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Abstract. Developing a big data analytics framework for generating a Long-term Gap-free High-18 

resolution Air Pollutants concentration dataset (abbreviated as LGHAP) is of great significance for 19 

environmental management and earth system science analysis. By synergistically integrating 20 

multimodal aerosol data acquired from diverse sources via a tensor flow based data fusion method, a 21 

gap-free aerosol optical depth (AOD) dataset with daily 1-km resolution covering the period of 2000–22 

2020 in China was generated. Specifically, data gaps in daily AOD imageries from MODIS aboard 23 

Terra were reconstructed based on a set of AOD data tensors acquired from diverse satellites, 24 

numerical analysis, and in situ air quality measurements via integrative efforts of spatial pattern 25 

recognition for high dimensional gridded image analysis and knowledge transfer in statistical data 26 

mining. To our knowledge, this is the first long-term gap-free high resolution AOD dataset in China, 27 

from which spatially contiguous PM2.5 and PM10 concentrations were then estimated using an 28 

ensemble learning approach. Ground validation results indicate that the LGHAP AOD data are in a 29 

good agreement with in situ AOD observations from AERONET, with R of 0.91 and RMSE equaling 30 

to 0.21. Meanwhile, PM2.5 and PM10 estimations also agreed well with ground measurements, with R 31 

of 0.95 and 0.94 and RMSE of 12.03 and 19.56 μg m-3, respectively. The LGHAP provides a suite of 32 

long-term gap free gridded maps with high-resolution to better examine aerosol changes in China over 33 

the past two decades, from which three major variation periods of haze pollution were revealed in 34 

China. Additionally, the proportion of population exposed to unhealthy PM2.5 was increased from 35 

50.60% in 2000 to 63.81% in 2014 across China, which was then reduced drastically to 34.03% in 36 

2020. Overall, the generated LGHAP dataset has a great potential to trigger multidisciplinary 37 

applications in earth observations, climate change, public health, ecosystem assessment, and 38 

environmental management. The daily resolution AOD, PM2.5, and PM10 datasets are publicly 39 

available at https://doi.org/10.5281/zenodo.5652257 (Bai et al., 2021a), 40 

https://doi.org/10.5281/zenodo.5652265 (Bai et al., 2021b), and 41 

https://doi.org/10.5281/zenodo.5652263 (Bai et al., 2021c), respectively. Monthly and annual datasets 42 

can be acquired from https://doi.org/10.5281/zenodo.5655797 (Bai et al., 2021d) and 43 

https://doi.org/10.5281/zenodo.5655807 (Bai et al., 2021e), respectively. Python, Matlab, R, and IDL 44 

codes were also provided to help users read and visualize these data. 45 

Keywords: Aerosol optical depth; Particulate matter; Gap filling; Big data analytics; Multimodal data 46 

fusion  47 
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1   Introduction 48 

Atmospheric aerosols not only impact regional climate by changing the Earth radiation budget 49 

but significantly influence air quality at the ground level (Fuzzi et al., 2015; Gao et al., 2018; Shen et 50 

al., 2020; Sun et al., 2015; Yang et al., 2020; Zheng et al., 2020). Monitoring aerosol loading in the 51 

atmosphere is thus of great significance for climate change attribution and haze pollution assessment. 52 

Aerosol optical depth (AOD), an indicator of aerosol bulks distributed within a column of air from the 53 

Earth’s surface to the top of the atmosphere, has been monitored for decades to map global aerosol 54 

loading in the atmosphere. Compared with sparsely and unevenly distributed ground-based aerosol 55 

monitoring stations (e.g., AERONET), satellite instruments can map AOD with vaster spatial coverage 56 

at even sub-hourly sampling frequency (e.g., geostationary satellite). An overview of sensors, 57 

algorithms, and AOD datasets that are widely used in the community can be found in the literature 58 

such as Sogacheva et al. (2020) and Wei et al. (2020). 59 

Due to negative impacts of bright surface (e.g., snow cover) and clouds, as well as algorithmic 60 

restrictions, satellite AOD retrievals often suffer from extensive data gaps, significantly reducing the 61 

downstream application potential such as mapping particulate matter (PM) concentrations at the 62 

ground surface (e.g., Bai et al., 2019a; Wei et al., 2021a). Also, excessive data gaps in AOD imageries 63 

may result in large uncertainty when assessing aerosol impacts on weather and climate (Guo et al., 64 

2017; Li et al., 2019; Zhao et al., 2020; Zheng et al., 2018). Over the years, versatile gap filling methods 65 

have been developed (e.g., Bai et al., 2016, 2020b; Chang et al., 2015). Nonetheless, filling data gaps 66 

in satellite-based AOD retrievals is still challenging due to extraordinary nonrandom missing values 67 

and high aerosol dynamics in space and time.  68 

Wei et al. (2020) provided a short review of methods that have been frequently applied to deal 69 

with data gaps in AOD products. In general, merging AOD data acquired from diverse instruments 70 

and/or platforms is the most popular approach to improve AOD spatial coverage (Sogacheva et al., 71 

2020). Statistical methods such as linear regression (Bai et al., 2019a; Wang et al., 2019; Zhang et al., 72 

2017), inversed variance weighting (Chen et al., 2018; Ma et al., 2016; Sogacheva et al., 2020), and 73 

maximum likelihood estimate (Xu et al., 2015), are often applied to account for systematic bias among 74 

different datasets. Data fusion methods such as Bayesian maximum entropy could be applied to blend 75 

AOD products with different resolutions (Tang et al., 2016; Wei et al., 2021b). Another way is to 76 

reconstruct missing AOD values using either neighboring observations in space and time or external 77 
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data sources such as AOD simulations from numerical models (Li et al., 2020; Xiao et al., 2017), even 78 

meteorological factors (Bi et al., 2018). 79 

Although there exist a variety of gap filling methods, spatially gap free AOD datasets are still 80 

rare, particularly high-resolution AOD datasets from satellites, significantly limiting downstream 81 

applications such as PMx concentration mapping. In spite of versatile PM2.5 concentration prediction 82 

models (e.g., Di et al., 2019; Fang et al., 2016; Hu et al., 2014; Li et al., 2016; Lin et al., 2016; Liu et 83 

al., 2009; Wang et al., 2021a), to date, there are few publicly accessible PMx concentration datasets 84 

that can be used to examine haze pollution variations regionally and globally. Several typical datasets, 85 

e.g., the one generated by the Dalhousie University (van Donkelaar et al., 2010, 2016), CHAP (Wei et 86 

al., 2021a), and TAP (Geng et al., 2021), have been widely applied to advance our understanding on 87 

aerosol impacts across China and globe. However, these datasets more or less still suffer from 88 

drawbacks in spatial and/or temporal resolution, spatial coverage, and data accuracy. To meet the 89 

contemporary needs, Zhang et al. (2021) provided a more comprehensive review of the widely used 90 

PMx concentration mapping approaches. With a thorough review for PM2.5 concentration mapping 91 

techniques, an optimal full-coverage PM2.5 modeling scheme was proposed, in which diverse aerosol 92 

datasets were fused toward a full-coverage AOD map based on a multi-modal approach (Bai et al., 93 

2022). In parallel with these efforts, some attempted to improve AOD data coverage over space with 94 

high accuracy by merging AODs observed at adjacent times directly (Li et al., 2022).  95 

With such prior knowledge, the current study developed a big data analytics framework for 96 

generating a Long-term Gap-free High-resolution Air Pollutants concentration dataset (abbreviated as 97 

LGHAP hereafter), aiming at providing gap-free AOD, PM2.5 and PM10 concentration data with a daily 98 

1-km resolution in China for the period of 2000 to 2020. Toward such a goal, multimodal aerosol data 99 

acquired from diverse sources including satellites, ground stations and numerical models were 100 

synergistically integrated via the higher order singular value decomposition (HOSVD) to form a tensor 101 

flow based data fusion framework in the current study. Full coverage PM2.5 and PM10 concentration 102 

data were then estimated on the basis of the gap-filled AOD dataset. This 21-year-long gap-free high 103 

resolution (daily/1km) aerosol dataset was then compared against ground-based AOD and PMx 104 

observations to validate the data accuracy of each product, particularly their performance in spatial 105 

pattern recognition and temporal trend assessment. These advances endorsed a better assessment of 106 
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long-term variability of haze pollution in China as well as the corresponding population exposure over 107 

the past two decades. 108 

2  Data sources 109 

Table 1 provides a brief summary of the multisource datasets used in this study to generate the 110 

LGHAP dataset. As shown, six satellite-based AOD products, five numerical simulations of AOD and 111 

aerosol components, eleven meteorological factors, six datasets of ground-based AOD and air 112 

pollutants concentration measurements, as well as a set of land cover, topographic and socioeconomic 113 

parameters, were employed. Descriptions of these datasets are given in the following subsections. 114 

 Table 1. Summary of the data sources used in this study to generate gap free high resolution AOD 115 

and PMx concentration datasets. 116 

Category Source product Time range Temporal 
resolution 

Spatial 
resolution 

AOD 

Terra/MODIS 2000–2020 daily 1 km 
Aqua/MODIS 2002–2020 daily 1 km 
Terra/MISR 2000–2020 daily 4.4 km 

Suomi-NPP/VIIRS 2012–2020 daily 5 km 
Envisat/AATSR 2000–2012 daily 10 km 

PARASOL/POLDER 2005–2013 daily 10 km 
MERRA-2 2000–2020 hourly 0.5°×0.625° 
AERONET 2000–2020 hourly point 

Meteorology 

Air temperature 

2000–2020 

hourly 0.25° 
U/V component of wind hourly 0.25° 

Relative humidity hourly 0.25° 
Surface pressure hourly 0.25° 

Boundary layer height hourly 0.25° 
Total column water vapor hourly 0.25° 

Surface solar radiation downwards hourly 0.25° 
Instantaneous moisture flux hourly 0.25° 

Visibility 2000–2013 3-hour point 

Air quality PM2.5, PM10, SO2, NO2 2014–2020 hourly point 
Population WorldPop 2000–2020 annual 1 km 
Elevation DEM 2000 / 30 m 

Land Cover 
CLCD 2000–2019 annual 30 m 

GLOBELAND 2020 annual 30 m 
NDVI Terra/MODIS 2000–2020 monthly 1 km 

Aerosol component MERRA-2 2000–2020 hourly 0.5°×0.625° 
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2.1  Gridded aerosol products 117 

In many previous studies, coarse AOD and/or aerosol components simulations acquired from 118 

numerical models were oftentimes used as the primary data source to help derive full-coverage AOD 119 

and/or PM2.5 concentration maps (e.g., Park et al., 2020; Wang et al., 2021b). However, due to the lack 120 

of high accuracy near real-time emission inventory, simulated AOD and/or aerosol components are 121 

often prone to large uncertainty, which could be inevitably introduced to the final PM2.5 estimations if 122 

no observational data are applied for possible bias correction. In such a research context, here we used 123 

six satellite-based AOD products with a relatively long temporal coverage (>5 years) to help better 124 

reconstruct historical AOD variations over space and time, though geostationary satellites can provide 125 

AOD observations at even hourly resolution. The reasons are twofold. On the one hand, the operational 126 

AOD product from the recent Chinese FY-4 satellite is still unavailable. On the other hand, AOD 127 

product from Hamawari-8 cannot provide observations in the northwest region of China.  128 

The latest AOD product derived from the MODerate-resolution Imaging Spectroradiometer 129 

(MODIS) onboard Terra using the multiangle implementation of atmospheric correction (MAIAC) 130 

algorithm (Lyapustin et al., 2011, 2018), was hereby used as the baseline dataset for the generation of 131 

gap free AOD maps. This AOD product has not only a finer spatial resolution (1 km) but a comparable 132 

and even better accuracy, when comparing with those derived from the Dark Target and Deep Blue 133 

algorithms (Goldberg et al., 2019; Lyapustin et al., 2018). In addition, AOD products derived from 134 

MODIS onboard Aqua, the Multi-angle Imaging SpectroRadiometer (MISR) onboard Terra, Visible 135 

Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP, Advanced Along-Track Scanning 136 

Radiometer (AATSR) onboard Envisat and POLarization and Directionality of the Earth’s 137 

Reflectances (POLDER) onboard PARASOL, were also employed. The ultimate goal was to reduce 138 

the bias level in the final full-coverage AOD product by providing observational AODs as much as 139 

possible. Accuracies of these AOD products have been extensively validated in previous studies, e.g., 140 

de Leeuw et al. (2018), Xiao et al. (2016), Wei et al. (2019b), Che et al. (2019), to name a few. A brief 141 

description of these satellite-based AOD products can be found in Text S1 in the supplementary 142 

information. 143 

In addition to satellite-based AOD products, numerically simulated aerosol diagnostics from 144 

MERRA-2, including AOD and aerosol components such as black carbon, organic carbon, dust and 145 

sulfate, were also applied to help reconstruct missing AOD information and to predict PM2.5 and PM10 146 
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concentrations at the ground level. The aerosol components were used here as a proxy of emission 147 

inventory when predicting PMx concentrations. Big data analytics procedures applied to these datasets 148 

will be described in section 3. 149 

2.2  In situ AOD and air quality measurements 150 

AOD observations from Aerosol Robotic Network (AERONET) were hereby used as the ground 151 

truth to evaluate the data accuracy of the generated gap free AOD product, as well as the learning 152 

target to infer AOD from air pollutants concentration and atmospheric visibility. Considering few valid 153 

data were provided in the Level 2.0 dataset, here we used the Level 1.5 AOD data to guarantee adequate 154 

in situ AOD data coverage in space and time. To validate the gridded AOD products in this study, each 155 

in situ AOD observation was registered with the gridded mean AOD over a 50×50 km window. 156 

Near-surface air pollutants concentrations including PM2.5, PM10, NO2, and SO2 that were 157 

sampled at state-controlled monitoring sites were also applied, not only to help establish machine-158 

learned regression models for PMx prediction (PM2.5 and PM10), but to infer AOD over air quality 159 

monitoring sites given their dense distributions across China. The gauged air pollutants concentration 160 

data have been released online on an hourly basis by the China National Environment Monitoring 161 

Center since the late 2013. For quality control, outliers were first detected and removed from each 162 

pollutant dataset by following the criteria used in our previous study (Bai et al., 2020a). The missing 163 

values were then reconstructed using the diurnal cycle constrained empirical orthogonal function 164 

(DCCEOF) method proposed in Bai et al. (2020b).  165 

The 3-hour resolution atmospheric visibility data acquired from 4,052 weather stations were 166 

employed to help generate gap free AOD maps before 2014, at which in situ air quality measurements 167 

were not available. Previous studies have attempted to predict PM2.5 concentration from atmospheric 168 

visibility data with good accuracies (Liu et al., 2017), indicative of a great potential for estimating 169 

AOD. Specifically, visibility data were used as an important predictor for site-specific AOD prediction, 170 

and the resulting AOD predictions were then used as a critical prior information for reconstructing 171 

AOD distributions over space, especially over those regions without satellite AOD observations. Given 172 

the availability of abundant air quality measurements and the fact that automatic visibility sensors have 173 

been widely used across China since 2014, atmospheric visibility data after 2014 were thereby 174 

excluded to guarantee the data consistency (Li et al., 2018a). For quality control, the consistency of 175 
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visibility data was examined using an outlier detection method, i.e., the annual mean should not exceed 176 

3 times the standard deviation of data over a 5-year time window (Zhang et al., 2020). Those with 177 

apparent jumps and drifts in visibility time series were excluded. Meanwhile, visibility data on 178 

rainstorm and foggy days were eliminated as well. 179 

2.3 Auxiliary data 180 

As shown in Table 1, eleven meteorological factors, including air temperature at the near surface, 181 

wind speed and direction, relative humidity, surface pressure, boundary layer height, total column 182 

water vapor, downwards solar radiation, and instantaneous moisture flux, were used to help resolve 183 

nonlinear relationships between PMx and AOD, as well as to downscale AOD from MERRA-2. These 184 

data were acquired from the fifth generation ECMWF atmospheric reanalysis (ERA-5), and the first 185 

three factors were extracted at the levels of not only ground surface but 850 hpa and 500 hpa so as to 186 

indicate the vertical structure of the atmosphere. Additionally, population data from WorldPop, land 187 

cover from CLCD during 2000 to 2019 (Yang and Huang, 2021) and GLOBELAND 30 in 2020 (Chen 188 

et al., 2014), elevation data from the Global Digital Elevation Model (GDEM) version 2, as well as 189 

monthly composited 1-km normalized difference vegetation index (NDVI) from MODIS, were 190 

employed to resolve the socioeconomic and ecological contributions to haze pollutions. Properties of 191 

these datasets can be found in Table 1, and datasets with a finer resolution were upscaled to 0.01° via 192 

a cubic interpolation method. 193 

3  Methodology 194 

Toward the generation of LGHAP aerosol datasets to advance environment management and 195 

earth system science analysis, here we developed a big data analytics framework via a seamless 196 

integration of the tensor flow based multimodal data fusion with ensemble learning based PMx 197 

concentration estimation. The proposed method transformed a set of data tensors of AOD and other 198 

related datasets such as air pollutants concentration and atmospheric visibility that were acquired from 199 

diversified sensors or platforms via integrative efforts of spatial pattern recognition for high 200 

dimensional gridded data analysis toward data fusion and multiresolution image analysis, as well as 201 

knowledge transfer in statistical data mining. The proposed method consists of three major procedures 202 

in general, including multisensory data homogenization, tensor flow based AOD reconstruction, and 203 
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ensemble learning for PMx concentration estimation. The analytical framework of the big data 204 

analytics is depicted in Figure 1 and described in details in the following subsections. 205 

 206 

Figure 1.  Flowchart of the proposed big data analytics framework for generating a long-term gap-free 207 

high-resolution air pollutants concentration dataset (LGHAP), taking aerosol optical depth (AOD) and 208 

PMx (PM2.5 and PM10) concentration in China as illustration. HOSVD is an acronym of high order 209 

singular value decomposition. MET, LULC, DEM, and POP denote variables of meteorology, land 210 

use/land cover, digit elevation model, and population, respectively. 211 

3.1  Multisensory data homogenization 212 

Since a set of aerosol products with different types, resolution, and accuracies were applied to 213 

support the reconstruction of gap-free AOD imageries, harmonizing cross-platform biases and scale 214 
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differences between these diversified datasets is crucial to multisensory data integration. In this study, 215 

machine-learned regression models were established to harmonize these heterogeneous aerosol 216 

datasets. A baseline dataset was first selected to be used as the learning target while other datasets 217 

were calibrated to the level of baseline dataset to make them comparable. Given finer resolution and 218 

higher proportion of data coverage in space and time, the MAIAC AOD product from Terra (AODTerra) 219 

was selected as the baseline dataset. Consequently, six machine-learned regression models were 220 

established between AODTerra and each gridded AOD product (i.e., five satellite-based AOD products 221 

plus MERRA-2 AOD simulations) using the random forest method. Meteorological factors (MET), 222 

land cover types (LULC), topographic (DEM) and population (POP) were used as covariates to help 223 

downscale these multimodal AOD products to have a resolution same as AODTerra while accounting 224 

for cross-mission biases arising from temporal and algorithmic differences.  225 

Considering data gaps are extensive in satellite AOD products, especially over regions with vast 226 

cloud cover, providing prior AOD information over such region is thus of great value in support of the 227 

reconstruction of missing AOD values. As indicated in our recent studies, AOD can be accurately 228 

predicted from ground measured air pollutants concentration, showing an accuracy even over some 229 

satellite AOD retrievals (Li et al., 2021; Bai et al., 2021). To support AOD reconstruction over regions 230 

with less or even without valid satellite AOD observations, we attempted to infer AOD over air quality 231 

monitoring sites from in situ air pollutants concentration measurements via a machine learning 232 

approach. Similarly, machine-learned regression models were established using random forest by 233 

taking AODTerra as the learning target while ground measured air pollutants concentration, 234 

meteorological factors, land cover, and terrain information, were used conjunctively as predictors.  235 

The transformation of ground measured air pollutants concentration data to AOD allows for 236 

providing external observational AOD data to supplement satellite observations, especially over 237 

regions suffering from significant data gaps. Since air pollutants concentration data were not available 238 

before 2013, atmospheric visibility data sampled at dense weather stations were hereby used as an 239 

alternative for site-based AOD prediction, by applying a similar prediction model as used above for 240 

air pollutants concentration. Figure S1 show the ground-based validation results of AOD inferred from 241 

atmospheric visibility and air pollutants concentration, indicative of a generally good accuracy of these 242 

inferred AOD values. All efforts led to aggregate a set of multimodal aerosol data with different 243 

properties for multisensory data fusion toward gap free AOD mapping as the next step. 244 
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3.2  Tensor flow based AOD reconstruction 245 

The core of generating full coverage AOD imageries is to fill in data gaps in AODTerra. Previous 246 

studies have demonstrated that merging satellite AOD retrievals at adjacent time steps can help 247 

improve the observational AOD coverage at each single snapshot, while the involvement of numerical 248 

AOD simulations can help bridge AOD data gaps (Li et al., 2022; Bai et al., 2022). In this study, a 249 

tensor completion method was particularly designed and applied to fulfil the gap filling in AODTerra. 250 

Specifically, the incomplete AODTerra imageries were deemed as the hard data (true AOD state) while 251 

other AOD datasets (e.g., the downscaled AOD datasets and site-specific AOD predictions inferred 252 

from air pollutants concentration and atmospheric visibility) were used as the soft data (complementary 253 

data) to help reconstruct AOD distribution in AODTerra via tensor flow based pattern recognition. 254 

Detailed procedures for gap filling are outlined as follows. 255 

3.2.1 Initial AOD tensor construction 256 

Due to extensive data gaps in satellite-based AOD retrievals, it is insufficient to reconstruct all 257 

missing AOD information in AODTerra for a given date by simply merging the harmonized satellite-258 

based AOD data synchronously. To fulfill AOD gap filling, the  tensor completion method was thus 259 

applied to synergistically integrate AOD acquired from diverse sources. Consequently, creating the 260 

data tensor of AOD is of critical importance. In this study, the data tensor of AOD was constructed by 261 

incorporating not only observational AOD from both satellites and those inferred from in situ air 262 

quality indicators on the same date, but also historical AOD retrievals from MODIS instruments 263 

(AODTerra and AODAqua) and part of data from the downscaled MERRA-2 AOD (denoted as AODM2 264 

hereafter). The latter two were applied to provide knowledge of AOD distributions over space to guide 265 

the reconstruction of missing values in AODTerra. 266 

For the screening of historical observations resembling AODTerra distribution on the given date 267 

to be reconstructed, AODM2 was used in concert with AODTerra and site-based AOD estimations to 268 

identify similar imageries. Toward this goal, site-specific AOD estimations and 5% randomly selected 269 

downscaled AODM2 data were merged directly with valid AODTerra to form a new image on each date. 270 

Subsequently, correlations and biases were estimated between  AODTerra on the given date to be 271 

reconstructed and each newly merged historical AODTerra image. To avoid the inclusion of imageries 272 

with distinct variation patterns, only those closely resembling AODTerra on the date to be reconstructed 273 
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were finally retained in terms of their correlations and biases subject to a threshold of R>0.7 and 274 

RMSE<0.2. Once sufficient historical imageries were obtained, the data tensor of AOD was 275 

constructed by compiling the observed AOD imageries on the given date with historical imageries to 276 

a three-dimension data array 𝐀 ∈ 𝐑!!×!"×!#  (composed of 𝑁#  images with a size of 𝑁$ × 𝑁% ). 277 

Considering satellite AOD retrievals suffer from extensive data gaps, we injected data values of site-278 

specific AOD estimations and 1% randomly selected downscaled AODM2 data directly onto grids 279 

where AODTerra values missed on each specific date as prior knowledge. This not only accelerates 280 

convergence speed during the reconstruction process but avoids large reconstruction errors over 281 

regions with tremendous data gaps in satellite observed AOD imageries. 282 

3.2.2 Gap filling via tensor completion 283 

Previous studies have well demonstrated the good performance of matrix decomposition 284 

methods such as empirical orthogonal function and singular value decomposition (SVD) for missing 285 

value imputation (Bai et al., 2020b; Beckers and Rixen, 2003; Folch-Fortuny et al., 2015). However, 286 

these methods can only work on two-dimension matrix mathematically, namely the matrix domain. To 287 

integrate spatial features of AOD revealed by datasets to generate a smooth AOD distribution with 288 

complete coverage, in this study, the HOSVD, a specific orthogonal Tucker decomposition, was 289 

applied. More detailed descriptions to HOSVD can be found in the literature such as Sun et al. (2021), 290 

Tucker (1966), Kolda and Bader (2009), and Sidiropoulos et al. (2017).   291 

In Table 2, we provided a stepwise description of the algorithm used to fill data gaps in AODTerra 292 

by integrating AOD features recognized in different imageries as the data tensor of AOD via HOSVD. 293 

To initiate the tensor decomposition, grids with missing values in the original AOD tensor were first 294 

filled with the spatial average of valid AOD data in each individual image. Then, the AOD tensor was 295 

decomposed along each of three dimensions, while the dominant features in each dimension 296 

determined by the corresponding rank values were applied to reconstruct the data tensor. By gradually 297 

increasing the rank values and iteratively updating the initial filled values, the tensor can be 298 

reconstructed to better delineate AOD distribution over space after several iterations. 299 

To confirm the convergence, a small portion of observational AOD values were randomly held out 300 

in advance, and the reconstructed values over these grids in each iteration were compared with these 301 

hold-out data till the difference between them lower than 0.01 (a threshold to determine convergence, 302 
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a.k.a, 𝜀$ in Table 2). Meanwhile, to make the computational burden manageable, the study region 303 

(China in this study) was divided into 40 subregions (refer to Figure S2 for the spatial distribution of 304 

these subregions), and the tensor completion was then performed over each individual region. Finally, 305 

the reconstructed imageries were mosaiced to attain a national gap-free AOD map on each specific 306 

date. During this step, a smooth filter was applied to solve the boundary effect when mosaicking two 307 

adjacent maps. Specifically, data value on each overlapped grid at the boundary (50 km on the edge of 308 

subregion) was averaged via an inverse distance (the distance to the edge) weighting scheme. In the 309 

end, the mosaic AODTerra image was retained as the final gap-free AOD product. 310 

Table 2. The proposed tensor completion algorithm for AOD distribution reconstruction in AODTerra. 311 
Input: tensor 𝐀 ∈ 𝐑!!×!"×!# with 𝛀 = {(i, j, k): 𝐴&'( 	is	observed}, threshold T$, T% 
Output: reconstructed entries 𝐀) = 𝐀∗(: , : , 𝑘+) ∈ 𝐑!!×!" 

1:  Initialize A&'(∗ = >
𝐴&'( 																		(𝑖, 𝑗, 𝑘) ∈ 𝛀
∑ ∑ 𝐴&'('& 							(𝑖, 𝑗, 𝑘) ∉ 𝛀 

2:  for n# = 𝑁# to 1 do 
3:									n$ = 𝑛% = 0 
4:        while ε$ > 𝑇$ do 
5:                  	𝑛$ = 𝑛$ + 1, 𝑛% = 𝑛% + 1 
6:                  Tucker Decomposition of 𝐀∗ with rank = {n$, n%, n#}: 
                      𝐀∗ = 𝑆 ×$ 𝑼(-!) ×% 𝑼(-") ×# 𝑼(-#) 
7:                  𝜀$ = argmin

𝛀

$
%
‖𝑨 − 𝑨∗‖% 

8:                  𝑨𝛀∗ = 𝑨𝛀 
9:  end while 
10:       if argmin

𝛀

$
%
‖𝑨 − 𝑨∗‖% < 𝑇% then 

11:           break; 
12:        end if 
13: end for 

3.3  PMx concentration estimation 312 

In this study, the widely used random forest method was applied to establish regression models 313 

for PM2.5 and PM10 concentration estimation. Ground measured PM2.5 (or PM10) concentration data 314 

were used as the learning target while gap filled AOD, aerosol components (AERcomp), meteorological 315 

factors (MET), digital elevation model (DEM), NDVI, land cover information (LC), and population 316 

were used as regressors. The random forest regression model can be generally formulated as: 317 

PM0 = 𝑅𝐹(𝐴𝑂𝐷, 𝐴𝐸𝑅1234, 𝑀𝐸𝑇, 𝐷𝐸𝑀,𝑁𝐷𝑉𝐼, 𝑃𝑂𝑃, 𝐿𝐶,𝑚𝑜𝑛𝑡ℎ)                        (1) 318 
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where month is a categorical variable that was used to account for monthly varying relationships 319 

between AOD and PMx. For validation, PM2.5 and PM10 measurements from 10% of monitoring sites 320 

were randomly held out to evaluate the predictive performance of each regression model. During the 321 

training process, 500 regression trees were used in each RF model, and each tree was grown on a 322 

bootstrap sample. The learning data set was randomly divided into two parts during the training process, 323 

with 80% used as the training set while the rest 20% for testing. In order to guarantee a larger value of 324 

PM10 than PM2.5, PM2.5 estimations from Eq. (1) were used as one predictor in addition to factors used 325 

to predict PM2.5 when estimating PM10 concentration. Such a model can also significantly improve the 326 

prediction accuracy of PM10 given the prior PM2.5 information. 327 

3.4  Point-surface data fusion 328 

Ground measured PM2.5 and PM10 concentration data were further fused with their gridded 329 

estimations to enhance the data accuracy of PMx data after 2014. Here, the well-known optimal 330 

interpolation (OI) method was applied to perform point-surface fusions between two different types 331 

datasets. Please refer to Bai et al. (2022) and Li et al. (2022) for a more detailed description of the OI 332 

method used to fuse PMx concentration data. In this study, a modified scheme was developed to select 333 

neighboring observations. To avoid an isotropic interpolation effect, here we only used 30 ground 334 

observations with land cover, terrain and atmospheric conditions similar to those at the analyzed grid 335 

cell to estimate the innovation that should be assigned to the background value at the given grid. In 336 

other words, a similarity measure was first estimated between the analyzed grid cell and neighboring 337 

sites in terms of land cover, DEM, and atmospheric conditions. The 30 observations with similar 338 

background fields were then used in the OI procedure to correct possible bias in gridded PMx 339 

estimations. Such a treatment can help exclude those observations with different ambient background, 340 

e.g., one site not far from the given grid but separated by a high mountain, thereby avoiding the possible 341 

propagation of antiphase corrections to data over adjacent grids. 342 

4  Results and discussion 343 

4.1  Data accuracy of gap-free AOD in LGHAP 344 

Table 3 summarizes the data accuracy of gap-free AOD dataset generated in this study. For 345 

comparison, the data accuracy of each original AOD dataset was also assessed. Since in situ AOD 346 
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measurements were not used as data input when reconstructing missing AOD information, thereby the 347 

gap-free AOD can be directly compared with in situ AOD measurements from AERONET. As 348 

indicated, all these AOD datasets are in a good agreement with in situ AOD measurements. Generally, 349 

AODs from MODIS onboard Terra and Aqua have an almost identical data accuracy, which is also 350 

among the highest when comparing with other datasets (R=0.95 and RMSE=0.14). AODs from 351 

AATSR show a comparable accuracy with that of MODIS, but with a relatively low correlation with 352 

ground-based AOD measurements. AODs from MISR, POLDER and VIIRS exhibit a similar bias 353 

level, with R varying from 0.80 to 0.92 and RMSE ranging from 0.22 to 0.29. In contrast, AODM2 data 354 

have the poorest accuracy among these eight gridded AOD datasets (R=0.77 and RMSE=0.36), even 355 

though AOD data from AERONET and satellite observations like MODIS had been already 356 

assimilated. This indicates the presence of large biases in AODM2 and thus these AODM2 data cannot 357 

be used solely to delineate AOD distributions over space. 358 

Table 3. Data accuracy of original and gap-free AOD datasets used and/or generated in this study. The 359 

expected error (EE) was defined as ±0.05+0.15×AODsite. 360 

Dataset N R RMSE MAE 
Below 

EE (%) 

Within 

EE (%) 

Above 

EE (%) 

Terra/MODIS 6731 0.95 0.13 0.07 8.94 78.73 12.33 

Aqua/MODIS 6079 0.95 0.14 0.08 8.24 79.45 12.30 

Terra/MISR 638 0.90 0.29 0.13 21.63 73.51 4.86 

NPP/VIIRS 3839 0.80 0.22 0.16 7.03 44.93 48.03 

Envisat/AATSR 434 0.92 0.11 0.07 17.74 73.96 8.29 

PARASOL/POLDER 1733 0.92 0.24 0.17 5.14 40.22 54.65 

MERRA-2 22067 0.77 0.36 0.20 32.97 51.76 15.27 

LGHAP 24861 0.91 0.21 0.13 12.27 59.00 28.73 

 361 

Compared to the first seven gridded AOD datasets, the LGHAP AOD dataset has an accuracy 362 

slightly worse than the original MODIS AOD product but comparable to AODs from MISR, POLDER 363 

and MERRA-2, with R of 0.91 and RMSE equaling to 0.21 compared to ground-based AOD 364 

observations. Nevertheless, the gap-filled AOD appeared to overestimate ground-based AOD 365 

observations, and this could be due to the involvement of AODs from VIIRS and POLDER as these 366 

two products significantly overestimated ground AOD observations, which can be indicated by the 367 
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proportion of data pairs above the expected error (EE). On the other hand, significant underestimations 368 

in AODM2 were not introduced to the LGHAP AOD as the former had a below EE ratio of 32.97% 369 

which was only12.27% in the latter. These results indicate that the LGHAP AOD data are more likely 370 

to resemble AOD distributions revealed by satellite observations rather than AODM2, endorsing the 371 

advantages of involving multisensory satellite AOD observations to support missing AOD 372 

reconstruction. Figure 2 further compares the data accuracy of original AODTerra and the reconstructed 373 

data over different regions of China. It is indicative that the purely reconstructed data have an accuracy 374 

(R=0.88 and RMSE=0.26) lower than the original AODTerra (R=0.95 and RMSE=0.13) across China, 375 

especially in South China where the reconstructed data were significantly underestimated the ground-376 

based AOD observations. Possible reasons for this effect could be attributed to extensive data gaps in 377 

satellite AOD retrievals due to frequent and extensive cloud covers over there (refer to Figure S3 for 378 

the distribution of mean data integrity of AODTerra during 2000–2020), and the scarce AOD 379 

observations significantly limit the learning capacity in space and temporal domain during the tensor 380 

completion process. In other words, limited observations in satellite imageries greatly reduced the 381 

learning performance from the sparse tensor. Even though, the purely reconstructed data exhibit a bias 382 

level comparable to AOD retrievals from several satellite instruments, e.g., MISR, VIIRS, and 383 

POLDER. This demonstrates the good performance of the proposed tensor completion method in 384 

reconstructing missing AOD information. By combining the reconstructed data with original AODTerra, 385 

we obtained a 21-year-long gap free high-resolution (daily/1-km) AOD dataset with satisfying 386 

accuracy (R=0.91 and RMSE=0.21). 387 
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  388 

Figure 2. Scatter plots between ground observed and satellite-based AOD data in different regions of 389 

China. (a–e) original Terra/MODIS AOD, (f–j) reconstructed AOD, and (k–o) combined AOD 390 

between original and reconstructed data. BTH, YRD, SC, and WC refers to regions of Beijing-Tianjin-391 

Hebei, Yangtze River Delta, South China, and West China, respectively. 392 

In Figure 3 we presented a comparison of AOD time series between the LGHAP dataset and 393 

ground observations at three AERONET sites under different air pollution levels. As shown, the AOD 394 

time series from LGHAP are temporally continuous whereas data gaps are common in AERONET 395 

observations. Generally, AODs from LGHAP are well reconstructed with respect to the temporal 396 

variations of aerosol loading at these three sites, with R ranging from 0.77 to 0.90 and RMSE varying 397 

between 0.11 and 0.21. For illustration, Figure 4 compares the spatial distribution of original and gap 398 

filled AOD on four days with different AODTerra coverage over space. As shown, the missing AOD 399 

values were well reconstructed after gap filling, resembling a smooth and reasonable AOD distribution 400 

over space, even over regions with very limited prior AOD observations from Terra/MODIS (e.g., 401 

Figure 4d). As indicated in Figures 4a and 4c, the high AOD loading was also properly reconstructed 402 

even though no prior information was provided by AODTerra. Since AERONET AOD observations 403 

were not used as a data input when generating the LGHAP AOD dataset, these independent validation 404 

results clearly demonstrated the high accuracy of the LGHAP AOD product as well as a good 405 

performance of the proposed AOD gap filling approach. 406 
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 407 
Figure 3. Comparison of monthly AOD time series from LGHAP and AERONET at three different 408 

stations in China. Latitude and longitude information of each site was given in brackets. 409 

 410 
Figure 4. Spatial patterns of the reconstructed AOD under different baseline AOD coverage ratios. In 411 

each sub-diagram, the upper panel presents the original AOD distribution from Terra/MODIS while 412 
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the gap-filled imagery is shown below. The zoom-in views of the outlined regions are shown in the 413 

right part. 414 

Since the final gap-free AOD product was generated mainly by integrating a set of data tensor 415 

of gridded AOD with AOD estimations from in situ air quality measurements, the relative contribution 416 

of each product to the final gap-free dataset is worth being investigated. In this study, a data coverage 417 

ratio weighted nonlinear correlation coefficient was proposed to examine the relative contribution of 418 

each gridded product to the LGHAP AOD dataset. The nonlinear correlation coefficient was used to 419 

assess the mutual information between two variables (Sun et al., 2021; Wang et al., 2005), while the 420 

data coverage ratio was multiplied to indicate the overall contribution of one product to the final fused 421 

dataset (refer to Text S2 for the definition of this indicator). As shown in Figure 5, the relative 422 

contribution of each gridded product varied with time and the input data sources. In the early two years 423 

(2000–2001), the AOD distribution in gap-free imageries was determined largely by AODTerra (81%), 424 

whereas this ratio decreased to about 30% when many other products were involved, especially AOD 425 

from Aqua and PARASOL. With the advent of VIIRS and the loss of PARASOL after 2012, the 426 

relative contribution changed drastically as AOD from MODIS and VIIRS played the dominant roles 427 

in reconstructing AOD distribution. Note the relative contribution of AODM2 remained lower than 10%, 428 

indicative of the greater importance of satellite observations in generating the LGHAP AOD product. 429 

  With respect to the temporally averaged contribution in each subregion, it shows that the 430 

relative contribution of each product also varied significantly across regions. Generally, AOD from 431 

MODIS aboard Terra and Aqua played the most important role (>60%) in generating the LGHAP 432 

AOD product, except over the southwest part of the country (Tibet plateau) where AODM2 contributed 433 

most. This is largely associated with the fact that data gaps are abnormally high in satellite observations 434 

over this region because of the vast and long-lasting snow cover (refer to Figure S3 for the data 435 

integrity distribution). Consequently, AODM2 would play an important role in reconstructing AOD 436 

distribution over such regions. Note that the relative contribution of AOD estimations from in situ air 437 

quality measurements were not accounted for in the current analysis because of incomparable spatial 438 

coverage of in situ data contrast to gridded AOD products, and this does not imply the contribution of 439 

in situ AOD estimations being negligible. Overall, the results shown here clearly highlight the success 440 

of big data analytics in generating the LGHAP AOD dataset via integrative efforts from diversified 441 

data sources. 442 
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 443 

Figure 5.  Spatiotemporal variations of the relative contribution of each gridded AOD product to the 444 

generation of LGHAP AOD dataset. The relative contribution was estimated as the data coverage ratio 445 

weighted nonlinear correlation coefficient (please refer to Text S2 in the supplementary information 446 

for the arithmetic theory to calculate this measure). The annual mean shown outside is the national 447 

averaged contribution in each individual year while the regional mean shown on the map was averaged 448 

over the past 21-year in each subregion. 449 

4.2  Data accuracy of PM2.5 and PM10 estimations 450 

By taking advantage of the gap-filled AOD, daily 1-km resolution PM2.5 and PM10 concentration 451 

data in China were then estimated via an ensemble learning approach. Figure S4 shows the sample-452 

based cross validation accuracy of two prediction models. It shows that the original daily PM2.5 453 

prediction model had a sample-based cross validation R2 of 0.79 and RMSE of 20.04 μg m-3. This 454 

accuracy is comparable to our previous study (Bai et al., 2019a), but slightly worse than those reported 455 

in some recent studies (Table 4). In contrast, PM10 had a much higher prediction accuracy, with R2 of 456 

0.90 and RMSE of 21.06 μg m-3 for the daily product. This good performance should be attributed to 457 
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the involvement of PM2.5 estimations as a predictor in the PM10 prediction model. Figure 6 shows the 458 

site-specific (held-out in advance) validation accuracy of daily, monthly, and annual mean PM2.5 and 459 

PM10 concentration in LGHAP. As shown, the site-specific validation results indicated that the final 460 

full-coverage (gap free) daily PM2.5 and PM10 concentration data are in a good agreement with ground-461 

based measurements, with R of 0.95 and RMSE of 12.03 μg m-3 for PM2.5 while R of 0.94 and RMSE 462 

of 19.56 μg m-3 for PM10. Overall, PMx data in LGHAP are not only spatially complete with a finer 463 

resolution but have a comparable accuracy with previous studies. 464 

Table 4. Comparison of the data quality of PM2.5 from LGHAP with other related studies. 465 

Source Gap-free Resolution Time range R2 RMSE (μg m-3) 

Wei et al. (2021a) No 1 km 2000~2018 0.86~0.90 10.09~18.39 

Geng et al. (2021) Yes 10 km 2000~2021 0.80~0.88 13.90~22.10 

Xue et al. (2019) Yes 10 km 2000~2016 0.61 27.80 

Chen et al. (2018) No 10 km 2005~2016 0.83 28.10 

Lyu et al. (2019) Yes 12 km 2014~2017 0.64 24.80 

Ma et al. (2016) No 10 km 2004~2013 0.79 27.42 

Huang et al. (2021) No 1 km 2013~2019 0.88 15.73 

Xiao et al. (2018) Yes 10 km 2013~2017 0.79 21.00 

LGHAP PM2.5 Yes 1 km 2000~2020 0.90 12.03 

 466 
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Figure 6. Scatter plots between observed and estimated PM2.5 and PM10 concentration. (a–c) 467 

respectively denotes daily, monthly, and annual mean PM2.5 validation results, while (d–f) are for PM10 468 

concentration. The ground measurements were acquired from 30 independent air quality monitoring 469 

sites that were randomly held-out before the model training.   470 

 471 

Figure 7 presents a two-year-long comparison of PM2.5 concentration time series from LGHAP 472 

and two other open access datasets with PM2.5 measurements sampled at four United States Embassy 473 

in China. Since this ground-based dataset has been seldomly noticed and used, it can be applied as an 474 

independent dataset to fairly evaluate the accuracy of these three machine-learned PM2.5 estimations. 475 

As shown, all these three datasets well reconstructed temporal variations of PM2.5 from 2019 to 2020. 476 

Temporally, LGHAP and TAP are continuous while CHAP suffers from significant data gaps because 477 

no gap filling was applied when generating the dataset. Compared with the other two datasets, LGHAP 478 

PM2.5 data had a better agreement with ground-based PM2.5 measurements. This high accuracy could 479 

be partially due to the fusion of in situ PM2.5 data measured at adjacent sites via the OI method. Figure 480 

S5 compares PM2.5 time series from LGHAP with PM2.5 measurements sampled at five United States 481 

Embassy in China. It is indicative that historical PM2.5 variations over these five cities were well 482 

reconstructed in LGHAP, even over years before 2014 at which PM2.5 measurements from state-483 

control monitoring sites were not available. Note PM2.5 estimations appeared to significantly 484 

underestimate PM2.5 concentration sampled at the Embassy in Beijing before 2013. Considering the 485 

reconstructed AOD time series agreed well with AERONET AOD in Beijing (Figure 3a), and the 486 

model performed well in predicting historical PM2.5 in Shanghai during the synchronous time period 487 

(Figure S5b), we are more willing to attribute this issue to significant PM2.5 overestimations by the US 488 

Embassy during that period. Overall, these independent validation results collectively indicate a good 489 

accuracy of PM2.5 in LGHAP dataset. 490 
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 491 
Figure 7. Comparison of PM2.5 concentration time series between LGHAP (red line) and two open 492 

datasets (blue: TAP, green: CHAP). Here, hourly PM2.5 concentrations measured by four United States 493 

Embassy in China from 2019 to 2020 (grey bar) were used as an independent PM2.5 dataset to validate 494 

these three daily products. CHAP and TAP are two open access datasets providing PM2.5 495 

concentration that were created by Wei et al. (2021a) and Geng et al. (2021) respectively. 496 

 497 

In Figure 8 we compared the spatial distribution of PM2.5 that was reconstructed by different 498 

datasets. Compared to LGHAP and TAP, PM2.5 data from CHAP are not gap free since the spatial 499 

coverage is determined by the AOD data coverage in the MAIAC product. Compared to TAP, LGHAP 500 

PM2.5 data have a finer resolution (1 km versus 10 km), enabling us to examine PM2.5 variations in 501 

space with more details. Overall, LGHAP has a better performance in reconstructing PM2.5 spatial 502 

distributions than the other two datasets. Reasons could be attributed to the following two aspects. 503 

Firstly, in situ PM2.5 measurements were fused with gridded PM2.5 estimations using the OI method 504 

when generating the final PM2.5 product in LGHAP. This can help correct modeling biases in original 505 

PM2.5 estimations. Secondly, a set of satellite-based AOD retrievals were incorporated when 506 
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generating the full-coverage AOD product, which greatly helps reduce large biases in numerical AOD 507 

simulations, yielding more accurate PM2.5 estimations in turn. This also highlights the great advantages 508 

of using big data analytics methods to advance air pollution assessment. 509 

 510 
Figure 8. Comparison of PM2.5 distribution reconstructed by different PM2.5 concentration datasets. 511 

From the left to right, it shows in situ PM2.5 concentration measurements, CHAP, TAP, and LGHAP, 512 

respectively. 513 

 514 

To illustrate the fine resolution of LGHAP dataset, we compared the annual mean PM10 515 

concentration in 2019 with the proportion of impervious surface that was derived from 30-m resolution 516 

land cover data in eastern China. As shown in Figure 9, the finer resolution of LGHAP dataset enables 517 

us to easily recognize the “hot spot” regions with high PM10 loading. By referring to the impervious 518 

surface distribution on the right, we found that these hot spots are mainly over cities and towns, 519 

indicative of the presence of pollution island in urban regions. Owing to the involvement of such high-520 

resolution datasets, the spatial details of PM2.5 and PM10 can be then well recognized in LGHAP. The 521 

finer spatial resolution advantage of the LGHAP dataset can be also demonstrated by comparisons of 522 

spatial distribution of annual mean PM2.5 concentration that was revealed by four different datasets 523 

shown in Figure S6.  524 
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 525 

Figure 9.  Comparison of annual mean PM10 concentration with the proportion of areas coved by 526 

impervious surface in eastern China. 527 

4.3  Long-term trends of haze pollution in China from 2000 to 2020 528 

The aerosol pollution trends in China can be better examined by taking advantage of LGHAP 529 

dataset given long temporal coverage, gap free and high-resolution superiorities. Severe haze 530 

pollutions such as PM2.5 are oftentimes observed during winter half year (September–February). In 531 

this study, we first calculated mean PM2.5 concentration in China during winter half year from 2000 to 532 

2020. As shown in Figure 10, severe haze pollution events were mainly observed in North China during 533 

the wintertime, especially over the adjacent region in Hebei-Shandong-Henan provinces. In addition, 534 

Sichuan basin and Fenwei plain also suffered from severe haze pollution. Temporally, severe haze 535 

pollution events occurred mainly from the late 2002 to early 2017, which were significantly reduced 536 

after 2017. Similar pattern can be also inferred from PM10 concentration distributions shown in Figure 537 

S7.  538 

Figure 11 shows the temporal variations of the proportion of land areas covered by PM2.5 539 

concentration exceeding 35 μg m-3 (the national ambient air quality standard for 24-hour PM2.5 540 

concentration given in GB 3095-2012). As shown in Figure 11a, severe PM2.5 pollution occurred 541 

mainly during the wintertime in China, as more than one-third land areas (indicated by the blue lines) 542 

were exposed to unhealthy PM2.5 pollutants. Meanwhile, an apparent inflection was observed in 2007, 543 

after which the number of episode days decreased drastically at more than one-third land area covered 544 

by PM2.5 concentration exceeding 35 μg m-3. According to the proportion of land area covered with 545 
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annual mean PM2.5 concentration greater than 35 μg m-3, the variation of haze pollution in China can 546 

be generally divided into three different periods during the past two-decades (Figure 11b). As indicated, 547 

an increasing trend was observed from 2000 to 2007, during which land areas covered by PM2.5 548 

concentration greater than 35 μg m-3 had increased to near 40% at a pace of 1.04% a-1. The second 549 

period was from 2008 to 2013, during which the land area coverage ratio decreased at a rate of –0.21% 550 

a-1. The third period started from 2014, after which the land area covered with PM2.5 concentration 551 

more than 35 μg m-3 had decreased drastically, at a pace of –2.23% a-1. 552 

 553 
Figure 10. Spatial distribution of mean PM2.5 concentration from LGHAP during winter half year 554 

(September–February) from 2000 to 2020 in China. 555 

 556 

Figure 11c–e presents the linear trend of PM2.5 concentration during these three specific periods, 557 

from which we observed that significant PM2.5 variations occurred mainly over eastern part of the 558 

country where resides two-thirds of the population. A near ubiquitous PM2.5 increasing trend was 559 

observed during 2000–2007, with significant increase (>1.0 μg m-3 a-1) mainly observed in eastern 560 

China. During the second period, PM2.5 concentration over most regions shows a small decreasing 561 

trend except in the Ji-Lu-Yu region where an increasing trend was still observed. Apparent decreasing 562 

trend was observed over most parts of the country after 2014, indicative of significant reductions in 563 

PM2.5 loading across China. This trend distribution is in line with our previous finding that was derived 564 



 27 

using the annual mean PM2.5 concentration dataset generated by the Dalhousie University (Bai et al., 565 

2019b). However, differences were still observed in terms of the regions where significant decreasing 566 

trends were present. Most significant decreasing trends were mainly observed in Sichuan basin and 567 

Pearl River Delta in the previous study. However, regions with drastic PM2.5 decrease were found 568 

mainly in the North China where severe haze pollution events were oftentimes reported. Similar 569 

variation patterns can be also inferred from PM10 (Figure S8) and AOD (Figure S9). Overall, the 570 

LGHAP dataset provides us a gridded perspective to better examine long-term variations of haze 571 

pollution in China during the past two decades. 572 

 573 
Figure 11. Temporal variations of the proportion of land areas covered with PM2.5 concentration 574 

exceeding 35 μg m-3 and PM2.5 trends during three different periods. (a) Temporal variations of the 575 

land coverage ratio with daily PM2.5 concentration exceeding 35 μg m-3 from 2000 to 2000. (b) same 576 

as (a) but for annual mean PM2.5 concentration. (c–e) PM2.5 trends during periods of 2000–2007, 2008–577 

2013, and 2014–2020. The dotted regions imply trend estimations are statistically insignificant at the 578 

95% confidence interval. 579 

4.4  Population exposure to PM2.5 pollution in China  580 

By taking advantage of fine resolution LGHAP PM2.5 concentration and gridded population data, 581 

population exposure to PM2.5 pollution across China over the past two decades were estimated. Figure 582 

12 shows the spatial distribution of population weighted PM2.5 concentration and the proportion of 583 

population exposed to PM2.5 concentration greater than 35 μg m-3. As shown, spatial distribution of 584 
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population weighted PM2.5 concentration resembles the spatial pattern of annual mean PM2.5 585 

concentration, with high values observed mainly in eastern and central China as well as northwest 586 

China. Nonetheless, PM2.5 sources in these two areas could be different. In northwest China, natural 587 

emissions could be the dominant source since very limited population resides there. In contrast, most 588 

population lives in eastern and central China with highly developed economy, and anthropogenic 589 

emissions thus might play more important roles in PM2.5 formation (Xin et al., 2015; Yang et al., 2011). 590 

In regard to the proportion of population exposed to the ambient with PM2.5 concentration greater than 591 

35 μg m-3, we observed that the annual mean population ratio exposure to unhealthy PM2.5 increased 592 

gradually from 50.60% in 2000 to 65.72% in 2007. During 2007–2014, the ratio varied with small 593 

changes (<5%), whereas a drastic decline was observed after 2014, with the annual mean proportion 594 

of population exposed to unhealthy PM2.5 was reduced from 63.81% in 2014 to 34.03% in 2020, even 595 

though the total population was increased from 1.37 billion to 1.41 billion during the synchronous 596 

period. Nonetheless, more than one-third population was still exposed to unhealthy PM2.5, highlighting 597 

the requirement of further emission reduction actions to manage haze pollutions in China.  598 

 599 
Figure 12. Spatial distribution of population weighted PM2.5 concentration and the proportion of 600 

population exposed to PM2.5 concentration greater than 35 μg m-3. Annual and daily LGHAP PM2.5 601 

concentration data were used for the calculation of weighted PM2.5 and the proportion of population 602 

exposure, respectively. The diamond and red line indicate the annual mean and median population 603 

proportion, respectively. 604 
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5  Data availability 605 

The LGHAP dataset, consisting of gap free AOD, PM2.5, and PM10 concentration with daily 1-606 

km resolution from 2000 to 2020, are all publicly accessible. All data were provided in the NetCDF 607 

format and data in each individual year were archived in a zip file. For AOD, the dataset has a disk 608 

storage size of near 27 GB in total, which is avaiable at https://doi.org/10.5281/zenodo.5652257 (Bai et 609 

al., 2021a). PM2.5 (38 GB) and PM10 (48 GB) concentration data can be acquired from 610 

https://doi.org/10.5281/zenodo.5652265 (Bai et al., 2021b) and https://doi.org/10.5281/zenodo.5652263 (Bai 611 

et al., 2021c), respectively. Additionally, monthly and annual mean datasets were also provided, which 612 

is publicly available at https://doi.org/10.5281/zenodo.5655797 (Bai et al., 2021d) and 613 

https://doi.org/10.5281/zenodo.5655807 (Bai et al., 2021e), respectively. In addition to these datasets, 614 

Python, Matlab, R, and IDL codes that can be used to read and visualize these data were provided as 615 

well.  616 

6  Conclusion 617 

In this study, a big data analytics method was developed for generating a LGHAP dataset to 618 

advance research in earth system science and environment management. With integrative efforts of 619 

fusing AOD features extracted from a set of AOD data tensors and knowledge transfer in statistical 620 

data mining from diverse air quality indicators, a LGHAP aerosol dataset providing 21-year-long 621 

(2000–2020) gap-free AOD, PM2.5, and PM10 concentration data with daily 1-km resolution in China, 622 

was generated. Gap-filled AOD imageries were firstly generated by reconstructing AOD distribution 623 

in AODTerra via synergistically fusing AOD features recognized from diversified satellites and 624 

numerical models as well as in situ data through tensor completion. Compared to ground-based AOD 625 

measurements, the gap-filled AOD data exhibit a satisfying prediction accuracy and good performance 626 

in delineating AOD variations over space and time. To our knowledge, this is the first thrust of 627 

generating long-term high-resolution AOD dataset with gap free nature in China. 628 

PM2.5 and PM10 concentration data were then estimated using an ensemble learning approach by 629 

taking advantage of the generated gap-free AOD imageries. Ground validation results also indicate 630 

good accuracies of these two gridded products, showing a comparable bias level with many previous 631 

studies. Compared with other open access daily PM2.5 concentration datasets, the LGHAP PM2.5 632 

dataset performs well due to the vantage of having gap free and fine resolution products. With this gap 633 
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free and high-resolution dataset, the long-term variation trend of haze pollution in China over the past 634 

two decades was examined, and apparent inflections were observed in 2007 and 2014, at which PM2.5 635 

concentration was found to turn from an increasing path to decreasing in 2007 with a more drastic 636 

decline observed starting from 2014. Moreover, the LGHAP dataset provides us a gridded perspective 637 

to assess two-decade long population exposure to PM2.5 pollution in China. In spite of a drastic decline 638 

in population exposure, there are still more than one-third population exposed to unhealthy PM2.5 639 

pollutants, highlighting the requirement of long-lasting actions to continue PM2.5 related emission 640 

reduction. 641 

Overall, these three gridded LGHAP aerosol products provide a long-term perspective on aerosol 642 

changes over different regions of China, and users are encouraged to use the LGHAP dataset to assess 643 

aerosol impacts on public health, air quality, climate, and ecosystem. The dataset has been publicly 644 

released online and is freely accessible via the links provided in Section 5. Global scale dataset is on 645 

the track and will be released to the public soon. 646 
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