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Abstract. Soil carbon isotopes (δ13C) provide reliable insights at a long-term scale for studying soil carbon turnover. The 

Tibetan Plateau (TP), called “the third pole of the earth” is one of the most sensitive areas to global climate change and 

exhibits an early warning signal of global warming. Although many studies detected the variability of soil δ13C at site scales, 

a knowledge gap still exists in the spatial pattern of topsoil δ13C across the TP. To fill the substantial knowledge gap, we first 25 

compiled a database of topsoil δ13C with 396 observations from published literatures. Then we applied a Random Forest (RF) 

algorithm – a machine learning approach, to predict the spatial pattern of topsoil δ13C and β (indicating the decomposition 

rate of soil organic carbon (SOC), calculated by δ13C divided by logarithmically converted SOC). Finally, two datasets - 

topsoil δ13C and β with a fine spatial resolution of 1 km across the TP were developed. Results showed that topsoil δ13C 

varied significantly among different ecosystem types (p < 0.001). Topsoil δ13C was -26.3 ± 1.60 ‰ (mean ± standard 30 

deviation) for forests, 24.3 ± 2.00 ‰ for shrublands, -23.9 ± 1.84 ‰ for grasslands, -18.9 ± 2.37 ‰ for deserts, respectively. 

RF could well predict the spatial variability of topsoil δ13C with a model efficiency of 0.62 and root mean square error of 

1.12 ‰, enabling to derive data-driven δ13C and β products. Data-driven topsoil δ13C varied from -28.26 ‰ to -16.95 ‰, 
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with the highest topsoil δ13C in the north and northwest TP and the lowest δ13C in Southeast or South TP, indicating strong 

spatial variabilities in topsoil δ13C. Similarly, there were strong spatial variabilities in data-driven β, with the lowest β values 35 

at the east and middle TP, indicating a higher SOC turnover in the east and middle TP compared that of other regions in the 

TP. This study was the first attempt to develop a fine resolution product of topsoil δ13C and β across the TP, which could 

provide an independent data-driven benchmark for biogeochemical cycling models to study SOC turnover and terrestrial 

carbon-climate feedbacks over the TP under climate change. The data-driven δ13C and β datasets are public available at 

https://doi.org/10.6084/m9.figshare.16641292.v2 (Tang, 2021) 40 

1 Introduction 

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems, containing about 1500 Pg (1 Pg = 1015 g) 

carbon within the first meter, which is two-fold higher than that of the atmosphere (Scharlemann et al., 2014). Due to the 

decomposition of SOC, an amount of 57.2 Pg C was released from soil to the atmosphere (Tang et al., 2020). Thus a small 

change in SOC could lead to a profound impact on the atmospheric CO2 concentrations and hence climate change (Köchy et 45 

al., 2015). Understanding SOC dynamics is of great importance to assess ecosystem carbon balance and its feedbacks to 

climate change (Averill et al., 2014; Campbell et al., 2009; Wang et al., 2012). However, it is difficult to detect statistically 

significant changes in soil carbon pool over a short time (Van Groenigen et al., 2014).  

Carbon isotopes (δ13C) in soil organics provide reliable insights at the long-term scale into studying soil carbon turnover 

(Acton et al., 2013; Blagodatskaya et al., 2011; Khan et al., 2008; Li et al., 2020). Because the majority of soil organic 50 

matter originates from plant residues, soil δ13C can well reflect vegetation-related soil formation and dynamics (Ehleringer et 

al., 2000). Previous studies focused on spatial variability of soil δ13C at in-site scale (Acton et al., 2013; Lu et al., 2004; 

Wang et al., 2012). For example, it is widely observed that soil δ13C values increase with the increasing soil depth and 

increase with the decreasing soil organic carbon (Brunn et al., 2014; Wang et al., 2017; Wang et al., 2012). Climate, edaphic 

variables, and their combinations have a vital influence on the spatial variability of soil δ13C (Garten Jr et al., 2000). 55 

However, modelling the spatial patterns of δ13C using field observations has not been observed. A better understanding of 

the spatial variability of soil δ13C and its controlling factors at the regional scale is important to understand soil carbon 

dynamics and potential feedbacks to climate change (Li et al., 2020; Rao et al., 2017; Zhao et al., 2019).  

Previous studies found a negative linear correlation between the log-transformed SOC concentration and soil δ13C (Acton 

et al., 2013; Garten Jr and Hanson, 2006). The slope of the linear regression of soil δ13C on log-transformed organic carbon 60 

concentration is defined as β, a proxy of SOC decomposition (Garten Jr, 2006). The more negative the slope, the larger the 

decrease in the β value and the faster the turnover rate (Campbell et al., 2009). The method was widely used to study SOC 

turnover in the forest, grassland, and meadow ecosystems (Gautam et al., 2017; Peri et al., 2012; Zhao et al., 2019; Zhou et 

al., 2019). Acton et al. (2013) noted that the β should be applied out in well-drained soils characterized by a gradual mixing 
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of litter and root carbon inputs decomposing in the soil profile. Empirical studies found that temperature, precipitation 65 

(Acton et al., 2013), and soil properties (Wynn et al., 2006a) are important factors of driving β. However, temperature, 

precipitation, and soil properties vary greatly with climate zones and biomes, indicating that there is a strong spatial pattern 

of β. Therefore, detecting the spatial patterns of β is critical to study the SOC turnover to climate sensitivity. Whether β 

values can be used to constrain rates and controls on SOC turnover has not been fully explored at regional scales, 

particularly for areas with great sensitivity to climate change, e.g. the Tibetan Plateau (TP).  70 

 Due to highly data-adaptive and no initial assumptions on functional relationships between target variables and predict 

variables, machine learning approaches, e.g. Random Forest (RF) (Breiman, 2001), have been widely applied in spatial 

modelling in ecology and earth sciences using easy-to-measure variables (Tang et al., 2020; Yang et al., 2016). For example, 

Tang et al. (2020) predicted soil heterotrophic respiration using RF and found that soil heterotrophic respiration increased 

from 1980 to 2016 at the global scale. However, to date, no studies have used empirical field observations to assess the 75 

spatial variability of soil δ13C to bridge the knowledge gap between local, regional and global scales. 

The TP is the largest and highest plateau with an average altitude of 4000 m above sea level and covers about 2.5×106 

km2 on the earth (Lu et al., 2004). Soils in the TP store about 4.4 Pg (1 Pg = 1015 g) carbon within 30 cm (Yang et al., 2009), 

accounting for 12.4% of total SOC in China’s grasslands (Fang et al., 2010). In the last few decades, surface air temperature 

in the TP has increased by 0.44 oC per decade, which was almost three times the world average (0.16 oC per decade) (Duan 80 

and Xiao, 2015). Thus, it is urgent to explore the feedbacks between SOC and climate change under ongoing climate change. 

Site-level studies found that the decomposition rate of SOC accelerates with temperature increase, resulting in the release of 

stored carbon from the soil into the atmosphere (Chang et al., 2012; Dong et al., 2018; Li et al., 2020). However, regional 

estimates of the sensitivity of SOC decomposition in the TP are still missing. 

In this study, we firstly compiled a database of topsoil δ13C from published literature based on field observations from 85 

the TP and applied a Random Forest algorithm to predict the spatial patterns of topsoil δ13C with the linkage of environment 

variables. The objectives of this study are to: (1) compare the topsoil δ13C among different ecosystems; (2) develop gridded 

products of topsoil δ13C and β (named data-driven δ13C and β); (3) explore the spatial pattern of topsoil δ13C and β over the 

TP. The outcome can provide an insightful view of the SOC dynamics and turnover across the TP.  

2 Materials and methods 90 

2.1 Data sources 

The first topsoil (0 – 5 cm) δ13C dataset based on field observations was from Lu et al. (2004) and second dataset was 

Qi (2017). Along different elevation gradients, soil samples were collected away from the villages and leaves, grass roots, 

and litter were removed before sampling (Lu et al., 2004; Qi, 2017). Finally, a total of 396 observations were included in the 

study, with 16 observations from deserts, 103 observations from forests, 218 observations from grasslands and 59 95 

observations from shrublands. Meanwhile, site information, included altitude, vegetation type, latitude and longitude, was 

also included.  
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Figure 1. The distributions of the study sites. 

2.2 Environmental variables  100 

Topsoil δ13C is affected by multiple environmental factors. To investigate the spatial patterns of δ13C, the spatial grid of 

environmental variables was required. The environmental variables were included: mean annual temperature (MAT) and 

mean annual precipitation (MAP) with the spatial resolution is 1 km during 2000-2010 from Peng et al. (2019).The elevation 

data (digital elevation map; DEM) with 1 km spatial resolution was obtained from National Earth System Science Data 

Center (http://www.geodata.cn). Moderate-resolution Imaging Spectroradiometer (MODIS) products, including normalized 105 

difference vegetation index (NDVI) and enhanced vegetation index (EVI) with a spatial resolution of 1 km, leaf area index 

(LAI) and the fraction of photosynthetically active radiation (FPAR), with a spatial resolution of 500 m, gross primary 

productivity (GPP) with a spatial resolution of 500 m, evapotranspiration (ET) and potential evapotranspiration (PET) with a 

spatial resolution of 500 m, land cover type (LCT), with a spatial resolution of 500 m were from https://lpdaac.usgs.gov/. 

Due to data availability, NDVI, EVI and GPP covered from 2000 to 2010, while ET and PET covered from 2001 to 2010, 110 

and LAI and FPAR covered from 2002 to 2010. The soil organic content, soil pH, soil BD, soil silt content, soil clay content, 

soil sand content with 250 m spatial resolution were from SoilGrids (Hengl et al., 2017). Before data analysis, the soil and 

MODIS data were resampled to 1 km using the nearest neighbour method. 

2.3 Data analysis  

One-way analysis of variance (ANOVA) was performed to analyse the significance difference in topsoil δ13C among 115 

forests, shrublands, grasslands and deserts. If the difference was significant at the 0.05 level, the Tukey-HSD (honestly 

significant difference) test was applied for multiple comparisons. Tukey-HSD is a post-hoc test based on the studentized 

range distribution that determines which specific groups’ means are different by comparing all possible pairs of means 
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(Bretz et al., 2016). The correlation analysis was conducted to explore the correlations between topsoil δ13C and climate, 

vegetations and soil factors.   120 

The β values, which reflect the sensitivity of SOC decomposition (Garten Jr, 2006), were obtained using a standard 

least-squares regression analysis between the log10-transformed SOC concentration and δ13C:  

δ13CSOC = β×lg(SOC) + α                (1) 

Where δ13CSOC is the δ13C in SOC, and the β value is the regression coefficient. The α value is a constant number, which 

was obtained using a standard-least squares regression analysis between the log10-transformed SOC concentration and soil 125 

δ13C from gathering dataset (Fig. S1). In current study, the spatial resolution 250 m SOC within 0 – 5 cm from SoilGrids was 

used (Hengl et al., 2017). All the analyses were conducted in R 3.6.3 (R Core Team, 2018). 

2.4 Spatial modelling 

2.4.1 Feature selection  

In order to improve the model efficiency and reduce the workload, a recursive feature elimination (RFE) algorithm was 130 

used for variable selection (Kuhn, 2008). RFE improves the generalization efficiency by avoiding overfitting while reducing 

the complexity of the model. In general, RFE is to select features by recursively considering smaller and smaller feature sets: 

first, all input variables participate in random forest modelling and rank the importance of participating variables; second, a 

new feature set is obtained by removing the corresponding proportion of unimportant indicators from the current feature 

variables; third, a new random forest is created with the new feature set, and the variable importance of each feature in the 135 

feature set is calculated and ranked. The three steps are repeated until best features remained. Finally, six variables (MAT, 

MAP, Altitude, NDVI, Vegetation types, pH) were selected to predict topsoil δ13C. Figure S1 shows that the relative 

importance evaluation of all the variables. 

2.4.2 Modelling 

RF was used to model the spatial patterns of topsoil δ13C. RF is an ensemble machine learning algorithm that predicts a 140 

response from a set of predictors by creating multiple decision trees and aggregating their results (Breiman, 2001). RF 

algorithm has two important custom parameters, the number of categorical regression trees and the number of random 

variables separating the nodes. Model prediction accuracy can be improved by optimizing these two parameters (Liaw and 

Wiener, 2002). However, RF models are usually insensitive to the number of trees or variables. RF regression can handle a 

large number of features and aids feature selection according to the importance value of each variable for avoiding over-145 

fitting (Bodesheim et al., 2018; Jian et al., 2018; Tang et al., 2020). In the present study, the RF model was trained by caret 

package (version 6.0-80) by linking RandomForest in R, and then the model was implemented to predict topsoil δ13C for 

each grid with a spatial resolution of 1 km. To evaluate the performance of RF, a 10-fold cross-validation was applied, which 

meant that the data set was stratified into 10 parts, and each part contained approximately an equal number of samples. The 
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target values for each of these ten parts were predicted using a model trained using the remaining nine parts (Jung et al., 150 

2011; Tang et al., 2020). The model efficiency (R2) and root-mean-square error (RMSE) were used to model evaluation 

(Tang et al., 2020; Yao et al., 2018). 

3. Results 

3.1 Soil δ13C among different ecosystems 

Large variabilities of soil δ13C values were observed among different ecosystem types (Fig. 2 and Table S1). δ13C ranges 155 

from -29.71 ‰ in forests to -15.08 ‰ in deserts, and mean δ13C was -24.41 ± 2.38 ‰ (mean ± standard deviation). In terms 

of ecosystem types, δ13C varied significantly (Fig. 2, p < 0.001), specifically, the highest δ13C was -18.9 ± 2.37 ‰ in deserts, 

followed by grasslands ( -23.9 ±1.84 ‰) and shrublands ( -24.3 ± 2.00 ‰), forests with the lowest δ13C ( -26.3 ± 1.60 ‰, 

Table S1). There was no difference in soil δ13C between grasslands and shrublands (p = 0.423). Great variability was also 

observed within the same ecosystem type. For example, topsoil δ13C varied from -28.8 ‰ to -18.2 ‰ in shrublands. 160 

 

 

Figure 2. Boxplot of topsoil δ13C among different ecosystem types. The boxplot shows the median (line), first and third 

quartiles (box bounds), 1.5 times the interquartile (whiskers) and outliers (values outside of whisker limits) for each 

ecosystem type. Different lowercase letters (a, b and c) indicate significantly different ratios at p < 0.05 using one-way 165 

analysis of variance (ANOVA) and Tukey-HSD test for multiple comparisons. The blue dots represent the mean topsoil δ13C. 

3.2 Relationships between soil δ13C and environmental factors 
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Climate, soil and vegetation variables led to a significant impact on soil δ13C. Positive correlations were found between 

soil δ13C and altitude, PET, pH, BD and soil sand content, while negative correlations were found between soil δ13C and 

MAP, MAT, NDVI, EVI, ET, SOC, soil clay and silt content (Fig. 3).  170 

 

Figure 3. The correlation coefficient analysed by the Pearson correlation between soil δ13C and environmental factors. The 

numbers marked by “×” means insignificance at the level of p＜0.05. MAT: mean annual temperature (℃); MAP: mean 

annual precipitation (mm); ET: evapotranspiration (kg m-2); PET: potential evapotranspiration(kg m-2); NDVI: normalized 

difference vegetation index; Altitude: elevation (m); BD: soil bulk density (g cm-3); SOC: soil organic carbon content (g kg-175 

1); pH: soil pH; Sand: soil sand content (%); Clay: soil clay content (%); Silt: soil silt content (%). 

3.3 Spatial patterns of the data-driven δ13C  

Based on the 10-fold cross-validation, R2 and RMSE were 0.62 and 1.12 ‰, respectively, indicating that RF can well 

predict the spatial patterns of topsoil δ13C (Fig. 4). 
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 180 

Figure 4. Correlations between observed and predicted soil δ13C from Random Forest by 10-fold cross-validation. 

The data-driven δ13C showed great spatial variation across the TP. The highest topsoil δ13C was observed in the north 

and northwest TP, while the lowest topsoil δ13C was in Southeast or South TP. Across the TP, soil δ13C varied from -28.26 ‰ 

to -16.95 ‰, and mean topsoil δ13C was -22.26 ‰. 

 185 

 

Figure 5. Spatial distributions of the data-driven δ13C of topsoil across the TP. 
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3.4 Spatial variability of the data-driven β across the TP 

The data-driven β also showed strong spatial variabilities across the TP (Fig. 6). The highest β values were found in 

northwest and north regions, while the lowest values were observed in the middle-west TP with β lower than -8. Mean β was 190 

-2.33 across the TP.   

 

Figure 6. Spatial distributions of the data-driven β of topsoil across the TP. 

4 Discussion 

4.1 Spatial variations of the data-driven δ13C across the TP 195 

We found significant differences in topsoil δ13C across ecosystems, with an increasing trend from forests (-26.3 ‰), 

shrublands (-24.3 ‰), grasslands (-23.9 ‰) to deserts (-18.9 ‰) (Table S1). The result was similar to previous study (Wang 

et al., 2012), which found that topsoil δ13C was −25.25‰ for forests, −24.71‰ for meadow and -23.65% for steppe.  

For the first time, we developed a data-driven δ13C of topsoil using RF, and found a great spatial pattern in topsoil δ13C, 

with an increasing trend from the southeast to the northwest TP. Such spatial patterns may be primarily associated with 200 

vegetation types (Wang et al., 2012), because we found that vegetation types was the most important factor in predicting 

topsoil δ13C (Fig. S2). Plant litter was the main source of soil organic matter and plant litter production varied greatly among 

different ecosystem types. Therefore, different vegetation types with large differences in leaf δ13C could lead to a significant 

impact on topsoil δ13C (Wang et al., 2012; Yang et al., 2015). Plant species growing in dry habitats generally have high leaf 

δ13C values (Wang et al., 2012). For example, C4 plants, growing in the high elevation of the TP with a strong ability to 205 

adapt to severe drought, had much higher leaf δ13C than C3 plants (Wang et al., 2004). Meanwhile, the degree of carbon 

isotope fractionation during the conversion of soil organic matter from different regions and plant residues varied, ranging 

from 0.5 ‰ to 2 ‰ (Cao et al., 2005). The southeast TP was dominated by forests, and the northwest TP was dominated by 
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deserts and grasslands (Wang et al., 2012), which could potentially lead to higher soil δ13C in the northwest TP and lower 

soil δ13C in the southeast TP (Fig. 4).  210 

Besides vegetation types, climate factors were also important to influence the spatial variation of topsoil δ13C (Wang et 

al., 2013; Rao et al., 2012; Zhao et al., 2017). The data-driven δ13C had a significant and negative correlation with MAT (Fig. 

3), indicating that temperature could lead to a significant impact on topsoil δ13C. Our results were consistent with Rao et al. 

(2017) and Zhang et al. (2020), who found topsoil δ13C decreased with the increase of MAT. However, the data-driven δ13C 

were different from Wang et al. (2012) and Zhang et al. (2020), and they found a positive correlation between topsoil δ13C 215 

and MAT. The controversial results may be associated with the relative complexity between temperature and topsoil δ13C 

(Rao et al., 2017). First, the temperature can affect topsoil δ13C by changing δ13C in vegetation and microbial characteristics. 

For example, temperature could affect the relative abundance of C3 and C4 plants (Tieszen et al., 1997). Generally, a 

relatively higher abundance of C4 plants distribution was found in higher MAT and lower MAP areas (Zhang et al., 2003). 

Second, temperature could also affect carbon isotope fractionation by modulating the stomatal conductance of plants and the 220 

activities of photosynthetic enzymes (Rao et al., 2017; Zhao et al., 2017). With the increase of temperature, plants close to 

the leaf stomata decrease the intercellular CO2, thus leading to the increase of δ13C in plants. Third, temperature could also 

affect topsoil δ13C by regulating the decomposition rate of litter and ecosystem respiration (Cai et al., 2021; Kato et al., 

2004). Generally, a lower temperature led to a lower litter decomposition and ecosystem respiration , enriching soil δ13C. 

Fourth, the temperature can also affect topsoil δ13C by changing isotopic fractionation during the microbial decomposition 225 

(Garten Jr, 2006). Microbes tend to use lighter 12C during the decomposition and 13C component accumulates. Therefore, the 

combined effects of lower stomatal conductance and lower enzyme activity resulted in a negative correlation between topsoil 

δ13C and temperature (Li et al., 2020; Zhang et al., 2020), and higher topsoil δ13C in north and northwest TP (Fig. 4). 

Precipitation is another important factor influencing soil δ13C. Our results showed that topsoil δ13C decreases with 

increasing precipitation (Fig. 3), which was consistent with previous studies (Murphy and Bowman, 2009; Zhao et al., 2019). 230 

The mechanisms of the impact of precipitation on δ13C have been well explained. It is generally accepted that because of the 

lack of water, vegetation will close stomata to reduce transpiration, leading to an increase in δ13C (Farquhar et al., 1989). In 

the last several decades, the TP suffered from a significant increase in MAT and MAP, which may increase the species, 

microbial quantities and activities (Papatheodorou et al., 2004), accelerating the decomposition rate of 12C, enriching soil 

δ13C (Li et al., 2020). In the north TP, precipitation was much lower than in the south TP (Fig. S3). Therefore, the change of 235 

vegetation types, the closure of stomata due to the lack of precipitation and the increase microbial activities due to increasing 

MAT and MAP may partly explain the higher topsoil δ13C in the north TP compared to other regions of the TP. 

 Soil factors may influence soil δ13C by altering microbial activity, matrix quality, and effectiveness (Wynn et al., 2006b; 

Xu et al., 2016). Generally, soil δ13C decreased with the increase of SOC (Wang et al., 2018; Yang et al., 2015), and 

increased with the increase of soil sand content (Wang et al., 2012). This is consistent with our study that we found a 240 

negative correlation between the data-driven δ13C and SOC, and a positive correlation between the data-driven δ13C and sand 
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content (Fig. 3). Meanwhile, soil texture can lead to a significant impact on SOC dynamics and affect soil δ13C (Bird et al., 

2002). Soil δ13C increases with decreasing particle size because carbon enriched in δ13C is allocated to microbial biomass 

and can subsequently be stabilized by the interaction with soil fine mineral phases (Kleber et al., 2011; Sollins et al., 2009). 

We found that topsoil δ13C was negatively correlated with soil silt content (Fig. 3). This result is consistent with the study 245 

from Wang et al. (2012) in the TP. 

4.2 Spatial patterns of the data-driven β across the TP 

Soil carbon turnover is a major determinant of the capacity of soil carbon sequestration (Luo et al., 2003), and a 

decrease in carbon turnover can sequestrate SOC without an increase in carbon input (Jastrow et al., 2006). Because it is 

difficult to detect the change in SOC stock over short periods due to the large pool size and huge spatial heterogeneity (Van 250 

Groenigen et al., 2014), the predicted β across the TP could provide a reliable method to evaluate the SOC turnover rate over 

a large spatial scale (Brunn et al., 2014; Gautam et al., 2017). Therefore, understanding the spatial variation of the β values is 

particularly important. 

The β values reflect the turnover rate of SOC in response to microbial activities. The more negative the β values and the 

faster turnover of SOC (Acton et al., 2013; Zhao et al., 2019). Although many studies have compared β values among 255 

different ecosystem types across the TP and suggested that β was a useful proxy for understanding generalized patterns of 

SOC turnover and the underlying control over soil metabolism (Wang et al., 2018), knowledge gaps still exist in the spatial 

variability of β. This study was the first time to estimate the spatial patterns of β across the TP, which could improve our 

understanding of the spatial patterns of SOC turnover and contribute to predicting the soil C dynamics and feedback of soil C 

cycle to climate change. There was a great spatial pattern of the data-driven β across the TP, highlighting the large variability 260 

in SOC turnover. The lowest β values were below -10, locating at the east and middle TP, which was much lower than the 

observed β values ranging from −0.60 to −7.41 (Wang et al., 2018; Zhao et al., 2019), indicating that SOC turnover was 

faster in the east and middle TP compared that of other regions and highlighting the need of protecting SOC in the TP under 

the ongoing climate change.  

Understanding how the environmental variables that affects the spatial patterns of β values is a key goal for 265 

understanding the SOC dynamics. The temperature and precipitation are important variables that have the significant effect 

on SOC turnover (Li et al., 2020; Wang et al., 2017). Generally, increasing temperature and precipitation can stimulate the 

turnover rate of SOC by affecting the soil microbial biomass and enzyme activities (Collins et al., 2008; Conant et al., 2011), 

and vice versa. Our study found that β values were low in the east TP and high in the north and northwest TP, indicating that 

SOC turnover rate in the east TP was faster than that in the north and northwest TP. This result may result from differences 270 

in climate because MAT and MAP in the north or northwest TP were much lower compared to the east TP (Fig. S3 and Fig. 

S4). Our result also agreed with a previous study that the SOC turnover increased with increasing temperature at a global 

scale (Wang et al., 2018).  
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Besides climate, soil properties also lead to a significant impact on SOC turnover. A previous study indicated that β 

values were generally negatively correlated with sand content and positively correlated with clay content in the TP (Li et al., 275 

2020). Our results generally agreed with the previous study that β values were high in the northwest TP where soil sand 

content was low, and soil clay content was high (Fig. S5 and Fig. S6). It is widely accepted that soil texture could affect SOC 

turnover by changing soil water-holding capacity, water movement, gas diffusion (Kaiser et al., 2015; Yiqi and Zhou, 2010; 

Xu et al., 2016). Meanwhile, soil pH can also affect SOC turnover by altering microbial community and enzyme activity, 

along with substrate availability (Priha et al., 2001). Therefore, the spatial patterns of β values were jointly controlled by 280 

climate and soil properties, and detecting the dominant environmental control on β values can enhance the predictive power 

for addressing the spatial patterns of SOC turnover, as well as for understanding the future response of SOC to climate 

change.  

4.3 Limitations 

In this study, based on the topsoil δ13C field observations dataset, we developed a data-driven δ13C of topsoil using a RF 285 

algorithm and analysed its spatial pattern across the TP, however, limitations still remain in a few aspects. First, the RF 

algorithm builds a model based on the training dataset, which is usually limited by data in terms of quantity, quality, and 

representativeness. In many ecological studies around the world, uneven data distribution has always been a well-known 

problem (e.g., Jung et al. (2011)  and Xu and Shang (2016)). The study sites of topsoil δ13C were mainly concentrated in the 

eastern and northern TP, while there were a lack of topsoil δ13C field observations in the western and northwest TP. 290 

Therefore, the uneven coverage of observations was an important source of uncertainty to predict topsoil δ13C, which may 

cause a bias in the RF model towards the areas with more observations. In the future studies, increasing the number of field 

observations in the eastern and northern TP could improve the ability to evaluate spatial pattern of topsoil δ13C across the TP. 

Second, our dataset was from the topsoil within 0 – 5 cm, although it is generally accepted that topsoil generally had higher 

carbon content and more sensitive to environmental change compared to subsoils. Therefore, modelling soil δ13C for deeper 295 

soils would greatly improve our understanding of soil carbon dynamics and its response to carbon-climate feedbacks across 

the TP. 

5 Data availability 

There were three datasets in our study. The first dataset was topsoil δ13C from field observations. The second and third 

datasets were data-driven δ13C and β with a spatial resolution of 1 km using RF algorithm. The datasets were publicly 300 

available for scientific purposes and freely downloaded at https://doi.org/10.6084/m9.figshare.16641292.v2 (Tang, 2021). 

6 Conclusions 

Gridded data-driven δ13C and β of topsoil with a spatial resolution of 1 km were developed based on field observations 

using RF. Our results showed that topsoil δ13C varied significantly among ecosystem types, indicating that vegetation types 
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led to a significant impact on topsoil δ13C. Data-driven δ13C of topsoil varied from -28.29 ‰ to -16.95 ‰ and δ13C was 305 

increasing from southeast to northwest. Similarly, strong spatial variabilities were observed in data-driven β and increased 

from eastern to northwest, indicating that SOC turnover was higher in the east TP compared to that of the northwest TP. The 

data-driven δ13C and β of topsoil could provide an independent benchmark for biogeochemical models to study SOC 

turnover and terrestrial carbon-climate feedbacks under ongoing climate change in the TP.   

 310 
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