
Author’s response: We really appreciate the comments from the reviewers and note some 
common themes: (1) why were the parameters and forcing choices made? R1.1, R1.2, R1.4, 
R2.6, R2.7 (2) why were the evaluation methods chosen R2.5, R2.8, R2.9. (3) some general 
questions that we think could be clarified by the motivation, and our interpretation of the 
scope of a data descriptor (4) Addition of a clear ‘limitations and future work’ section (5) 
Editorial comments: Figure legibility, figure placement, edits to intro and abstract. Thank you 
for taking the time to provide thoughtful feedback that has greatly improved our manuscript. 

 
RESPONSE TO REVIEWER #1 

 
Dear Reviewer, #1, Thanks for the comments and we address your remarks and suggested 
revisions in the following.  
 

1. It would be useful for the modeling community to understand a bit more about the 
data choices summarized in Table 1. Why were each of these parameter datasets 
selected? For example, the FAO soil texture dataset has been replaced by ISRIC in 
many applications, and the NCEP vegetation fraction dataset is a low-resolution 
climatology. I don’t ask that the authors change these settings but given the status 
of FLDAS as an operational LDAS system with global scope I expect that the authors 
are in a good position to provide readers with some guidance regarding the choice 
of parameter sets. (Also: a minor note on Table 1—the row labels could be 
improved: why is the FAO soil data simply listed as “parameters” and the snow 
albedo simply listed as “albedo”? It looks like words were dropped.) 

Thanks for this comment. Added the following text in Line 272-292: 

The parameters and specifications listed in Table 1 are largely default settings defined by the 
Noah LSM community (NCAR Research Applications Library, 2021). Ongoing research aims to 
identify where model output performance can be improved with parameter updates. 
Evaluating parameter updates had similar challenges as evaluating input forcing described in 
Section 1.2: without reliable reference data it is difficult to determine a “best” input. For 
example, we have explored changing soil parameters from FAO to International Soil Reference 
and Information Centre (ISRIC) SoilGrids database (Hengl et al., 2017). This change did not 
result in improvements in streamflow statistics in southern Africa, nor in soil moisture 
anomalies’ ability to represent drought events. We expect similar results in Afghanistan where, 
e.g., streamflow will be sensitive to a change in soil parameters and the lack of referenced data 
to evaluate if there is an improvement. Moreover, our model runs at 0.1 and 0.01 degrees may 
not fully exploit the added value of the 250m soil grids as noted in Ellenburg et al. (2021) for a 
LISF application in East Africa. 

Vegetation parameters are also potential sources of improvement whose importance to LDAS 
hydrologic estimates has been highlighted (e.g., Miller et al., 2006). We have found the NCEP 
estimates of green vegetation fraction (GVF) to be sufficient for this configuration of Noah 3.6. 
We found that a time series of GVF derived from the Normalized Difference Vegetation Index 



(NDVI) did not improve representation of droughts in eastern Africa. However, future FLDAS 
global and Central Asia versions can be run with Noah-Multi parameterization (Noah-MP) (Niu 
et al., 2011) which has multiple vegetation options and relies on either Leaf Area Index rather 
or GVF. This model update is expected to open possibilities for choice of datasets to meet our 
application needs and potentially improve representation of the water balance. 
  
Re: Also: a minor note on Table 1… Thank you, we have updated the rows in Table 1. Changing 
“Parameters” to “Soil Parameters”, and combined average and max albedo into “Albedo” 

2. Section 2.3: The authors explain how they used the different precipitation datasets, but 
I’m confused about the rationale. IMERG is not a particularly new product—it’s been 
available for several years. Why does the system still use GDAS precipitation and only 
include IMERG as a data comparison? The IMERG Late (or Early) runs would have low 
enough latency for real-time monitoring applications, and the authors later note that they 
plan to integrate IMERG into the system. Is there a reason why this isn’t already done? For 
example, some practical or product continuity advantage to using GDAS instead of IMERG? 

Thanks for this question and it fits with themes we’ve identified in the reviews (1) why the 
inputs were chosen (2) better description of limitations and future work. We also propose to 
add text to the following sections: 
 
So, great point, we’re certainly moving in that direction to incorporate the benefits of IMERG 
into the products co-authors are developing for the food/water security user community. We 
anticipate you may see these products on the USGS website in the next year, as well as 
associated technical documentation. 
 

1.2 Hydrologic Data Availability and Uncertainty Line 213-222 

To summarize, our experience and the literature have characterized uncertainties in available 
meteorological forcing for the region. GDAS, CHIRPS, and MERRA-2 were chosen for the FLDAS 
system based on our project requirements of (a) a sufficiently long historical record for 
contextualizing estimates in terms of anomalies (b) low latency (< 1-month) for timely decision 
support, (c) familiar to the FEWS NET user-community, and (d) prior evaluation by our team and 
the broader community. We note here and describe in more detail later that the Integrated 
Multi-satellite Retrievals for the Global Precipitation Mission (IMERG), a NASA precipitation 
product (Huffman et al., 2020) also meets these requirements, since version 6 which was 
released in 2019 (after these studies and initial FLDAS configuration). We will a describe IMERG, 
GDAS, and MERRA-2 comparison in the Results (Section 3). 
 
3.4 Limitations and Future Developments Line 474-493 
IMERG version 6 was released in 2019 and includes rainfall estimates processed back to 2000. 
Prior to this change we had found encouraging results when comparing the onset of rainy 
season using both IMERG Late Run and CHIRPS (Kirschbaum et al., 2016). However, at that time 
the period of record was a limitation for computing anomalies. We now have an adequate 



period of record, and IMERG Late Run is planned to be part of the upcoming FLDAS global and 
FLDAS Central Asia releases. We are also encouraged by the quality of IMERG at the daily 
timestep when compared to CHIRPS over the United States where accurate reference data are 
available (Sarmiento et al., 2021). 
 
In addition to IMERG other promising rainfall datasets are in development. Ma et al. (2020) 
have developed the AIMERG dataset that combines IMERG Final Run with the APHRODITE rain-
gauge derived product (Yatagai et al., 2012).  Another promising dataset is CHIMES (Funk et al., 
2022), a blend of CHIRPS and IMERG, whose developers have been exploring the strengths and 
limitations of these two datasets and their fusion to produce an optimal product. 
 
With respect to other FLDAS developments, FLDAS global and Central Asia are planned to be 
transition to Noah-MP. This will allow for improved representation of snowpack and 
groundwater. This will also necessitate the use of different parameters, e.g., leaf area index, as 
well as the potential to explore different parameter sets like ISRIC soils.  In the meantime, 
multi-forcing and multi-model ensembles, and convergence of evidence with other remotely 
sensed data and field reports, are a viable approach for providing hydrologic estimates for 
various applications. 
 
 

3. Figure 6: Can the authors comment on the fact that the coarse resolution global run 
appears to do better than the high-resolution CA run in this data comparison? I find it 
surprising, given the presumed topographic sensitivity of SCA. 

Given the potential for confusion, rather than adding clarify/information to our description we 
removed Figure 6. 
 
The categorical statistics do indicate that Central Asia (GDAS) tends to have both a higher 
probability of detection AND false alarm rate, indicating higher mean than MODIS SCF and 
Global (CHIRPS). Figure 6 emphases the high mean and apparent better correspondence of the 
global run. This may be further exacerbated by the spatial averaging over the basin.  
  
We added some additional text regarding additional analysis we conducted comparing the 
Central Asia and global datastreams to other remotely sensed products: 
 
Methods: Line 370-380 
 
In addition to rainfall and snow comparisons, we conducted monthly pixel-wise comparison of 
Central Asia and the global run’s estimates of evapotranspiration (ET) and soil moisture versus 
Operational Simplified Surface Energy Balance (SSEBop, (Senay et al., 2013)). ET and Soil 
Moisture Active Passive (SMAP) Level 3 (Entekhabi et al., 2010, 2016) using the Normalized 
Information Contribution (NIC) metric following Sarmiento et al., (2021). The analysis was 
performed for the period 2016-2021 to match the SMAP record. The NIC metric first computes 
anomaly correlations between the model runs and the reference dataset and then computes 



the difference between the performance of each model run using a scale of -1 to +1 to highlight 
if the global or Central Asia data stream performs better with respect to the reference. To make 
the comparisons, the reference datasets (SMAP and SSEBop) were re-gridded to match the grid 
spacing and locations of the experiment model outputs. 
Results: Line 436-443 
 
In addition to precipitation and snow cover comparisons we conducted comparisons with 
remotely sensed soil moisture and ET (not shown). We found that in general, GDAS derived 
estimates of ET consistently performed better over Afghanistan in terms of pixel-wise anomaly 
correlation and NIC with SSEBop ET. Meanwhile, neither modeled estimate of soil moisture 
consistently outperformed the other with respect to SMAP. The ET results lend some support to 
the quality of the Central Asia data stream estimates. However, the lack of signal in the soil 
moisture comparisons suggests that more careful analysis of the model and remote sensing 
errors is required before drawing conclusions regarding which data stream is “best.” 
 
 

4. The authors note various limitations and potential areas of improvement throughout 
the paper. I would find it useful for this information to be included in a short section 
near the end of the paper on “Limitations and Future Work” that could describe ongoing 
FLDAS development activities. While the future work isn’t a necessary component of 
this data description paper, it would be valuable for the reader to have this information 
when considering adopting FLDAS to support research or operations. 

Good suggestion. We added  3.4 Limitations and Future Developments Line 474-493 
 
IMERG version 6 was released in 2019 and includes rainfall estimates processed back to 2000. 
Prior to this change we had found encouraging results when comparing the onset of rainy 
season using both IMERG Late Run and CHIRPS (Kirschbaum et al., 2016). However, at that time 
the period of record was a limitation for computing anomalies. We now have an adequate 
period of record, and IMERG Late Run is planned to be part of the upcoming FLDAS global and 
FLDAS Central Asia releases. We are also encouraged by the quality of IMERG at the daily 
timestep when compared to CHIRPS over the United States where accurate reference data are 
available (Sarmiento et al., 2021). 
 
In addition to IMERG other promising rainfall datasets are in development. Ma et al. (2020) 
have developed the AIMERG dataset that combines IMERG Final Run with the APHRODITE rain-
gauge derived product (Yatagai et al., 2012).  Another promising dataset is CHIMES (Funk et al., 
2022), a blend of CHIRPS and IMERG, whose developers have been exploring the strengths and 
limitations of these two datasets and their fusion to produce an optimal product. 
 
With respect to other FLDAS developments, FLDAS global and Central Asia are planned to be 
transition to Noah-MP. This will allow for improved representation of snowpack and 
groundwater. This will also necessitate the use of different parameters, e.g., leaf area index, as 
well as the potential to explore different parameter sets like ISRIC soils.  In the meantime, 



multi-forcing and multi-model ensembles, and convergence of evidence with other remotely 
sensed data and field reports, are a viable approach for providing hydrologic estimates for 
various applications. 
 

RESPONSE TO REVIEWER #2 
 

1. Title: The title is misleading since the majority (if not all) the content focuses on Afghanistan. 
I would’ve been okay if the title was “A Hydrologic Monitoring Dataset for Food and Water 
Security Applications in Afghanistan” instead. I do appreciate the fact the system is setup for 
both globally and for the Central Asia domain, but there are no tests to corroborate its 
performance outside Afghanistan presented in the manuscript.  

Thanks for this comment. We propose a new title that reflects that the data is available for all 
Central Asia, but our motivation/application is Afghanistan:  
 
A Central Asia Hydrologic Monitoring Dataset for Food and Water Security Applications in 
Afghanistan 
 
2. Abstract: The abstract is written quite general with results being presented rather vaguely 

Thanks for this comment, we re-wrote the abstract to better reflect the criterion put forth by 
the journal for a data descriptor (significance, uniqueness of these data, usefulness for future 
interpretation, and completeness) as well as updates during the review process (additional 
content and re-organization of introduction, and framing/motivation). 
 
From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape 
where droughts, floods, conflict, and economic market accessibility pose challenges for 
agricultural livelihoods and food security. The ability to remotely monitor environmental 
conditions is critical to support decision making for humanitarian assistance. The Famine Early 
Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) global and 
Central Asia data streams provide information on hydrologic states for routine integrated food 
security analysis. While developed for a specific project, these data are publicly available and 
useful for other applications that require hydrologic estimates of the water and energy balance. 
These two data streams are unique because of their suitability for routine monitoring, as well as 
a historical record for computing relative indicators of water availability. The global stream is 
available at ~1 month latency, monthly average outputs on a 10-km grid from 1982-present. 
The second data stream, Central Asia (30-100 °E, 21-56 °N), at ~1 day latency, provides daily 
average outputs on a 1-km grid from 2000-present. This paper describes the configuration of 
the two FLDAS data streams, background on the software modeling framework, selected 
meteorological inputs and parameters, and results from previous evaluation studies. We also 
provide additional analysis of precipitation and snow cover over Afghanistan. We conclude with 
an example of how these data are used in integrated food security analysis. These data are 
hosted by the National Aeronautics and Space Administration (NASA) and U.S. Geological 

https://www.earth-system-science-data.net/peer_review/review_criteria.html
https://www.earth-system-science-data.net/peer_review/review_criteria.html


Survey data portals for use in new and innovative studies that will improve understanding of 
this region. 
 
3. Introduction: It is rather unusual to begin a section with the figures without any context 

Thanks for this comment. We have re-organized the introduction so that the sections begin 
with text as follows.  
 
1.0 Introduction Lines 41-84: 
From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape 
where droughts, floods, conflict, and economic market accessibility pose challenges for 
agricultural livelihoods and food security. The ability to remotely monitor environmental 
conditions is critical to support decision making for economic development, humanitarian 
assistance, water resource management, agriculture and more. Environmental datasets can be 
combined with socio-economic variables and transformed into customized products to support 
decision making. This is the definition of a ‘climate service’ (Hewitt et al., 2012). 
 
1.1 Afghanistan Weather and Climate Lines 85-116 
Central Asia, a region that includes Afghanistan, is water-scarce, receiving roughly 75% of its 
annual precipitation during November–April (Oki and Kanae, 2006). In Afghanistan, rainfall is 
highest in the northeast Hindu Kush Mountains and decreases toward the arid southwest 
Registan Desert (Fig. 1a). Temperature follows a similar pattern with cooler temperatures in the 
high elevation, wetter northeast and warmer temperatures in the south and southwest (Fig. 
1b).  
 
4. Introduction: The section lacks a proper introduction within a broader context and 
motivation, both in terms of the region and in terms of efforts to predict land surface variables 
with modeling and remote sensing products 

Thanks for this comment. If you refer to the ‘track changes’ document, you’ll see that we’ve re-
written the entire intro and appreciate and the opportunity to better motivate the work for the 
readers. We connect to the theme of Climate Services and provide a more in-depth 
introduction to efforts that have previously conducted evaluation on inputs and outputs of land 
surface variables & remote sensing in the region. We think this better reflects our motivation, 
which is the development of a dataset for monitoring, rather than a focus on resolving 
uncertainties in the water balance. Below highlights the how we’ve reorganized to provide 
background on 3 distinct aspects of the data descriptor. 
 
1 Introduction 
From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape 
where droughts, floods, conflict, and economic market accessibility pose challenges for 
agricultural livelihoods and food security. The ability to remotely monitor environmental 
conditions is critical to support decision making for economic development, humanitarian 
assistance, water resource management, agriculture and more. Environmental datasets can be 



combined with socio-economic variables and transformed into customized products to support 
decision making. This is the definition of a ‘climate service’ (Hewitt et al., 2012). [for more see 
revised text…] 
 
1.1 Afghanistan Weather and Climate 
Central Asia, a region that includes Afghanistan, is water-scarce, receiving roughly 75% of its 
annual precipitation during November–April (Oki and Kanae, 2006). In Afghanistan, rainfall is 
highest in the northeast Hindu Kush Mountains and decreases toward the arid southwest 
Registan Desert (Fig. 1a). Temperature follows a similar pattern with cooler temperatures in the 
high elevation, wetter northeast and warmer temperatures in the south and southwest (Fig. 
1b). Regional precipitation is strongly influenced by the El Niño-Southern Oscillation (ENSO). La 
Niña conditions are associated with below average precipitation (FEWS NET, 2020b) and El Niño 
conditions are associated with above average precipitation (Barlow et al., 2016; Hoell et al., 
2017; Rana et al., 2018; Hoell et al., 2018, 2020; FEWS NET, 2020a). Other factors with an 
important influence on precipitation include orography, storm tracks, and the Madden–Julian 
oscillation (Barlow et al., 2005; Nazemosadat and Ghaedamini, 2010; Hoell et al., 2018). The 
last several years have experienced several ENSO events, with recent La Niña events in 2016-17, 
2017-18, and 2020-2022 (NOAA CPC ENSO Cold & Warm Episodes by Season, 2021) that 
corresponded to droughts (FEWS NET, 2017b, 2018c, 2021). [for more see revised text…] 
 
1.2 Hydrologic Data Availability and Uncertainty 
Remote sensing and models are important inputs to climate services (Qamer et al., 2019). In 
the Central Asia region, and especially Afghanistan estimates of meteorological inputs, and 
model parameters have considerable uncertainty due to sparse in situ environmental 
observations. To address these challenges, the NASA High Mountain Asia project 
(https://www.himat.org/) has broadly aimed to explore the driving changes in hydrology as well 
as model validation and data assimilation, and water budget processes from the Himalayas in 
the south and east to the Hindu Kush in the west. These efforts and other studies of satellite 
derived rainfall informed the configuration and interpretation of the FLDAS Central Asia and 
global data streams. [for more see revised text…] 
 
 
5. Section 2.2: Precipitation is mentioned as the most important input. However, I found the 
authors could have done a better job comparing multiple products (e.g., ERA-Land, MSWEP, 
and others). The comparison seems rather limited. It also gives the impression that 
precipitation is the only meaningful forcing to compare against other products. I’d assume 
temperature and radiation would play a role as well, especially if the focus is on getting snow 
water equivalent predictions. Why haven’t the authors compared other forcing variables? How 
do we know they perform well in Afghanistan? 

Thanks for this comment. Regarding the limited comparisons of other products, we have now 
added additional background in Section 1.2 summarizing previous evaluation studies. Line 143-
183 



In the absence of abundant in situ observations, one approach for remote sensing and model 
evaluation is to compare multiple input datasets and evaluate the water balance. Independent 
observations from the different components of the water balance (e.g., evapotranspiration, soil 
moisture, streamflow) help constrain estimates. We provide some background here and refer 
readers and data users to literature from the NASA High Mountain Asia project, specifically 
Yoon et al. (2019) and Ghatak et al. (2018), who explored similar configurations to the FLDAS 
system. This background allows the reader to appreciate the uncertainties in inputs, outputs 
and derived products and climate services over Afghanistan and the broader Central Asia 
region.  

Meteorological forcing is known to be the primary source of uncertainty in land surface model 
simulations (Kato and Rodell, 2007). Thus, its evaluation is important to understand the quality 
of model inputs and outputs. For this reason, Ghatak et al. (2018) compare four unique 
precipitation data sources: daily Climate Hazards center Infrared Precipitation with Stations 
(CHIRPS) (Funk et al., 2015), NOAA’s Global Data Assimilation System (GDAS) (Derber et al., 
1991), and two estimates from NASA’s Modern Era Reanalysis for Research and Applications 
version 2 (MERRA-2) (Gelaro et al., 2017). They find that annual CHIRPS and GDAS precipitation 
estimates had similar bias and root mean squared error over Afghanistan with respect to 
APHRODITE (Asian Precipitation Highly Resolved Observational Data Integration Toward 
Evaluation) rain-gauge derived product (Yatagai et al., 2012). CHIRPS had a higher correlation 
with APHRODITE. Ghatak et al. (2018) further evaluated the quality of rainfall inputs based on 
the performance of evapotranspiration and other derived outputs. The authors caution that 
gridded precipitation estimates that have in situ inputs, like CHIRPS, may systematically 
underestimate precipitation in mountainous regions. We keep this consideration in mind when 
interpreting differences between FLDAS global and Central Asia data streams. 

Yoon et al. (2019) compare precipitation estimates from 10 different products including 
APHRODITE, CHIRPS, GDAS, and MERRA-2, across a broad region of High Asia, including a 
portion of Afghanistan. They find that all datasets generally capture the spatial pattern of 
rainfall and that the products tend to agree more at high elevations, where it is unlikely there 
are station observations. Like Ghatak et al. (2018), they found CHIRPS and APHRODITE to have a 
lower average precipitation than GDAS, attributable to the incorporation of sparse gauge data.  

It also gives the impression that precipitation is the only meaningful forcing to compare against 
other products. I’d assume temperature and radiation would play a role as well, especially if the 
focus is on getting snow water equivalent predictions. Why haven’t the authors compared 
other forcing variables? How do we know they perform well in Afghanistan? 

Lines 175-183: In addition to precipitation, other meteorological inputs are important for 
accurate hydrologic estimates. Yoon et al. (2019) conducted an intercomparison of near surface 
air temperature estimates from three model analysis products (European Centre for Medium-
Range Weather Forecasts (ECMWF; Molteni et al., 1996), GDAS, and MERRA-2). They noted a 
statistically significant upward trends in GDAS and ECMWF temperature, as well as consistently 
higher temperatures in MERRA-2. We see the same pattern when averaging across Afghanistan. 



Yoon et al. (2019) conclude that improvements in the meteorological boundary conditions 
would be needed to reduce the uncertainty in the terrestrial budget estimates. These 
sentiments are echoed in Qamer et al. (2019).  

We also conducted temperature analysis comparing GDAS and MERRA2, specifically over the 
Afghanistan domain. And included the following the following text in Lines 320-328 

The FLDAS models require additional meteorological inputs, including air temperature, 
humidity, radiation, and wind. The lower-latency Central Asia data stream uses GDAS 3-hourly 
meteorological inputs available from 2001-present at <1-day latency. For a longer historical 
record, the global data stream uses MERRA-2 (Gelaro et al., 2017) (1979-present) 1-hourly 
products with a two-week latency. Over the Afghanistan domain GDAS temperature has an 
upward trend, whereas MERRA-2 is consistently warmer before 2010. We find that GDAS and 
MERRA-2 temperature estimates are of similar magnitude during 2011-2020. Similar results 
were noted by Yoon et al. (2019) who found an upward trend in GDAS temperature, as well as 
consistently higher temperatures in MERRA-2 across a broad High Asia domain. 

6. L194-195: How did the authors find GDAS and CHIRPS appropriate? Any preliminary tests 
they had carried out? Can the authors be more specific here? 

Thanks for this question, we’ve added additional background for the readers regarding both our 
criteria for choosing the precipitation inputs as well as results from other evaluation studies. 
 
Section 1.2 Meteorological Background 
With respect to criteria: 
 
Lines 64-67: The inputs (e.g., precipitation) and resulting hydrologic estimates (a) provide a 40+ 
year historical record for contextualizing estimates in terms of departures from average (i.e., 
anomalies), (b) are low latency (< 1-month) for timely decision support, and (c) are familiar to 
the food and water security user-community. 
  
Lines 213-218 To summarize, our experience and the literature have characterized 
uncertainties in available meteorological forcing for the region. GDAS, CHIRPS, and MERRA-2 
were chosen for the FLDAS system based on our project requirements of (a) a sufficiently long 
historical record for contextualizing estimates in terms of anomalies (b) low latency (< 1-month) 
for timely decision support, (c) familiar to the FEWS NET user-community, and (d) prior 
evaluation by our team and the broader community. 
 
More on the needs for historical record Lines 185-195: 
Despite known uncertainties, Schiemann et al. (2008) find that gridded precipitation estimates 
can qualitatively identify large scale spatial distribution of precipitation, seasonal cycles, and 
interannual variability (i.e., wet and dry years) across Central Asia. Long-term estimates of 
rainfall from satellite derived products, as well as derived historical time series from hydrologic 
modeling, can be used as a baseline of “observations,” from which we can have a sense of 



relative conditions, i.e., anomalies and variability. When this historical record is harmonized 
with a routine monitoring system, current conditions can be placed in historical context. 
Anomaly-based representation of hydrologic extremes can provide confidence in modeled 
estimates that have the potential to influence agricultural, water resources and food security 
outcomes. For these reasons one of the requirements for FLDAS input is that there is a 
sufficiently long historical record for contextualizing estimates in terms of anomalies. 
 
With respect to precipitation evaluation Lines 143-183 
 
…We provide some background here and refer readers and data users to literature from the 
NASA High Mountain Asia project, specifically Yoon et al. (2019) and Ghatak et al. (2018), who 
explored similar configurations to the FLDAS system. This background allows the reader to 
appreciate the uncertainties in inputs, outputs and derived products and climate services over 
Afghanistan and the broader Central Asia region.  
 
Meteorological forcing is known to be the primary source of uncertainty in land surface model 
simulations (Kato and Rodell, 2007). Thus, its evaluation is important to understand the quality 
of model inputs and outputs. For this reason, Ghatak et al. (2018) compare four unique 
precipitation data sources: daily Climate Hazards center Infrared Precipitation with Stations 
(CHIRPS) (Funk et al., 2015), NOAA’s Global Data Assimilation System (GDAS) (Derber et al., 
1991), and two estimates from NASA’s Modern Era Reanalysis for Research and Applications 
version 2 (MERRA-2) (Gelaro et al., 2017). They find that annual CHIRPS and GDAS precipitation 
estimates had similar bias and root mean squared error over Afghanistan with respect to 
APHRODITE (Asian Precipitation Highly Resolved Observational Data Integration Toward 
Evaluation) rain-gauge derived product (Yatagai et al., 2012). CHIRPS had a higher correlation 
with APHRODITE. Ghatak et al. (2018) further evaluated the quality of rainfall inputs based on 
the performance of evapotranspiration and other derived outputs. The authors caution that 
gridded precipitation estimates that have in situ inputs, like CHIRPS, may systematically 
underestimate precipitation in mountainous regions. We keep this consideration in mind when 
interpreting differences between FLDAS global and Central Asia data streams. 
 
Yoon et al. (2019) compare precipitation estimates from 10 different products including 
APHRODITE, CHIRPS, GDAS, and MERRA-2, across a broad region of High Asia, including a 
portion of Afghanistan…. 
 
From our own analysis we show precipitation comparisons Figure 4, and Snow Cover Fraction 
comparisons (Fig 6 a&b), we also conducted some additional analysis and added discussion 
regarding soil moisture and ET comparisons with the two data streams (Line 436-443):  
 
In addition to precipitation and snow cover comparisons we conducted comparisons with 
remotely sensed soil moisture and ET (not shown). We found that in general, GDAS derived 
estimates of ET consistently performed better over Afghanistan in terms of pixel-wise anomaly 
correlation and NIC with SSEBop ET. Meanwhile, neither modeled estimate of soil moisture 
consistently outperformed the other with respect to SMAP. The ET results lend some support to 



the quality of the Central Asia data stream estimates. However, the lack of signal in the soil 
moisture comparisons suggests that more careful analysis of the model and remote sensing 
errors is required before drawing conclusions regarding which data stream is “best.” 
 
7. L199-200: The authors indicate that daily CHIRPS data need to be converted to sub-daily. 
There are other global products which are already sub-daily. Have the authors considered using 
those to bypass any further temporal disaggregation steps which could further introduce 
errors? 

Thanks for this comment. First, we clarify in the methods that the downscaling step is required 
because water and energy balances are calculated sub-daily. Lines 311-317 
 
For this approach, we use a finer timescale MERRA-2 precipitation timescale as a reference 
dataset to represent an accurate diurnal cycle. We note that this step in our methodology 
facilitates the solving of FLDAS water and energy balances at a sub-daily timestep. However, for 
Central Asia we do not have sufficient reference data available to assess the importance of sub-
daily precipitation distribution, as was demonstrated by Sarmiento et al. (2021) for the United 
States where adequate reference data are available. 
 
In Background Section 1.2 we now describe in more detail Yoon et al. 2019 and Ghatak et al. 
2018 comparisons with CHIRPS, GDAS and MERRA2 precipitation that are sub-daily, which we 
hope communicates to the reader the relatively good performance of CHIRPS, and justification 
for including it as a forcing.  These studies also used CHIRPS, which explicitly or implicitly 
required temporal downscaling to drive Land Surface Models.  
 
We also augment discussion in Limitations and Future Work on IMERG, also a sub-daily product 
that will not require the additional temporal downscaling step. Lines 474-480 
 
IMERG version 6 was released in 2019 and includes rainfall estimates processed back to 2000. 
Prior to this change we had found encouraging results when comparing the onset of rainy 
season using both IMERG Late Run and CHIRPS (Kirschbaum et al., 2016). However, at that time 
the period of record was a limitation for computing anomalies. We now have an adequate 
period of record, and IMERG Late Run is planned to be part of the upcoming FLDAS global and 
FLDAS Central Asia releases. We are also encouraged by the quality of IMERG at the daily 
timestep when compared to CHIRPS over the United States where accurate reference data are 
available (Sarmiento et al., 2021). 
 
8. Section 3.1: Perhaps I am naive with the FLDAS system but how does comparing gridded 
precipitation give an indication of performance of the system. My understanding (and I can be 
wrong here) is that FLDAS is an uncoupled system relative to the atmosphere, so precipitation is 
forcing/input variable rather than diagnostic or prognostic. Can the authors clarify why the 
comparison is needed and how they can link with the performance of their system? 



Thanks for this comment. You’re correct that the FLDAS is an uncoupled system. We 
understand that in locations where there is confidence (low uncertainty) in model inputs then 
one can focus on evaluating sensitivity and performance of the model outputs with respect to 
the model parameters and the parameterizations. e.g., you have ‘true’ rainfall but wish to 
evaluate your runoff generation parameterization.  

In response to comment #5 We have provided additional information in the 
introduction/background. We now better explain to the reader that large uncertainties exist in 
all the components of the water budget estimates, beginning with the precipitation.  

The revised introduction better explains that our motivation is to produce a dataset that can be 
used as input to ‘Climate Services’ and has been guided by previous studies that have 
determined credible model configurations (inputs, parameters, model). We then demonstrate 
that these model configurations are indeed credible given their routine use in Climate Services 
and decision support. We do provide additional information on the precipitation inputs to 
communicate to the reader inherent challenges of producing useful hydrologic estimates in this 
region.  

9. Figure 4 and Table 2: Linear correlation coefficient (R) at monthly and annual scales are 
expected to give relatively good performance and mainly tracks the seasonal and major year-to-
year variability, respectively. Since the authors stressed the sub-daily aspect of the product, 
how does the system compare with other daily and sub-daily precipitation products over 
Afghanistan? In addition, there is no metric referring to magnitude of rainfall as R relates mainly 
with this coarse temporal dynamics. The authors should consider looking at some “residual” 
metric (MAE, RMSE, MSE, …) 

In response to this and comment #7 We’ve revised how we frame the sub-daily aspect of the 
forcings. 

Lines 311-317: For this approach, we use a finer timescale MERRA-2 precipitation timescale as a 
reference dataset to represent an accurate diurnal cycle. We note that this step in our 
methodology facilitates the solving of FLDAS water and energy balances at a sub-daily timestep. 
However, for Central Asia we do not have sufficient reference data available to assess the 
importance of sub-daily precipitation distribution, as was demonstrated by Sarmiento et al. 
(2021) for the United States where adequate reference data are available. 
 

Regarding the magnitude of rainfall, we also now summarize results from Yoon et al. (2018) and 
Ghatak et al. (2019) who were able to conduct relative comparisons against e.g. gauge derived 
APHRODITE rainfall estimates. They caution however, that these data should not be interpreted 
as ‘truth’ and given the spatial distribution of gauges, and the apparent underestimation of ET 
and streamflow, that these ‘reference’ datasets likely have a low bias. Given the lack of a strong 
baseline, particularly at sub-monthly timesteps, residual metrics may be misleading.  



Future work in the community will help move toward more quantitative evaluation statistics. 
And this paper describes an available dataset, with known limitations that guide its application 
(e.g. in the use of relative indices like Snow Water Equivalent anomalies, rather than absolute 
estimates of water availability).  

10. Figures 5 and 6: Notice that up until this point, the reader has no idea about the location of 
these Afghan basins (no map is presented). In addition, there are not a single evaluation metric 
presented/discussed in this sub-section, the interpretation of the results seems to be only 
visual. 

Thanks for this comment, we now include a map (Figure 5) in the results section that shows the 
location of basins  

 
Figure 5. Hydrologic basins used in the analysis of categorical statistics for snow covered 
fraction. 
 

11. I found the example of application 2017-2018 wet season only for Afghanistan to be very 
limited when disseminating the global and Central Asia product as claimed by the authors. This 
example does not cover all aspects of a comprehensive evaluation and assessment of the 
performance of this system. How do we know the system works for normal years or anomalous 
wet periods? How about for other regions outside Afghanistan domain. I think it is very 
dangerous to extrapolate such limited results to larger domain and to other 
hydrometeorological conditions. I also found it strange the fact that impacts of drought on 
agriculture are mentioned by the authors but no analysis of soil moisture from FLDAS is 



provided directly to the readers. The authors should present a much more thorough 
assessment in my opinion.  

We appreciate and agree with the reviewer's concern for the potential extrapolation of results. 
We have included explicit caution for users of the data regarding the challenges & uncertainties 
for data in this region in the Section 3.4 “limitations & future developments” section before this 
4.0 Applications section. We have also better described previous literature on evaluation and 
uncertainties associated with these data. 

The intent of this section is to demonstrate the ‘significance of the dataset’ specifically the 
criteria that it is being used in a Climate Services/decision support context for food and water 
security applications, rather than a comprehensive evaluation.  This presentation is now better 
framed in the introduction where we now describe these data are motivated by the need for 
“Climate Services” where relative estimates and routinely updated information can be applied 
to different questions.  

How do we know the system works for normal years or anomalous wet periods? How about for 
other regions outside the Afghanistan domain?   

We do have some anecdotal examples of it working in wet periods (e.g. Widespread snowfall in 
Afghanistan). The reader could also refer to the products in Table 4. To confirm performance in 
normal or anomalous wet periods, the FEWS NET Afghanistan Seasonal Monitors highlight the 
use of these data since 2018.   

However, we understand that the reviewer is likely hoping for a more quantitative analysis! We 
find that the development of a metric that would account for performance of a derived 
indicator is beyond the scope of this data descriptor e.g. categorical statistics (POD and FAR) for 
below-normal, normal, and above-normal years. This would require an independent reference 
dataset. We and other authors have attempted comparison with remotely sensed data (e.g. soil 
moisture, evaporation, total water storage, microwave snow estimates) but each of these data 
sources has its own set of errors that needs to be accounted for in the interpretation.  

We hope that with the improvements to the introduction in terms of our motivation to provide 
inputs to Climate Services, as well as a review of prior evaluations better frames this section as 
a demonstration of the significance of these datasets, specifically that they are being applied in 
routine decision support.  

12. Figure 10: Notice some of the text in the figure is too small to read. 

We will separate out the figures so that the text is legible in the resubmission. 

 

 
 

https://earthobservatory.nasa.gov/images/89674/widespread-snowfall-in-afghanistan
https://earthobservatory.nasa.gov/images/89674/widespread-snowfall-in-afghanistan
https://fews.net/search?date_range=All&field_report_primary_area%5B%5D=2&keywords=seasonal+monitor&field_report_coverage_period_value%5Bmin%5D=&field_report_coverage_period_value%5Bmax%5D=&sort_by=field_report_coverage_period_value&sort_order=DESC&report_sort_by=DESC


 
Figure 10a. Basins and provinces highlighted in the 2017-18 drought example. 
 
 

 



Figure 10b. CHIRPS cumulative rainfall for 2017-18 vs average conditions for Daykundi Province. 
Figure from USGS EWX. 
 

 
Figure 10c. CHIRPS cumulative rainfall for 2017-18 vs average conditions for Maydan Wardak 
Province. Figure from USGS EWX. 
  

 
Figure 10d. Helmand Basin snow water equivalent (SWE) from the Central Asia data stream. 
The grey shading indicates the range of the minimum and maximum values, dashed blue line is 
the average, and black line is 2017-18. Figure from USGS EWX. 
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