydrologic 227 
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modellingmodeling, can be used as a baseline of “observations,” from which we can have a sense of 228 
relative conditions, i.e., anomalies and variability. When this historical record is harmonized with a 229 
routine monitoring system, current conditions can be placed in historical context. Anomaly-based 230 
representation of hydrologic extremes can provide confidence in modeled estimates that have the 231 
potential to influence agricultural, water resources and food security outcomes. For these reasons 232 
one of the requirements for FLDAS input is that there is a sufficiently long historical record for 233 
contextualizing estimates in terms of anomalies. 234 
 235 
In addition to reliance on the representation of relatively wet and dry conditions, a “convergence of 236 
evidence” approach that draws on (quasi-)independent sources of information is useful to 237 
understand actual conditions. For convergence of Earth observations, hydrologic models can 238 
generate ensembles of historic, current or future estimates of snow, streamflow, soil moisture, and 239 
evapotranspiration which can then be compared to satellite derived estimates of surface water (e.g. 240 
McNally et al., 2019), soil moisture (e.g. McNally et al., 2016), vegetation conditions and 241 
evapotranspiration (e.g. Pervez et al., 2021; Jung et al., 2019), snow cover (e.g. Arsenault et al., 242 
2014), in situ stream flow From a climate services perspective, the reliance on the representation of 243 
relatively wet and dry conditions, as well as a “convergence of evidence” approach, provide useable 244 
information despite the above-mentioned uncertainties. A convergence of evidence approach that 245 
draws on (quasi-) independent sources of information is useful to understand actual conditions. For 246 
convergence of Earth observations, hydrologic models can generate ensembles of historical, current, 247 
or future estimates of snow, streamflow, soil moisture, and evapotranspiration, which can then be 248 
compared to satellite derived estimates of surface water (e.g., McNally et al., 2019), soil moisture 249 
(e.g., McNally et al., 2016), vegetation conditions and evapotranspiration (e.g., Jung et al., 2019; 250 
Pervez et al., 2021), snow cover (e.g., Arsenault et al., 2014), in situ streamflow (e.g. Jung et al., 251 
2017) and others. Hydrologic estimates can also be compared to outcomes in crop production e.g. 252 
(McNally et al., 2015; Davenport et al., 2019; Shukla et al., 2020), and nutrition, health, and food 253 
security (e.g. Grace and Davenport, 2021) to provide a qualitative understanding of both hydrologic 254 
model performance and conditions on the ground. In this paper we provide an example of 2018 255 
where drought conditions were associated with crisis levels of acute food insecurity over most of 256 
Afghanistan  and others. Hydrologic estimates can also be compared to outcomes in crop production 257 
(e.g., (e.g., McNally et al., 2015; Davenport et al., 2019; Shukla et al., 2020), and nutrition, health, 258 
and food security (e.g., Grace and Davenport, 2021) to provide a qualitative understanding of both 259 
hydrologic model performance and conditions on the ground. In this paper we provide an example 260 
for 2018 where drought conditions were associated with crisis levels of acute food insecurity over 261 
most of Afghanistan (FEWS NET, 2018c). 262 
 263 
This paper describes the FLDAS hydrologic modeling system’s global and Central Asia data 264 
streams, which are designed for food and water security applications. These data streams provide a 265 
long historic record for contextualizing estimates, as well as low latency data for timely decision 266 
support. These data streams can also support research and monitoring by the broader food and water 267 
security community. To summarize, our experience and the literature have characterized 268 
uncertainties in available meteorological forcing for the region. GDAS, CHIRPS, and MERRA-2 269 
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were chosen for the FLDAS system based on our project requirements of (a) a sufficiently long 270 
historical record for contextualizing estimates in terms of anomalies (b) low latency (< 1-month) for 271 
timely decision support, (c) familiar to the FEWS NET user-community, and (d) prior evaluation by 272 
our team and the broader community. We note here and describe in more detail later that the 273 
Integrated Multi-satellite Retrievals for the Global Precipitation Mission (IMERG), a NASA 274 
precipitation product (Huffman et al., 2020) also meets these requirements, since version 6 which 275 
was released in 2019 (after these studies and initial FLDAS configuration). We will a describe 276 
IMERG, GDAS, and MERRA-2 comparison in the Results (Section 3). 277 
The purpose of this data descriptor is four-fold: (1) describe the development of the moderate 278 
resolution, low latency FLDAS system to inform hydrologic monitoring for Central Asia, 279 
specifically Afghanistan, (2) increase awareness of these data resources which are intended to be a 280 
public good, (3) demonstrate how  our methods inform critical investigations that ultimately 281 
improve general understanding of water resources in this important region of the world, and (4) 282 
advocate for a convergence of evidence approach to hydrologic monitoring in locations where all 283 
sources of information contain some level of uncertainty. An outline of this data descriptor is as 284 
follows. First, in the Methods (section 2) we describe the hydrologic modeling system, parameters 285 
and meteorological inputs and model outputs. In the Results (section 3) we report comparisons to 286 
other precipitation estimates, as well as comparisons of modeled snow estimates to remotely sensed 287 
snow observations and find generally good agreement. Finally, we describe an application (section 288 
4) of these data to the Afghanistan drought of 2018. 289 
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2 Methods 290 

  291 
Figure 3. The FEWS NET Land Data Assimilation System (FLDAS) domains for (A) the global 292 
data stream at 10 km2 spatial resolution, and ~1 month latency for monthly averaged hydrologic 293 
estimates and (B) the Central Asia data stream at 1 km2 spatial resolution and ~1 day latency for 294 
daily averaged hydrologic estimates. 295 

2.1 Land Surface Modeling System & Parameters 296 

LandA land surface models (LSMsmodel (LSM) can provide spatially and temporally continuous 297 
information about the water and energy budgets of the land surface. This information is useful for 298 
food and water security applications in places where in situ measurements of rainfall, soil moisture, 299 
snow and runoff are sparse. This is particularly relevant in mountainous places like Afghanistan 300 
where heterogeneous geography limits the representativeness of sparse in situ measurements. We 301 
use NASA’s Land Information System Framework (LISF), which is comprised of a pre-processor, 302 
the Land Data Toolkit (Arsenault et al., 2018)The FLDAS (McNally et al., 2017) utilizes the  303 
NASA’s Land Information System Framework (LISF), which is composed of a pre-processor, the 304 
Land surface Data Toolkit (Arsenault et al., 2018), the Land Information System (Kumar et al., 305 
2006; Peters-Lidard et al., 2007), and the Land Verification Toolkit (Kumar et al., 2012). To support 306 
the needs of FEWS NET we have developed a custom instance of the NASA LISF - the FEWS NET 307 
Land Data Assimilation System (FLDAS) (McNally et al., 2017). In this data descriptor we describe 308 
the two configurations of the FLDAS data streams used for Central Asia food and water security 309 
applications.In this data descriptor we describe the two configurations of the FLDAS data streams 310 
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used for Central Asia food and water security applications. It uses the Noah 3.6 Land Surface 311 
ModelLSM (Chen et al., 1996; Ek et al., 2003)(Chen et al., 1996; Ek et al., 2003) and hasfor the  312 
two data streams. One, (Fig. 3 and Table 1). The first data stream is global, at ~1 month latency, and 313 
provides monthly average outputs on a 10 km2-km grid from 1982-present. The second data stream, 314 
centered on Central Asia, ~1 day latency, provides daily average outputs at 1 km2-km from 2001-315 
present. 316 
 317 
One important feature, added by the NASA LISF software development team, is the radiation 318 
correction described in Kumar et al. (2013), which improves the representation of snow dynamics 319 
with respect to slope and aspect corrections on the downward solar radiation field. Another 320 
noteworthy feature is the method of the Central Asia data stream restart (i.e., annual initialization 321 
based on climatology), which was developed to address an issue of excessive inter-annual snow 322 
accumulation found in the Noah LSM. First, a nine-year spin-up of the system was performed to 323 
produce stable snow and soil moisture conditions. Next, the resulting model states were compared 324 
with the Moderate Resolution Imaging Spectroradiometer (MODIS) Maximum Snow Extent data 325 
originally computed by NOAA National Operational Hydrologic Remote Sensing Center (Greg Fall, 326 
NOAA Operational Data Center, written communication., 2014) . Then, the model-estimated 327 
conditions were adjusted to produce a climatological model state for 1 October that is used to 328 
initialize each year. This approach ensures that the ‘water year,’ beginning 1 October, is initialized 329 
with a reasonable initial amount of snowpack. While this method does effectively manage excessive 330 
inter-annual modeled snow accumulation, the user should be aware that using the climatological 331 
model state will persist for ~1-2 months in the water and energy balance of the LSM until they are 332 
superseded by “observed” meteorological inputs for the current water year. Preliminary work 333 
indicates that this issue will be resolved in future updates.  In contrast, the global data stream does 334 
not use this 1 October initialization procedure. 335 
Although the two data stream specifications are largely the same, there are some differences related 336 
to the input forcings, parameters and specifications (Table 1) and also model spin-up 337 
procedureprocedures.  338 
 339 
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 340 
Figure 3. The FEWS NET Land Data Assimilation System (FLDAS) domains for (a) the global data 341 
stream at 10-km spatial resolution and ~1 month latency for monthly averaged hydrologic estimates 342 
and (b) the Central Asia data stream at 1-km spatial resolution and ~1 day latency for daily averaged 343 
hydrologic estimates. 344 
 345 
Table 1. FEWS NET Land Data Assimilation System (FLDAS) specifications for (A) global data 346 
stream, 10 km2,-km monthly with CHIRPS+MERRA-2.; and (B) Central Asia data stream, 1 km2-347 
km, daily with GDAS.  348 

 Global  Central Asia 

Spatial Extent 

 
179.95°W- 179.95°E, 59.95°S- 
89.95°N 

 
30-100°E, 21-56°N 

Landmask 

Land Data Toolkit (LDT) 
generatedGenerated from MODIS 
(Arsenault et al. 2018)using LISF-
LDT, with MOD44w mask applied 
post-processing. 

MOD44w (Carroll et al., 
2017)MOD44w (Carroll et al., 
2017) 

Landcover IGBP landcover IGBP landcover 

Parameters FAO Soils Reynolds et al (2000) FAO Soils  
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Elevation 
Shuttle Radar Topography Mission 
SRTM (NASA JPL, 2013) SRTM  

Albedo 
NCEP albedo (Csiszar, I., and 
Gutman 1999) NCEP albedo  

Albedo 

Native Max Snow Albedo; Barlage 
(2005) National Centers for 
Environmental Prediction (NCEP) 
albedo (Csiszar and Gutman, 1999) & 
MODIS-based Max Snow Albedo 
(Barlage et al., 2005)  

NativeNCEP albedo & 
MODIS-based Max Snow 
Albedo 

   

Vegetation Parameters 

NCEP greenness fraction (Gutman 
and Ignatov 1997)NCEP greenness 
fraction (Gutman and Ignatov, 1998) NCEP greenness fraction 

Non-Precipitation 
Meteorological Inputs MERRA-2 meteorological variables 

GDAS meteorological 
variables 

Soil Texture 

FAO STATSGO soil textureFood and 
Agricultural Organization (FAO) soil 
texture & properties (Reynolds et al., 
2000) 

FAO STATSGO soil texture 
& properties 

Precipitation Inputs 
CHIRPS daily precipitation, 
downscaled to 36-hourly with LDT GDAS 3-hourly precipitation 

Specifications Noah 3.6.1 Noah 3.6.1 

Map Projection Geographic Latitude-Longitude 
Geographic Latitude-
Longitude  

Software Version 7.2 7.3 

Spatial Resolution 0.1 degree10-km 0.01 degree1-km 

Temporal Coverage 1982-01-01 to present 20012000-10-01 to present 

Model Timestep 3015-min timestep 1530-min timestep 

Met. Forcing Heights 
2m2-m Air Temperature (Tair), 
10m10-m Wind 2m2-m Tair, 10m10-m Wind 

Soil layers (meters) 0-0.1; 0.1-0.4; 0.4-1.0; 1-2 0-0.1; 0.1-0.4; 0.4-1.0; 1-2 

Features  radiation correction radiation correction 
 349 

The parameters and specifications listed in Table 1 are largely default settings defined by the Noah 350 
LSM community (NCAR Research Applications Library, 2021). . Ongoing research aims to identify 351 
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where model output performance can be improved with parameter updates. Evaluating parameter 352 
updates had similar challenges as evaluating input forcing described in Section 1.2: without reliable 353 
reference data it is difficult to determine a “best” input. For example, we have explored changing 354 
soil parameters from FAO to International Soil Reference and Information Centre (ISRIC) SoilGrids 355 
database (Hengl et al., 2017). This change did not result in improvements in streamflow statistics in 356 
southern Africa, nor in soil moisture anomalies’ ability to represent drought events. We expect 357 
similar results in Afghanistan where, e.g., streamflow will be sensitive to a change in soil 358 
parameters and the lack of referenced data to evaluate if there is an improvement. Moreover, our 359 
model runs at 0.1 and 0.01 degrees may not fully exploit the added value of the 250m soil grids as 360 
noted in Ellenburg et al. (2021) for a LISF application in East Africa. 361 

Vegetation parameters are also potential sources of improvement whose importance to LDAS 362 
hydrologic estimates has been highlighted (e.g., Miller et al., 2006). We have found the NCEP 363 
estimates of green vegetation fraction (GVF) to be sufficient for this configuration of Noah 3.6. We 364 
found that a time series of GVF derived from the Normalized Difference Vegetation Index (NDVI) 365 
did not improve representation of droughts in eastern Africa. However, future FLDAS global and 366 
Central Asia versions can be run with Noah-Multi parameterization (Noah-MP) (Niu et al., 2011) 367 
which has multiple vegetation options and relies on either Leaf Area Index rather or GVF. This 368 
model update is expected to open possibilities for choice of datasets to meet our application needs 369 
and potentially improve representation of the water balance. 370 
One important feature, added by the NASA LISF software development team, is the radiation 371 
correction described in Kumar et al. (2013), which improves the representation of snow dynamics 372 
with respect to slope and aspect corrections on the downward solar radiation field. The precipitation 373 
and other meteorological forcing variables, the period of record, and the spatial resolution were all 374 
determined to best meet the target end-users’ needs (i.e. FEWS NET) for routine agricultural and 375 
hydrologic monitoring. 376 
 377 
Another noteworthy feature is the method of the Central Asia data stream restart (i.e., annual 378 
initialization based on climatology), which was developed to address an issue of excessive inter-379 
annual snow accumulation found in the Noah LSM. First, a nine-year spin-up of the system was 380 
performed to produce stable snow and soil moisture conditions. Next, the resulting model states 381 
were compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Maximum 382 
Snow Extent data originally computed by NOAA National Operational Hydrologic Remote Sensing 383 
Center (Personal Communication Greg Fall, 2014). Then, the model estimated conditions were 384 
adjusted to produce a climatological model state for 1 October that is used to initialize each year. 385 
This approach ensures that the ‘water year’, beginning 1 October, is initialized with a reasonable 386 
amount of snowpack. While this method does effectively manage excessive inter-annual snow 387 
accumulation, the user should be aware that using the climatological model state will persist for ~1-388 
2 months in the water and energy balance of the LSM until they are superseded by “observed” 389 
meteorological inputs for the current water year. Preliminary work indicates that this issue will be 390 
resolved in future updates.  In contrast, the global data stream does not employ this 1 October 391 
initialization procedure. 392 
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2.2 Meteorological Forcing Inputs    393 

Precipitation is the most important input to the FLDAS products. The lower-latency Central Asia 394 
data stream is a daily product, forced with NOAA’s Global Data Assimilation System (GDAS) 395 
(Derber et al., 1991) 3-hourly precipitation, which is  available from 2001-present at <1-day latency. 396 
Meanwhile, the global data stream is driven by the daily CHIRPS precipitation product, which is 397 
available from 1981 present at ~ 5-day latency for CHIRPS Preliminary and ~1.5-month latency for 398 
CHIRPS Final. As mentioned earlier, lack of rainfall stations for bias correction of satellite-derived 399 
estimates and evaluation poses a major challenge. However, we find that the GDAS rainfall product 400 
and the CHIRPS rainfall product are adequate for routine monitoring and, along with additional 401 
sources of remote sensed information, important for convergence of evidence when making a best 402 
guess at land surface states and fluxes. 403 
 404 
As previously discussed, precipitation is a critical input to land surface models. The lower-latency 405 
Central Asia data stream is a daily product, forced with GDAS (Derber et al., 1991) 3-hourly 406 
precipitation, which is available from 2001to present at <1-day latency. This dataset was chosen 407 
because of its latency. The global data stream is driven by the daily CHIRPS product (Funk et al., 408 
2015), which is available from 1981 to present at ~ 5-day latency for CHIRPS Preliminary and ~1.5-409 
month latency for CHIRPS Final. The CHIRPS products were chosen as inputs because of their 410 
proven performance in the literature, which has made it the “gold standard” for food and water 411 
security monitoring by organizations like FEWS NET, the World Food Program, and others who 412 
need up-to-date estimates and a 40+ year historical record. As mentioned earlier, lack of rainfall 413 
stations for bias correction of satellite-derived estimates and evaluation poses a major challenge. 414 
However, we find that the GDAS rainfall product and the CHIRPS rainfall product are adequate for 415 
routine monitoring and, along with additional sources of remote sensed information, are important 416 
for convergence of evidence when making a best estimate at land surface states and fluxes. 417 
 418 
Before the daily CHIRPS rainfall data can be used as input to the FLDAS models, the daily 419 
precipitation must beis pre-processed to a sub-daily timestep, using the LDT component of the 420 
LISLISF software. LDT temporally disaggregates the daily CHIRPS rainfall, using an approach 421 
similar to the North American LDAS precipitation temporal downscaling method (Cosgrove et al., 422 
2003). For this approach, we use a finer timescale MERRA-2 precipitation timescale as a reference 423 
dataset to representsrepresent an accurate diurnal cycle. CoarserWe note that this step in our 424 
methodology facilitates the solving of FLDAS water and energy balances at a sub-daily timestep. 425 
However, for Central Asia we do not have sufficient reference data available to assess the 426 
importance of sub-daily precipitation distribution, as was demonstrated by Sarmiento et al. (2021) 427 
for the United States where adequate reference data are available.  For spatial downscaling, coarser 428 
scale meteorological forcings are spatially disaggregated to the output resolution (0.01, and 0.1 429 
degree for Central Asia and global, respectively) in the LISLISF using bilinear interpolation. 430 
 431 
The FLDAS models require additional meteorological inputs, including air temperature, humidity, 432 
radiation, and wind. The lower-latency Central Asia data stream uses GDAS 3-hourly 433 
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meteorological inputs available from 2001-present at <1-day latency. For a longer historical record, 434 
the global data stream of FLDAS uses NASA’s Modern Era Reanalysis for Research and 435 
Applications version 2 (MERRA-2) (Gelaro et al., 2017) (1979-present) 1-hourly products with a 436 
two-week latency. 437 

The FLDAS models require additional meteorological inputs, including air temperature, humidity, 438 
radiation, and wind. The lower-latency Central Asia data stream uses GDAS 3-hourly 439 
meteorological inputs available from 2001-present at <1-day latency. For a longer historical record, 440 
the global data stream uses MERRA-2 (Gelaro et al., 2017) (1979-present) 1-hourly products with a 441 
two-week latency. Over the Afghanistan domain GDAS temperature has an upward trend, whereas 442 
MERRA-2 is consistently warmer before 2010. We find that GDAS and MERRA-2 temperature 443 
estimates are of similar magnitude during 2011-2020. Similar results were noted by Yoon et al. 444 
(2019) who found an upward trend in GDAS temperature, as well as consistently higher 445 
temperatures in MERRA-2 across a broad High Asia domain. 446 

2.3 Model Evaluation Statistics and Comparison Data 447 

To assessIn addition to guidance from previous studies (Section 1.2), we assessed the quality of our 448 
modeling outputs, we conduct by conducting comparisons between (1) FLDAS satellite rainfall 449 
inputs and other satellite precipitation estimates, and (2) model estimated snow cover fraction and 450 
satellite derived snow cover fraction estimates.  451 
 452 
For the precipitation analysis, we compare CHIRPS and GDAS inputs to the Integrated Multi-453 
satellite Retrievals for the Global Precipitation Mission (IMERG), a NASA precipitation product 454 
that integrates passive microwave and infrared satellite data with surface station observations 455 
(Huffman et al., 2020)(Huffman et al., 2020). The IMERG Final Run precipitation product, 456 
available at ~ 2-month latency (thus not suitable for our monitoring applications) has been used in 457 
numerous verification studies, including studies over Africa (Dezfuli et al., 2017)(Dezfuli et al., 458 
2017), South America (Gadelha et al., 2019; Manz et al., 2017)(Gadelha et al., 2019; Manz et al., 459 
2017), and the mid-Atlantic region of the United States (Tan et al., 2016). These studies 460 
demonstrated that IMERG Final(Tan et al., 2016). These studies demonstrated that IMERG Final 461 
Run was able to capture large spatial patterns and seasonal and interannual patterns of rainfall. 462 
However, fewer studies have explored the performance of the lower latency IMERG Late Runs 463 
(DOIRun (doi: 10.5067/GPM/IMERGDL/DAY/06) product that we use here. Kirshbaum et al. 464 
(2016) include a qualitative comparison for CHIRPS Final and IMERG Late Run for the Southern 465 
Africa start-of-season 2015. IMERG Late Run appears to perform similarly to the 1.5-month latency 466 
CHIRPS Final and outperform the 1-day latency NOAA Rainfall Estimate version 2 (RFE2) product 467 
(Xie and Arkin, 1996).(Xie and Arkin, 1996). Differences in the daily rainfall distribution patterns 468 
between IMERG Final Run and CHIRPS Final have also been shown to impactaffect the resulting 469 
hydrological modeled output in simulations done using the NASA LIS frameworkLISF (Sarmiento 470 
et al., 2021). 471 
 472 
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For the Snow Cover Fractionsnow cover fraction (SCF) analysis, we compare the global and Central 473 
Asia data streams with the MODIS daily SCF product, MOD10A1 Collection 6 (Hall and Riggs, 474 
2016)(Hall and Riggs, 2016). MOD10A1 data isare available at 500 -m spatial resolution from 475 
February 2000 to the present. SCF is generated using the Normalized Difference Snow Index 476 
(NDSI) and additional filters to reduce error and flag uncertainty. Routine qualitative comparisons, 477 
which can be viewed on the NASA LISLISF FEWS NET project website, generally show 478 
agreement between the model and MODIS SCF, as well as occurrence of cloud cover 479 
(https://ldas.gsfc.nasa.gov/fldas/models/central-asia). Following Arsenault et al. (2014), we 480 
aggregated pixels to 0.01 degree to reduce error related to sensor viewing angles and gridding 481 
artifacts. For this analysis, using MODIS SCF as “truth”,,” we determined True Positives (TP), True 482 
Negatives (TN), False Negatives (FN) and False Positives (FP). We then computed probability of 483 
detection (POD) where POD = (TP/(TP + FN)) and False Alarm Rate (FAR) where FAR = 484 
(FP/(FP + TN)).  We computed these for the total area of Afghanistan, (60-76E, 28-39N), as well as 485 
by basin (Fig. 3 a & b). 4). This paper does not compare modeled snow water equivalent (SWE) to 486 
independent snow observations because, as noted by Yoon et al. (2019), direct evaluation of snow 487 
mass and snow water equivalent (SWE) is difficult over Central Asia due to poor coverage of 488 
accurate snow observations.  We follow the Yoon et al. (2019) recommendation to conduct 489 
quantitative SCF comparisons and provide qualitative SWE analysis in Applications, Section 4.  490 
 491 
In addition to rainfall and snow comparisons, we conducted monthly pixel-wise comparison of 492 
Central Asia and the global run’s estimates of evapotranspiration (ET) and soil moisture versus 493 
Operational Simplified Surface Energy Balance (SSEBop, (Senay et al., 2013)). ET and Soil 494 
Moisture Active Passive (SMAP) Level 3 (Entekhabi et al., 2010, 2016) using the Normalized 495 
Information Contribution (NIC) metric following Sarmiento et al., (2021). The analysis was 496 
performed for the period 2016-2021 to match the SMAP record. The NIC metric first computes 497 
anomaly correlations between the model runs and the reference dataset and then computes the 498 
difference between the performance of each model run using a scale of -1 to +1 to highlight if the 499 
global or Central Asia data stream performs better with respect to the reference. To make the 500 
comparisons, the reference datasets (SMAP and SSEBop) were re-gridded to match the grid spacing 501 
and locations of the experiment model outputs. 502 

3 Results 503 

3.1 Gridded Rainfall Comparison 504 

ForWe have two data streams for Central Asia applications we have two data streams with different 505 
precipitation inputs: 1) the global data stream with CHIRPS precipitation at 10 km2-km spatial 506 
resolution provides a long-term consistent data record,; and 2) the Central Asia data stream with 507 
GDAS precipitation at 1 km2-km provides near real time, finer spatial resolution updates. These two 508 
data streams have their respective errors and allow data users to apply a convergence of evidence 509 
approach for food and water security applications. In this This section we presentpresents a 510 
comparison of thesethe GDAS, and CHIRPS precipitation inputs used for the Central Asia and 511 
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global data streams, respectively. .  We also include IMERG Late Run for comparison as a high 512 
quality, low latency product. Future work willmay incorporate the IMERG Late Run precipitation 513 
inputs into FLDAS simulations. We also include MERRA-2 precipitation for comparison. Pair-wise 514 
correlationcorrelations are shown in Table 2. CHIRPS Final, IMERG Late Run and GDAS (R ≥ 515 
0.90) are well correlated in terms of average daily precipitation (mm/day) at the monthly and annual 516 
(i.e., water year) timestep. MERRA-2 correlations with these datasets are lower at the monthly 517 
timestep (0.75 ≤ R ≤ 0.81) and annual timestepwater year (0.64 ≤ R ≤ 0.69). ) timesteps. Fig. 4 518 
shows the time series of the precipitation products for their overlapping period of record (2001-519 
2020), which illustrates how they co-vary in time, and shows some general patterns in terms of 520 
relative precipitation in mm/day: GDAS (redblue) and IMERG Late (dashed-blackRun (purple) tend 521 
to have the highest average precipitation per daytotals, CHIRPS (bluegreen) has lower 522 
mm/day,precipitation but is higher than MERRA-2 (dashed greenyellow) which tends to have the 523 
lowest average precipitation per day, until 2019 when it is notably higher than the other products. 524 

 525 
 526 
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 527 
 528 
Figure 4. Afghanistan country-wide average, annual average mm/day time series water year 529 
precipitation for CHIRPS, GDAS, IMERG Late Run, and MERRA-2. At the annual time step, 530 
Spearman rank correlations range from 0.64 (GDAS vs. MERRA-2) to 0.92 (GDAS vs. CHIRPS).  531 
 532 
Table 2. Afghanistan spatial average Spearman Rank Correlation (R) of monthly (annualwater year) 533 
precipitation 2001-2020 534 

 GDAS CHIRPS Final IMERG Late Run 
GDAS x - - 
CHIRPS Final 0.91 (0.92) x - 
IMERG Late Run 0.91 (0.89) 0.92 (0.90) x 
MERRA-2 0.75 (0.64) 0.78 (0.68) 0.81(0.69) 

 535 

3.2 Remotely Sensed and Modeled Snow comparisons  536 

The estimation of snow is important for Afghanistan and Central Asia because it is an importanta 537 
critical contributor to water resources and irrigated agriculture.  Here, we compare meanWe 538 
compared average SCF (Fig. 5a6a), POD, and FAR statistics (Fig. 5b6b) relative to MODIS SCF 539 
over eight hydrologic basins in Afghanistan. 540 
 541 
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 542 
Figure 5. Hydrologic basins used in the analysis of categorical statistics for snow covered fraction. 543 
 544 
 545 
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 546 
Figure 5a6a. Mean snow cover fraction for the entire area and by hydrologic basin for MODIS 547 
Snow Cover Fraction (SCF), Central Asia (CA) and global (GL) data streams for water year 2020. 548 
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  549 
Figure 5b6b. Probability of Detection (POD) of snow presence, and False Alarm Rate (FAR) for the 550 
Central Asia (CA) and global data streams relative to the MODIS SCF for water year 2020. 551 
 552 
Overall, both model runs estimate greater meanaverage SCF than the MODIS SCF product. The 553 
Central Asia (CA) data stream has consistently higher meanaverage snow cover for all basins 554 
compared to MODIS SCF estimates and the global data stream. Perhaps not surprisingly then itthat 555 
the Central Asia data stream performs consistently better in POD (by basin = ~80%) except for the 556 
Western [Helmand] Basin. Similarly, the FAR of the CACentral Asia data stream is higher where 557 
POD is higher except for the Northern Basin. The difference in statistics may be related to the 558 
different inputs forcing inputs or the higher spatial resolution of the Central Asia data stream. 559 
Kumar et al. (2013) note that higher spatial resolution was important for snow dominated basins. 560 
We also note the likely importance of the MERRA-2 and GDAS temperature forcing between the 561 
global data stream and the Central Asia data stream, respectively. The panels in Fig. 6 provide 562 
additional insight into the differences between MODIS SCF and the two FLDAS runs for water year 563 
2020. The green line (Central Asia) is consistently higher than the red, MODIS SCF estimates, and 564 
the blue, global data stream estimates. Both the models estimate higher SCF during peak coverage 565 
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in the Upper Kabul and Kunar basins. The time series plots also illustrate discontinuities in the 566 
MODIS SCF time series, likely related to cloud cover, which reduced the sample size for the 567 
remotely sensed vs model comparisons.  568 

 569 
Figure 6. Basin-averaged SCF for Water Year 2020 as estimated by global and Central Asia (CA) 570 
data streams, and MODIS SCF. Time series show generally a similar pattern with the CA typically 571 
having higher SCF values. These plots also demonstrate discontinuities in the MODIS SCF data that 572 
reduce the quality of quantitative comparisons but provide qualitative confirmation of adequate 573 
model performance. 574 

3.3 Discussion of results compared to previous studies 575 

Despite the lack of ground-based observations, our analysis shows that the remotely sensed 576 
estimates and the models have good correspondence with other sources of evidence in terms of 577 
seasonal timing and performance. This provides analysts with confidence when using the FLDAS 578 
snow estimates, in tandem with other sources, as an input to food security analysis. Our approach is 579 
supported by other studies that have explored the challenges of evaluating hydrologic estimates over 580 
the region (Yoon et al., 2019; Ghatak et al., 2018; Immerzeel et al., 2015; Qamer et al., 2019). With 581 
a study domain shifted to the east, Yoon et al. (2019) evaluate rainfall and near surface temperature 582 



 

27 
 

estimates over the High Mountain Asia domain, including most of Afghanistan. They review how 583 
these results compare to other studies (e.g. precipitation trends (Nguyen et al., 2018; Rodell et al., 584 
2018)), and their results suggest that the uncertainty in the meteorologic forcing is the dominant 585 
factor in the terrestrial water budget estimates. This is consistent with our results showing 586 
differences between the GDAS and CHIRPS+MERRA-2 driven outputs. Also consistent with our 587 
results, Yoon et al. (2019) show that their LSM ensembles of SCF have an average POD of 72% and 588 
FAR of 36%, which is within the range of our POD and FAR statistics (60-80% POD; 20-40% 589 
FAR) compared to MODIS SCF. Without a clear “winner” in their multi-model and multi-forcing 590 
experiments, Yoon et al. 591 
In addition to precipitation and snow cover comparisons we conducted comparisons with remotely 592 
sensed soil moisture and ET (not shown). We found that in general, GDAS derived estimates of ET 593 
consistently performed better over Afghanistan in terms of pixel-wise anomaly correlation and NIC 594 
with SSEBop ET. Meanwhile, neither modeled estimate of soil moisture consistently outperformed 595 
the other with respect to SMAP. The ET results lend some support to the quality of the Central Asia 596 
data stream estimates. However, the lack of signal in the soil moisture comparisons suggests that 597 
more careful analysis of the model and remote sensing errors is required before drawing conclusions 598 
regarding which data stream is “best.” 599 

3.3 Discussion of results compared to previous studies 600 

Despite the lack of ground-based observations, our analysis shows that the remotely sensed 601 
estimates and the models have good correspondence with other sources of evidence in terms of 602 
seasonal timing and performance. This provides analysts with confidence when using the FLDAS 603 
snow estimates, in tandem with other sources, as an input to food security assessments. Our 604 
approach is supported by other studies that have explored the challenges of evaluating hydrologic 605 
estimates over the region (Immerzeel et al., 2015; Ghatak et al., 2018; Yoon et al., 2019; Qamer et 606 
al., 2019) . 607 
 608 
Yoon et al. (2019) show that their LSM ensembles of SCF have an average POD of 72% and FAR 609 
of 36%, which is within the range of our POD and FAR statistics (60-80% POD; 20-40% FAR) 610 
compared to MODIS SCF.  The categorical statistics indicate that Central Asia (GDAS) tends to 611 
have both a higher probability of detection and false alarm rate, indicating higher averages than 612 
MODIS SCF and global (CHIRPS).  613 
 614 
With respect to the soil moisture and ET comparisons, we found that the Central Asia data stream 615 
estimates of ET were better correlated with SSEBop ET, but neither data stream was consistently 616 
better correlated with SMAP. These differences could be a function of non-precipitation differences, 617 
or higher spatial resolution. Ghatak et al. (2018) also found that the choice of reference dataset (with 618 
its own characteristics and errors) was an important factor. 619 
 620 
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In general, given the lack of clarity on “best” FLDAS data stream, the convergence of evidence 621 
approach allows us to consult both data streams, leveraging the longer time series of CHIRPS and 622 
the lower latency of GDAS.  623 

3.4 Limitations and Future Developments 624 

 conclude that improvements in the meteorological boundary conditions would be needed to reduce 625 
the uncertainty in the terrestrial budget estimates. These sentiments are echoed in Qamer et al. 626 
(2019).  627 
 628 
One recent attempt to improve meteorological inputs in the region is from Ma et al. (2020) with the 629 
development of the AIMERG dataset that combines IMERG Final with APHRODITE (Asian 630 
Precipitation - Highly-Resolved Observational Data Integration Toward Evaluation) rain-gauge 631 
derived product (Yatagai et al., 2012).  Ultimately, it would be beneficial to have a global modeling 632 
system that used the best available inputs from each region. In the meantime, multi-forcing and 633 
multi-model ensembles, and convergence of evidence with other remotely sensed data and field 634 
reports, are a viable approach for providing hydrologic estimates for various applications. 635 

3.4 Summary of differences between the model runs 636 

Given the need for multiple data streams for convergence of evidence, we have summarized the pros 637 
and cons of the Central Asia and global data streams in Table 3. 638 
 639 
Table 3. Pros and cons of the two data streams 640 
 Central Asia: Noah 3.6 with GDAS 

(2000-present) 
Global: Noah 3.6 with 
CHIRPS+MERRA-2 (1982-present) 

PROS 
Pros 
 

1 km2-km less computationally intensive 

1 -day latency, daily timestep longer time record 

Snow estimates available in USGS 
Early Warning eXplorer 
https://earlywarning.usgs.gov/fews/ew
x/ 

CHIRPS & MERRA-2 forcing spatial 
resolution does not change over time (stable 
climatology) 

 Water and Energy balance available in 
NASA GIOVANNI,  
https://giovanni.gsfc.nasa.gov/giovanni/; 
Google Earth Engine, 
https://developers.google.com/earth-
engine/datasets/tags/fldas; Climate Engine 
https://climateengine.com/ 
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CONSCons more computationally intensive lower resolution (10 km2-km) 

shorter time record ~30-day latency 

GDAS forcing resolution changes 
over time (unstable climatology) 
(NOAA NCEP 
https://www.emc.ncep.noaa.gov/gmb/
STATS/html/model_changes.html) 

not publicly available at daily timestep 

large data volume, difficult to move  

 641 
IMERG version 6 was released in 2019 and includes rainfall estimates processed back to 2000. Prior 642 
to this change we had found encouraging results when comparing the onset of rainy season using 643 
both IMERG Late Run and CHIRPS (Kirschbaum et al., 2016). However, at that time the period of 644 
record was a limitation for computing anomalies. We now have an adequate period of record, and 645 
IMERG Late Run is planned to be part of the upcoming FLDAS global and FLDAS Central Asia 646 
releases. We are also encouraged by the quality of IMERG at the daily timestep when compared to 647 
CHIRPS over the United States where accurate reference data are available (Sarmiento et al., 2021).  648 
 649 
In addition to IMERG other promising rainfall datasets are in development. Ma et al. (2020) have 650 
developed the AIMERG dataset that combines IMERG Final Run with the APHRODITE rain-gauge 651 
derived product (Yatagai et al., 2012).  Another promising dataset is CHIMES (Funk et al., 2022), a 652 
blend of CHIRPS and IMERG, whose developers have been exploring the strengths and limitations 653 
of these two datasets and their fusion to produce an optimal product. 654 
 655 
With respect to other FLDAS developments, FLDAS global and Central Asia are planned to be 656 
transition to Noah-MP. This will allow for improved representation of snowpack and groundwater. 657 
This will also necessitate the use of different parameters, e.g., leaf area index, as well as the 658 
potential to explore different parameter sets like ISRIC soils.  In the meantime, multi-forcing and 659 
multi-model ensembles, and convergence of evidence with other remotely sensed data and field 660 
reports, are a viable approach for providing hydrologic estimates for various applications. 661 

4 Applications 662 

These data from global and Central Asia data streams are routinely used in several FEWS NET 663 
information products listed in Table 4. There is a weekly briefing from NOAA’s Climate Prediction 664 
Center (CPC) International Desks provide a weekly briefing on the past week’s weather conditions 665 
and 1– 2-week forecasts for FEWFEWS NET regions of interest, including Central Asia. There is 666 
also a monthly FEWS NET Seasonal Monitor and a monthly Seasonal Forecast Review for which 667 
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these data provide information on the current state of the snowpack, soil moisture, and runoff. These 668 
“observed conditions'' can then be qualitatively combined with forecasts ranging from 1 week to 669 
3many months in the future to assess potential hydro-meteorological hazards. To demonstrate the 670 
role of these data in the early warning process, at different points in the season, we provide an 671 
example of the 2017-2018 wet season in Afghanistan during a La Niña event that contributed to 672 
drought. 673 
 674 
Table 4. Routine Applications of FLDAS Central Asia’s Afghanistan hydrologic data. 675 

Routine application of 
these data 

Weblink to updates Notes 

FEWS NET Global 
Weather Hazards 
Summary produced by 
NOAA CPC 

https://fews.net/global/global-weather-hazards/ 
 
https://www.cpc.ncep.noaa.gov/products/internatio
nal/index.shtml 

shapefiles 
https://ftp.cpc.ncep.noaa.gov/
fews/weather_hazards/  

USGS Seasonal Monitor https://earlywarning.usgs.gov/fews/search/Asia/Ce
ntral%20Asia/Afghanistan 
 
Archives: 
https://fews.net/sectors-
topics/sectors/agroclimatologyhttps://earlywarning
.usgs.gov/fews/afghanistan/seasonal-monitor 

Updated monthlynear the 
middle of each month from 
October - May, during the 
precipitationwet season. 

FEWS NET Food 
Security Outlook Brief 

https://fews.net/central-asia/afghanistan Information on snow or other 
hydrology included if 
applicable 

Crop Monitor for Early 
Warning 

https://cropmonitor.org/index.php/cmreports/early
warning-report/ 

Information on early warning 
and crop conditions 

 676 

 4.1 Snow monitoringMonitoring & Seasonal Outlooks  677 

As previously mentioned, and as shown in Fig. 7, Afghanistan and the broader region is strongly 678 
influenced by La Niña, which tends to increase the likelihood of dry events (Barlow et al., 2016; 679 
FEWS NET, 2020b). Depending on other factors, this may also increase the probability of negative 680 
snowpack anomalies, reduce springtime streamflow, and flood risk, and reduce summer irrigation 681 
availability and potentially crop yields7, Afghanistan and the broader region is strongly influenced 682 
by La Niña, which tends to increase the likelihood of below average precipitation. Depending on 683 
this and antecedent conditions there in an increased likelihood of below average snowpack, reduce 684 
springtime streamflow and flood risk, reduce summer irrigation water availability, and crop yield 685 
losses. 686 
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 687 
Figure 7. Timing of wet and dry conditions related to La Nina. Increased likelihood of dry 688 
conditions from NovNovember-May for Afghanistan during La Niña events. 689 
 690 
A La Niña Watch was issued by NOAA in September 2017 (NOAA, 2017). The FEWS NET 691 
October 2017 Food Security Outlook (FEWS NET, 2017a) stated that La Niña conditions were 692 
expected throughout the northern hemisphere fall and winter and that below-average precipitation 693 
was likely over much of Central Asia, including Afghanistan, during the 2017-2018 wet season. 694 
With the expectation of below average rainfallprecipitation coupled with above average temperature 695 
forecaststemperatures, FEWS NET anticipated that snowpack would most likely be below average. 696 
In the context of food security outcomes, it was assumed that areas planted with winter wheat were 697 
likely to be lowerless than usual, reducing land preparation activities and associated demand for 698 
labor. Two provinces of particular concern were Daykundi and Wardak (Fig. 8a brown borders), 699 
both located in the Helmand River Basin (Fig. 8a; greygray shading).  Precipitation deficits in these 700 
provinces would lead to poor rangeland resources and pasture availability and would likely result in 701 
decreased livestock productivity and milk production through May. However, given that October 702 
was the very start of the wet season, there remained a large spread of possible outcomes: spatial and 703 
temporal rainfall distributions, and snowpack totals necessitating routine updates to assumptions. 704 
 705 
Monitoring continued onward induring the wet season from October, tracking observations from 706 
remote sensing, models, and field reports as well as weather, sub-seasonal and seasonal forecasts 707 
across timescales. This information was used to regularly update expectations of end of season 708 
outcomes. Using the FLDAS Central Asia data stream, a December 21, 2017, NOAA CPC Weather 709 
Hazards Brief reported that parts of northern and central Afghanistan remained atypically snow free, 710 
and north-eastern high elevation areas exhibited snow water equivalent (SWE) deficits. SWE is a 711 
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commonly used measurement of the amount of liquid water contained within the snowpack, and an 712 
indicator of the amount of water that will be released from the snowpack when it melts. By January 713 
17, 2018, an abnormal dryness polygon was placed over northeastnortheastern Afghanistan, and the 714 
central highlands of Afghanistan, based on below -average snow water equivalentSWE values from 715 
the FLDAS Central Asia estimates. Abnormal dryness is defined for an area that has registered 716 
cumulative 4-week precipitation and soil moisture ranking less than the 30th percentile, with a 717 
Standardized Precipitation Index (SPI) of 0.4 standard deviation below the meanaverage. In 718 
addition, it is required that forecasts indicate below-average precipitation (less than 80% of normal) 719 
for that area during the 1-week outlook period. By late February 2018, precipitation deficits and 720 
related SWE (Fig. 9) increased and met the criteria for “drought” (Fig. 8b). Drought is defined as an 721 
area that has previously been defined as “Abnormal Dryness” and has continued to register seasonal 722 
precipitation and soil moisture deficits since the beginning of the rainfall season. Specifically, an 723 
eight-week cumulative precipitation, soil moisture, and runoff below the 20th percentile rank, and 724 
an SPI of 0.8 standard deviation below the meanaverage are classification guidelines.  725 
 726 
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(b) 

 
 727 
Figure 8.  (a) Map showing hydrological basins, with Helmand Basin in darker greygray and 728 
location of Daykundi and Wardak provinces (outlined in red) where food security conditions were 729 
of particular concern, (b) NOAA CPC Afghanistan HazardHazards Report for February 22-28, 2018 730 
(CPC NOAA, 2018), map showing widespread abnormal dryness and drought, defined by 90-day 731 
precipitation deficits and extremely low snow water equivalent.  732 
 733 
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 734 
Figure 9.  FLDAS Central Asia snow water equivalent (SWE) estimates for February 22, 2018.  735 
SWE deficits of >300 -mm were widespread at this time.   736 
 737 
The February 2018 Food Security Outlook (FEWS NET, 2018b) provided the following updates, 738 
based on the CPC Hazards Reports and Seasonal Monitors: “Snow accumulation and cumulative 739 
precipitation were well below average for the season through February 2018, with some basins at or 740 
near record low snowpack, with data since 2002….These factors will likely have an adverse impact 741 
on staple production in marginal irrigated areas and in many rainfed areas. [Moreover, with] 742 
forecasts for above-average temperatures during the spring and summer, rangeland conditions are 743 
expected to be poor during the period of analysis through September 2018. This could have an 744 
adverse impact on pastoralists and agro-pastoralists, particularly in areas where livestock 745 
movements are limited by conflict.” The Crop Monitor for Early Warning reports for February and 746 
March 2018 reports (GEOGLAM, 2018a, b) also cited reduced snowpack in Afghanistan and the 747 
negative impacts on winter wheat crops as well as irrigation water availability in the Spring. The 748 
story was also highlighted in NASA Earth Observatory March 2018 “Record Low Snowpack in 749 
Afghanistan” (Record Low Snowpack in AfghanistanNASA Earth Observatory, 2018).  750 
 751 
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The USGS’sUSGS Early Warning eXplorer (EWX) (Shukla et al., 2021)(Shukla et al., 2021) allows 752 
analysts to look at maps and time series for a variety of variables and specific provinces and river 753 
basins. Plots from EWX in Fig. 10 show below average precipitation infor provinces in the Helmand 754 
Basin for January and February. CHIRPS cumulative rainfall for 2017-18 vsversus the 18-year 755 
average for Day Kundi (a.k.a. Daykundi) Province showed near average conditions until December. 756 
From January, cumulative rainfall remained below the 2000-2018 average throughout the rest of the 757 
season ending in May; the same pattern occurred in nearby Uruzgan Province. In neighboring 758 
Maydan Wardak (a.k.a Wardak) Province, below average conditions were experienced in January 759 
and February, but cumulative rainfall recovered in March to remain slightly above average. Day 760 
Kundi (Fig. 10a10b) and Wardak (Fig. 10b10c) are provinces located in the upper reaches of the 761 
Helmand Basin. Fig. 10d10c shows SWE averaged across the entire Helmand basin. The greygray 762 
shading indicates the range of the minimum and maximum values, and the dashed blue line is the 763 
average. Initial snow conditions start above average until December when, after which SWE deficits 764 
are near record low values through the beginning of February, and then persist at below-average 765 
levels.  766 
 767 

  768 
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 769 
Figure 1010a. CHIRPS cumulative rainfall for 2017-18 vsversus average conditions for (a) 770 
Daykundi Province (b). Figure from USGS EWX (https://earlywarning.usgs.gov/fews/ewx/). 771 
 772 

 773 
Figure 10b. CHIRPS cumulative rainfall for 2017-18 versus average conditions for Maydan Wardak 774 
Province. (c) Map showing location of Daykundi and Wardak provinces, and theFigure from USGS 775 
EWX (https://earlywarning.usgs.gov/fews/ewx/). 776 
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  777 

 778 
Figure 10c. Helmand Basin where food security conditions were of particular concern. (d) Helmand 779 
Basin snow water equivalent (SWE) from the Central Asia data stream. The grey shading indicates 780 
the range of the minimum and maximum values, dashed blue line is the average, and black line is 781 
2017-18. Figure from USGS EWX (https://earlywarning.usgs.gov/fews/ewx/). 782 
 783 
By the end of the season in April 2018, FEWS NET (2018c) concluded that “below-average 784 
precipitation throughout most of the country during the October 2017 – May 2018 wet season has 785 
led to very low snowpack ...Low irrigation water availability is likely to have an adverse impact on 786 
yields for winter wheat and other ...barley, maize, and others.. particularly in downstream areas in 787 
regions with limited rainfall. ...The poor performance of the wet season and above average 788 
temperatures... exacerbated dry rangeland conditions in many areas, particularly in .....Sari Pul, [and 789 
surrounding] ...provinces. Pastoralists and agropastoralists in these areas will likely attempt to 790 
migrate to areas with better pasture and water availability or sell livestock at below-average prices.” 791 
At the same time UNICEF reported in April 2018 (500,000 children affected by drought in 792 
Afghanistan – UNICEF, 2018)At the same time, UNICEF (2018) reported in April 2018 that among 793 
“the [drought] affected provinces, Baghis, Bamyan, Daykundi, Ghor, Helmand, ... and Uruzgan are 794 
of critical priority for nutrition and water, sanitation and hygiene assistance”..”   795 
 796 
Several months after a season has ended, and harvest has endedis complete, more statistics become 797 
available for further verification of the drought outcomes. The FEWS NET October 2018 Food 798 
Security Outlook (2018a) reported that the 2017/-18 drought had significant negative impacts on 799 
rainfed wheat production and livestock pasture and body conditions across the country. Reporting 800 
statistics from the Afghanistan Ministry of Agriculture, Irrigation, and Livestock, the total wheat 801 
production for the 2017/-18 agriculture season was about 20% below average, where irrigated 802 
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agriculture performed about average. However, rainfed agricultureagricultural production was only 803 
about 50% of average, most severely impactingaffecting households in in Badakhshan, Badhis, and 804 
Daykundi provinces where. In these locations dry conditions, insecurityconflict, poor incomes, and 805 
depleted assets were expected to continue to face emergency food insecurity thoughthrough May 806 
2019 characterized by large food consumption gaps reflected in acute malnutrition or are employing 807 
emergency coping strategies. 808 

5. Data Availability 809 

The Central Asia data described in this manuscript can be accessed at the NASA GES DISC 810 
repository under data doi 10.5067/VQ4CD3Y9YC0R. The data citation is the following: 811 
 812 
Jacob, Jossy and Slinski, Kimberly (NASA/GSFC/HSL) (2021)(2021), FLDAS Noah Land Surface 813 
Model L4 Central Asia Daily 0.01 x 0.01 degree, Greenbelt, MD, USA, Goddard Earth Sciences 814 
Data and Information Services Center (GES DISC), Accessed: [Data Access Date],) 815 
10.5067/VQ4CD3Y9YC0R 816 
 817 
The Globalglobal data described in this manuscript can be accessed at the NASA GES DISC 818 
repository under data doi 10.5067/5NHC22T9375G. The data citation is the following: 819 
 820 
McNally, Amy. NASA/GSFC/HSL (2018), FLDAS Noah Land Surface Model L4 Global Monthly 821 
0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and 822 
Information Services Center (GES DISC), Accessed: [Data Access Date], 10.5067/5NHC22T9375G 823 
 824 
Currently the USGS EROS Center provides images from these data: 825 
https://earlywarning.usgs.gov/fews/search/Asia/Central%20Asia, as well as an interactive data 826 
viewer, the USGS Early Warning eXplorer (EWX) https://earlywarning.usgs.gov/fews/software-827 
tools/1 (Shukla et al. 2021).EWX (https://earlywarning.usgs.gov/fews/ewx/).  828 

6. Code availability 829 

The NASA Land Information System Framework (LISF) is publicly available and an open-source 830 
software. The software and technical support are available at https://github.com/NASA-LIS/LISF. 831 

7. Conclusion 832 

This paper describes a comprehensive hydrologic analysis system for food security monitoring in 833 
Central Asia, with analysis focusing on Afghanistan. While these data are tailored to specific needs, 834 
they are also applicable to other climate services and research. Our intent is to provide the reader 835 
with substantial information regarding the configuration and specification of both the current global 836 

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto



 

40 
 

and Central Asia data streams.  These data are publicly available and available at near-real time for 837 
food security decision support. An important note isNote that, as an on-going initiative, FLDAS 838 
model version and parameters are routinely updated, and the user should consult the version updates 839 
provided by the NASA Goddard Earth Science Data and Information Services Center (GES DISC) 840 
data provider and documentation on USGS Early Warning website. For example, efforts are 841 
currently underway to upgrade to the Noah with multi parameterizations (Noah-MP) (Niu et al., 842 
2011)(Niu et al., 2011) land surface model, which requires some changes in parameters for snow, 843 
glaciers and groundwater. This, and future changes will, can be informed by the strengths and 844 
weaknesses of the data stream configurations that we have discussed in this paper.  845 
 846 
This paper also provides model-model and model-remote sensing comparisons, as well as a review 847 
of other research that highlights the challenges of quantitative evaluation of models and remote 848 
sensing in this region. A key challenge to hydrologic modeling is the considerable uncertainty in the 849 
meteorological forcing available for this region, particularly precipitation, available for this region. 850 
Advancements in remote sensing and modeling should help reduce these uncertainties. In addition, 851 
the current land surface modeling and river routing frameworks reflectreflects natural conditions, 852 
i.e., they do not include representation of anthropogenic impactseffects such as human water 853 
abstractions (e.g., dams for flood control or irrigation, water diversions, groundwater pumping, 854 
etc.)) or land application of abstracted water (i.e., irrigation). These factors impact streamflow 855 
(through abstraction and irrigation flows) as well asaffect estimates of runoff, soil moisture, 856 
evapotranspiration, and sensible heat flux (land surface temperatures) in irrigated areas. Therefore, it 857 
is important to be aware of the limitations and combine with other products (e.g., Normalized 858 
Difference Vegetation Index (NDVI)NDVI or Actual Evapotranspiration (ETa) in irrigated areas) 859 
when exploring water and energy balance. Even with improvements to meteorological forcing and 860 
modeling parameterizations, errors will remain. Therefore, the ‘convergence of evidence’ approach 861 
that we advocate for here will continue tois beneficial and would be important when assessing 862 
hydro-meteorological hazards and associated risks to food and water security. We hope that byBy 863 
making the data publicly available the broader food security and water resources communities will 864 
be able to provide insights that willcan lead to improvements in our understanding of the water and 865 
energy balance that willcan ultimately lead to improvements to food and water security decision 866 
support systems.  867 
 868 
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