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Abstract. Snow dynamics are crucial in ecosystems, affecting radiation balance, hydrological cycles, biodiversity, and human 

activities. Snow areas with notably diverse characteristics are extensively distributed in China, mainly including Northern 

Xinjiang (XJ), Northeast China (NC), and Tibetan Plateau (TP). Spatio-temporal continuous snow monitoring is indispensable 10 

for ecosystem maintenance. Nevertheless, the formidable challenge of cloud obscuration severely impedes data collection. In 

the past decades, abundant binary snow cover area (SCA) maps have been retrieved from moderate resolution imaging 

spectroradiometer (MODIS) datasets. However, the integrated normalized difference snow index (NDSI) maps containing 

additional details on snow cover extent are still extremely scarce. In this study, a recent 20-year stretch seamless MODIS NDSI 

collection in China is generated for the first time using a Spatio-Temporal Adaptive fusion method with erroR correction 15 

(STAR), which comprehensively considers spatial and temporal contextual information. Evaluation tests confirm that the gap-

filled STAR NDSI collection is highly consistent with the Landsat NDSI dataset, with an average correlation coefficient of 

approximately 0.84. Consequently, this collection can serve as a basic dataset for hydrological and climatic modeling to 

explore various critical environmental issues. This collection is available from https://doi.org/10.5281/zenodo.5644386 (Jing 

et al., 2021). 20 

1 Introduction 

Snow is a fundamental component of the cryosphere, strongly interacting with global energy budgets and hydrological 

dynamics (Hall et al., 1995). Snow cover has a remarkable impact on the Earth’s radiation balance due to its highly reflective 

nature, thus generating feedbacks in the global climate system (Konzelmann and Ohmura, 1995). Up to one-sixth of the world’s 

population relies on meltwater from glaciers and snowpacks for drinking, irrigation, hydropower generation, and industrial 25 

production (Barnett et al., 2005). Therefore, snow dynamics have a profound impact on climate change and human activities. 

The snow cover extent of the northern hemisphere has continued to decrease since the mid-20th century (Pachauri and Meyer, 

2014). However, regional-scale snow variations in different environmental conditions present mixed trends due to the strong 

sensitivity of snow cover to climate change (Bormann et al., 2018). The snow cover regions in China are extensively distributed 

with remarkable spatial and temporal heterogeneity (Wang et al., 2018), mainly in Northern Xinjiang (XJ), Northeast China 30 
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(NC), and Tibetan Plateau (TP). Therefore, accurate snow cover acquisition in China is significant for snow pattern analysis, 

water resource management, and climate change monitoring, etc.  

China has conducted large-scale observations of snow parameters since the 1950s through meteorological stations, 

providing a valuable data basis for long-term snow-related studies. However, accurately depicting the snow characteristics in 

China, especially on TP dominated by patchy and shallow snow, is difficult due to the sparsely and unevenly distributed 35 

traditional in-situ observations. Satellite-based remote sensing is a prominent alternative for continuous snow cover monitoring 

at meso and macro scales. Moderate resolution imaging spectroradiometer (MODIS) snow cover datasets are extensively used 

for various hydrological and climatological applications due to their relatively high spatial and temporal resolutions. At present, 

the Collection 5 (C5) suite providing snow cover area (SCA) and fractional snow cover (FSC) data, and the Collection 6 (C6) 

suite providing normalized difference snow index (NDSI) data are the most appealing representatives (Riggs and Hall, 2015). 40 

Compared with the binary SCA of classification decision, NDSI is a remarkably detailed description of snow fraction, ranging 

from 0 to 100. In addition, C6 NDSI reflects the snow presence more accurately than C5 FSC because the algorithm of C6 has 

been carefully revised (Riggs et al., 2017). However, the main constraint of optical remote-sensed datasets, including MODIS 

C5 and C6 snow cover datasets, is cloud persistence.  

Numerous algorithms have been proposed in the past decades to improve the spatio-temporal continuity of MODIS C5 45 

snow cover datasets. Cloud removal algorithms can be categorized into single-source feature fusion methods and multi-source 

data fusion methods considering data sources. Single-source feature fusion methods fill the gaps based on homologous 

contextual information, relying on the spatio-temporal correlations of snow features. These methods have evolved from the 

classical Terra and Aqua combination (TAC; Parajka and Bloschl, 2008), multi-day combination (MDC; Gafurov and Bardossy, 

2009), and snow-line method (SNOWL; Parajka et al., 2010) to complex spatio-temporal union methods. For example, 50 

Gafurov et al. (2015) proposed a four-step method to generate cloud-free MODIS SCA maps, successively combining TAC, 

neighborhood filtering, MDC, and classification tree. Dariane et al. (2017) suggested the aggregation of TAC, MDC, SNOWL, 

and neighborhood filtering with elevation constraints to fill the cloud-covered gaps. Li et al. (2017) developed an adaptive 

spatio-temporal weighted method to reclassify the cloudy pixels. These methods for binary SCA mapping have achieved 

satisfactory cloud removal effectiveness and accuracy. Multi-source data fusion methods (Akyurek et al., 2010; Brown et al., 55 

2010; Chen et al., 2018; Gafurov et al., 2015; Gao et al., 2011; He et al., 2017) maximize the complementarity among 

heterogeneous datasets from optical, microwave, and/or station measurements. This type of method is effective for filling the 

continuous gaps in space and time when the supplementary data are of high quality in the cloud-obscured regions (Li et al., 

2019). In addition to traditional methods, learning-based methods are increasingly applied to snow cover mapping due to their 

satisfactory capabilities for nonlinear expressiveness (Yuan et al., 2020). SCA and FSC maps can be generated by exploring 60 

the relationship between snow coverage and MODIS reflectances combined with ancillary factors, including NDSI, 

temperature, vegetation, and terrain parameters. As a representative of learning-based methods, artificial neural networks have 
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been successfully utilized to model the relationship (Dobreva and Klein, 2011; Hou and Huang, 2014; Moosavi et al., 2014; 

Çiftçi et al., 2017; Kuter, 2021). Such methods are relatively uncertain but promising because the accuracy substantially relies 

on the quantity and quality of training data. 65 

Increasing studies have moved to the MODIS C6 NDSI dataset since its release in 2016. The accuracy of this dataset was 

evaluated through higher resolution remote-sensed images (such as Landsat and Sentinel series) and in-situ measurements 

(Crawford, 2015; Zhang et al., 2019; Aalstad et al., 2020). The optimal classification thresholds for the binary SCA dataset 

and flexible mapping methods for the FSC dataset were designed in accordance with the characteristics of different geographic 

regions to generate new binary SCA (Huang et al., 2018; Malmros et al., 2018; Tong et al., 2020) and FSC maps (Kuter et al., 70 

2018; Hou et al., 2020; Zhang et al., 2021) superior to the C5 datasets. In terms of cloud removal from the NDSI dataset, 

several gap-filling methods with an associated concern of spatial and temporal correlations of snow presence were proposed 

(Jing et al., 2019; Chen et al., 2020; Li et al., 2020). However, the applicability of the aforementioned methods to NDSI 

mapping must be improved despite their good performance in binary SCA mapping. Among these methods, the spatio-temporal 

feature-based methods with relatively high robustness are more effective for improving NDSI datasets (Jing et al., 2019).  75 

Many studies on snow monitoring in China are available, and most of these studies focus on binary SCA mapping. On 

the regional scale, TP, which is known as the world’s third pole, plays a key role in the global climate system. Nevertheless, 

snow cover mapping is particularly challenging over TP due to the frequent cloud cover resembling fragmented snow. A large 

number of studies have demonstrated that the snow cover variability over TP is extremely complex, with significant spatio-

temporal heterogeneity (Gao et al., 2012; Tang et al., 2013; Yu et al., 2016; Liang et al., 2017; Zhang et al., 2012). XJ (Wang 80 

et al., 2008) and NC (Che et al., 2016) located in mid-latitude areas are dominated by seasonal snow cover. Che et al. (2019) 

presented an integrated snow cover dataset from a distributed hydrometeorological observation network in the Heihe River 

Basin, which achieved a prominent demonstration of data synthesis at a watershed scale. In addition, the large-scale transient 

snow cover areas increase the level of challenge for generating high-quality snow cover datasets. On the national scale, Huang 

et al. (2016) obtained the cloud-removed SCA products from December 2000 to October 2014 using a multi-source data fusion 85 

method. However, continuous NDSI datasets with detailed information on snow cover extent are still scarce. 

A daily spatio-temporal continuous MODIS C6 NDSI dataset with a spatial resolution of 500 m for China (Fig. 1) from 

2001 to 2020 is generated for the first time. A Spatio-Temporal Adaptive fusion method with erroR correction (STAR) 

improved from our previous work (Jing et al., 2019) is utilized to eliminate cloud obscuration. The long-term detailed snow 

cover extent dataset will facilitate snow-related scientific studies and practical applications. The rest of this paper is arranged 90 

as follows. Section 2 describes the input data and the proposed cloud removal method. Section 3 presents the validation 

experiments, with a subsequent analytical application. Section 4 introduces data availability, and Section 5 provides the 

conclusions with future perspectives. 
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2 Data and Methods 

2.1 Input data 95 

MODIS sensors onboard Terra and Aqua satellites provide the global snow cover datasets. The daily snow cover datasets of 

C6 (MOD10A1 and MYD10A1 from Terra and Aqua, respectively), which are available through the website of the National 

Aeronautics and Space Administration (NASA, https://search.earthdata.nasa.gov/), were used in this study. As shown in Fig. 

1, the NDSI of 19 tiles covering China (excluding sea area) from 1 August 2000 to 31 July 2020, was acquired to generate 

snow cover maps. The 90 m digital elevation model (DEM) dataset of Shuttle Radar Topographic Mission (SRTM) was 100 

obtained from the United States Geological Survey (USGS). In addition, the snow depth data respectively derived from 49 and 

92 meteorological stations in XJ and TP (Tibet Meteorological Bureau and National Meteorological Information, 2018) were 

used for site validation. Since the snow depth data can only assess the classification performance of MODIS NDSI retrievals, 

the NDSI maps derived from Landsat OLI images were utilized for comprehensive validation.  

 105 

 
Figure 1. Topographic relief of China, meteorological stations in XJ and TP, and Landsat OLI scenes used for validation. 

2.2 Algorithm description 

MODIS NDSI datasets are unable to represent the daily conditions of snow accumulation and ablation accurately because the 

optical remote-sensed images are subject to severe cloud pollution. Therefore, a Spatio-Temporal Adaptive fusion method with 

erroR correction (STAR), which is derived from our two-stage spatio-temporal fusion method (Jing et al., 2019), is presented 110 

to produce a spatio-temporal continuous snow collection. As shown in Fig. 2, the generation procedure comprises the pre-

process TAC and the key-process STAR. Then, a quality assessment (QA) approach is presented to provide a data reliability 
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profile for users. On this basis, post-processing is used to further improve the data quality in individual abnormal areas. 

 

 115 

Figure 2. Schematic of the generation procedure of the STAR NDSI collection. 

2.2.1 Terra and Aqua combination (TAC) 

TAC blends the same-day snow maps deriving from MODIS sensors aboard on Terra and Aqua satellites. Its cornerstone is the 

unlikely significant changes of the snow pattern within the data-acquired time interval (approximately 3 h). The improved 

Aqua MODIS C6 NDSI dataset significantly enhances the effectiveness of TAC due to the successful restoration of the absent 120 

Aqua MODIS band 6 data by the quantitative image restoration method (Gladkova et al., 2012). TAC can efficiently decrease 

the cloud fraction by 5%–20% with negligible precision sacrifice (Li et al., 2019). Thus, this method is introduced as a pre-

processing to reduce cloud coverage preliminarily. Its priority scheme is determined as high value > low value > cloud. 

Particularly, the snow in low altitude and low latitude areas during summer is reversed to no snow to alleviate commission 

errors inherited from the original data. 125 

2.2.2 Spatio-Temporal Adaptive fusion with erroR correction (STAR) 

Many regions with persistent clouds are out of the scope of TAC. To this end, an advanced STAR method, which 

comprehensively utilizes spatio-temporal contextual information, is proposed to remove the clouds thoroughly. As shown in 

Fig. 3, the method performs in two passes: spatio-temporal adaptive fusion (STAF) and error correction (EC).  

The first pass involves the generation of new NDSI maps by adaptively merging the spatio-temporal contextual 130 

information, including space partition, adaptive space-time block determination, and Gaussian Kernel function (GKF)-based 

fusion. The research area is first segmented into dozens of partitions considering the spatial heterogeneity of snow patterns. 

Thus, the subsequent processes can be performed on a partition basis. Moreover, the optimal query partitions (Q) to each target 

partition (T) are determined by a comprehensive consideration of temporal distance (t), regional correlation (r), and cloud-free 

fraction (f) concerning the temporal complexity of snow variations. The following optimal parameters are derived from the 135 

extensive experiments. 
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�
Scheme 1: r > 0.7,             if  𝑓𝑓𝐶𝐶&𝑇𝑇>0.3
Scheme 2: max(t-1+𝑓𝑓𝐶𝐶),               others

.                                                             (1) 

The regional correlation between the candidate partition (C) within an eight-day window and the target partition is considered 

representative if the fraction of the intersecting cloud-free areas (𝑓𝑓𝐶𝐶&𝑇𝑇) is higher than 0.3. The candidate partition is then 

determined as a query partition according to Scheme 1 when the regional correlation is larger than 0.7. Otherwise, Scheme 2 140 

is activated. Two query partitions with short distance and high cloud-free fraction are identified within the preceding eight 

days and the backward eight days, respectively. Subsequently, the 3 × 3 neighborhoods for each pixel of the target partition in 

all the associated query partitions are determined as the space-time reference block. Last, each pixel is reassigned a fused value 

from the related space-time block, as expressed in Eq. (2): 

NDSIi
F=∑ ∑ w(i,st)×N

s=1 NDSI(i,st)
QM

t=1 , 145 

where    W(i,st)=rt
2×exp �

-��ε∆s(i,s)�
2
+∆t(i,t)

2 �

2σ2 �,                                                              (2) 

where NDSIi
F denotes the fused NDSI of Pixel 𝑖𝑖 in the target partition. NDSI(i,st)

𝑄𝑄  is the pre-processed NDSI in associated 

query partitions. M is the number of query partitions, each of which contains N reference pixels. In addition, the weight 

W(i,st) is assigned by a two-dimensional GKF involving the spatial distance (∆s(i,s)) and the temporal distance (∆t(i,t)), which is 

then normalized to w(i,st). σ is the standard deviation of GKF. ε characterizes the dimensional difference, which is equal to 150 

σt σs⁄  with an expression of each single-dimensional GKF. 𝑟𝑟𝑡𝑡 represents the regional correlation between the query and target 

partitions if Scheme 1 works; otherwise, it is ignored (i.e., 𝑟𝑟𝑡𝑡=1). The constant term (ε 2πσ2⁄ ) of GKF is ignored due to the 

normalization process. The important parameters in STAF are listed in Table 1. 

 
Table 1. Description and default values of STAF parameters. 155 

Parameter Description Value 
WT Temporal window for query partition ±8 day 
WN Neighboring window for reference pixel 3 × 3 
r Minimum regional correlation for query partition 0.7 
σ Standard deviation in the GKF 0.5 
ε Dimensional difference coefficient (σt σs⁄ ) in the GKF 25/9 

 

The second pass corrects the fused NDSI maps considering the spatial correlation within a partition. Specifically, the 

residual errors of the intersecting cloud-free areas of the pre-processed and fused NDSI maps (refer to as 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃  and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹) 

are diffused to other cloud-free areas of the fused NDSI maps using the triangulation-based natural neighbor interpolation 

(Sibson et al., 1981). Then, the high-quality NDSI maps (NDSIH) can be generated by removing all errors from the fused NDSI 160 

maps. The process is formulated as follows: 

�
ER=NDSIR

F-NDSIR
P     

ET(i)=∑ ϕ(i,n)
N'
n=1 ER(i,n)

NDSIT
H=NDSIT

F-ET     
,                                                                          (3) 
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where R indicates the reference area which is the boundary of the intersecting cloud-free areas. T indicates the target area. The 

dynamic weights in the error diffusion from ER to ET are based on the Voronoi diagrams. As expressed in Fig. 3 (b-left), the 

original Voronoi cells (bounded by red and gray solid lines) of the reference pixels (gray dots) intersect with the new Voronoi 165 

cells (bounded by blue and gray solid lines) of the reference and target pixels. Taking the target pixel T1 with the reference 

pixel R1 as an example, the weight is assigned as the ratio of the area of the intersecting Voronoi cell (𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ) to that of the 

new Voronoi cell (𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ). 

ϕ(1,1)=
Adabch
Adefgh

.                                                                                   (4) 

After all the partitions are processed in sequence, the next iteration of STAR begins until the clouds are completely removed. 170 

 

 
Figure 3. Detailed flowchart of the Spatio-Temporal Adaptive fusion with erroR correction (STAR). 

2.2.3 Quality assessment (QA) approach  

A revised QA approach for the gap-filled NDSI collection is proposed on the basis of the quality estimate of MODIS NDSI 175 

datasets (Riggs and Hall, 2015), and an example is presented in Fig. A1 (Appendix A). Users can examine the basic quality of 

the gap-filled NDSI collection considering cloud coverage and spatio-temporal consistency of the raw NDSI dataset by 

retrieving the bit flags from the integer stored in QA maps. The specific attributes are listed in Table 2. 

The snow detection reversal of the pre-processed value in TAC is tracked in Bit 2, the post-processing (Sect. 2.2.4) is 

tracked in Bit 3, and the number of iterations primarily related to cloud coverage is indicated by Bit 4. If the range of reference 180 

values is larger than 30, then Bit 5 flag is set; if the difference of pre-processed and fused values is larger than 20, then Bit 6 

flag is set. Bit 7 reflects the cloud coverage of the space-time block. Furthermore, the combination of Bits 0 and 1 is a qualitative 
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estimate of the cloud-removed NDSI collection based on the number of iterations (from here on referred to as NI) and spatio-

temporal consistency. The comprehensive estimate is determined as follows: 

─ if NI = 5 and Bit 5 or 6 is set to 1, then it is assigned “poor”; 185 

─ if NI = 4 and Bit 5 or 6 is set to 1, then it is assigned “OK”;  

─ if NI = 3 and Bit 5 or 6 is set to 1, then it is assigned “good”; 

─ otherwise, it is assigned “best”. 

The QA maps are recommended for in-depth application of the cloud-removed NDSI collection.  

 190 
Table 2. Bit flags indicating the retrieval conditions according to the raw NDSI dataset. 

Bit Description Bit Combination Quality 

0–1 Comprehensive estimate 

00 Best 

01 Good 

10 OK 

11 Poor 

2 Pre-processing 
0 None 

1 Snow detection reversed 

3 Post-processing 
0 None 

1 Post-processed 

4 Number of iterations 
0 No more than 3 

1 More than 3 

5 
Consistency between reference 
values 

0 Consistent 

1 Inconsistent 

6 
Consistency between pre-
processed and fused values 

0 Consistent 

1 Inconsistent 

7 
Cloud coverage of the space-
time block 

0 Low [0,60%) 

1 High [60%,1] 

 

2.2.4 Post-processing 

For areas with extremely rapid and fluctuating snow variation, the temporal contextual references are likely to introduce 

incorrect information and magnify errors in the iterative process. Post-processing is used in this study to reduce the “disorder” 195 

phenomenon referring to QA maps. Firstly, the NDSI map with the most consistent snow pattern in adjacent time is artificially 

identified as a reference. Subsequently, the aforementioned EC is applied to improve the spatial consistency between the post-

processing and original areas. Finally, the QA maps are updated. 

2.3 Validation of the NDSI collection 

The gap-filled NDSI collection is evaluated with the in-situ snow depth observations and Landsat NDSI maps considering 200 
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classification and numerical accuracies according to the current mature verification methods. As shown in Table 3, the 

classification metrics based on the confusion matrix include overall accuracy (OA), commission error (CE), and omission error 

(OE) (Klein and Barnett, 2003). Moreover, three general metrics are introduced to measure numerical accuracy: correlation 

coefficient (CC), absolute error (AE), and root-mean-square error (RMSE). 

 205 
Table 3. Confusion matrix and validation metrics. 

 MODIS NDSI datasets 
In-situ observations NDSI > 0  NDSI = 0 
Snow depth > 0 cm SS SN 
Snow depth = 0 cm NS NN 

OA = 
SS + NN

SS + SN + NS + NN
 CE = 

NS
NS + NN

 OE = 
SN

SN + SS
 

 

3 Results 

As mentioned above, the generation procedure of continuous snow collection includes the pre-process TAC and the key-

process STAR. The remainder clouds of 30.62% in the entire collection after TAC are completely removed by STAR. Based 210 

on in-situ snow depth measurements and Landsat NDSI maps, this section presents the evaluation results of the STAR NDSI 

collection compared with the TAC NDSI dataset, followed by an exemplary application. 

3.1 Validation against in-situ snow depth measurements 

As described above, the in-situ snow depth data in XJ from 1 August 2000 to 31 August 2007 and on TP from 1 August 2000 

to 31 December 2013, were used as the ground truth to evaluate the classification accuracy of TAC NDSI and STAR NDSI 215 

datasets. The nearest pixel was matched with each meteorological station, with a total of about 600000 data pairs. Snow-clad 

pixels in both NDSI datasets range from 10 to 100, whereas snow-free pixels are 0; thus, the classification threshold is set as 

10 (Zhang et al., 2019). The discriminant threshold for in-situ snow depth is set as 0 or 1 cm. In addition, the cloud-covered 

areas in the TAC NDSI dataset are considered to be snow-free. 

Table 4 demonstrates that the STAR NDSI collection preeminently captures the snow dynamics in XJ referring to the in-220 

situ measurements, with an OA reaching 0.95. However, the TAC NDSI dataset is insufficient to accurately describe the snow 

cover variability. Although CEs perform well regardless of the snow depth threshold, OEs of the TAC NDSI collection are 

extremely high, indicating that many cloud-covered areas are dominated by snow. The STAR NDSI collection completely 

removes clouds and accurately presents snow distribution, with an OE decreased from ~60% to ~6%. The generation procedure 

in XJ has two strengths. First, the satellite-borne sensors can accurately capture the snow events on the ground due to the 225 

generally thick snow averaging approximately 20 cm. Second, the gap-filling approach with comprehensive consideration of 
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spatial and temporal correlation has outstanding reliability due to the significant periodicity of snow variation. It can be inferred 

that the NDSI datasets in NC have high accuracy because of the similar snow conditions, despite the lack of in-situ data in this 

region. 

By contrast, despite the satisfactory performance of OAs and CEs, the OEs of two NDSI datasets over TP are as 230 

remarkably high as 72% and 39% even at the snow depth threshold of 1 cm (Table 5). This finding indicates the omission of a 

large number of snow-covered pixels. The specific reasons are as follows. First, the original MODIS NDSI maps frequently 

underestimate the snow presence throughout the snow period because discriminating the shallow snow pixels with an averaged 

snow depth of approximately 4 cm over TP is challenging. Second, the credibility of the spatio-temporal contextual information 

is relatively low because the snow rapidly and irregularly varies due to the extremely complex topographic and climatic 235 

conditions, leading to a further decrease in the accuracy of the gap-filled results. Last, the meteorological stations over TP are 

unevenly distributed and are mostly located in low- and medium-altitude/latitude areas dominated by transient snow. 

Consequently, the evaluation results slightly exaggerate the real OEs.  

Overall, the STAR NDSI collection is capable of snow status estimation, eliminating cloud contamination in the TAC 

NDSI dataset. However, the accuracy of the STAR NDSI collection has a significant regional heterogeneity. On the one hand, 240 

the accuracy over TP is lower than that of XJ and NC, which is consistent with the characteristic of the original MODIS NDSI 

maps. On the other hand, the permanent and periodic snow regime regions reconstructed by STAR have prominently high 

accuracy, while the transient snow-covered regions are easily omitted. Fortunately, the monitoring of permanent and periodic 

snow plays a key role in most snow-related investigations. 

 245 
Table 4. Classification statistics based on in XJ. 

Indicators 
Snow depth > 0 cm 

(Snow fraction = 30%) 
Snow depth > 1 cm 

(Snow fraction = 28%) 
TAC STAR TAC STAR 

OA 0.81  0.95  0.82  0.95  
CE 0.02  0.04  0.02  0.05  
OE 0.60  0.06  0.58  0.05  

 

Table 5. Classification statistics over TP. 

Indicators 
Snow depth > 0 cm 

(Snow fraction = 5%) 
Snow depth > 1 cm 

(Snow fraction = 3%) 
TAC STAR TAC STAR 

OA 0.94  0.95  0.96  0.96  
CE 0.01  0.03  0.02  0.03  
OE 0.78  0.52  0.72  0.39  

 

 

3.2 Validation based on Landsat NDSI maps 

Only the classification accuracy can be evaluated by in-situ measurements due to the significant difference in the nature of the 

snow depth and NDSI data. Therefore, Landsat images with finer spatial resolution were commonly adopted for the numerical 

evaluation of NDSI datasets (Crawford, 2015). NDSI values for the Landsat 8 dataset were calculated as follows: 250 

(Band3 - Band6)  (Band3 + Band6)⁄ . Subsequently, the average of the 17 × 17 neighborhoods closest to the center of the 

MODIS NDSI pixel in the Landsat NDSI map was considered to be the reference of this MODIS NDSI pixel to match the 
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spatial resolution of Landsat with that of MODIS. Specifically, the cloud-contaminated pixels marked by the quality band in 

Landsat images were excluded, and the reference areas with cloud coverage larger than 30% were discarded. A total of 19 

Landsat NDSI maps with different snow coverages from January to April in 2018, which are distributed in NC (4 scenes), 255 

Central China region (CCR; 2 scenes), TP (8 scenes), and XJ (5 scenes), were exploited as evaluation references for this 

validation experiment. Two evaluations include a comparison of TAC and STAR NDSI datasets and a comparison of clear-sky 

and cloud-cover areas are described in detail below. 

As the average cloud cover is as high as 40.7%, the TAC NDSI dataset has a low correlation with Landsat NDSI maps, 

with an average CC of 0.46 (Table 6). By contrast, the STAR NDSI collection is a spatio-temporal continuous dataset. The 260 

snow dynamics presented by the STAR NDSI dataset are highly consistent with Landsat NDSI maps, with an average CC of 

approximately 0.84. The average RMSE of the STAR NDSI dataset is decreased by 9.06 compared with the TAC NDSI dataset. 

NDSI values for snow pixels in the STAR NDSI dataset are generally higher than that of Landsat NDSI maps. In terms of 

snow coverage, the STAR NDSI dataset notably improves the detection of snow events, with an average absolute SRD 

decreased from 33.0% to 1.9% (SRD indicates the difference of snow rate between MODIS and Landsat NDSI datasets). 265 

Consequently, the STAR NDSI collection is a more promising snow cover product than the TAC NDSI dataset, contributing 

to related hydrological and meteorological studies. 

 

Table 6. Performance statistics for two MODIS NDSI datasets against Landsat NDSI maps. 

Region_Date 
Cloud 

coverage (%) 
CC RMSE AE SRD (%) 

STAR TAC STAR TAC STAR TAC STAR TAC 
NC1_20180225 61.4  0.87  0.49  17.10  25.64  15.07  -11.59  1.0  -60.1  
NC2_20180311 43.6  0.83  0.69  13.87  26.75  12.14  -9.36  -1.7  -43.1  
NC3_20180311 34.6  0.86  0.19  8.79  18.61  0.15  -10.26  -2.8  -34.2  
NC4_20180318 16.3  0.98  0.73  10.25  21.50  5.42  -3.33  -1.1  -16.6  
CCR1_20180203 14.9  0.95  0.20  5.04  11.53  1.54  -3.56  2.8  -11.4  
CCR2_20180203 95.0  0.73  -0.07  8.43  14.26  0.10  -9.07  -5.4  -47.8  
TP1_20180322 36.3  0.83  0.39  10.70  18.03  0.77  -5.30  1.3  -13.8  
TP2_20180225 22.4  0.82  0.54  15.27  25.50  -0.30  -9.66  -9.1  -27.8  
TP3_20180320 15.3  0.74  0.29  7.91  11.40  -1.49  -2.89  -3.5  -6.7  
TP4_20180401 29.5  0.79  0.47  16.64  30.94  -3.71  -16.86  -8.3  -31.6  
TP5_20180307 42.5  0.92  0.47  13.80  30.00  7.67  -11.76  1.0  -36.0  
TP6_20180305 64.9  0.78  0.17  14.53  42.26  4.67  -32.30  -2.9  -66.1  
TP7_20180107 60.8  0.80  0.44  18.08  28.13  6.04  -15.95  -12.57  -60.00  
TP8_20180128 34.6  0.82  0.49  10.65  11.98  2.68  0.67  4.3  1.1  
XJ1_20180105 52.2  0.86  0.79  22.81  27.53  22.18  -4.00  0.1  -52.2  
XJ2_20180213 23.4  0.92  0.64  20.81  23.55  18.29  7.13  7.2  -14.8  
XJ3_20180220 56.0  0.86  0.56  18.78  26.35  16.06  -9.87  1.9  -51.2  
XJ4_20180103 23.5  0.74  0.70  28.86  28.94  26.66  15.70  -0.2  -21.8  
XJ5_20180220 46.1  0.92  0.55  11.99  23.55  2.28  -10.44  -8.0  -32.7  
Average 40.7  0.84  0.46  14.44  23.50  7.17  -7.51  -1.9  -33.0  
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In addition to the comparison between STAR NDSI and TAC NDSI datasets, an evaluation in clear-sky areas and cloud-270 

cover areas was performed based on Landsat NDSI maps, to highlight the accuracy of the recovered pixels in the STAR NDSI 

collection. As described above, clear-sky areas and cloud-cover areas account for 59.3% and 40.7%, respectively. Table 7 

indicates that the snow distribution of recovered areas in the STAR NDSI collection is relatively consistent with that of Landsat 

NDSI maps. Although the average CC decreases from 0.85 to 0.73 and the average RMSE increases from 13.48 to 16.30 

compared with clear-sky areas, the accuracy of recovered areas is satisfactory. Since many recovered areas inherit errors from 275 

clear-sky areas because the cloud removal procedure completely relies on the original dataset, a slight decrease in accuracy is 

reasonable. In addition, the average AEs of clear-sky and recovered areas are 7.81 and 6.83, respectively, revealing the 

systematic overestimation of NDSI values in snow areas (Landsat NDSI values are generally low). Except for a few areas, the 

snow conditions in most cloud-cover areas are well recovered, with an average SRD of -5.0%. This finding highlights that the 

STAR NDSI collection can completely remove clouds with a satisfactory accuracy. 280 

 

Table 7. Performance statistics for the STAR NDSI collection against Landsat NDSI maps in clear-sky and cloud-cover areas 

according to the TAC dataset. Note: Red and blue bold values respectively indicate an improvement and degradation of cloud-cover areas 

compared with clear-sky areas (corresponding to four groups in Fig. 4). 

Region_Date 
CC RMSE AE SRD (%) 

Clear-sky Cloud-cover Clear-sky Cloud-cover Clear-sky Cloud-cover Clear-sky Cloud-cover 

NC1_20180225 0.95 0.76 16.89 17.23 15.23 14.97 2.91 -0.2 
NC2_20180311 0.89 0.71 12.27 15.71 11.78 12.62 -0.10 -3.7 
NC3_20180311 0.92 0.42 2.31 14.60 -0.09 0.61 -1.02 -6.1 
NC4_20180318 0.98 0.86 10.29 14.75 4.88 11.30 -1.23 -0.2 
CCR1_20180203 0.83 0.68 3.37 10.29 0.68 6.50 3.48 -0.9 
CCR2_20180203 0.55 0.74 10.93 8.28 6.80 -0.25 32.63 -7.4 
TP1_20180322 0.75 0.87 10.22 11.49 0.44 1.35 0.11 3.4 
TP2_20180225 0.86 0.64 13.50 20.24 0.89 -4.40 -7.49 -14.8 
TP3_20180320 0.73 0.69 3.74 18.19 -0.40 -7.52 -1.07 -16.9 
TP4_20180401 0.79 0.78 16.56 17.08 -4.35 -2.17 -8.14 -8.3 
TP5_20180307 0.94 0.88 13.82 13.86 8.01 7.16 1.68 0.1 
TP6_20180305 0.79 0.76 15.03 14.26 1.75 6.24 -4.79 -1.9 
TP7_20180107 0.98 0.63 15.17 19.74 10.28 3.27 -1.00 -20.0 
TP8_20180128 0.75 0.89 11.13 9.92 3.27 1.67 7.62 -1.7 
XJ1_20180105 0.89 0.62 24.47 21.17 24.29 20.25 0.00 0.1 
XJ2_20180213 0.95 0.74 20.47 21.88 18.27 18.37 9.00 1.5 
XJ3_20180220 0.93 0.75 17.45 19.77 15.37 16.60 4.02 0.2 
XJ4_20180103 0.64 0.58 29.54 26.53 28.09 22.00 0.61 -2.9 
XJ5_20180220 0.97 0.86 8.92 14.81 3.26 1.13 -1.31 -15.7 
Average 0.85 0.73 13.48 16.30 7.81 6.83 1.89 -5.0 

 285 
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Figure 4. Comparison of TAC NDSI (column 1), Landsat NDSI (column 2), and STAR NDSI (column 3) products and classification 

consistency (column 4) corresponding to NC3_20180311, CCR2_20180203, TP2_20180225, and XJ4_20180103 (groups a to d). 

For in-depth verification analysis, Figure 4 shows the visual effects in four regions corresponding to four highlighted 

groups in Table 7. The accuracy of clear-sky areas in NC is prominently high with a CC of 0.92, while recovered areas notably 

reduces the performance with a CC of 0.42. However, Figure 4a shows that clear-sky areas in the TAC NDSI dataset cannot 290 

reflect the snow events, whereas the STAR NDSI collection effectively retrieves these events. Inevitably, the snow edges are 

slightly inaccurate and blurry due to insufficient reference information. For group (b), the original accuracy of the NDSI dataset 

in CCR is relatively low, with high cloud coverage and false acceptance rate, while the STAR NDSI collection presents a snow 

pattern consistent with Landsat NDSI. Nevertheless, CCR is a transient snow area with relatively low altitudes and latitudes. 

Therefore, the gap-filled result has visible uncertainty, in which commission (black box) and omission (red box) frequently 295 
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occur. As mentioned above, MODIS NDSI datasets generally perform poorly over TP. However, Figure 4c demonstrates that 

TAC NDSI and STAR NDSI collections can accurately capture snow events despite a few omissions (red box). Similar to the 

NC region, the CCs provide a positive indication of overall performance in XJ. As shown in Fig. 4d, even the XJ4_20180103 

scene with a remarkably low CC of 0.58 can effectively reflect the snow pattern. In addition, the NDSI dataset retrieved by 

STAR inevitably has a few extremely abnormal areas during 20 years due to the vast territory of China; an example is presented 300 

in Fig. A2 (Appendix A). These areas have severe cloud contamination and irregular snow dynamics, contributing to the 

challenges in reconstruction and evaluation. Therefore, these areas are corrected by post-processing as described in Sect. 2.2.4. 

Overall, the numerical evaluation based on fine-resolution remote-sensed images indicates that the STAR NDSI collection 

eliminates cloud contamination and preeminently improves the overall performance of the TAC NDSI dataset. Although 

recovered areas have slightly lower accuracy than clear-sky areas, the effectiveness of cloud removal is satisfactory. Therefore, 305 

the STAR NDSI collection has considerable application potential. 

3.3 Application of the STAR NDSI collection 

In addition to quality evaluation, the exemplary analysis also contributes to understanding the collection potential for 

hydrological and climatic applications. From a spatial perspective, the sequence shown in Fig. 5 indicates that the snow 

coverage first increases and then decreases in NC and XJ regions but considerably fluctuates on TP. Figure 6 reveals that all 310 

subregions present a single-wave depletion curve in early 2020. Compared with the previous sequence, the snow cover 

variation on TP in this sequence has significantly enhanced regularity.  

 

 
Figure 5. Sequence of the STAR NDSI collection from 5 December 2014 to 25 January 2015. 

https://doi.org/10.5194/essd-2021-395

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



15 
 

 
Figure 6. Sequence of the STAR NDSI collection from 1 January 2020 to 21 February 2020. 315 

Figure 7 shows the daily average snow fraction in the three main subregions in China and the entire situation considering 

temporal analysis. In terms of intra-annual variability, the snow dynamics periodically evolve in XJ and NC but substantially 

fluctuates on TP. XJ and NC have similar snow depletion curves, demonstrating rapid accumulation and ablation in November 

and March, respectively. TP has a relatively long snow period, with an average snow fraction varying from 20% to 40% from 

October to next May. Consequently, China is dominated by periodic snow. As for inter-annual variability, among the three 320 

major snow areas, the snow fraction in NC remarkably fluctuates with a standard deviation of 5.3%. The snow coverage on 

TP presented a slight decreasing trend from 2005 to 2017 but increased significantly in the past two years. In particular, rather 

than a significant rise in maximum snow coverage, the increase can be observed throughout the snow period with a slight 

reduction in intra-annual volatility. This finding implies that the regional climatic conditions tend to stabilize slightly. In 

addition, no significant trend has been detected in snow dynamics in China during the 20 years. Nevertheless, the significant 325 

fluctuation of maximum snow coverage in China indicates the presence of non-negligible large-scale transient snow cover 

areas. For example, Figure A3 (Appendix A) shows the extreme snow event in southern China caused by the La Niña 

phenomenon, which resulted in heavy casualties and economic losses in the hydrological year 2007–2008. Overall, the STAR 

NDSI collection can accurately reflect the snow cover dynamics in China and potentially be applied for hydrological and 

meteorological modeling. 330 

https://doi.org/10.5194/essd-2021-395

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 15 February 2022
c© Author(s) 2022. CC BY 4.0 License.



16 
 

  

  
Figure 7. Daily average snow fraction of XJ, NC, TP, and China.  

4 Data availability 

The improved cloud-free MODIS NDSI collection (STAR NDSI collection) for China from 1 August 2000 to 31 July 2020, 

including STAR NDSI and STAR QA data, is available for download at https://doi.org/10.5281/zenodo.5644386 (Jing et al., 

2021). The dataset is provided using a WGS 84 / UTM zone 48N projection, with a tag image file format (TIFF). Users can 335 

discuss and respond to issues that arise during the use of this dataset. New versions can be released in consideration of user 

comments. 

5 Conclusions 

The STAR NDSI collection is derived from the MODIS NDSI dataset using an optimized STAR from our last research (Jing 

et al., 2019). The evaluation tests indicate that the STAR NDSI collection is highly consistent with the in-situ snow depth 340 

measurements and higher resolution NDSI maps. The STAR NDSI collection generally has the following strengths. (1) This 

collection has reached a continuous 20-year period, which is the minimum period of a dataset for long-term hydrological and 

climatic processes analysis. (2) The cloud-free collection significantly improves the snow dynamics estimation compared with 

the TAC NDSI dataset, with a satisfactory accuracy in original cloud-cover areas. (3) The collection provides a detailed snow 

cover dataset in China for the first time, accurately reflecting the snow conditions of the following three major snow areas: XJ, 345 

NC, and TP. The collection is available at: https://doi.org/10.5281/zenodo.5644386 (Jing et al., 2021). 

As discussed above, the STAR NDSI collection still has some deficiencies. A future release should consider several issues: 

(1) the original accuracy of the MODIS NDSI dataset reduced by factors such as complex climatic conditions and dense forest 

coverage; (2) the reconstruction accuracy of snow edges affected by mixed pixels and high cloud coverage; (3) the 
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reconstruction accuracy of transient snow areas due to the inadequate spatio-temporal contextual information; and (4) the lack 350 

of evaluation based on in-situ snow depth measurements in NC due to the limited access to climate station data.  

Despite the aforementioned deficiencies, since snow is a pivotal driver and sensitive indicator for many 

hydrometeorological processes, the daily 500 m STAR NDSI collection for 20 years has various potential applications: (1) 

achieving a deep understanding of long-term snow cover variability in China, (2) providing effective forcing data for 

hydrological and meteorological models, and (3) supporting strategic decisions on water resources management, 355 

environmental pollution governance, and related economic development. 
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Appendix A 

  
Figure A1. QA maps over Taklimakan Desert on 19 January 

2008. (a) QA map. (b) Comprehensive QA map. 
Figure A2. Post-processing over Taklimakan Desert on 19 

January 2008. (a) STAR result. (b) Final result. 
 490 

 
Figure A3. Extreme snow event in southern China. (a) 31 January 2008. (b) 5 February 2008. (c) 10 February 2008. 
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