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Abstract. Drought indices are hard to balance in terms of versatility (effectiveness for multiple types of drought), flexibility 10 

of timescales, and inclusivity (to what extent they include all physical processes). A lack of consistent source data increases 

the difficulty of quantifying drought. Here, we present a global monthly drought dataset from 1948 to 2010 based on a 

multitype and multiscalar drought index, the standardized moisture anomaly index incorporating snow dynamics (SZIsnow), 

driven by systematic fields from an advanced data assimilation system. The proposed SZIsnow dataset includes different 

physical water‒energy processes, especially snow processes. Our evaluation of the dataset demonstrates its ability to 15 

distinguish different types of drought across different timescales. Our assessment also indicates that the dataset adequately 

captures droughts across different spatial scales. The consideration of snow processes improved the capability of SZIsnow, and 

the improvement is particularly evident over snow-covered high-latitude (e.g., Arctic region) and high-altitude areas (e.g., 

Tibetan Plateau). We found that 59.66% of Earth’s land area exhibited a drying trend between 1948 and 2010, and the 

remaining 40.34% exhibited a wetting trend. Our results also show that the SZIsnow dataset successfully captured the large-20 

scale drought events that occurred across the world; there were 525 drought events with an area larger than 500,000 km2 

globally during the study period, of which nearly 70% had a duration longer than 6 months. Therefore, this new drought 

dataset is well suited to monitoring, assessing, and characterizing drought, and can serve as a valuable resource for future 

drought studies.  

1 Introduction 25 

Drought is one of the most costly and complex natural hazards, commonly causing significant and widespread adverse 

impacts on many sectors of society (Aghakouchak et al., 2015; He et al., 2020). The severity, extent, and duration of drought 

are likely to intensify across the world under the effects of climate change (Ault, 2020; Mann and Gleick, 2015). There has 

been increasing global interest in measures to improve the capability of drought quantification and various drought indices 

have been proposed over the past several decades (Liu et al., 2018; Esfahanian et al., 2017). However, current drought 30 
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indices struggle to reconcile versatility (ability to quantify multiple types of drought), flexibility of temporal scale (effective 

across different timescales), and comprehensiveness (to what extent they include all hydrological processes). Additionally, 

these drought indices are derived from multifarious data sources, rather than systematic and consistent physical data from the 

same source (Ahmadalipour and Moradkhani, 2017; Hoffmann et al., 2020). As a result, different sectors of society have 

rarely collaborated to synergistically fight against drought using a comprehensive drought index.  35 

The propagation of drought is related to changes in numerous interconnected variables of hydrometeorological processes 

(e.g., precipitation, evapotranspiration, streamflow, and soil moisture). Yet a major portion of currently available drought 

indices focus on only one aspect of drought evolution. For example, the Rainfall Anomaly Index (RAI; Zhu et al., 2021), 

Streamflow Drought Index (SDI; Nalbantis and Tsakiris, 2009), and Soil Moisture Deficit Index (SMDI; Narasimhan and 

Srinivasan, 2005) focus only on precipitation (meteorological drought), streamflow (hydrological drought), and soil moisture 40 

(agricultural drought), respectively (Fig. 1, top row). Additionally, these indices merely consider water supply in drought and 

neglect water demand, but a drought is a condition of the water deficit between water supply and demand (Mishra and Singh, 

2010). Thus, these indices do not provide sufficient information to enable decision-makers to organize a comprehensive anti-

drought approach that balances all sectors of society affected by drought. 

Some indices were developed with the purpose of application to all types of droughts (Fig. 1, second row). The Palmer 45 

Drought Severity Index (PDSI; Alley, 1984; Wells et al., 2004) can be applied to different types of drought by considering 

water supply and demand with a simplified two-layer bucket model, but it has a fixed temporal scale and does not work well 

over snow-covered areas (Dai, 2011a). Although the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-

Serrano et al., 2010) overcomes the PDSI’s weakness of fixed temporal scale, it oversimplifies complex relationships and 

neglects several important hydrological processes associated with the development of drought (Zhang et al., 2015). 50 

Moreover, current indices usually use physical variables from different data sources, which inevitably introduces bias and 

leads to an imbalanced calculation (Naumann et al., 2014). The development of the data assimilation system brings an option 

of systematic input for drought indices (Xu et al., 2020). Therefore, there is a need to develop a multitype and multiscalar 

drought index that considers various key processes related to drought and can take full advantage of output from the data 

assimilation system. 55 

Given the abovementioned deficiency of current drought indices, Zhang et al. (2015) proposed a universal drought index, the 

Standardized Moisture Anomaly Index (SZI), to determine and monitor different types of droughts (Fig. 1, third row). 

Absorbing the strengths of the SPEI and PDSI, the SZI is available at flexible temporal scales and involves relatively 

sophisticated land surface processes. It builds a bridge between drought monitoring and the data assimilation system. In the 

SZI, the atmospheric water demand is calculated by using variables related to evapotranspiration, runoff, soil moisture 60 

infiltration, and soil moisture loss, while water supply is taken as actual precipitation. Thus, the difference between water 

supply and atmospheric water demand is used to scale the water deficit and surplus. Although the SZI has been evaluated 

and achieved acceptable performance, it ignores the effects of snow in drought characterization, similar to the PDSI and 

SPEI. Such negligence in the SZI can impair its capability to monitor and identify droughts, particularly for those snow-
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covered regions with considerable amounts of snowfall (Huning and Aghakouchak, 2020; Staudinger et al., 2014). To 65 

address this deficiency, Zhang et al. (2019) modified the SZI by adding snow dynamics for drought characterization into a 

new version of the drought index called SZIsnow (Fig. 1, final row). This is the drought index used to construct the drought 

dataset in this study. 

Drought is mainly characterized by severity, spatial extent, duration, and timing. The traditional method for drought 

investigation is to explore the variability of its severity over a fixed study area (Hao et al., 2017). This method is also widely 70 

used to evaluate the ability of a drought index (Peng et al., 2020). Although this method can provide certain information 

regarding the regional drought condition, it cannot analyze the change of spatial extent with time for a drought event (Zhai et 

al., 2017). As drought is a spatiotemporal process, the ability of a drought index to explore the joint evolution of drought 

events in space and time should be given increased attention (Herrera-Estrada et al., 2017). Thus, we utilized the severity–

area–duration method (Andreadis et al., 2005; Sheffield et al., 2009), which can monitor drought in space and time, to 75 

comprehensively evaluate the drought index dataset proposed by our work. 

This work aims to construct a long-term global SZIsnow dataset for various temporal scales. The SZIsnow is here developed to 

characterize multitype and multiscalar drought by accounting for different physical water‒energy processes, especially snow 

processes. This paper is organized as follows. We first introduce the data and metrics for forcing and evaluation of the 

proposed drought dataset (Sect. 2). The method behind the derivation of the SZIsnow is summarized in Sec. 3. In Sect. 4 we 80 

present a comprehensive evaluation of the SZIsnow to assess its ability to capture different drought types across the world, 

particularly over the Arctic region and Tibetan Plateau. Based on the dataset, we further analyze the spatiotemporal changes 

of global drought and focus on the variability of large-scale drought events. Section 5 briefly introduces how to download 

the proposed drought index dataset. Finally, in Sect. 6, we discuss the advancement of the SZIsnow and its potential 

applicability and implications, and present our conclusions. 85 
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Figure 1: Development path of the SZIsnow. Dark green boxes denote the strengths of each drought index, while pink boxes denote 
the weaknesses of each drought index. The top row shows indices that can only account for one type of drought, with three indices 
listed for each type of drought. The second row shows indices that can account for multiple types of drought. Full names of the 
listed indices are shown in Table S1. 90 

2 Data  

2.1 Data for producing the SZIsnow drought index 

Hydrometeorological variables from numerical models are commonly used as the source data to compute drought indices at 

the global scale, due to limited observational data exist. (Sawada and Koike, 2016). Thus, in this study, the Global Land Data 

Assimilation System (GLDAS) provided variables to calculate the SZIsnow globally. The SZI was also calculated for the 95 

purpose of comparison. The GLDAS is a state-of-the-art assimilation system using advanced land surface modeling and data 
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assimilation techniques. It incorporates satellite- and ground-based monitoring data and aims to produce optimal land surface 

and flux variables (Rodell et al., 2004). Currently, two versions of the GLDAS product are available: GLDAS version 1 

(GLDAS-1) and GLDAS version 2 (GLDAS-2). The better performance of GLDAS-2 compared to that of GLDAS-1 has 

been verified by previous work (Wang et al., 2016; Zhang et al., 2019), therefore we adopted GLDAS-2 to provide water‒100 

energy related variables to derive the SZIsnow. 

The GLDAS-2 drives the Noah land surface model (LSM), forced by the global Princeton meteorological forcing data, to 

approximate the observed land surface state (Rui and Beaudoing, 2011). The fields of land surface states and fluxes of 

GLDAS-2 in this study have a 0.25 spatial resolution and monthly temporal resolution. The ability of the assimilation 

system to capture the real state of the land surface is a main concern of its users. Numerous studies have assessed the 105 

meteorological forcing fields (e.g., precipitation and near-surface temperature) and modeling outputs (e.g., soil moisture and 

evapotranspiration) of GLDAS-2 over different regions around the world (Bi et al., 2016; Spennemann et al., 2015). The 

GLDAS-2 product has generally been recognized as acceptable in spite of any biases and uncertainties. Additionally, 

GLDAS-2 provides abundant hydrometeorological information to areas with limited observations or ungauged areas. In 

particular, it bridges the gap between the scarce data available for the three poles (i.e., North Pole, South Pole, and Tibetan 110 

Plateau) and the increasing attention of the science community on these areas because of their crucial role in Earth system 

science. 

2.2 Data for evaluating the performance of the SZIsnow 

We firstly assessed the capability of the SZIsnow at a basin scale across the world by using the closed terrestrial water budget 

dataset developed by Pan et al. (2012). This is a monthly dataset for 32 major river basins, measured globally from 1982 to 115 

2006. The drainage areas of these basins range from 230,000 to 600,000 km2, and their locations are shown in Fig. S1. This 

dataset was produced based on multisource data including in situ observations, remote sensing products, land surface model 

simulations, and reanalysis datasets. Through a systematic assimilation strategy, the errors and biases of the multisource data 

were greatly compensated, which guarantees the assimilated data has the highest possible confidence. This dataset has thus 

served as a baseline dataset for large basin-scale studies related to water and energy cycles and has been widely used by 120 

previous researchers (Zeng and Cai, 2016). Additionally, the variables in this dataset include precipitation, 

evapotranspiration, streamflow, total terrestrial water storage, and snow depth. The comprehensive variables in the dataset 

facilitate the calculation of different drought indices as references to evaluate the SZIsnow. 

We applied a drought index, the Standardized Wetness Index (SWI), to evaluate the performance of the SZI and SZIsnow at 

the global scale. The details of the SWI will be introduced in Sect. 2.3. The datasets used to calculate the SWI include the 125 

Climatic Research Unit Time Series (CRU TS) Version 4.01 and the Global Land Evaporation Amsterdam Model (GLEAM) 

Version 3.1a. The CRU TS supplies monthly precipitation (P) and potential evapotranspiration (PET) data at a spatial 

resolution of 0.5 (https://crudata.uea.ac.uk/cru/data/hrg/). This PET data is computed by the Penman‒Monteith equation. 

The GLEAM provides monthly actual evapotranspiration (ET) data at a spatial resolution of 0.25 (https://www.gleam.eu/). 
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Both the CRU TS and GLEAM cover a period from 1980 to 2010. In addition, the GLEAM dataset was interpolated from 130 

the spatial resolution of 0.25 to that of 0.5 to facilitate the computation of the SWI. 

2.3 Evidence of different drought types for the SZIsnow evaluation 

We evaluated the ability of the SZIsnow and SZI to capture different types of droughts based on drought evidence. First, 

meteorological, hydrological, and agricultural drought evidence was identified based on precipitation, streamflow, and soil 

water storage, respectively, from the dataset of Pan et al. (2012) (as mentioned in Sect. 2.2) over the 32 large basins. Then, 135 

the evidence was compared with the SZIsnow and SZI, calculated based on the GLDAS-2 product. In addition, for the 

convenience of comparison, we adopted the log‒logistic distribution to standardize precipitation, streamflow, and soil water 

storage for the computation of the Standardized Precipitation Index (SPI; Mckee et al., 1993), Standardized Streamflow 

Index (SSI; Vicente-Serrano et al., 2012) and Standardized Water Storage Index (SWSI; Aghakouchak, 2014). 

We also selected the residual water‒energy ratio (WER) as a comprehensive drought indicator to evaluate the SZIୱ୬୭୵. The 140 

WER is defined as the ratio of residual available water (P‒ET) to residual energy (PET‒ET), and can integrally reflect 

drought conditions by depicting variation in waterenergy balance. The WER was first suggested by Liu et al. (2017) as 

many studies found that the ratio of sensible heat (the residual energy supply after dissipating through latent heat) to net 

radiation (total energy supply) is always raised under drought, meanwhile the ratio of residual available water to 

precipitation (total water supply) is always lowered under drought. Consequently, the WER is lowered during drought and 145 

can be used as a comprehensive drought indicator. Again, we used independent datasets (i.e., the CRU TS and GLEAM 

datasets) to globally calculate the WER and compare it with the SZIsnow and SZI. As for the SSI and SWSI, the WER was 

standardized for the calculation of the SWI. 

2.4 Metrics for the SZIsnow evaluation 

This study applied the SPI (a meteorological drought index), SSI (a hydrological drought index), SWSI (an agricultural 150 

drought index), and SWI (a comprehensive drought index) as references to evaluate the performance of the SZIsnow and SZI. 

The four referenced drought indices were computed with datasets that were independent from the dataset used for calculating 

the SZIsnow and SZI. We utilized Pearson correlation coefficients (r) of SPI‒SZI/SZIsnow, SSI‒SZI/SZIsnow, SWSI‒SZI/SZIsnow, 

and SWI‒SZI/SZIsnow to compare the performance of the SZI and SZIsnow in terms of their capacity to capture multitype and 

multiscalar drought across different climate zones.  155 
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3 Methodology 

3.1 Derivation of the SZIsnow 

3.1.1 Hydrologic accounting 

The physical processes included in the construction of the SZIsnow are shown in Fig. 2. Six water budget components are 

involved in the procedure of hydrological accounting to determine the water demand over a region. The related variables 160 

comprise ET, PET, runoff, potential runoff, soil infiltration, potential soil infiltration, soil moisture loss, potential soil 

moisture loss, snow water equivalent (SWE) accumulation, potential SWE accumulation, snowmelt, and potential snowmelt. 

The monthly values of these variables were derived from land surface models, for instance, the GLDAS-2 Noah LSM in the 

present study. The prominent improvement of the SZIsnow is that it accounts for the influence of snowfall on hydrological 

processes, which was completely ignored in the SZI (Zhang et al., 2019; Zhang et al., 2015). 165 

 

 

Figure 2:  Schematic diagram of the relative physical processes included in the construction of the SZIsnow. The upper right subplot 
shows the variables used in the SZIsnow calculations at the pixel level. Full names of all the abbreviations in this figure are listed in 
Table S2. 170 
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Both the soil moisture storage and snow storage are considered as reservoirs in the SZIsnow, which is different from the SZI 

that solely considered the former. Changes in soil moisture storage (soil infiltration or soil moisture loss) and snow (SWE 

accumulation or snowmelt) can alter the regional water balance (water supply or water demand), and then affect the drought 

condition. Consequently, the SZIsnow contains more comprehensive hydrological processes than the SZI. The improvement of 

the SZIsnow makes it applicable to a wider variety of climatic regions, especially for regions that belong to the three poles 175 

where more snow is stored than at any other place on Earth. Detailed equations for the hydrologic accounting in the SZIsnow 

are listed in Table 1. All full names for abbreviations contained in the equations are supplied in Table S2. 

Table 1. The procedures, variables, and associated equations used to calculate the SZIsnow. 

Procedures Variables Equations  

Hydrological 

accounting 

R/PR 
𝑅 ൌ ൜

∆𝑆௧ ൅ ∆𝑆௨ ∆𝑆௧ ൅ ∆𝑆௨ ൒ 0
0 ∆𝑆௧ ൅ ∆𝑆௨ ൏ 0 

𝑃𝑅 ൌ 𝐴𝑊𝐶 െ ሺ𝑆௧ ൅ 𝑆௨ሻ  

(1) 

RO/PRO 
𝑅𝑂 ൌ 𝑅𝑂௦ ൅ 𝑅𝑂௕ ൅ 𝑅𝑂௦௠  

𝑃𝑅𝑂 ൌ 𝐴𝑊𝐶 െ 𝑃𝑅   
(2) 

ET/PET 
𝐸𝑇 ൌ 𝐸௕ ൅ 𝐸௧ ൅ 𝐸௜  

                   𝑃𝐸𝑇 is computed with Penman-Monteith equation 
(3) 

L/PL 

⎩
⎪
⎨

⎪
⎧ 𝐿 ൌ ൜

0 ∆𝑆௧ ൅ ∆𝑆௨ ൒ 0
െሺ∆𝑆௧ ൅ ∆𝑆௨ሻ ∆𝑆௧ ൅ ∆𝑆௨ ൏ 0

𝑃𝐿 ൌ 𝑃𝐿௧ ൅ 𝑃𝐿௦                                                

൝
𝑃𝐿௧ ൌ 𝑀𝑖𝑛ሺ𝑃𝐸𝑇, 𝑆௧ሻ          

𝑃𝐿௦ ൌ ሺ𝑃𝐸𝑇 െ 𝑃𝐿௧ሻ
𝑆௨

𝐴𝑊𝐶

 (4) 

SA/PSA ൝
𝑆𝐴 ൌ ቄ0 ∆𝑆𝑊𝐸 ൏ 0

∆𝑆𝑊𝐸 ∆𝑆𝑊𝐸 ൒ 0
𝑃𝑆𝐴 ൌ 𝑃௦௡௢௪   

 (5) 

SM/PSM ቊ 𝑆𝑀 ൌ ቄെ∆𝑆𝑊𝐸 ∆𝑆𝑊𝐸 ൏ 0
0 ∆𝑆𝑊𝐸 ൒ 0

𝑃𝑆𝑀 ൌ 𝑆𝑊𝐸    
 (6) 

Climatic 

coefficients 

𝛼௝ ൌ 𝐸𝑇ఫതതതത 𝑃𝐸𝑇ఫതതതതതതൗ  

(7) 

𝛽௝ ൌ 𝑅ఫഥ 𝑃𝑅ఫതതതതതൗ  

𝛾௝ ൌ 𝑅𝑂ఫതതതതത 𝑃𝑅𝑂ఫതതതതതതതൗ  

𝛿௝ ൌ 𝐿ఫഥ 𝑃𝐿ఫതതതതതൗ  

𝜀௝ ൌ 𝑆𝐴ఫതതതതത 𝑃𝑆𝐴ఫതതതതതതൗ  

𝜑௝ ൌ 𝑆𝑀ఫതതതതത 𝑃𝑆𝑀ఫതതതതതതതൗ  

CAFEC 𝑃෠௦௡௢௪ ൌ 𝛼௝𝑃𝐸𝑇 ൅ 𝛽௝𝑃𝑅 ൅ 𝛾௝𝑃𝑅𝑂 ൅ 𝛿௝𝑃𝑆𝐴 െ 𝜀௝𝑃𝐿 െ 𝜑௝𝑃𝑆𝑀 (8) 

Standardization ൜
𝑃 ൌ 𝑃௥௔௜௡௙௔௟௟ ൅ 𝑃௦௡௢௪௙௔௟௟

𝑍௦௡௢௪ ൌ 𝑃 െ 𝑃෠௦௡௢௪
 (9) 
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The regional water supply firstly meets water demand from soil layers. The soil infiltration (R) was estimated by monthly 

changes (∆S୲ and ∆S୳) in available soil moisture of the top (S୲) and bottom (S୳) soil layers. The potential soil infiltration (PR) 180 

was calculated as the difference between the available soil water capacity (AWC) and the available soil moisture of the entire 

soil. AWC is estimated as the maximum soil water of the two soil layers (Fig. 2) in the Noah LSM. Then, the rest of the 

regional water supply satisfies water demand from runoff (RO). RO consists of surface runoff (ROୱሻ, baseflow (ROୠ), and 

snowmelt runoff (ROୱ୫), which are directly obtained from the GLDAS-2. The potential runoff (PRO) is the difference 

between AWC and PR, because soil moisture storage is considered as a water reservoir in the SZIୱ୬୭୵. Additionally, water 185 

supply is partly consumed by ET, including bare soil evaporation (Eୠ), transpiration (E୲), and canopy water evaporation (E୧) 

that can be found in the output of the GLDAS-2. The PET is computed with output fields from GLDAS-2 using the 

PenmanMonteith equation. Moreover, the moisture loss (L) from the soil layers is considered in the SZIsnow. The equations 

for L and its potential values are shown in Equation 4 of Table 1. Lastly, calculations of variables related to snow processes 

underscored by the SZIsnow are given in Equations 5‒6 of Table 1. The potential snow accumulation (PSA) equals the 190 

monthly amount of snowfall (Pୱ୬୭୵ ), and the monthly SWE change completely reflects snow accumulation (SA) and 

snowmelt (SM). 

3.1.2 Climatic coefficients and precipitation that is climatically appropriate for existing conditions (CAFEC) 

Similar to the PDSI, the SZIsnow applies the precipitation amount that is climatically appropriate for existing conditions 

(CAFEC, referred as P෡ୱ୬୭୵) to quantify the regional water demand. The amount of P෡ୱ୬୭୵ is the result of interaction among 195 

the six water budget components as shown in Equation 8 of Table 1. The weighting factor for each component is the climatic 

coefficient, which is defined as the ratio of the monthly climatic averages of actual (water supply) to potential (water demand) 

values. The equations used to compute these climatic coefficients are listed in Equation 7 of Table 1. The j in Equation 7 

denotes months of a year, that is, each water budget component has 12 values of climatic coefficient covering all months. 

3.1.3 Standardization of moisture anomaly 200 

The comparison between the actual precipitation (P) and P෡ୱ୬୭୵ can reflect the drought condition. When the actual P is less 

than P෡ୱ୬୭୵, the regional water supply will remain in deficit, and vice versa for a surplus. Thus, the difference between the 

actual P and P෡ୱ୬୭୵ is an appropriate indicator for regional water deficiency or surplus. Such difference is defined as the 

moisture anomaly Zୱ୬୭୵ (Equation 9 of Table 1) in the drought assessment system of the SZIୱ୬୭୵. In addition, the Zୱ୬୭୵ can 

be aggregated at different temporal scales (e.g., 1‒48 months) with the same processes as for the SPEI. For a detailed 205 

procedure, readers should refer to the paper of Vicente-Serrano et al. (2010). Moreover, we standardized the Zୱ୬୭୵  to 

SZIୱ୬୭୵ to realize the comparability of the Zୱ୬୭୵ with other Zୱ୬୭୵ or other drought indices over space and time. A three‐

parameter loglogistic distribution was adopted to standardize Zୱ୬୭୵ time-series and derive the SZIୱ୬୭୵. This follows the 

same approach used for the SPEI and SWI to standardize Zୱ୬୭୵ at different temporal scales. The average value of the 
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SZIୱ୬୭୵ is 0, and the standard deviation is 1. Finally, we scaled the SZIୱ୬୭୵ categorization levels to the corresponding SPEI 210 

drought severity categories in Table 2 because the same standardization method is used for both.  

Table 2. Categorization of wetness and drought conditions in the SZIsnow.  

Categories SZIsnow values 

Wetness categorization  
Extreme wetness ≥2.0 

Severe wetness 1.5‒2.0 
Moderate wetness 1.0‒1.5 

Mild wetness 0.5‒1.0 
Near normal ‒0.5 to 0.5 

Drought categorization  
Mild drought ‒1.0 to ‒0.5 

Moderate drought ‒1.5 to ‒1.0 
Severe drought ‒2.0 to ‒1.5 

Extreme drought ＜‒2.0 

3.2 Identification of large-scale drought events in space and time 

Using the SZIୱ୬୭୵ dataset constructed by this study, we performed a global and continental drought analysis for the period 

1948‒2010. We focused on the temporal variability of large-scale drought events through a severity‒area‒duration (SAD) 215 

drought diagnosis method (Andreadis et al., 2005; Herrera-Estrada et al., 2017). In contrast to traditional studies which 

analyze the intensity, severity, and duration of drought over a fixed region, the SAD method specializes in simultaneously 

tracking the development of droughts in space and time based on a gridded dataset. This method proposes a Lagrangian 

approach by aggregating grids (under specified drought levels) of contiguous areas into clusters. These clusters are then 

tracked and archived as they propagate through space and time. The main steps of the SAD method are outlined as follows.  220 

The SAD method firstly uses a monthly three-dimensional (3D) gridded drought index dataset to identify two-dimensional 

(2D) drought clusters in each time step. This drought cluster identification procedure is built on a clustering algorithm that 

merges spatial contiguity. Then, a median filter is utilized to smooth out noise (i.e., small-scale heterogeneity) in the 2D 

clusters in each time step. Specifically, we regarded a grid with a SZIୱ୬୭୵ value below -1.0 as being under drought and 

considered connected areas within which all the grids had a SZIୱ୬୭୵ below -1.0 as a drought cluster. The last step of the 225 

clustering procedure is to remove clusters with an area less than 500,000 km2. The remaining clusters are regarded as 

separate drought events for each time step. More importantly, these identified drought clusters are allowed to split or merge 

through time in the SAD method. The tracking algorithm links clusters that have overlapping grid cells and records the 

merging or splitting date, areas, and centroids of clusters. These functions in the SAD method make it possible for us to 

monitor the spatiotemporal evolution of large-scale drought events. A large-scale drought event in North America identified 230 

by the SAD method is given as an example in Fig. S2 to illustrate this method. 
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4 Results 

4.1 Evaluation of the SZIsnow 

4.1.1 Evaluation of the SZIsnow for different drought types  

We firstly evaluated the capability of the SZIsnow to capture meteorological drought at different temporal scales over the 32 235 

large basins from 1948 to 2010, and compared this to the capability of the SZI. The observation-based meteorological 

drought index, SPI, was used as a reference. As shown in Fig. 3a, the blue boxes represent the statistical distribution of the 

Pearson correlation coefficient (r) between the SZI and SPI for 1‒48 month timescales in each basin, while the red boxes 

represent that between the SZIsnow and SPI. The SZIsnow generally outperformed the SZI over these large basins with an 

average improvement of 3.19% (ranging from 0.01% to 6.45%). It is clear that the extent of improvement in the SZIsnow 240 

increases as the SWE increases. For instance, the r of the SZIsnow‒SPI is 5.51% higher than that of the SZI‒SPI in the 

Pechora basin that has an SWE of 47.5 mm yr1. In contrast, the r of the SZIsnow‒SPI is only 0.11% higher than that of the 

SZI‒SPI in the Indus basin that has an SWE of 3.70 mm yr1. The relationship between the enhancement in the SZIsnow and 

SWE implies that the SZIsnow brings advantages in accounting for snow processes. It also demonstrates that the SZIsnow 

appropriately reflects the fact that snow accumulation and melt have considerable impacts on the seasonal and inter-annual 245 

variation of streamflow in snow-covered areas. In summary, the SZIsnow has a satisfactory performance to capture 

meteorological drought. 

We then evaluated the capability of the SZIsnow to capture hydrological drought (Fig. 3b). The observation-based 

hydrological drought index, SSI, was used as a reference. The SZIsnow generally outperformed the SZI over these large basins, 

with an average improvement of 3.13% (ranging from 0.25% to 17.53%). The extent of improvement in the SZIsnow increases 250 

as the SWE increases. For instance, the r of the SZIsnow‒SSI is 17.53% higher than that of the SZI‒SSI in the Pechora basin 

that has an SWE of 47.5 mm yr‒1. In contrast, the r of the SZIsnow‒SSI is only 1.18% higher than that of the SZI‒SSI in the 

Indus basin that has an SWE of 3.70 mm yr‒1. Moreover, among the multiple temporal scales over which it was tested, the 

SZIsnow performs best at the 12‐month scale for hydrological droughts. At the 12-month scale, the SZIsnow performs 17.53%, 

11.46%, 19.40%, and 4.88% better than the SZI in the Pechora, Northern Dvina, Yenisei, and Kolyma basins, respectively. 255 

Thus, the SZIsnow performs well in the context of capturing hydrological drought.  

The capability of the SZIsnow and SZI to capture agricultural drought was also assessed in our study. We conducted the same 

steps of assessment as those for assessing hydrological drought, but the reference drought index was an agricultural drought 

index, SWSI, derived from a dataset based on observations. As shown in Fig. 3c, the average r of the SZIsnow‒SWSI for all 

the basins is 0.51 (ranging from 0.19 to 0.79), which indicates the ability of the SZIsnow to reliably capture agricultural 260 

drought. Additionally, the SZIsnow performs better than the SZI in almost all basins, and the average improvement of the 

SZIsnow is 6.46% (ranging from 0.14% to 38.96%). Again, larger improvements occurred in basins with a larger SWE. This 

comparison, in terms of agricultural drought, again emphasizes the strength of the SZIsnow in high-latitude and high-altitude 

regions with relatively greater SWE. In summary, the SZIsnow performs sufficiently well to capture agriculture drought. 
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 265 

Figure 3: Comparisons between the SZIsnow and SZI with regard to their performance in quantifying different types of drought. 
The SZIsnow and SZI were correlated with observed drought indices across the 32 basins. The Pearson correlation coefficient (r) 
was applied to evaluate the correlation. (a) Performance of the SZIsnow in quantifying meteorological drought. The blue boxes 
represent the statistical distribution of r between the SZI and SPI for timescales from 1 to 48 months in each basin, while the red 
boxes represent that between the SZIsnow and SPI. (b) Performance of the SZIsnow in quantifying hydrological drought (boxes 270 
represent same parameters as in (a) but correlations are with the SSI instead of the SPI). (c) Performance of the SZIsnow in 
quantifying agricultural drought (boxes represent same parameters as in (a) but correlations are with the SWSI instead of the SPI). 
The SPI, SSI, and SWSI were derived by standardizing observed precipitation, streamflow, and soil water storage data. Basins 
were ranked in descending order based on their SWE. The green dots along the top of each x-axis denote the SWE of each basin 
and their sizes were scaled by the green SWE values given along the bottom of each x-axis. 275 
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4.1.2 Evaluation of the SZIsnow across different spatial scales 

The SZIsnow can be computed and used to characterize drought for an individual grid, although we evaluated its capability at 

a basin scale in Sect. 4.1.1. In this section we apply the SWI drought index as a reference to assess the SZIsnow at the global 

scale (Figs. 4a4b). The Hovmöller diagram (Fig. 4a) shows the distribution of the difference between the r of the 

SZIୱ୬୭୵‒ SWI and that of the SZI‒SWI for 1‒48 month timescales across different latitudes. It is clear that the high-value 280 

zonal mean difference mainly centers in the interval of 50‒65 N. This indicates that the SZIsnow outperformed the SZI within 

this 15 interval in high latitude areas. In contrast, the remaining regions, outside of this interval, show only small magnitude 

differences. In addition, as shown in Fig. 4b, the improvement of the SZIsnow varies over different timescales; it performs 

better over timescales in the range of 3‒12 months. Such spatial patterns, as shown in Figs. 4a4b, emphasize the physical 

improvement in terms of snow processes in the SZIsnow construction compared to the SZI. This evaluation shows the 285 

appropriate performance of the SZIsnow at the global scale.  

As the three-pole region is a focus of this study, we specifically compared the SZIsnow and SZI over the Arctic region, where 

the latitude is larger than 66° 33' N. Figs. S3aS3b presents the spatial distributions of the r of the SZIsnow‒SWI and 

SZI‒ SWI, respectively, over a 12-month timescale. The two maps show similar spatial patterns for the SZIsnow and SZI, yet 

the r of the SZIsnow‒SWI is larger than that of the SZI‒SWI over the majority of the Arctic region, indicated by the positive 290 

difference shown in Fig. 4c. Once again, the SZIsnow is seen to outperform the SZI over the Arctic region, which is consistent 

with the findings from the global evaluation shown in Figs. 4a4b. Additionally, the relationship of area-averaged r and 

timescales is shown in Fig. 4d. The maximum r appears when the timescale is 12-months, and the relative difference 

between the r of the SZIsnow‒SWI and that of the SZI‒SW (i.e., the improvement of the SZIsnow) shows a rapid growth 

moving from 1- to 12-month timescales (Fig. 4d, insert plot). The results demonstrate that the SZIsnow dataset performs well 295 

over the Arctic region. 

https://doi.org/10.5194/essd-2021-399

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 26 November 2021
c© Author(s) 2021. CC BY 4.0 License.



14 
 

 

Figure 4: Performance of the SZIsnow over different latitudes (a and b) and specifically over the Arctic region (c and d). Here the 
differences between the correlation coefficients of the SZIsnow–SWI and those of the SZI–SWI for different timescales were used to 
compare their performance. (a) The Hovmöller diagram (timescale ൈ latitude) shows the differences averaged by latitude from 300 
55˚S to 85˚N for timescales ranging from 1 to 48 months. (b) Distribution of the difference for specific timescales (6, 9, 12, and 15 
months) with changing latitude. (c) Spatial distribution of the differences between the correlation coefficients of the SZIsnow–SWI 
and those of the SZI–SWI over a 12-month timescale in the Arctic region. (d) Variations of correlation coefficients averaged over 
the Arctic region for various temporal scales. The inset shows the change of relative difference (%) for these temporal scales. 

The risk of drought on the Tibetan Plateau, the world's third pole, can affect the water supplies of billions of people. Figure 5 305 

shows the capability of the SZIsnow and SZI to capture drought at various temporal scales over the Tibetan Plateau. Both the 

SZIsnow and SZI have high r values with the SWI over a large part of the Tibetan Plateau. The r of the SZIsnow‒SWI is larger 

than 0.6 across 68.96% of the entire Tibetan Plateau, and for the SZI‒SWI this value is 61.93% (Fig. 5, left and central 

columns). The area-averaged r of the SZIsnow‒SWI is 0.72 and that of the SZI‒SWI is 0.65 over a 12-month timescale, 

equating to an improvement of 10.77% for the SZIsnow. Moreover, the phenomenon that the SZIsnow outperforms the SZI is 310 

clearly shown in the right column of Fig. 5. The largest improvement is seen mainly in the northwest corner and southeastern 

part of the Tibetan Plateau, where the largest snow depths are also seen (Dai et al., 2017). Thus, the SZIsnow dataset is a 

reliable resource to quantify drought across the Tibetan Plateau. 
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Figure 5: Spatial distribution of correlation coefficients of the SZIsnow–SWI (left column) and those of the SZI–SWI (middle 315 
column), and the differences between the two (right column ൌ left column minus middle column) over the Tibetan Plateau at 
different timescales (6, 9, 12, and 15 months). 

4.2 Historical trends in global drought 

The proposed SZIsnow dataset was applied to investigate the historical changes in global drought between 1948 and 2010. The 

spatial distribution of the linear trend in the SZIsnow over different timescales (i.e., 3-, 6-, 12-, 15-months) is shown in Fig. 6. 320 

The SZIsnow at each temporal scale demonstrates a similar global pattern, except for differences in the magnitude of dryness 

or wetness trends. Overall, 59.66% of the land area of the Earth displays a drying trend, and the remaining 40.34% exhibits a 

wetting trend. As shown in Fig. 6, the SZIsnow shows a drying trend over eastern Asia, northern India, most of the Arabian 

Peninsula and Africa, eastern Australia, and central and southern Europe; increased wetness was found over most of the 

United States, a large part of South America, and central Australia. Additionally, the drying trend tends to increase as the 325 

timescale becomes longer. For instance, the drying rate of the SZIsnow over eastern Asia becomes larger as its timescale 
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increases. Moreover, our results are broadly consistent with the findings of Dai (2013) who analyzed the trend of global 

drought using the self-calibrated PDSI. This also implies that the SZIsnow is a useful proxy of aridity changes. 

 

 330 

Figure 6: Spatial distribution of the linear trend (changes per 50 years) in the SZIsnow during the period 1948‒2010, at various 
timescales. The stippling denotes the trend being statistically significant at the 95% confidence level. 

We further examined variations in the area of global land under drought (Fig. 7a). The area under drought shows an 

increasing trend with an average rate of increase of 0.05% yr–1. Large fluctuations began to emerge from 1975, and Earth’s 

drought area increased rapidly in the early 1980s. This growth was largely attributed to the leap in temperature caused by the 335 

1982‒1983 El Niño (Timmermann et al., 1999; Dai, 2011b). The maximum extent of drought area appeared in 1991. 

Moreover, the temporal change in the global moisture anomaly Zୱ୬୭୵ is shown in Fig. 7b. The Zୱ୬୭୵ displays a global 

downward trend of 0.11 mm yr–1 for the period 1948‒2010, which indicates the increasing global deficit between water 

supply and water demand. Overall, our analysis based on the SZIsnow dataset revealed increased aridity over many land areas, 

and severe and widespread droughts over the Earth since 1948. 340 
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Figure 7: Time series of (a) global dry land area (% yr-1) and (b) Zsnow (mm yr-1) between 1948 and 2010. The dry land area was 
calculated based on the SZIsnow at a 12-month timescale. The dashed lines denote the linear trends. 

4.3 Global and continental large-scale drought events 

4.3.1 Statistics of large-scale drought events 345 

Using the SZIsnow dataset proposed in this study, we analyzed global and continental large-scale drought events (hereinafter 

referred to as drought) from 1948 to 2010 by leveraging the SAD drought diagnosis method. There have been 525 droughts 

with an area larger than 500,000 km2 globally during the study period, as shown in Table 3. Also outlined in Table 3 is 

detailed information for the droughts with the longest duration and the largest area, respectively, for each continent. 

Droughts with a duration longer than 6 months account for nearly 70% of all droughts. The longest drought that occurred in 350 

North America lasted 37 months from 1964 to 1967. The most spatially extensive drought occurred over Asia in August 

2008 (drought lasted from November 2007 to June 2009) and covered an area of approximately 11 million km2 (roughly 100 

times the size of Guatemala). For comparison, the most extensive drought in Oceania covered nearly 66% of its continental 

area (roughly 54 times the size of Guatemala). 
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Table 3. Summary of large-scale drought occurrence for each continent. In the fourth column, the duration of the drought is 355 
shown in months, and the period is listed in parentheses. In the final column, the spatial extent given as a percentage of the total 
continental area, and the date at which the maximum spatial extent occurred, is listed in parentheses.  

Region 
Number of 

droughts 

Number of droughts 

൒ 6 months 

Longest duration 

(months) 

Maximum spatial extent  

(km2) 

Asia 168 108 28 (1983-86) 10 828 203  (24.3%, August 2008) 

Europe 30 19 11 (2005) 3 667 854  (36.1%, Sept 1992) 

Africa 98 66   27 (1993-95) 9 953 960  (32.9%, August 1984) 

Oceania 39 30 21 (1976-78) 5 897 639 (65.7%, Sept 1994) 

North America 104 71 37 (1964-67) 7 339 018 (30.3%, April 2000) 

South America 86 65 29 (1957-59) 9 510 882 (53.3%, October 1963) 

 

We further ranked the top five droughts in terms of duration and maximum spatial extent for each continent (Table 4). For 

Asia, the longest drought lasted 28 months, and its droughts commonly extend across larger areas compared to other 360 

continents. The top five longest droughts in Europe had a relatively short duration compared to other continents. In Africa, 

the longest drought lasted 27 months, and the maximum extent was 10 million km2; of all analyzed droughts, 60% occurred 

in the period from the mid-1980s to the mid-1990s; it is clear that there was a prolonged drought spell over this period. 

Moreover, the droughts in North America always have a longer duration compared to other continents.  
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Table 4. Top five drought events in each continent, ranked by duration, or by maximum spatial extent. The duration and spatial 365 
extent are listed in parentheses after the period of each drought event.  

Region Duration (months) Spatial extent (106 km2) 

Asia 1983-86 (28) 2007-09 (10.8) 

 2005-07 (27) 1988-89 (10.8) 

 2007-09 (20) 1990-91 (8.8) 

 1996-98 (20) 1972-73 (8.4) 

 1992-94 (20) 1996-98 (8.0) 

Europe 2005 (11) 1992-93 (3.7) 

 1992-93 (11) 1990-91 (3.3) 

 1990-91 (11) 1993 (3.2) 

 2009-10 (9) 2005-06 (3.1) 

 1993 (9) 1973 (2.5) 

Africa 1993-95 (27) 1984-85 (10.0) 

 1980-82 (25) 1982-84 (9.6) 

 1991-93 (22) 1987-88 (9.6) 

 1989-91 (19) 1991-92 (6.8) 

 1985-87 (19) 1982-83 (6.4) 

Oceania 1976-78 (21) 1994-95 (5.9) 

 1951-53 (21) 1964-65 (5.4) 

 2006-07 (16) 1961-62 (5.1) 

 1961-62 (14) 1951-53 (5.0) 

 1972-73 (13) 1972-73 (5.0) 

North America 1964-67 (37) 1998-00 (7.3) 

 1959-62 (27) 1976-77 (6.6) 

 1979-82(26) 1962-64 (6.6) 

 2001-02 (24) 1952-53 (6.3) 

 1998-00 (24) 1979-82 (6.1) 

South America 1957-59 (29) 1963-64 (9.5) 

 1960-62 (25) 1997-98 (7.0) 

 1995-96 (24) 1988-89 (6.5) 

 1991-93 (23) 1991-93 (5.8) 

 2008-09 (20) 1957-59 (5.2) 
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4.3.2 Temporal variability of large-scale drought events 

The temporal variation of area-averaged SZIsnow, the area under drought (pixels with SZIsnow less than ‒1.0), and contiguous 

areas under drought are shown and analyzed in Fig. 8, in which the vertical pink dashed lines mark the top five most 370 

extensive droughts in each continent. We also selected three of the top five most extensive droughts to show their spatial 

distribution (Fig. 9). The global averaged SZIsnow displays a significant downward trend of 0.02 decade–1 (95% confidence 

level, Fig. 8a), which indicates a global drying trend. This drying trend was closely related to increases in temperature over 

the study period. Accordingly, the global area under drought shows an upward trend (0.31% decade–1) and approaches a 

plateau over the period 1985‒1995. It is clear that the contiguous area under drought demonstrates a similar pattern of 375 

variability to the area under drought for each continent and globally. Such similarity implies the large-scale drought 

identified by the SAD method can largely reflect the variability of the global area under drought.  

Asia experienced a drying trend, based on the area-averaged SZIsnow, during the period 1948‒2010 (Fig. 8b); the contiguous 

area under drought ranges from 0% to 29.30%, with an average of 10.14%. With large fluctuation, droughts in early 1990s 

are salient features of the time series of Asia, and three of the five droughts with the largest spatial extent occurred during the 380 

1990s. The drying trend in east Asia was mainly caused by weakening summer monsoons owing to changes in the El Niño‒

Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (Zhang and Zhou, 2015). The large-scale severe droughts 

in the Middle East and southwest Asia were closely related to La Niña (Barlow et al., 2016). Additionally, the temporal 

variability within Asia is comparably small, mainly due to the dampening effect of its large spatial scale (Sheffield et al., 

2009). In Europe, high variability of the contiguous area in drought was detected in the first half of the 1950s (Fig. 8c). The 385 

drought condition alleviated somewhat between the mid-1950s and the mid-1970s. The high variation was repeated in the 

1990s, and was associated with multiple periods of droughts with large spatial extent. In particular, large-scale droughts 

identified by the SZIsnow occurred with a greater frequency over central Europe compared to other parts of Europe. The 

leading driver behind this pattern was the significant increase in potential evapotranspiration (Spinoni et al., 2015a). The 

findings in Europe, based on SZIsnow, are broadly in agreement with other studies (Lloyd-Hughes and Saunders, 2002; 390 

Spinoni et al., 2015b).  

In Africa, the area-averaged SZIsnow exhibits a visible drying trend from 1948 to 2010 (Fig. 8d). The time series of drought 

areas underwent a gradual climb and achieved a maximum value in the mid-1980s, with a severe drought period then lasting 

until the mid-1990s. All the top five spatially extensive droughts are concentrated within this period and are commonly 

located to the south of the Sahara Desert (Figs. 9g‒9i). Our results for Africa are generally similar to previous studies, which 395 

concluded that ENSO and sea surface temperature (SST) are the main driving forces of droughts across the entire continent 

(Masih et al., 2014). For Oceania, strong drought spells occurred frequently from the 1950s to the 1970s (Fig. 8e). This 

continent is characterized by its high percentage of large-scale drought areas, and multiple droughts account for more than 

40% of the total continent (Figs. 9j‒9l). The characteristics of historical droughts in Oceania are associated with variability 

https://doi.org/10.5194/essd-2021-399

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 26 November 2021
c© Author(s) 2021. CC BY 4.0 License.



21 
 

of global climate, for instance, the Interdecadal Pacific Oscillation (IPO) and Southern Annular Mode (Askarimarnani et al., 400 

2021; Kiem et al., 2016). 

In North America (Fig. 8f), the evident drought spells in the 1950s were captured by the SZIsnow, and the largest drought area 

covered 37% of the entire continent. As shown in Fig. 9o, the drought in March 1964 covered most of the United States. 

Previous studies confirmed that the tropical part of the SST anomalies was primarily related to the most notable droughts of 

the 1950s in the United States (Schubert et al., 2004). Another two obvious drought signals are found in the late 1970s and 405 

1990s. The droughts detected here with the SZIsnow show close correspondence to the findings of previous studies (Su et al., 

2021; Andreadis et al., 2005). Moreover, notable distinct dry spells emerged in the 1960s and 1990s in South America (Fig. 

8g). For instance, the largest drought in October 1963 covered up to 54% of this continental area (Fig. 9r) and covered nearly 

the whole of Brazil. After a strong dry spell in 1998, South America exhibited a low percentage of drought extent until the 

end of the studied time series. 410 
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Figure 8: Temporal variation of monthly area-averaged SZIsnow (black lines), the area in drought (pixels with SZIsnow < –1, red 
lines), and contiguous area in drought (green lines) for the world, Asia, Europe, Africa, Oceania, North America, and South 
America. The vertical pink dashed lines mark the top five major large-scale drought events in each continent. 
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 415 

Figure 9: Spatial distribution and severity of the major large-scale drought events for Asia, Europe, Africa, Oceania, North 
America, and South America. Three out of the top five drought events were selected here for each continent.  
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5 Discussion and conclusions 

This study proposes a drought index dataset on the basis of a new drought index, SZIsnow, by incorporating snow dynamics 

into the SZI. Results from the evaluation of the SZIsnow dataset suggest that consideration of snow processes can improve the 420 

performance of the SZIsnow. The improvement is remarkable when the SZIsnow is applied in snow-covered areas, including 

high-latitude and high-altitude areas. Our results highlight the importance of snow in drought development because it can 

greatly affect the onset, cessation, severity, location, and duration of drought (Huning and Aghakouchak, 2020; Staudinger et 

al., 2014). Snow serves as the main water resource for many regions of the world (e.g., western United States) through its 

accumulation in the cold season and melting in the warm season. However, climate change is altering the effect of snow on 425 

the availability of water resources. Increasing temperature leads to less snowfall and earlier snowmelt, and further results in a 

mismatch between the peak of streamflow and that of water demand, which can increase the drought risk over these regions 

(Adam et al., 2009; Özdoğan, 2011). The results of the present work underscore the importance of considering snow 

processes in drought quantification under global climate change. 

Using the proposed SZIsnow dataset, this study emphatically analyzed the severity–area–duration of global and continental 430 

large-scale drought. The SZIsnow dataset achieved a satisfactory performance in monitoring the propagation of large-scale 

contiguous droughts through space and time. Using the SAD drought diagnosis method, the SZIsnow dataset appropriately 

captures the numbers and variability of historical large-scale contiguous droughts for each continent. These captured drought 

events are broadly aligned with findings from previous research (Zhang and Zhou, 2015; Mctainsh et al., 1989; Kiem et al., 

2016; Lloyd-Hughes and Saunders, 2002). Such performance implies the present dataset can be applied globally to 435 

understand the mechanisms behind large-scale droughts. It also raises confidence in the ability of the SZIsnow to predict 

drought events, especially those with extensive spatiotemporal influence. Moreover, our results indicate that large-scale 

contiguous droughts control, to a large extent, the character of the variation of global drought. Thus, the capacity to track the 

evolution of large-scale droughts in space and time is a crucial aspect for the assessment of a drought index.  

The SZIsnow absorbs the advantages of both the PDSI and SPEI and can be used to monitor multitype droughts at various 440 

temporal scales. Compared to the PDSI, it considers more hydrological components related to water supply and demand, and 

quantifies their contribution to water demand by weight. Such consideration enhances the physical realism of drought 

quantification, particularly over high‐latitude and high‐altitude regions that usually receive substantial snowfall (Zhang et al., 

2019). The enhancement achieved by the SZIsnow implies that more key physical processes should be considered when 

constructing a drought index, rather than using a simple generalization, although we admit that a sophisticated index is 445 

always limited by insufficient observation to some extent. However, data assimilation serves as a new way to overcome the 

difficulty of insufficient observation (Mishra and Singh, 2011). This new method combines a multi-source dataset and an 

advanced land surface model to provide optimal values of variables related to drought, which is the reason why we used 

GLDAS-2 as the forcing means of SZIsnow calculation. Therefore, the improvement of SZIsnow indicates that more attention 

should be paid to the combination between the drought index and the data assimilation system (DAS) or LSM. 450 

https://doi.org/10.5194/essd-2021-399

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 26 November 2021
c© Author(s) 2021. CC BY 4.0 License.



25 
 

The combination between the SZIsnow and the DAS provides the possibility to track droughts over ungauged areas. As more 

models (e.g., crop model, wildfire model, root model) have been coupled with the DAS, the combination between the SZIsnow 

and the DAS has become more physically realistic. Yet, uncertainties from the DAS will inevitably be introduced into the 

SZIsnow, which undermines the reliability of the SZIsnow. Previous studies have often obtained dissatisfactory results during 

the validation of the GLDAS-2 (e.g., Fatolazadeh et al., 2020). These uncertainties originate from incomplete model 455 

structure, forcing data biases, and biases in parameter estimation (Qi et al., 2020). However, recent developments in LSMs, 

DAS techniques, and computational power are helpful in resolving issues associated with uncertainty. Thus, determining 

how to introduce uncertainty quantification when utilizing the SZIsnow to assess drought is a future goal of ours.  

The SZIsnow is a comprehensive drought index because it incorporates different aspects of the hydrologic cycle, which 

provides a clear-cut way to synthesize different kinds of information related to drought into a simple message. Such 460 

synthesizing capacity is particularly crucial because droughts have a broadly adverse influence on agricultural water, 

municipal water, energy supply (hydropower), and human and animal safety. Thus, the SZIsnow has a high potential to be 

utilized for drought management. Currently, however, the SZIsnow is mostly used only by the scientific community (Lu et al., 

2020; Ayantobo and Wei, 2019) and rarely used by decision- and policy-makers. One reason for this is that the acquisition of 

best-fit thresholds in the SZIsnow, for one type of drought over an area with a specific climate regime, requires a trial-and-465 

error approach and takes time. On the other hand, drought management is a synergistic effort involving a variety of sectors 

and requires joint operations of these sectors. Additionally, the complexity of calculations is a limitation of the SZIsnow. 

Therefore, it is necessary to strengthen the user-friendliness of the SZIsnow and collaborate closely with government 

departments related to drought management.  

6 Data availability 470 

All datasets used in this work are freely available. The SZIsnow dataset proposed by this work is a good contribution to the 

study of climate change, ecology, and hydrology. It is especially helpful for research focusing on spatiotemporal dynamics of 

drought, the underlying mechanisms of drought evolution, and the development of drought indices. The dataset contains 48 

individual files with timescales of 1‒48 months and has been archived in the Network Common Data Form (NetCDF) format. 

The monthly SZIsnow in each file covers the Earth’s land area and has a spatial resolution of 0.25. The SZIsnow dataset is 475 

freely downloadable from the Zenodo repository at the following URL: http://doi.org/10.5281/zenodo.5627369 (Wu et al., 

2021). In addition, we also published the dataset to the National Tibetan Plateau/Third Pole Environment Data Center, which 

has been accredited by the Earth System Science Data, and specializes in collecting, integrating, and publishing geoscientific 

data on and surrounding the Tibetan Plateau and the three poles. The SZIsnow dataset can be downloaded from this data center 

at the following URL: http://data.tpdc.ac.cn/en/disallow/b039fde6-face-4d24-af45-d238a6af18b7/.  480 
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7 Summary 

In the current study, we have produced a global monthly SZIsnow dataset over 1–48 month timescales from 1948–2010. This 

dataset is an important contribution to drought quantification and development of drought indices because it is built on the 

SZIsnow, a multitype and multiscalar drought index absorbing the strengths of the SPEI and PDSI. Our SZIsnow dataset has 

achieved a remarkable improvement in drought assessment across the world, particularly for high-latitude and high-altitude 485 

areas. This improvement implies that consideration of snow processes can improve the performance of a drought index. 

Moreover, the SZIsnow dataset can successfully monitor the spatiotemporal propagation of large-scale drought events. We 

expect this dataset could serve as a valuable resource for drought studies, further contributing to promoting our 

understanding of the mechanisms behind global drought dynamics. 
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