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Abstract. Future global temperature change would have significant effects on society and ecosystems. Earth system models 

(ESM) are the primary tools to explore the future climate change. However, ESMs still exist great uncertainty and often run at 10 

a coarse spatial resolution (The majority of ESMs at about 2 degree). Accurate temperature data at high spatial resolution are 

needed to improve our understanding of the temperature variation and for many applications. We innovatively apply the deep-

learning(DL) method from the Super resolution (SR) in the computer vision to merge 31 ESMs data and the proposed method 

can perform data merge, bias-correction and spatial-downscaling simultaneously. The SR algorithms are designed to enhance 

image quality and outperform much better than the traditional methods. The CRU TS (Climate Research Unit gridded Time 15 

Series) is considered as reference data in the model training process. In order to find a suitable DL method for our work, we 

choose five SR methodologies made by different structures. Those models are compared based on multiple evaluation metrics 

(Mean square error(MSE), mean absolute error(MAE) and Pearson correlation coefficient(R)) and the optimal model is 

selected and used to merge the monthly historical data during 1850-1900 and monthly future scenarios data (SSP1-2.6, SSP2-

4.5, SSP3-7.0, SSP5-8.5) during 2015-2100 at the high spatial resolution of 0.5 degree. Results showed that the merged data 20 

have considerably improved performance than any of the individual ESM data and the ensemble mean (EM) of all ESM data 

in terms of both spatial and temporal aspects. The MAE displays a great improvement and the spatial distribution of the MAE 

become larger and larger along the latitudes in north hemisphere, presenting like a ‘tertiary class echelon’ condition. The 

merged product also presents excellent performance when the observation data is smooth with few fluctuations in time series. 

Additionally, this work proves that the DL model can be transferred to deal with the data merge, bias-correction and spatial-25 

downscaling successfully when enough training data are available. Data can be accessed at 

https://doi.org/10.5281/zenodo.5746632 (Wei et al., 2021). 
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1 Introduction 

From the Sixth Assessment Report by the Intergovernmental Panel on Climate Change(IPCC), the global air temperature 

increased by 1.09°C during the period 2011-2020 compared to the pre-industrail period (1850-1900). Global warming causes 30 

a large number of effects on the nature environment and mankind in water cycle(such as the speed of tropical cyclone 

translation)(Yamaguchi et al., 2020), food safety (for example, continuing warming will result in an extra about 20% population 

suffer from hunger in 2050)(Hasegawa et al., 2021), extreme disaster(such as the future extreme snowfall will intensively 

increase especially in Asia and North American and the risk of extreme fire weather have an unexpected rise) (Quante et al., 

2021;Touma et al., 2021)), social and economic development(the drought loss will arrive 65 billion per year in Europe, for 35 

example) (Naumann et al., 2021), diversity of species(the evolution of fish, for instances) (Avaria-Llautureo et al., 2021) and 

other fields. Besides it, the most direct influence is the decline of ice cover in the ocean. In past decades, the South Pole 

experience an unprecedented warming speed (more the three times than the whole earth) (Clem et al., 2020) and ice cover in 

Arctic gone through a decrease of average 12% every decade (Zhukov and Gushcha, 2020). The loss of mass ice will also 

bring an extra increase of temperature at a long time scale (Wunderling et al., 2020). If temperature have an extra increase 2C° 40 

will result in an 20cm rise of the global ocean (Jevrejeva et al., 2016). In this background, the society and scientific research 

groups pay a lot of attention to the global temperature changes (Choi et al., 2020). Hence, in order to improve our understanding 

of the spatial and temporal changes of future temperature, a more precise future temperature data at high spatial resolution is 

needed. 

 45 

The meteorological traditional stations can provide long time series point data. Besides it, with the development of remote 

sensing technology, the number of satellites specially used for meteorological observation is increasing, which also brings a 

large number of meteorological satellite observation data. The satellite can provide observed raster data with relatively short 

time series, those data cannot predict the future climate change. The climate model and Earth system models(ESMs) that 

consider comprehensive physical and biology process are acted as major tools for projecting future climate variation. The 50 

projecting data of ESMs provide opportunity to find out climate changes and potential influence by those changes in the global 

and regional view (Zhukov and Gushcha, 2020;Yuan et al., 2021). For the aim of deal with extending range of scientific 

questions proposed by more and more research communities, the coupled model inter-comparison project(CMIP) is continue 

revising the organization of CMIP (Eyring et al., 2016). The latest one is Phase6 CMIP(CMIP6) that has a substantial 

augmentation of model numbers and range of experiment. Compared with the previous Phase5 CMIP(CMIP5), ESMs of 55 

CMIP6 achieve improvement in spatial resolution, making progress in physical parameterizations (In the expression of cloud, 

for instance), and including the extra Earth system processes (nutrient restriction on the terrestrial carbon cycle, for example) 

and components (such as ice cover) (Eyring et al., 2019). Because the effect of climate variation for the environment and 

society will depend not only on the nature process of Earth system affected by the changes of radiative forcing, but also on 

how mankind by changes in technology, economies, lifestyle and policy (Moss et al., 2010). New scenarios named shared 60 
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socioeconomic pathway(SSPs) (van Vuuren et al., 2014;Riahi et al., 2016) have been developed based on the anticipated 

challenges to adaptation and mitigation applied in CMIP6(O’Neill et al., 2016). The SSPs include five alternative pathways 

for socioeconomic Development, including sustainable development(SSP1) (Riahi et al., 2016), middle-of-the-road 

development(SSP2) (Fricko et al., 2017), regional rivalry(SSP3) (Fujimori et al., 2017), A Road Divided(SSP4) (Calvin et 

al.,2017) and fossil-fueled development(SSP5) (Kriegler et al., 2017). Those new scenarios can help people understand climate 65 

and socioeconomic futures better. 

 

There are many studies analyzing future climate changes based on the ESM data (Gillett et al., 2019;Parsons et al., 2020).  In 

general, these studies highlight three main problems in using ESM data: (1) spatial downscaling of ESMs data to generate data 

at higher spatial resolution; (2) bias reduction or correction of ESMs; (3) merging of the multi-ESMs to obtain improved 70 

accuracy. The output of ECMs have certain errors and raw low spatial resolution on account of the limited computation 

resources and several simplified hypothesis and uncertainties in model structures and parameterizations (Phillips and Gleckler, 

2006). Current ESMs are run at a coarse spatial resolution and can only provide outputs at the spatial resolution ranging from 

0.5 to 3.75 degree with the majority at about 2 degrees, and these spatial resolution is not sufficient for elaborated studies 

(White and Toumi., 2013). Spatial downscaling methods are widely used to improve the resolution of the ESM (Shrestha et 75 

al., 2014;Baghanam et al., 2019). It can be divided into statistical and dynamic downscaling techniques (Kannan et al.,2013). 

Dynamical downscaling is mainly based on the high-resolution regional climate model (RCM) and use the forced lateral 

boundary from the ECM (Adachi and Tomita, 2020). As for statistic downscaling, it builds the relationship between the ECM 

and the local-scale meteorological data and then generate high-resolution data (Maraun and Widmann, 2018). Because the 

dynamical downscaling methods are complex and need high computation cost, statistical downscaling approach is more 80 

commonly used. The most popular techniques of statistical downscaling are regression-based approaches, for examples, 

multiple and generalized linear regression models (Das et al., 2019; Asong et al., 2016), due to their low requirement of 

computation resources and realize simply. Though the enhancement of the resolution, but the considerable bias still exists no 

matter in the statistic or dynamic downscaling ways (Miao et al., 2015). 

 85 

For the aim to reduce the bias, many bias correction approaches are developed includes statistic characteristics bias correction 

(such as mean, variance and standard deviation) (Ho et al., 2012; Fang et al., 2015), probability distribution bias correction 

(For example, using the cumulative density function (CDF) to match the ESM and observation data) (Jakob Themeßl et al., 

2011) and non-stationary bias correction methods (Miao et al., 2016). The bias correction methods can help the downscaling 

techniques to get a closer result to observation data (Fan et al., 2021). But the corrected and downscaling methods bring some 90 

uncertainties such as the loss of production from extreme disasters was underestimated by the bias-corrected and downscaled 

ECM data (Lafferty et al., 2021). In different application tasks, different bias correction methods get the best performance (For 

instance, two nonparametric-transformation approaches perform better than other 9 methods in precipitation bias correction in 

Norway and regression technique outperforms other 11 methodologies in terms of correlation in the temperature bias correction 

https://doi.org/10.5194/essd-2021-418

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 10 December 2021
c© Author(s) 2021. CC BY 4.0 License.



4 

 

in Spain) (Gudmundsson et al,.2012; Gutiérrez et al,.2013). There are some limitations exist in current ECM bias correction 95 

approaches (Such as the ECM mean bias correction only consider the ECM mean bias and   quantile-quantile correction brings 

an extra bias to the spatial gradient of variables) (Bruyère et al.,2014; Colette et al.,2012). In addition, the majority of bias 

correction methods are applied to individual model dataset, which introduces greater uncertainty in the view of projecting the 

future climate.  

 100 

Considering different ESMs have different strengths which can be potentially combined to complement each other, many 

efforts have been made to develop methods to merge multiple ESMs to obtain improved outputs. In previous researches, 

because of the unstable of single ESM, the ensemble mean(EM) method is considered as a simple and effective way to merge 

ESMs (A. P. Weigel, 2008). The evaluation result of CMIP6 model show no single model performs best in all regions under 

different evaluation rules (Papalexiou et al., 2020). Because ESMs have different resolutions and showing different advantages 105 

in variant regions, EM method owns a better precise analyze the future temperature data regionally and globally (Fan et al., 

2020;Lovino, 2021;You et al., 2021;Tang et al.,2021). The EM method is easy and effective and still remain improve space. 

In recent years, with a rapid increase amount of ‘earth big data’ such as earth observation and model simulation data, DL based 

methods play an increasingly important role in Earth Science because of its better capacity to process big data (Reichstein et 

al., 2019). Those new approaches have been successfully used in many fields in Earth Science(Yuan et al., 2020;Toms et al., 110 

2020), such as data fusion and downscaling(coarse-resolution temperature and precipitation, for example)(Huang, 2020), Land 

cover mapping(Tong et al., 2020), information reconstruction(such as reconstruct miss data of the temperature) (Kadow et al., 

2020;Barth et al., 2020; Tang et al., 2021), information predication(multi-year ENSO forecast and forecast of complicated 

tropical instability waves, for instances)(Ham et al., 2019;Zheng et al., 2020) and environmental parameter retrieval(such as 

PM2.5 and gas concentrations) (Zang, 2021;Tian et al., 2021). The output data from CMIP6 models will arrive 30 115 

petabytes(PB) in the estimation (Stockhause and Lautenschlager, 2017).  

 

The traditional methods need to solve these problem separately in three process and bring extra uncertainties to the future 

projecting climate data. New DL methods provide us with new opportunity for dealing with the questions when we use the 

ECM. We can transfer some mature DL algorithms from Super-Resolution(SR) field from the computer vision to solve these 120 

question together. Different from other traditional methods, we can input many low resolution temperature data and get one 

high resolution temperature data, it means that those models can learn the information from different ESMs and do the data 

merge, bias correction and data downscaling at the same time and reduce uncertainty. The first deep-based approach proposed 

(Yoon et al., 2015) named SRCNN performed considerably better the traditional SR methods. Then, many DL approaches have 

been applied to the SR fields and increasing efforts are being made to improve the performance of those algorithms (Shi et al., 125 

2016;Seif and Androutsos, 2018;Blau et al., 2019;Chen et al., 2020). More and more ESMs temperature in different scenarios 

and historical from CMIP6 become available now. The increasing data quantity can provide enough training samples for the 

deep learning models, so we can design this work.  In this work, we train five different DL networks based on the CRU TS 
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temperature and 31 ESMs temperature over the time period of 1901 to 2014 then compare the five DL networks to choose the 

best model to merge the future scenarios land temperature of SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 in the time period of 130 

2015-2100.  

2 Data and Methods 

2.1 Model data and Observation data 

2.1.1CMIP6 Model data  

 135 

In this study, we collect global surface temperature from 31 CMIP6 ESMs that provides both historical and future data. The 

most commonly used is the first realization of each model in former studies (Norris, J et al.,2021), so we also use the first 

realization simulations (r1ilp1f1, except where unavailable). These models are summarized in Table 1. This data is open access, 

we download it from https://esgf-node.llnl.gov/projects/cmip6/. In CMIP5, only using the Representative Concentration 

Pathway(RCP) to simulate future climate, includes RCP2.6, RCP4.5, RCP6.0 and RCP8.5 that represent the radiative forcing 140 

will reach about 2.6 W/m2, 4.5 W/m2、6.0 W/m2、8.5 W/m2 in 2100. And in the CMIP6, three new RCPs (RCP1.9, RCP3.4, 

RCP7.0) have been proposed to meet more research meet. Five sets of experiments use in this study include one historical 

simulations in 1850-2014 and four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) which are combined SSP and RCP 

are selected as future projections in the period of 2015 to 2100. And all model surface temperature data are acted as the input 

data for the model. The raw resolution of most ESMs are close to 2°×2°. In order to retain more information in the origin data, 145 

we resampled all ESMs data to 2°×2° resolution using bilinear interpolation, and the output of our model is one merged data 

at 0.5°×0.5° resolution. We split the data to 80% as the train dataset (1901-1992) and 20% as the validate dataset (1993-2014). 

 

Table1 Summary of 31 different ESMs used in this study 

Institution(country) Model name Resolution  

(lon × lat) 

Used member 

CSIRO(Australia) ACCESS-CM2 1.875o×1.25o r1i1p1f1 

ACCESS-ESM1-5 1.875°×1.241° r1i1p1f1 

AWI(Germany) AWI-CM-1-1-MR 1.875°×1.875° r1i1p1f1 

BCC(China) BCC-CSM2-MR 2.25°×2.25° r1i1p1f1 

CAMS(China) CAMS-CSM1-0 1.125°×1.125° r1i1p1f1 

NCAR(USA) CESM2-WACCM 2.5°×1.875° r1i1p1f1 

CMCC(Italy) CMCC-CM2-SR5 1.25°×0.9375° r1i1p1f1 

 CNRM-CM6-1-HR 1.25°×0.9375° r1i1p1f2 
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CNRM-

CERFACS(France) 

CNRM-CM6-1 1.40625°×1.40625° 

 

r1i1p1f2 

CNRM-ESM2-1 r1i1p1f2 

CCCMA (Canada) CanESM5-CanOE 2.8125°×2.8125° 

 

r1i1p2f1 

CanESM5 r1i1p1f1 

EC-Earth-Consortium(EU) EC-Earth3-Veg-LR 0.703125°×0.703125° r1i1p1f1 

EC-Earth3-Veg r1i1p1f1 

CAS(China) FGOALS-f3-L 2.5°×2° r1i1p1f1 

FGOALS-g3 2°×2.25° r1i1p1f1 

NOAA-GFDL(USA) GFDL-ESM4 2.5°×2° r1i1p1f1 

NASA (USA) GISS-E2-1-G 2.5°×2° r1i1p1f2 

INM(Russia) INM-CM4-8 2°×1.5° r1i1p1f1 

INM-CM5-0 r1i1p1f1 

IPSL(France) IPSL-CM6A-LR 2.5°×1.259° r1i1p1f1 

NIMS-KMA(Korea) KACE-1-0-G 1.875o×1.25o r1i1p1f1 

UA(USA) MCM-UA-1-0 3.75°×2.25° r1i1p1f2 

MIROC(Japan) MIROC-ES2L 2.8125°×2.8125° r1i1p1f2 

MIROC6 2.8125°×0.703125° r1i1p1f1 

MPI-M(Germany) MPI-ESM1-2-HR 0.9375°×0.9375° r1i1p1f1 

MPI-ESM1-2-LR 1.875°×1.875° r1i1p1f1 

MRI(Japan) MRI-ESM2-0 1.125°×1.125° r1i1p1f1 

NCC(Norway) NorESM2-LM 5°×3.75° r1i1p1f1 

NorESM2-MM 2.5°×1.875° r1i1p1f1 

AS-RCEC(China) TaiESM1 1.25°×0.9375° r1i1p1f1 

 150 

2.1.2Observation data 

 

The CRU TS (Climate Research Unit gridded Time Series) is an extensively monthly land climate dataset includes temperature 

and precipitation(http://doi.org/10/gbr3nj) over global land except the Antarctica with a high spatial resolution at 0.5°×0.5° 

from 1901 to 2019. It was made by the analysis of more than 4000 independent weather station records and cover all the global 155 

land excepted Antarctica and has high credibility (Harris et al., 2020). From the birth of the first version of CRU TS data in 

2000, it has been widely used in many research fields such as data evaluation (Fan et al., 2020), climate variability analysis 

(Wang et al., 2013) and independent climate mode (Renard and Tilman, 2019) due to the high quality. Because the observation 

data in the ocean region such as ERSST (Huang et al., 2017a) does not match the resolution and time-series with the CRU 
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dataset, our study concentrates on the land region only. We use the 2m air temperature from the latest version of the CRU TS 160 

as the reference data to train our model. 

 

2.2 Methods 

In this study, we aimed to build a relationship with the historical CMIP6 ESMs temperature data and the observation data 

based on the DL models in the period 1901-2014. Then use the optimal model to predict the future data in four scenarios 165 

(SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) and extend the historical data from 1850 to 1900. The flowchart of this study is 

presented in Figure1. 

  

Figure1 Flowchart of this work. The DL models includes Enhanced Super-Resolution Generative Adversarial Networks 

(ESRGAN), Enhanced Deep Residual Networks for Single Image Super-Resolution(EDSR), Video Restoration with Enhanced 170 

Deformable Convolutional Networks(EDVR), Image Super-Resolution Using Very Deep Residual Channel Attention 

Networks(RCAN) and Residual Dense Network for Image Super-Resolution (RDN). 
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Figure2. Different sub-regions in our study. We divide the global land based on the continent. Australia (AUS), South 

American(SA), North American(NA), Europe and African(EUR-AF), and Asia. 175 

 

2.2.1 Five different DL models 

In order to find a suitable model in our work, wo choose different methods made by different classic DL structure includes 

Residual Network(ResNet), Attention mechanism, dense convolutional Network (DenseNet), Generative Adversarial 

Networks(GAN) and Deformable Convolution Networks (DCN). Five mature SR methods are designed for our work. Four 180 

networks are single image SR includes Enhanced Deep Residual Networks for Single Image Super-Resolution(EDSR), 

Residual Dense Network for Image Super-Resolution (RDN), Image Super-Resolution Using Very Deep Residual Channel 

Attention Networks(RCAN) and Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) and one for video 

super-resolution named Video Restoration with Enhanced Deformable Convolutional Networks(EDVR). Each method is 

briefly described below.  185 

 

ResNet solve the limitation on network depth because of the gradient disappeared (He et al., 2016). It achieved great success 

and widely applied in different fields of computer vision include image super resolution named SRResNet (Ledig et al., 2017). 

On the basis of SRResNet, a better ResNet structural proposed (Wang et al., 2019a) called EDSR, the most obvious feature is 

removing the batch normalization layers in the network and we can see it in FigureS1(a). Besides increase of the performance, 190 

this new baseline model need few parameters and save about 40% computational resources.    

 

DenseNet is a novel network can relive the phenomenon of the gradient vanish, the main character is that the input of each 

layer comes from the output of all previous layers and it means every layer has direct access to the final result, has a narrow 

internet structure and few parameters (Huang et al., 2017b). Because of most deep CNN based SR networks do not fully utilize 195 

hierarchical features from the initial low-resolution(LR) image, RDN with a creative residual dense network based on  

ResNet and Densenet showed in FigureS1(b) is put forward to deal with this problem (Xu et al., 2018).  

 

Attention mechanism was an indispensable part of model in different regions of natural language processing (NLP), such as 

speech recognition, question answering and algorithm-learning (Vaswani et al., 2017). Attention function solve a problem that 200 

long distance information is very difficult to remember. After the new network structure transformer created mainly consisted 

of attention blocks (Vaswani et al., 2017), attention mechanism became popular in the other fields of computer vision includes 

image SR. Researchers invented a residual in residual(RIR) structure to form very deep network and add channel attention to 

residual block showed in FigureS1(c) (Zhang et al., 2018). RCAN can learn low and high frequency information and adaptive 

rescaling of channel characteristics by considering the interdependence between channels. 205 
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GAN is consisted of two models: a generative model G to capture the feature and a discriminative model D to estimate the 

result from the G, the task of D is to minimize the probability of D making an error (Goodfellow et al., 2014). In order to solve 

the problem that the finer texture detail is hard to recover at large upscaling factors, an image SR method is proposed based on 

GAN named SRGAN (Ledig et al., 2017). But the result of the SRGAN often accompanied with unpleasant artifacts, the 210 

ESRGAN is designed to improve the performance of this network (Wang et al., 2019c).  

 

CNN has a fixed model geometric structure restrict the model geometric transformations. For the aim to enhance the model 

transformation, DCN is proposed on account of the thought enlarging the spatial sampling regions (Qi et al., 2017). EDVR 

apply DCN and Pyramid structure to design a Pyramid, Cascading and Deformable(PCD) network and the structure showed 215 

in FigureS2 (Wang et al., 2019b). Although this method is proposed to do video restoration, it also achieve a state-of-art 

performance in video SR. Different from the single image SR algorithm, the EDVR need a time series sequence input to learn 

spatial and temporal information and output the central frame image. As we all know, the climate data have a strong relationship 

in the time dimensional, so we also use the method to have an attempt. 

 220 

2.2.2 Evaluation metrics 

2.2.2.1Train and validation metrics 

In order to evaluate different SR models fairly, we adopt the same loss function for different networks. In the training process 

the Mean square error(MSE) is used as the loss function, the equation is described as follows: 

               𝑀𝑆𝐸 =
1

𝑁
∑ |𝑌𝑛 − 𝑃𝑛|2𝑁

𝑛=1                                 (1) 225 

where, N is the number of samples, 𝑌𝑛 is the observation temperature and 𝑃𝑛 is the output of model data. In the validation 

process, in order to evaluate the result more comprehensive, mean absolute error(MAE) and Pearson correlation coefficient(R) 

are applied to choose best model, in addition to the MSE. MAE and R are calculated as follows: 

     𝑀𝐴𝐸 =
1

𝑁
∑ |𝑌𝑛 − 𝑃𝑛|𝑁

𝑛=1                                            (2) 

     𝑅 =
∑  𝑁

𝑛=1 (𝑌𝑛−�̅�)(𝑃𝑛−�̅�)

√∑  𝑁
𝑛=1 (𝑌𝑛−�̅�)2√∑  𝑁

𝑛=1 (𝑃𝑛−�̅�)2
                                  (3)   230 

The parameter meaning is the same as formula (1). 

Besides it, we constructed Taylor diagrams (Taylor 2001) to compare the observation, merged data and model data, which 

needs R, standard deviations of error and unbiased root-mean-square deviation (ubRMSD): 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑  𝑁

𝑛=1 (𝑌𝑛 − 𝑃𝑛)2                                        (4) 

𝐵𝐼𝐴𝑆 =
1

𝑁
∑  𝑁

𝑛=1 (𝑌𝑛 − 𝑃𝑛)                                               (5) 235 

𝑢𝑏𝑅𝑀𝑆𝐷 = √𝑅𝑀𝑆𝐷2 − 𝐵𝐼𝐴𝑆2                                      (6) 
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2.2.2.2 The SPAtial-EFficiency metric (SPAEF) 

 

Besides some common error metric for the evaluation, we also apply a novel spatial performance SPAEF that consisted of 240 

Pearson correlation coefficient, coefficient of variation and histogram intersection. Only one metric is not able to reflect the 

whole pattern information, three parts of SPAEF is proved to be individual, allowing them supplement each other in meaningful 

way (Koch et al., 2018).  

 

            𝛽 = (
𝜎sim

𝜇sim
) / (

𝜎obs

𝜇obs
)                                          (7) 245 

                                            

            𝛾 =
∑  𝑛

𝑗=1 𝑚𝑖𝑛(𝐾𝑗,𝐿𝑗)

∑  𝑛
𝑗=1 𝐾𝑗

                                             (8) 

                       

𝑆𝑃𝐴𝐸𝐹 = 1 − √(𝑅 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2     (9)   

 250 

where, 𝛽 is the ratio of the coefficient of variation between the observation data and the model simulated data. 𝜎sim and 𝜇sim 

are standard deviation and mean value of model output separately; 𝜎obs and 𝜇obs are standard deviation and mean value of 

model output respectively. 𝛾 is the histogram intersection for the histogram K of the observation data and the histogram L of 

the output of model, each containing n bins. For the aim to comparison of different units variables and to guarantee bias 

insensitivity, the z score method is used to calculate 𝛾 .The closer this value is to one, the better the data quality. 255 

 

3 Results and discussion 
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Figure3. The epoch loss change accompanying the train process in different models and different regions. The solid line 

represents loss in train dataset and the dotted line represents loss in validation dataset.   260 

 

We divide global land to five regions (AUS, SA, NA, EUR-AF, ASIA) as showed in Figure2. Considering the boundary effects, 

we reserve duplicate areas between different zones. In the training process, we introduce the land-ocean mask to make the 

result not disturbed by ocean region. For the aim to choose a DL model most suitable for our work under equity principle, we 
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use the same parameter setting such as loss function(MSE), learning rate and train epochs to train different models. One epoch 265 

iterates over the training dataset about 1000 set once, we apply 100 epochs in our train. Figure3 depicts the loss in train and 

validation dataset variation along the epoch. A rule can be induced from each of the loss line pictures clearly, after the big drop 

of loss at the start of the training process and the loss line of train and validation is declined with fluctuation subsequently. 

Almost all model achieve convergence at about 50 epochs. We also use learning rate attenuation strategy based on the change 

of epoch to reach a better result. According to the loss performance of validation dataset, we save the best model of individual 270 

model in different areas. 

 

The evaluation metrics calculated on the validation dataset of different model in various regions are showed in Table 2. It is 

noteworthy that three metrics (MSE, MAE and R) have little difference between various models. In terms of those metrics, the 

output of the EDSR models achieve the best performance in all regions except Region-1. The EDVR get the best scores from 275 

the MAE and MSE in AUS, is slightly higher more than the EDSR (second to the EDVR), but the R of EDSR is better than 

the EDVR. All regions have a very high values of R and reflecting a relatively large difference in MSE and MAE. In NA and 

ASIA, we can get a conclusion that the error is obvious bigger than the other regions based on the MSE and MAE. The SA 

region has the least error. The rest of regions reach a relative low error result compared with the NA and ASIA. Totally, the 

EDSR model outperforms the other DL approaches, we choose EDSR as the optimal method in the following work. In order 280 

to understand the spatial error distribution, we calculate the mean MAE by pixel of all model output in the validation dataset. 

Additionally, we also compute the mean spatial deviation by the EM data and compare with DL results to see the improvement 

brought by the DL model. In order to have an intuitive comparison, we use bilinear interpolation resample all the ESM model 

data to a 0.5°×0.5°same to the observation data and merged data.  

 285 

Table2   Evaluation metrics in validation dataset for the five different models. The values in bold means the best performance. 

Region ESRGAN RCAN RDN EDSR EDVR 

AUS MSE:1.09    

MAE:0.80 

R:0.9853 

MSE: 1.10   

MAE:0.80 

R:0.9855 

MSE:1.07 

MAE:0.79 

R:0.9859 

MSE: 1.05   

MAE:0.79 

R:0.9860 

MSE: 1.03  

MAE:0.77 

R:0.9859 

 

SA 

MSE:0.77 

MAE:0.66 

R:0.9937 

MSE:0.72 

MAE:0.63 

R:0.9940 

MSE:0.74 

MAE:0.64 

R:0.9945 

MSE:0.67 

MAE:0.60 

R:0.9947 

MSE: 0.72 

MAE:0.64 

R:0.9938 

 

NA 

MSE:3.90 

MAE:1.45 

R:0.9936 

MSE:3.63 

MAE:1.39 

R:0.9939 

MSE:3.86 

MAE:1.42 

R:0.9937 

MSE:3.36 

MAE: 1.33 

R:0.9943 

MSE: 3.84 

MAE:1.42 

R:0.9935 

 MSE: 2.56   MSE:2.45  MSE:2.55  MSE:2.32  MSE: 2.48  
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EUR-AF MAE:1.10 

R:0.9922 

MAE:1.07 

R:0.9928 

MAE:1.10 

R:09923 

MAE: 1.02 

R:0.9933 

MAE:1.07 

R:0.9926 

 

ASIA 

MSE: 4.73 

MAE:1.55 

R:0.9917 

MSE:4.41 

MAE:1.47 

R:0.9926 

MSE:4.43 

MAE:1.47 

R:0.9924 

MSE:4.16 

MAE:1.42 

R:0.9930 

MSE: 4.53   

MAE:1.47 

R:0.9920 

 

 

Figure4. Spatial distribution of MAE compared with observation data in validation dataset for five different DL models ((a) 

EDSR, (b) RDN, (c) RCAN, (d) ESRGAN, (e) EDVR and the (f) CMIP6 EM data). 290 

 

Figure 4 shows the spatial distribution of the metric MAE for various methods in validation dataset. Figure4(a)-(e) show the 

results of DL models and Figure4(f) reveals the mean error of EM methodology. We can see the result of DL models have a 

significant improvement in almost every pixel compared with the EM result clearly. From the overall view, the performance 

of DL model decided by the input ESM data to a great extent. We can see from the EM result that the whole northern hemisphere 295 

including Asia, Europe and North American display high errors (MAE more than 2 in most regions), indicating that the raw 

model data is not accurate. In the south hemisphere, the situation is much better, only some sub-regions display high error 
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(MAE exceeds 2) and the most area with a relatively low error (MAE less than 1.5). Remarkably, the DL model results have a 

similar spatial pattern of MAE, the majority districts own a favorable small error expect the upper northern latitude areas. An 

evident regularity can be summarized, the error becoming larger and larger along the latitudes in north hemisphere, presenting 300 

like a ‘tertiary class echelon’ condition. As we all know, Tibet plateau area is one of the polar regions in the word, is very hard 

to simulate. From our result, it is glad to see that the error in Tibet plateau area improves a lot. The same conclusion can be 

obtained that the EDSR is the optimal model in our task. Although DL methods own a similar spatial distribution of MAE, 

however we can notice the fewest high MAE region in the Figure5(a) (The EDSR model result) on closer inspection.  

 305 

Figure5. Time series temperature of the observation, DL merged data and EM data in one pixel in validation dataset, (a)-(f) 

represent the pixel in different continent. The location of these pixels are (-77.75, -7.25), (87.75.31.25), (148.25, -35.25), 

(10.25,46.75), (-44.75,68.75) and (13.75, -19.25) corresponding to (a) to (f) respectively. 

 

We randomly selected six pixels in individual continent to evaluate the performance of the time dimension. The time series 310 

showed in Figure5. It can be seen that the merged data has a remarkably better performance than the EM data compared to the 

observation data. Generally, the peak high and low temperature tends to have higher bias over the time series. Six pixel can be 

classed to three group based on the results. The Figure5(a) and Figure5(d) are in one group, the observation data have a lot of 

small fluctuation besides the cyclic variation, the merged data notwithstanding reduce the bias but not reconstruct the wave 

motion of the whole series. The second group consisted of Figure5(b) and Figure5(c), data of observation exhibits a relatively 315 

smooth period and the merged data has a good fit with the reference data. The last condition depicted by the Figure5(e) and 

Figure5(f), the observed data also have a smooth period but exist a fluctuation in place of the high and low in the cycle. It is 

surprised to find the merged data has learned this wave despite there are still considerable errors in those places. According to 

those results, we can get a consequence that the merged data will have an excellent result when the observation data with a 

few fluctuations. On the contrary, if the observation data appear a lot of wave, the performance of the merged data will decrease. 320 
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Figure 6 The monthly mean temperature of the Global and regions was used for Taylor diagrams to compare each of the ESMs, 

the observation, DL merged data, EM data in the period of validation dataset. The vertical coordinate is the standard deviation. 

Green concentric circles of dashed lines are ubRMSD. The angular coordinate is used to show the R.  325 

 

We use the Taylor diagrams to farther evaluate the DL merged data, EM data and the observation. Figure6 depicts the Taylor 

diagrams for results of the monthly mean temperature during the period 1993-2014 in different data. It is not surprising to find 

that the merged data achieve an excellent stable performance (low bias and high R) in all regions and they are superior to any 

other data. From the overall view, all ESMs and EM data have a very high R exceeding 0.95, and the EM data display a 330 

relatively better performance than the individual model globally. On the continent scale, there are clear differences between 

individual ESMs. In Asia and North American showed in Figure6(c) and Figure6(f), the performance of individual ESM has 
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no obvious variations and get a similar result like the global. And in other continents, the whole result of ESMs showing a 

trend of dispersion and the performance is relatively low. Only from the angle of the R, the EM data also achieve a splendid 

result second to the merged data. But from the view of the standard deviation and ubRMSD, the performance of the EM data 335 

shows a small but clear distances compared with the merged data, even not as effective as single ESM data in some areas. The 

worst result is observed in the African as shown in Figure6(g), all ESMs with a R less than 0.95 and high ubRMSD larger than 

0.5, representing a more scattered distribution. 

 

In order to achieve a better understanding of the DL merged data, the Taylor diagrams for annual climatology temperature, the 340 

result depicted the DL merged data display the best performance. Besides it, we also use the innovative metric SPAEF to 

compare DL data with individual ESM data and EM data. The SPAEF of the merged data, EM data and different ESMs data 

depicted in Figure7. It is not hard to find the scores of the merged data are ranked the first regardless of from the view of the 

global and different continent land. On the Contrary, the SPAEF of EM data and ESMs data have a diverse consequence in the 

global and region area. We can see from the Figure7(a) that the EM data also shows an excellent SPAEF scores only second 345 

to the merged data globally. But in the continent perspective, the performance of EM data is not stable, the similar situation 

also happened on the ESMs data, revealed by Figure7(c) and Figure7(g) the SPAEF of EM data in Asia and African is obviously 

lower than some single ESM result. It’s worth noting that the range of SPAEF is not restrict in 0 to 1 like some other correlation 

metrics. Totally, global scale scores of all data are exceed 0.6, but there is a lot of negative values appear in some regional 

results include Asia, Australia, Europe and North American reflected in Figure7(c)-(f). Additionally, comparison of global and 350 

regional results, almost all data SPAEF performance experience a clear decrease from global to region. It is surprise to realize 

that three ESMs (KACE-1-0-G, MCM-UA-1-0 and MIROC-ES2L) data achieve almost negative SPAEF in Australia, Europe 

and North American, it mainly related to those model have a raw low resolution (less than 2°×2°) showed in Table 1. 

 

Based on the ESMs data, we use the best DL model not only merge the future temperature dataset and also merge the historical 355 

data from 1850 to 1900. From the Figure8(a), we can see anomalies of merged data and all CMIP6 models in the period of 

1850 to 2100, using the data of observation data in 1995 to 2014 as the reference period. Obviously, the largest increase of 

temperature happened in the SSP-5.85, the up trends are also showed in SSP3-7.0, SSP2-4.5 and SSP1-2.6 circumstances. 

From the overall view, the EM data tend to lower than the observation data and the DL merged data have a closer result with 

the observed data globally. So, the merged data is slightly higher than the EM data regardless of in the historical and future, 360 

consistency of results can prove the stable ability of the DL model in our work. It is no doubt that we can reach a conclusion 

that the merged data is credible. In Figure8(b), we use EM data and DL data to calculate the temperature variation respectively 

in different periods. In order to match the reference period of 1995 to 2014, we select mean temperature of 1851-1870 and 

2081-2100 to represent the historical temperature and future temperature. The result of DL data shows a smaller increase in 

historical and different scenarios than the EM data. This phenomenon reveals the EM data exist a high estimation of 365 

temperature increase. The regional result is showed in Figure S4 and Table S1, this situation is most obvious in the South 
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American. Apart from it, the future four scenarios temperature decade trend presented in FigureS5, showing a clear upward 

tendency.  

 

Figure7  SPAEF of the global land surface and each individual continent comparing each of the CMIP6 models 、the 370 

observations、DL merged data and EM data for the period 1901–2014. 
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Figure8 Time series of Global land annual mean temperature anomalies of CMIP models, DL merged data and observation 375 

data over the global land surface and temperature change in historical and different scenarios calculated by EM data and DL 

data. The solid line in Figure8(a) are EM data of CMIP6 models and the shaded areas are the standard deviation. 

 

From our result, it is not surprise to find that the DL merged data outperforms the individual ESM and EM data in all aspects 

from the evaluation metrics. The performance of EM data is second to the DL merge data in the whole although it poorer than 380 

single model in regional scale.  As we all know, the deep-learning methods are data-driving algorithms (Reichstein et al., 2019), 

it means the result is determined by the input data to a large extent. From our result and other studies (Fan et al., 2020), the 

errors of raw ECM data in north hemisphere are very high (MAE of most regions exceeds 2), the DL merged data have a 

greater improvement in north hemisphere except the high north hemisphere still exist some high error regions (MAE exceeds 

than 1.5). It is worth noting that the bias in the Tibet plateau area is relatively low (MAE less than 1) under some raw model 385 

have a 5 degree under estimate in this area (Fan et al., 2020). The consequence prove the DL model do a good bias correction 

during the spatial downscaling and date merge. 

 

At the pixel time series, the DL merged data cannot achieve a good consequence when the temperature change has a lot of 

small wave in a big cycle and in the other condition it show a good performance. All ESM do not perform well in African than 390 

other continents from the time series evaluation (Figure6 (g)), mainly due to the limited availability of ground measurements 

for CRU in African (Collins, 2011). The merged data have a relatively low progress in time dimension compared with the 

spatial dimension. This phenomenon is related with the best DL model we selected is made by a single image DL approach 

not consider the information in time dimension. 

 395 

In former studies, the DL methods based on simply basic structures were reported with good performance in the downscaling 

work (Huang, 2020). Instead of building a small and easy DL network, our work applied mature methods with relatively more 

complexity. In this study, for the aim to choose a suitable method for this work, 4 single image SR algorithm and 1 video SR 
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algorithm have been used in our work to select a best model to merge the data. Actually, the result makes us a little surprise 

because the best model we selected according to the validation metrics is not own the outperformance than other methods in 400 

the computer vision task and not the newest algorithm. Besides it, in terms of the theory, video SR algorithm is thinking about 

the information both in space and time dimension (Chan et al., 2021), combined with the climate data is full of space and time 

relationship, this method should get the best result compared with the only consider spatial feature model. But the result from 

the EDVR not achieve the state of art of our work. This result depicts that the experience from the computer vision cannot 

fully applied into other fields and we need to do more comparative experiment when we consider specific applications.  405 

 

Our work used DL methods to make high-resolution future temperature under four sceneries (SSP1-2.6, SSP2-4.5, SSP3-7.0, 

SSP5-8.5). However, there are some limitations of this work. Firstly, the observation data we use is a reanalysis gridded data 

made by information of meteorological stations, it also exists some errors and cannot be avoided, which affects the accuracy 

of this work. In the future work, the weather station data need to be considered with reanalysis data together to achieve a better 410 

result. Secondly, no suitable ocean observation data are available to match the CRU temperature data in the spatial resolution 

and time series simultaneously, so we only merge a high-resolution data in the land area. Additionally, the lack of SST also 

makes us unable to consider SST in the model via the training process. In the future study, we think taking the ocean into 

account will most likely improve the model outputs because the DL model can learn extra information between the ocean and 

land. Thirdly, climate data is full of temporal information, our work does not explicitly take advantages of the temporal 415 

information. Similarly, in some other application field (such as temperature reconstruction work) (Kadow et al., 2020), how to 

make full use of information from the time dimension is also a question. Therefore, how to make full use of the temporal 

information to improve the performance of the merged data is an interesting topic that is needed to be resolved in the future 

work. 

 420 

4 Data availability 

All data we used in this work can be downloaded from the links given in Section 2. A copy of our merged future global land 

high-resolution temperature product has been registered with Zenodo and is available at https://doi.org/10.5281/zenodo. 

5746632 (Wei et al., 2021).  

5 Conclusions 425 

In this study, we use the deep learning (DL) method to generate the temperature data for the global land (except Antartica) at 

higher spatial resolution (0.5 degree) based on 31 different CMIP6 ESMs. Our methods can perform bias correction, spatial 

downscaling and data merging simultaneously. Five different DL methods are evaluated and the optimal model is selected to 

generate the historical data during 1851-1900 and future scenarios simulation data (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) 
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from 2015 to 2100. The merged data have a remarkably better quality compared with the individual ESMs and ensemble of all 430 

ESM in terms of both spatial dimension and time dimension. The error metrics (like R and ubRMSD) also show that the 

merged data have better accuracy in global and region areas.   

 

The merged data have a great improvement in the spatial error, besides the high latitude of Asia and North American, the most 

areas owns a low MAE (less than 1 degree). It means the merged data take full advantages of the raw CMIP6 model data. From 435 

the pixel time series, the DL merged data can present excellent performance when the observation is smooth with few 

fluctuations. From the total view, the merged data also make a progress in the time dimension. It is easy to find that the merged 

data have a better result in the spatial distribution than the time variation because the DL model is mainly pay more attention 

on the spatial feature. 

 440 

Our work is one of the first studies that perform spatial downscaling, bias correction and date merging simultaneously. Our 

results demonstrate that the DL model from the SR in computer vision can be successfully transferred to deal with the data 

merge and data downscaling problems when enough training data are available. The generated merged data with improved 

accuracy have great potentials for many applications such as spatial-temporal change of future climate, how climate change 

influences on water resources and agriculture. 445 
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