
REVIEWER #2 
 

Author’s response: We really appreciate the comments from the reviewers and note some 
common themes: (1) why were the parameters and forcing choices made? R1.1, R1.2, R1.4, 
R2.6, R2.7 (2) why were the evaluation methods chosen R2.5, R2.8, R2.9. (3) some general 
questions that we think could be clarified by the motivation, and our interpretation of the 
scope of a data descriptor (4) Addition of a clear ‘limitations and future work’ section (5) 
Editorial comments: Figure legibility, figure placement, edits to intro and abstract.  
 

1. Title: The title is misleading since the majority (if not all) the content focuses on 
Afghanistan. I would’ve been okay if the title was “A Hydrologic Monitoring Dataset for Food 
and Water Security Applications in Afghanistan” instead. I do appreciate the fact the system 
is setup for both globally and for the Central Asia domain, but there are no tests to 
corroborate its performance outside Afghanistan presented in the manuscript.  

Thanks for this comment. We propose a new title that reflects that the data is available for all 
Central Asia, but our motivation/application is Afghanistan:  
 

A Central Asia Hydrologic Monitoring Dataset for Food and Water Security Applications in 
Afghanistan 

 
2. Abstract: The abstract is written quite general with results being presented rather vaguely 

Thanks for this comment, we re-wrote the abstract to better reflect the criterion put forth by 
the journal for a data descriptor (significance, uniqueness of these data, usefulness for future 
interpretation, and completeness) as well as updates during the review process (additional 
content and re-organization of introduction, and framing/motivation). 
 

From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape 
where droughts, floods, conflict, and economic market accessibility pose challenges for 
agricultural livelihoods and food security. The ability to remotely monitor environmental 
conditions is critical to support decision making for humanitarian assistance. The FEWS NET 
Land Data Assimilation System (FLDAS) global and Central Asia data streams provide 
information on hydrologic states for routine integrated food security analysis. While developed 
for a specific project these data are publicly available and useful for other applications requiring 
hydrologic estimates of snow water equivalent, soil moisture, runoff and other variables 
representing the water and energy balance. The unique aspects of these data are their 
suitability for routine monitoring and a historic record for computing relative indicators of 
water availability. Specifically, the global stream is available at ~1 month latency, monthly 
average outputs on a 10 km2 grid from 1982-present. The second data stream, Central Asia, at 
~1 day latency, provides daily average outputs on a 1 km2 grid from 2000-present. This paper 
describes the configuration of the two FLDAS data streams, background on the software 
modeling framework, selected meteorological inputs and parameters, results from previous 
evaluation studies as well as a summary of strengths and limitations for future users. We 

https://www.earth-system-science-data.net/peer_review/review_criteria.html
https://www.earth-system-science-data.net/peer_review/review_criteria.html


provide additional analysis of precipitation and snow cover over Afghanistan, and an example 
of how these data are used in integrated food security analysis. These data are hosted by NASA 
and US Geological Survey data portals for use in new and innovative studies and applications 
that may improve understanding of this important region. 
 
3. Introduction: It is rather unusual to begin a section with the figures without any context 

Thanks for this comment. We have re-organized the introduction so that the sections begin 
with text as follows.  
 

1.0 Introduction: 
From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape 
where droughts, floods, conflict, and economic market accessibility pose challenges for 
agricultural livelihoods and food security. The ability to remotely monitor environmental 
conditions and develop “Climate Services” is critical to support decision making for economic 
development and humanitarian assistance…. 
 

1.1 Afghanistan Weather and Climate 

Central Asia, a region that includes Afghanistan, is water-scarce receiving roughly 75% of its 
annual precipitation during November–April … Figures 1a [precip] & Figure 1b [temperature] 
 
4. Introduction: The section lacks a proper introduction within a broader context and 
motivation, both in terms of the region and in terms of efforts to predict land surface 
variables with modeling and remote sensing products 

Thanks for this comment, and the opportunity to better motivate the work for the readers and 
connect to the theme of Climate Services and provide a more in-depth introduction to efforts 
that have previously conducted evaluation on inputs and outputs of land surface variables & 
remote sensing in the region. We think this better reflects our motivation, which is the 
development of a dataset for monitoring, rather than a focus on resolving uncertainties in the 
water balance. Here is new version of the introduction with new text highlighted in blue. 
 

1 Introduction 

From the Hindu Kush Mountains to the Registan desert, Afghanistan is a diverse landscape 
where droughts, floods, conflict, and economic market accessibility pose challenges for 
agricultural livelihoods and food security. The ability to remotely monitor environmental 
conditions and develop “Climate Services” is critical to support decision making for economic 
development and humanitarian assistance. A Climate Service, as defined by the World 
Meteorological Organization (WMO), and the Global Framework for Climate Services (Hewitt et 
al. 2012), is a “decision aid derived from climate information that assists individuals and 
organizations to improve decision making.” Estimates of hydrologic variables relevant are water 
resources, agriculture, natural disaster risk reduction and more.  

https://gfcs.wmo.int/what-are-climate-services


 
When hydrologic datasets are updated routinely the influences of climate variability and 
climate change can be incorporated into analysis by intermediary users1. These intermediate 
users (i.e., Climate Service providers) in turn can produce assessments of current and future 
needs for humanitarian assistance or other applications. Several case study examples can be 
found in McNally et al. 2019 that describe the co-production of Climate Services from 
hydrologic and agricultural Earth Observations. One such example, relevant to this data 
descriptor, is the Famine Early Warning System Network (FEWS NET), whose food security 
analysts combine environmental information, largely from remote sensing and earth system 
models, with nutrition, livelihoods and markets and trade to provide decision support to US 
Agency for International Development (USAID) Bureau of Humanitarian Assistance. Further 
discussion of the co-production of Climate Services can be found in the literature e.g. Vincent et 
al. 2018, and FEWS NET Climate Services (blog post). 
 
This paper describes the FEWS NET Land Data Assimilation System (FLDAS) hydrologic modeling 
system’s global and Central Asia data streams, which are designed for food and water security 
applications. Specifically, the inputs (e.g., precipitation) and resulting data streams (e.g., snow 
water equivalent) (a) provide a long historic record for contextualizing estimates in terms of 
departures from the mean (anomalies) (b) are low latency (< 1-month) for timely decision 
support (c) are familiar to the FEWS NET user-community. While these data are tailored to 
specific needs, this paper describes the data streams to enable their use by a broader 
community of researchers or Climate Service practitioners.  
 
The purpose of this data descriptor is four-fold: (1) describe the development of the moderate 
resolution, low latency FLDAS system to inform hydrologic monitoring for Central Asia, 
specifically Afghanistan, (2) increase awareness of these data resources which are intended to 
be a public good, (3) demonstrate how  our methods inform critical investigations that 
ultimately improve general understanding of water resources in this important region of the 
world, and (4) advocate for a convergence of evidence approach to hydrologic monitoring in 
locations where all sources of information contain some level of uncertainty. 
 
An outline of this data descriptor is as follows. First, we’ll provide Background on Afghanistan 
Weather and Climate. Then review previous studies that have conducted evaluations of the 
meteorological inputs and hydrologic outputs of Land Data Assimilation Systems in the Central 
Asia and High Mountain Asia region. In section 2 (Methods) we describe the hydrologic 
modeling system, parameters and meteorological inputs and model outputs. In the Results 
(section 3) we report comparisons to other precipitation estimates, as well as comparisons of 
modeled snow estimates to remotely sensed snow observations and find generally good 
agreement. Finally, we describe an application (section 4) of these data to the Afghanistan 
drought of 2018. 

 
1 the WMO defines intermediate (intermediary) users as those who transform climate information into a climate 

service 

https://www.sciencedirect.com/science/article/pii/S2405880718300712
https://www.sciencedirect.com/science/article/pii/S2405880718300712


1.1 Afghanistan Weather and Climate 

Central Asia, a region that includes Afghanistan, is water-scarce receiving roughly 75% of its 
annual precipitation during November–April (Oki and Kanae, S., 2006). In Afghanistan, rainfall is 
highest in the northeast Hindu Kush Mountains and decreases toward the arid southwest 
Registan Desert (Fig. 1a). Temperature follows a similar pattern with cooler temperatures in the 
high elevation and wetter northeast and warmer temperature in the south, and southwest (Fig. 
1b). Regional precipitation is strongly influenced by the El Niño-Southern Oscillation (ENSO).  La 
Niña condition are associated with below average precipitation (FEWS NET, 2020b) and El Niño 
conditions associated with above average precipitation (Barlow et al., 2016; Hoell et al., 2017; 
Rana et al., 2018; Hoell et al., 2018, 2020; FEWS NET, 2020a). Other dynamical factors with an 
important influence on precipitation include orography, storm tracks, and the Madden–Julian 
oscillation (MJO) (Barlow et al., 2005; Nazemosadat and Ghaedamini, 2010; Hoell et al., 2018). 
The last several years have experienced a number of ENSO events, with recent La Niña events in 
2016-17, 2017-18, and 2020-2021 (NOAA CPC ENSO Cold & Warm Episodes by Season, 2021) 
that corresponded to droughts (FEWS NET, 2017b, 2018c, 2021). 
 

 
Figure 1a. Mean annual precipitation in Afghanistan from 1991-2020, overlayed on province 
boundaries. Map (USGS Knowelge Base, 2021) with data from Funk et al. (2015). 



 
Figure 1b. Average maximum monthly temperature from (1986-2015), overlayed on province 
boundaries. Map (USGS Knowelge Base, 2021) with data from Verdin et al. (2020). 
 
 
Despite Afghanistan’s semi-arid climate, agriculture is an important sector, contributing 23% of 
the gross domestic product and employing 44% of the national labor force (CIA World 
Factbook). High mountain snowpack and snowmelt runoff are important for agricultural water 
supply, and according to the Famine Early Warning Systems Network (FEWS NET, 2018b) is 
responsible for “providing over 80% of irrigation water used. The timing and duration of the 
snowmelt is a key factor in determining the volume of irrigation water and the length of time 
that it is available, as well as its availability for use in marginal areas that experience [variable] 
rainfall.”  Therefore, routine hydrologic monitoring, with a particular emphasis on snow, is 
critical for tracking agricultural conditions and provides early warning for food insecurity.  

1.2 Hydrologic Data Availability and Uncertainty 

Remote sensing and models are important inputs to Climate Services. The challenge in the 
Central Asia and Afghanistan region however is that there is considerable uncertainty in 
estimates of meteorological inputs, model parameters and model estimates given the lack of in-
situ environmental observations.  One project that has explored this extensively is the NASA 



High Mountain Asia project (https://www.himat.org/) that asked, “What is driving changes in 
hydrology and cryosphere in the High Asia region?” and guided by sub-teams focusing on model 
validation and data assimilation, cryosphere dynamics and water budget processes. We will 
provide a summary of literature from this project and others guided the configuration and 
interpretation of the FLDAS Central Asia and Global runs.  
 
A primary challenge to producing and evaluating hydrologic estimate is sparse in-situ 
precipitation observations that lead to uncertainty in gridded and satellite-based precipitation 
estimates. Precipitation station observations are used for (a) bias correction of satellite 
estimates and (b) validation of gridded products. In terms of gridded dataset development, 
Hoell et al. (2015) describe lack of station observations in Afghanistan, Iraq and Pakistan and 
how complex topography in these locations makes this issue particularly problematic. Barlow et 
al. (2016) also highlight the station availability across the region and how that influences 
uncertainties in the Global Precipitation Climatology Center (GPCC) version 6 dataset over 
Central Asia (Fig. 2a) and specifically Afghanistan over time (Fig. 2b).  
 

  



 

 
Figure 2. a) Station data availability underlying the GPCC version 6 dataset, for the 1951–2010 
period, on the 0.5°-resolution grid over Central Asia. b) Number of Stations used as input to 
GPCC rainfall dataset in Afghanistan. 
 
One approach for remote sensing and model evaluation, given the lack of in-situ observations is 
to compare multiple input datasets, especially precipitation, and evaluate the water balance as 
a whole to take advantage of independent observations from the different components (e.g. 
evapotranspiration, soil moisture, streamflow). Particularly relevant to this work are Yoon et al. 
(2019) and Ghatak et al. (2018) which we refer readers and data users to to appreciate the 
uncertainties in inputs, outputs and derived products and climate services over Afghanistan and 
the broader Central Asia region. 
 
With respect to precipitation evaluation Ghatak et al. (2018) compare four unique precipitation 
data sources: daily Climate Hazards Infrared Precipitation with Stations (CHIRPS) product (Funk 
et al. 2015), NOAA’s Global Data Assimilation System (GDAS) (Derber et al., 1991), and two 
estimates from NASA’s Modern Era Reanalysis for Research and Applications version 2 (MERRA-
2) (Gelaro et al., 2017).   These products were compared to APHRODITE (Asian Precipitation - 
Highly-Resolved Observational Data Integration Toward Evaluation) rain-gauge derived product 
(Yatagai et al., 2012). They find that Annual CHIRPS and GDAS precipitation estimates 
performed similarly over [Afghanistan] with respect to APHRODITE in terms of bias and root 
mean squared error (RMSE). CHIRPS had a higher correlation with APHRODITE. Ghatak et al. 
(2018) further evaluated the quality of rainfall inputs based on the performance of 
evapotranspiration and other derived outputs. The authors caution that “available gridded 
precipitation estimates based on in situ data may systematically underestimate precipitation in 
mountainous regions and that performance of gridded satellite-derived or modeled 
precipitation estimates varies systematically across the region.” 
 
Yoon et al. (2019) compare precipitation estimates from ten different products including 
APHRODITE, CHIRPS, GDAS, and MERRA2, across a broad region, covering a small portion of 
Afghanistan. They find that all datasets generally capture the spatial pattern rainfall and that 
products tend to agree more at high elevations, where it is unlikely there are station 



observations. More specifically, they found GDAS to have a higher mean precipitation than 
CHIRPS, which was not surprising given concerns that station corrected datasets inherit a low 
bias from sparse gauge data. From the original ten precipitation products Yoon et al. went on to 
compare outputs from land surface models driven by CHIRPS, MERRA2, GDAS and ECMWF.  
 
To summarize, GDAS, CHIRPS and MERRA-2 were chosen for our system based on our project 
requirements of (a) a sufficiently long historic record for contextualizing estimates in terms of 
departures from the mean (anomalies) (b) low latency (< 1-month) for timely decision support 
(c) familiar to the FEWS NET user-community. As well as prior evaluation by our team and the 
broader community. In addition to these products the Integrated Multi-satellite Retrievals for 
the Global Precipitation Mission (IMERG), a NASA precipitation (Huffman et al., 2020) has 
emerged as a precipitation product that meets these requirements, since its period of record 
was extended back to 2000 as of version 6 which was released in 2019. We will a describe 
IMERG, GDAS, and MERRA-2 comparison in the Results (Section 3). 
 
The known uncertainties in precipitation datasets are the rationale behind the requirement for 
“(a) a sufficiently long historic record for contextualizing estimates in terms of departures from 
the mean (anomalies)”. Schiemann et al. (2008) find that gridded precipitation estimates can 
qualitatively identify large scale spatial distribution of precipitation, seasonal cycle and 
interannual variability (i.e., wet and dry years) across Central Asia. Long term estimates of 
rainfall from satellite derived products, as well as derived historic time series from hydrologic 
modeling, can be used as a baseline of “observations,” from which we can have a sense of 
relative conditions, i.e., anomalies and variability. When this historical record is harmonized 
with a routine monitoring system, current conditions can be placed in historical context. 
Anomaly-based representation of hydrologic extremes can provide confidence in modeled 
estimates that have the potential to influence agricultural, water resources and food security 
outcomes. 
 
In addition to precipitation other meteorological inputs are important for accurate hydrologic 
estimates. Yoon et al. (2019) conduct an intercomparison of near surface air temperature (Tair) 
estimates from three model analysis products (ECMWF, GDAS, and MERRA2). They noted an 
upward trend in GDAS temperature, as well as consistently higher temperature in MERRA2. 

 
From a Climate Services perspective, the reliance on the representation of relatively wet and 
dry conditions, as well as a “convergence of evidence” provide useable information despite the 
above-mentioned uncertainties. A convergence of evidence approach that draws on (quasi-
)independent sources of information is useful to understand actual conditions. For convergence 
of Earth observations, hydrologic models can generate ensembles of historic, current or future 
estimates of snow, streamflow, soil moisture, and evapotranspiration which can then be 
compared to satellite derived estimates of surface water (e.g. McNally et al., 2019), soil 
moisture (e.g. McNally et al., 2016), vegetation conditions and evapotranspiration (e.g. Pervez 
et al., 2021; Jung et al., 2019), snow cover (e.g. Arsenault et al., 2014), in situ stream flow (e.g. 
Jung et al., 2017) and others. Hydrologic estimates can also be compared to outcomes in crop 



production e.g. (McNally et al., 2015; Davenport et al., 2019; Shukla et al., 2020), and nutrition, 
health, and food security (e.g. Grace and Davenport, 2021) to provide a qualitative 
understanding of both hydrologic model performance and conditions on the ground. In this 
paper we provide an example of 2018 where drought conditions were associated with crisis 
levels of acute food insecurity over most of Afghanistan (FEWS NET, 2018c). 
 

 
5. Section 2.2: Precipitation is mentioned as the most important input. However, I found the 
authors could have done a better job comparing multiple products (e.g., ERA-Land, 
MSWEP, and others). The comparison seems rather limited. It also gives the impression 
that precipitation is the only meaningful forcing to compare against other products. I’d 
assume temperature and radiation would play a role as well, especially if the focus is on 
getting snow water equivalent predictions. Why haven’t the authors compared other forcing 
variables? How do we know they perform well in Afghanistan? 

Thanks for this comment. Regarding the limited comparisons of other products we have now 

added additional background in Section 1.2 summarizing previous evaluation studies.  

“Particularly relevant to this work are Yoon et al. (2019) and Ghatak et al. (2018) to which we 

refer readers and data users to appreciate the uncertainties in inputs, outputs and derived products 

and climate services over Afghanistan and the broader Central Asia region.”  

Meteorological forcing is known to be the primary source of uncertainty in Land Surface Model 

simulations (Kato et al. 2007). Thus, its evaluation is important to understand the quality of 

model outputs. For this reason, Ghatak et al. (2018) focus on precipitation analysis and compare 

four unique precipitation data sources: daily Climate Hazards Infrared Precipitation with Stations 

(CHIRPS) product (Funk et al., 2015), NOAA’s Global Data Assimilation System (GDAS) 

(Derber et al., 1991), and two estimates from NASA’s Modern Era Reanalysis for Research and 

Applications version 2 (MERRA-2) (Gelaro et al., 2017).   These products were compared to 

APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Toward 

Evaluation) rain-gauge derived product (Yatagai et al., 2012). They find that Annual CHIRPS 

and GDAS precipitation estimates performed similarly over [Afghanistan] with respect to 

APHRODITE in terms of bias and root mean squared error (RMSE). CHIRPS had a higher 

correlation with APHRODITE. Ghatak et al. (2018) further evaluated the quality of rainfall 

inputs based on the performance of evapotranspiration and other derived outputs. The authors 

caution that “available gridded precipitation estimates based on in situ data may systematically 

underestimate precipitation in mountainous regions and that performance of gridded satellite-

derived or modeled precipitation estimates varies systematically across the region.” 

  

Yoon et al. (2019) compare precipitation estimates from ten different products including 

APHRODITE, CHIRPS, GDAS, and MERRA2, across a broad region, covering a small portion 

of Afghanistan. They find that all datasets generally capture the spatial pattern rainfall and that 

products tend to agree more at high elevations, where it is unlikely there are station observations. 

More specifically, they found GDAS to have a higher mean precipitation than CHIRPS, which 

was not surprising given concerns that station corrected datasets inherit a low bias from sparse 

gauge data. [In the absence of a reference dataset to represent truth, Yoon et al. conducted an 

extended triple collocation analysis to generate estimates of RMSE, where CHIRPS and 

https://doi.org/10.3389/feart.2019.00120
https://www.mdpi.com/2306-5338/5/4/57/htm#app1-hydrology-05-00057
https://doi.org/10.2151/jmsj.85A.187


APHRODITE had the lowest RMSE]. From the original ten precipitation products Yoon et al. 

went on to compare outputs from land surface models driven by CHIRPS, MERRA2, GDAS and 

ECMWF. 

 
It also gives the impression that precipitation is the only meaningful forcing to compare 
against other products. I’d assume temperature and radiation would play a role as well, 
especially if the focus is on getting snow water equivalent predictions. Why haven’t the 
authors compared other forcing variables? How do we know they perform well in 
Afghanistan? 

Meteorological forcing is known to be the primary source of uncertainty in Land Surface Model 

simulations (Kato et al. 2007). Thus, its evaluation is important to understand the quality of 

model outputs. From the background that we’ve now provided we hope to communicate that the 

uncertainties in the forcing, to a certain extent, preclude being able to assess how sensitive the 

useful outputs are (e.g. SWE anomalies) to the differences in temperature, radiation, wind inputs. 

As research progresses these analyses will be more relevant and important for diagnosing errors. 

 

We have added more background regarding temperature. Yoon et al. conduct an 

intercomparison of near surface air temperature (Tair) estimates from three model analysis 

products (ECMWF, GDAS, and MERRA2). They noted an upward trend in GDAS temperature, 

as well as consistently higher temperature in MERRA2.  

We also conducted temperature analysis comparing GDAS and MERRA2, specifically over the 

Afghanistan domain. We confirmed the upward trend in GDAS precipitation, where MERRA-2 

is consistently warmer before 2010 and find that GDAS and MERRA-2 temperature estimates 

are of similar magnitude 2011-2020.  

https://doi.org/10.2151/jmsj.85A.187


 

Figure R2. Afghanistan spatially average Air temperature estimates (2000-2020) from Central 
Asia (GDAS) and Global (MERRA2) datastreams. 

The upward trend in temperature (as mentioned in Yoon et al) from 2000-2020 is more evident 
in all seasons except for January-March. This non-stationarity is attributed to primarily changes 
in the spatial resolution of this NOAA operational dataset over time, and secondarily to other 
changes in the analysis. 



6. L194-195: How did the authors find GDAS and CHIRPS appropriate? Any preliminary 
tests they had carried out? Can the authors be more specific here? 

Thanks for this question, we’ve added additional background for the readers regarding both our 

criteria for choosing the precipitation inputs as well as results from other evaluation studies. 

 

Section 1.2 Meteorological Background 

With respect to criteria: 

… our choices of inputs must meet the following criteria: (a) provide a long historic record for 

contextualizing estimates in terms of departures from the mean (anomalies) (b) are low latency 

(< 1-month) for timely decision support (c) are familiar to the FEWS NET user-community and 

(d) prior evaluation by our team and the broader community.  

 

With respect to precipitation evaluation: 

Ghatak et al. 2018 compare four unique precipitation data sources: daily Climate Hazards 

Infrared Precipitation with Stations (CHIRPS) product (Funk et al., 2015), NOAA’s Global Data 

Assimilation System (GDAS) (Derber et al., 1991), and two estimates from NASA’s Modern Era 

Reanalysis for Research and Applications version 2 (MERRA-2) (Gelaro et al., 2017).   These 

products were compared to APHRODITE (Asian Precipitation - Highly-Resolved Observational 

Data Integration Toward Evaluation) rain-gauge derived product (Yatagai et al., 2012). They 

find that Annual CHIRPS and GDAS precipitation estimates performed similarly over 

[Afghanistan] with respect to APHRODITE in terms of bias and root mean squared error 

(RMSE). CHIRPS had a higher correlation with APHRODITE.  

 

Yoon et al. (2019) compare precipitation estimates from ten different products including 

APHRODITE, CHIRPS, GDAS, and MERRA2, across a broad region, covering a small portion 

of Afghanistan. They find that all datasets generally capture the spatial pattern rainfall and that 

products tend to agree more at high elevations, where it is unlikely there are station observations. 

More specifically, they found GDAS to have a higher mean precipitation than CHIRPS, which 

was not surprising given concerns that station corrected datasets inherit a low bias from sparse 

gauge data. 

 

From our own analysis, both products are well correlated >0.9 at the monthly and annual 

timesteps (Table 2). They qualitatively compare well with each other and MODIS Snow Covered 

Fraction (Figure 6). And both datasets meet our criteria for a sufficiently long historical record 

for computing anomalies, < 1 month latency, and familiarity with the FEWS NET community 

(CHIRPS precipitation and GDAS meteorological forcings are used in several other products). 

We hope that our additional emphasis on this criteria in the introduction and methods will 

appropriately frame our motivation for the reader. 

 
7. L199-200: The authors indicate that daily CHIRPS data need to be converted to sub-
daily. There are other global products which are already sub-daily. Have the authors 
considered using those to bypass any further temporal disaggregation steps which could 
further introduce errors? 

Thanks for this comment. First, we clarify in the methods that the downscaling step is required 

because water and energy balances are calculated sub-daily.  



In Background Section 1.2 we now describe in more detail Yoon et al. 2019 and Ghatak et al. 

2018 comparisons with GDAS and MERRA2 precipitation that are sub-daily, which we hope 

communitates to the reader the relatively good performance of CHIRPS. In addition these studies 

also used CHIRPS, which explicitly or implicitly required temporal downscaling to drive Land 

Surface Models. These CHIRPS forced model runs were shown to perform well in terms of e.g. 

ET comparisons. Perhaps more to the reviewer's point. 

 

We also augment discussion in Limitations and Future Work on IMERG, also a sub-daily 

product that will not require the additional temporal downscaling step. 

 

“As of 2019, with the release of IMERG v6, these data go back to 2000 as well. Prior to this 

change we began comparisons within our framework, described in (Kirschbaum et al. 2018) and 

found encouraging results. At that time however, the period of record was a limitation for 

computing anomalies. We now have an adequate period of record, and IMERG will be part of 

the upcoming FLDAS-Global and FLDAS-CA releases. We are also encouraged by the quality 

of IMERG: For example, Sarmeiento et al. (2021) further explored the qualities of IMERG 

compared to CHIRPS over CONUS.  

 

Other projects are also informing our understanding of how IMERG will perform within our 

system. One recent attempt to improve meteorological inputs in the region is from Ma et al. 

(2020) with the development of the AIMERG dataset that combines IMERG Final with 

APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Toward 

Evaluation) rain-gauge derived product (Yatagai et al., 2012).  Another promising development 

is CHIMES (Funk et al. 2022) derived from both CHIRPS and IMERG, whose developers have 

been exploring the strengths and limitations of these two datasets and how to fuse them tto 

produce an optimal product. 

 
8. Section 3.1: Perhaps I am naive with the FLDAS system but how does comparing 
gridded precipitation give an indication of performance of the system. My understanding 
(and I can be wrong here) is that FLDAS is an uncoupled system relative to the 
atmosphere, so precipitation is forcing/input variable rather than diagnostic or prognostic. 
Can the authors clarify why the comparison is needed and how they can link with the 
performance of their system? 

Thanks for this comment. You’re correct that the FLDAS is an uncoupled system. We 

understand that in locations where there is confidence (low uncertainty) in model inputs then one 

can focus on evaluating sensitivity and performance of the model outputs with respect to the 

model parameters and the parameterizations. e.g. you have ‘true’ rainfall but wish to evaluate 

your runoff generation parameterization.  

In response to comment #5 We have provided additional information in the 

introduction/background. We now better explain to the reader that large uncertainties exist in all 

of the components of the water budget estimates, beginning with the precipitation.  

The revised introduction better explains that our motivation is to produce a dataset that can be 

used as input to ‘Climate Services’ and has been guided by previous studies that have determined 

credible model configurations (inputs, parameters, model). We then demonstrate that these 

https://doi.org/10.1175/BAMS-D-20-0245.1


model configurations are indeed credible given their routine use in Climate Services and decision 

support. We do provide additional information on the precipitation inputs in particular to 

communicate to the reader inherent challenges of producing useful hydrologic estimates in this 

region.  

9. Figure 4 and Table 2: Linear correlation coefficient (R) at monthly and annual scales are 
expected to give relatively good performance and mainly tracks the seasonal and major 
year-to-year variability, respectively. Since the authors stressed the sub-daily aspect of the 
product, how does the system compare with other daily and sub-daily precipitation products 
over Afghanistan? In addition, there is no metric referring to magnitude of rainfall as R 
relates mainly with this coarse temporal dynamics. The authors should consider looking at 
some “residual” metric (MAE, RMSE, MSE, …) 

We’ve revised how we frame the sub-daily aspect of the forcings (Line ~320).  

We note this step in our methodology because water and energy balances are solved on a sub-

daily timestep. However, for Central Asia we don’t have sufficient reference data available to 

assess the importance of sub-daily precipitation distribution, as was demonstrated by Sarmiento 

et al. (2020) of the United States where adequate reference data is available.  

We also provide additional information in the background/introduction regarding the known 

uncertainties in monthly and annual precipitation estimates. Lack of in-situ reference data limits 

the ability to perform evaluation on a sub-daily time step.  

Regarding the magnitude of rainfall, we also now summarize results from Yoon et al. (2018) and 

Ghatak et al. (2019) who were able to conduct relative comparisons against e.g. gauge derived 

APHRODITE rainfall estimates. They caution however, that these data should not be interpreted 

as ‘truth’ and given the spatial distribution of gauges, and the apparent underestimation of ET 

and streamflow, that these ‘reference’ datasets likely have a low bias. Future work in the 

community will help move toward more quantitative evaluation statistics. And this paper 

describes an available dataset, with known limitations that guide its application (e.g. in the use of 

relative indices like Snow Water Equivalent anomalies, rather than absolute estimates of water 

availability).  

10. Figures 5 and 6: Notice that up until this point, the reader has no idea about the location 
of these Afghan basins (no map is presented). In addition, there are not a single evaluation 
metric presented/discussed in this sub-section, the interpretation of the results seems to be 
only visual. 

Thanks for this comment, we now include a map (Figure 3) in the results section that shows the 

location of basins  



 

Figure 3. Map of major river basins in Afghanistan used in the snow covered fraction 
analysis. 

11. I found the example of application 2017-2018 wet season only for Afghanistan to be 
very limited when disseminating the global and Central Asia product as claimed by the 
authors. This example does not cover all aspects of a comprehensive evaluation and 
assessment of the performance of this system. How do we know the system works for 
normal years or anomalous wet periods? How about for other regions outside Afghanistan 
domain. I think it is very dangerous to extrapolate such limited results to larger domain and 
to other hydrometeorological conditions. I also found it strange the fact that impacts of 
drought on agriculture are mentioned by the authors but no analysis of soil moisture from 
FLDAS is provided directly to the readers. The authors should present a much more 
thorough assessment in my opinion.  

We appreciate and agree with the reviewer's concern for the potential extrapolation of results. 

We have included explicit caution for users of the data regarding the challenges & uncertainties 

for data in this region in the Section 3.4 “limitations & future work” section before this 4.0 

Applications section. We have also better described previous literature on evaluation and 

uncertainties associated with these data. 

The intent of this section is to demonstrate the ‘significance of the dataset’ specifically the 

criteria that it is being used in a Climate Services/decision support context for food and water 



security applications, rather than a comprehensive evaluation.  This presentation is now better 

framed in the introduction where we now describe these data are motivated by the need for 

“Climate Services” where relative estimates and routinely updated information can be applied to 

different questions.  

How do we know the system works for normal years or anomalous wet periods? How about for 

other regions outside the Afghanistan domain?   

We do have some anecdotal examples of it working in wet periods (e.g. Widespread snowfall in 

Afghanistan). The reader could also refer to the products in Table 4. To confirm performance in 

normal or anomalous wet periods, the FEWS NET Afghanistan Seasonal Monitors highlight the 

use of these data since 2018.   

However, we understand that the reviewer is likely hoping for a more quantitative analysis! We 

find that the development of a metric that would account for performance of a derived indicator 

is beyond the scope of this data descriptor e.g. categorical statistics (POD and FAR) for below-

normal, normal, and above-normal years. This would require an independent reference dataset. 

We and other authors have attempted comparison with remotely sensed data (e.g. soil moisture, 

evaporation, total water storage, microwave snow estimates) but each of these data sources has 

its own set of errors that needs to be accounted for in the interpretation.  

We hope that with the improvements to the introduction in terms of our motivation to provide 

inputs to Climate Services, as well as a review of prior evaluations better frames this section as a 

demonstration of the significance of these datasets, specifically that they are being applied in 

routine decision support.  

12. Figure 10: Notice some of the text in the figure is too small to read. 

We will separate out the figures so that the text is legible in the resubmission. 

 

 
 

https://earthobservatory.nasa.gov/images/89674/widespread-snowfall-in-afghanistan
https://earthobservatory.nasa.gov/images/89674/widespread-snowfall-in-afghanistan
https://fews.net/search?date_range=All&field_report_primary_area%5B0%5D=2&keywords=seasonal%20monitor&field_report_coverage_period_value%5Bmin%5D=&field_report_coverage_period_value%5Bmax%5D=&sort_by=field_report_coverage_period_value&sort_order=DESC&report_sort_by=DESC&page=1


 
Figure 10a. Basins and provinces highlighted in the 2017-18 drought example. 
 
 

 



Figure 10b. CHIRPS cumulative rainfall for 2017-18 vs average conditions for Daykundi Province. 
Figure from USGS EWX. 
 

 
Figure 10c. CHIRPS cumulative rainfall for 2017-18 vs average conditions for Maydan Wardak 
Province. Figure from USGS EWX. 
  

 
Figure 10d. Helmand Basin snow water equivalent (SWE) from the Central Asia data stream. 
The grey shading indicates the range of the minimum and maximum values, dashed blue line is 
the average, and black line is 2017-18. Figure from USGS EWX. 


	1 Introduction
	1.1 Afghanistan Weather and Climate
	1.2 Hydrologic Data Availability and Uncertainty


