
Response to Referee #3 Comments 
Jing s paper produced a daily cloud-free Normalized Difference Snow Index (NDSI) product with 500 m spatial 

resolution based on MODIS C6 snow cover datasets in China. So far as we know, the NDSI threshold is the crucial 

parameter for snow detection by use of optical remote sensing data. The paper in its current version needs major 

revision and resubmission to meet the level expected of ESSD, for the following reasons:  

Firstly, the importance of NDSI needs to be clarified in introduction and using data. NDSI is different form NDVI. 

The readers are more concerned about binary snow cover or fractional snow cover than NDSI itself. Therefore, it 

is difficult for me to evaluate whether this dataset is uniqueness or usefulness. Secondly, the current validation 

scheme is insufficient to support the Spatio-Temporal Adaptive fusion method. The two issues must be addressed 

for this dataset to be published on ESSD. 

Response:  

Thank you very much for the critical comments and suggestions regarding our article. Considering all the 

constructive comments, we carefully revised the Introduction and significantly improved the evaluation 

experiments in the Results and Discussion. Note that the NDSI_Snow_Cover (hereafter referred to as NDSI) 

scientific data set with a range of 0, 10 to 100 was used in this study. 

In summary, the main points of the response include: (1) The importance of NDSI was analyzed from three 

aspects (Section 1). (2) The MODIS C6 NDSI data were compared with the atmospheric corrected NDSI calculated 

from the surface reflectance bands of MOD09GA products. (3) The overall classification accuracy and monthly 

average classification accuracy of STAR NDSI collection were compared with those of TAC NDSI and NIEER 

AVHRR SCE datasets based on in-situ snow depth measurements (Section 3.1). The accuracy of STAR NDSI 

collection during the snow period was emphasized. (4) The effectiveness of STAR method on cloud removal under 

different simulated cloud conditions was analyzed based on Landsat NDSI maps (Section 4). Details are presented 

below. 

 

General Comments: 

1. The importance of the NDSI research is insufficiently described, and why NDSI is more important than binary 

and FSC products should be further described in the introduction. 

Response: Thank you for the critical comment. The importance of NDSI research mainly includes three 

aspects: (1) NDSI is a more accurate description of the snow detection as compared to SCA and FSC (Riggs and 

Hall, 2015; Riggs et al., 2017); (2) As a basic data, NDSI has the significant advantage of allowing users to more 



accurately determine SCA or FSC for their particular study areas and application requirements (Hall et al., 2019); 

(2) Cloud-free SCA and FSC datasets produced by composite algorithms are frequently released, while high-quality 

cloud-free NDSI datasets are still scarce. In addition, we also consider all binary SCA, FSC and NDSI products to 

be important. For decades, they have facilitated a variety of snow-related researches. Finally, we added a description 

of the importance of NDSI research in the Introduction as follows. 

Increasing studies have moved to the MODIS C6 suite since its release in 2016. In C6 data, snow cover is 

reported as NDSI rather than SCA and FSC. NDSI is an index that is related to the snow presence in a pixel and is 

a more accurate description of snow fraction as compared to SCA and FSC (Riggs and Hall, 2015; Riggs et al., 

2017). The clear-sky accuracy of C6 NDSI datasets is robust compared to higher resolution remote-sensed images 

(such as Landsat and Sentinel series) and in-situ measurements (Crawford, 2015; Zhang et al., 2019; Aalstad et al., 

2020). As a basic data, it has the significant advantage of allowing users to more accurately determine SCA or FSC 

for their particular study areas and application requirements (Hall et al., 2019). For example, several optimal 

classification thresholds for SCA (Huang et al., 2018; Malmros et al., 2018; Tong et al., 2020) and specially tuned 

mapping methods for FSC (Kuter et al., 2018; Hou et al., 2020; Zhang et al., 2021) were designed to generate 

regional SCA and FSC datasets from NDSI snow cover datasets, which were superior to the globally harmonized 

algorithms in C5 data. However, severe cloud contamination also limits the application of NDSI datasets, resulting 

in many studies only considering cloud-free areas (Kuter et al., 2018; Malmros et al., 2018; Tong et al., 2020; Hou 

et al., 2020; Zhang et al., 2021). Since the aforementioned cloud removal methods were generally designed for 

binary SCA, their applicability to NDSI with more complicated spatio-temporal characteristics should be improved. 

Thus, several gap-filling methods with an associated concern of spatial and temporal correlations of snow presence 

were proposed to remove clouds from NDSI (Jing et al., 2019; Chen et al., 2020; Li et al., 2020). Among these 

methods, the spatio-temporal feature-based methods with relatively high robustness are more effective for 

improving NDSI datasets (Jing et al., 2019). 

Many studies on snow monitoring in China are available, and most of these studies focus on binary SCA 

mapping. On the regional scale, QTP, which is known as the world’s third pole, plays a key role in the global 

climate system. Nevertheless, snow cover mapping is particularly challenging over QTP due to the frequent cloud 

cover resembling fragmented snow. A large number of studies have demonstrated that the snow cover variability 

over QTP is extremely complex, with significant spatio-temporal heterogeneity (Gao et al., 2012; Tang et al., 2013; 

Yu et al., 2016; Liang et al., 2017; Zhang et al., 2012). NX (Wang et al., 2008) and NC (Che et al., 2016) located 

in mid-latitude areas are dominated by seasonal snow cover. Che et al. (2019) presented an integrated snow cover 

dataset from a distributed hydrometeorological observation network in the Heihe River Basin, which achieved a 



prominent demonstration of data synthesis at a watershed scale. In addition, the large-scale transient snow cover 

areas increase the level of challenge for generating high-quality snow cover datasets. On the national scale, Huang 

et al. (2016) obtained a long-term cloud-removed SCA product using a multi-source data fusion method. Despite 

many relevant studies, only a few cloud-free snow cover datasets have been released publicly. 

Several typical long-term cloud-free snow cover products available online are listed in Table 1 (datasets are 

referenced via DOI), which cover most snow-dominated regions in China. Huang (2020) provided MODIS daily 

cloudless SCA products with relatively accurate snow detection capabilities in Northern Hemisphere based on 

multi-source data. Muhammad and Thapa (2020, 2021) obtained eight-day/daily MODIS SCA and glacier 

composite datasets for High Mountain Asia by aggregating seasonal, temporal, and spatial filters, which can serve 

as a valuable input for hydrological and glaciological investigations. Hao et al. (2021; 2022) yielded two long-term 

daily SCA datasets over China through a series of processes such as quality control, cloud detection, snow 

discrimination, and gap-filling (including hidden Markov random field and snow-depth interpolation techniques). 

Their releases and updates promoted the research of snow cover characteristics in China. Qiu et al. (2017) yielded 

a daily FSC dataset with detailed snow cover information over High Mountain Asia with MDC and spatial filtering. 

Additionally, the global cloud-gap-filled MODIS NDSI dataset (MOD10A1F) is available online since 2020, where 

cloud-covered grids in the MODIS Terra NDSI product are filled by retaining clear-sky observations from previous 

days (Hall and Riggs, 2020). However, this dataset performs poorly in China, where periodic and transient snow is 

dominant. In general, cloud-free SCA datasets produced by composite algorithms are frequently released, while 

high-quality cloud-free NDSI datasets are still scarce. 

 

Table 1. Typical long-term cloud-free snow cover products covering most snow-dominated regions in China. 

References Type Spatial coverage 
Temporal 
coverage 

Temporal 
resolution 

Spatial 
resolution 

DOI 

Hao et al. (2021) SCA China 1981–2019 Daily ~5 km 10.11888/Snow.tpdc.271381 

Hao et al. (2022) SCA China 2000–2020 Daily ~500 m 10.12072/ncdc.I-SNOW.db0001.2020 

Huang (2020) SCA Northern hemisphere 2000–2015 Daily ~1 km 10.12072/ncdc.CCI.db0044.2020 

Muhammad and Thapa (2021) SCA High Mountain Asia 2002–2019 Daily ~500 m 10.1594/PANGAEA.918198 

Qiu et al. (2017)* FSC High Mountain Asia 2002–2018 Daily ~500 m 10.11922/sciencedb.457 

Hall and Riggs (2020) NDSI Global coverage 2000–present Daily ~500 m 10.5067/MODIS/MOD10A1F.061 

*Cloud coverage is less than 10%. 

 

To this end, this study generates a spatiotemporally continuous Terra–Aqua MODIS NDSI product with 

satisfactory accuracy for China, fully considering the spatio-temporal characteristics of regional snow cover 



variability. A Spatio-Temporal Adaptive fusion method with erroR correction (STAR) improved from our previous 

work (Jing et al., 2019) is utilized to eliminate cloud obscuration. The long-term detailed snow cover extent dataset 

will facilitate snow-related scientific studies and practical applications in China. The rest of this paper is arranged 

as follows. Firstly, Section 2 describes the input data and the proposed cloud removal method. Then, Section 3 

presents the verification accuracy of STAR NDSI collection, with a subsequent analytical application. The cloud 

removal effectiveness under different cloud coverages is discussed in Section 4. Finally, the data availability and 

the conclusions are provided in Section 5 and Section 6, respectively. 

 

2. The NDSI value in either MODIS C5 or C6 is the NDSI without atmospheric correction. How this NDSI 

differs from NDSI by the atmospheric corrected from MOD09GA/MYD09GA? Has the author compared it, 

and which NDSI value is more useful to readers? 

Response: Thank you for the critical comment. The objective of this study is to improve the temporal and 

spatial continuity of MODIS NDSI products. The accuracy of the original data in clear-sky areas is very important 

but seems to be beyond the scope of this study. However, we still added a comparative experiment of MOD09GA 

NDSI and MOD10A1 NDSI datasets (C6). The results reveal that the accuracy of MOD10A1 NDSI dataset is 

slightly higher than that of MOD09GA NDSI dataset compared to Landsat NDSI maps. The reason may be that the 

NDSI algorithm specially designed for MOD10 products, is more applicable to them. In addition, Riggs et al. (2017) 

discovered that “compared to true color (bands 1, 4, 3) image of MOD09GA, all the snow-cover extent is detected 

in C6 NDSI_Snow_Cover by the revised algorithm; however, significant snow-cover extent was missed in C5 

FSC”. Therefore, MOD10A1 C6 NDSI products are relatively reliable, while MOD10A1 C5 SCA/FSC products 

are underestimated. Due to space limitations, this comparative experiment was not added to the manuscript. The 

details of the experiment are as follows. 

The atmospheric corrected NDSI data were calculated from the surface reflectance bands of MOD09GA 

products based on the algorithm of MOD10A1 NDSI dataset (C6). Supplementary Figure 1 shows four scatter 

diagrams of MOD10A1 NDSI and MOD09GA NDSI datasets in snow-cover areas. The two NDSI datasets are 

partially inconsistent, with R2 ranging from 0.63 to 0.91 and RMSEs ranging from 6.36 to 9.42. For an in-depth 

evaluation, the performance statistics for MOD09GA NDSI and MOD10A1 NDSI datasets against Landsat NDSI 

maps are shown in Supplementary Table 1. Compared with Landsat NDSI maps, their average CCs are almost 

equal. In addition, in terms of RMSEs, AEs and SRDs, MOD10A1 NDSI data are slightly superior to MOD09GA 

NDSI data. Despite the limited spatio-temporal scope of the samples, this comparative experiment can reflect the 

reliability of MODIS C6 NDSI products. However, more comprehensive comparisons are needed for the specific 



researches on the original accuracy in clear-sky areas. 

 

 

  
Supplementary Figure 1. Scatter diagram of MOD10A1 NDSI and MOD09GA NDSI datasets in snow-cover areas. Note that 

142037_20180312 denotes region (Worldwide Reference System of Landsat) and date. 

 

Supplementary Table 1. Performance statistics for MOD09GA NDSI and MOD10A1 NDSI datasets against Landsat NDSI maps. 

Region_Date 

CC RMSE AE SRD (%) 

MOD09GA 

NDSI 

MOD10A1 

NDSI 

MOD09GA 

NDSI 

MOD10A1 

NDSI 

MOD09GA 

NDSI 

MOD10A1 

NDSI 

MOD09GA 

NDSI 

MOD10A1 

NDSI 

119027_20180223 0.98  0.99  6.29  5.77  1.65  1.57  -1.67  -1.47  

119028_20180311 0.97  0.97  11.37  8.95  6.93  4.69  -0.96  -3.22  

119029_20180311 0.77  0.81  2.05  1.80  -0.01  -0.02  0.03  0.04  

119030_20180311 0.58  0.66  1.98  1.82  -0.16  -0.12  -0.95  -0.60  

122027_20180316 0.91  0.94  12.34  9.31  0.18  0.10  -18.36  -12.64  

123037_20180203 0.81  0.82  1.94  3.03  -0.07  0.71  -0.83  3.94  

138039_20180401 0.80  0.83  15.19  14.60  -2.29  -5.80  -6.19  -6.62  

139030_20180102 0.98  0.97  10.91  8.50  5.17  4.17  1.84  5.29  

139035_20180307 0.91  0.93  10.65  7.61  3.85  1.96  -4.07  2.69  

139036_20180307 0.79  0.83  9.77  7.73  0.59  -0.93  -3.95  -1.82  

140035_20180226 0.92  0.94  8.49  7.75  -0.20  -3.13  -2.73  -2.36  



140039_20180125 0.95  0.96  8.53  7.04  2.59  2.16  -0.87  0.60  

141034_20180305 0.87  0.84  10.57  11.04  -0.37  -4.05  -5.30  -7.05  

141035_20180217 0.93  0.95  5.28  3.97  0.48  -0.53  -1.66  -2.50  

141035_20180305 0.84  0.87  11.13  10.55  2.78  -6.12  -3.64  -6.00  

142035_20180107 0.67  0.72  4.53  4.04  -0.25  -0.20  -2.24  -0.70  

142036_20180107 0.91  0.95  6.63  4.62  0.15  0.32  -5.75  -0.77  

142037_20180312 0.97  0.97  9.55  7.18  3.69  1.30  -0.76  0.43  

144028_20180105 0.89  0.89  24.83  20.75  24.65  20.58  0.00  0.00  

144029_20180105 0.50  0.35  24.42  20.54  23.94  19.91  -0.10  0.00  

144030_20180105 0.65  0.61  24.59  21.13  23.10  19.86  -0.61  -0.16  

144030_20180310 0.91  0.92  17.23  15.43  10.00  8.89  3.68  5.94  

145028_20180213 0.94  0.94  20.01  17.72  16.54  15.52  4.98  11.33  

145035_20180128 0.72  0.74  8.83  9.37  1.52  2.66  1.84  7.04  

146029_20180103 0.79  0.80  24.77  21.30  23.89  20.43  0.14  0.27  

146029_20180220 0.92  0.91  16.46  14.36  12.34  10.91  3.45  7.78  

146030_20180103 0.66  0.64  26.96  23.61  25.47  22.32  0.07  0.69  

146031_20180220 0.97  0.97  8.03  6.94  2.37  1.79  -2.44  -1.92  

146035_20180103 0.82  0.83  11.37  12.27  2.66  5.12  -1.10  9.70  

Average 0.84 0.85 12.23 10.65 6.59 4.97 -1.66 0.27 

 

3. The current validation plan (in-situ snow depth observations and Landsat NDSI maps) is insufficient to support 

the Spatio-Temporal Adaptive fusion method. Please add the improved validation plan. 

Response: Thank you for the critical comment. We carefully redesigned the evaluation experiments and 

substantially revised the evaluation part in the manuscript. In the Results, the improved evaluation experiments 

included: (1) The overall classification accuracy and monthly average classification accuracy of STAR NDSI 

collection were compared with those of TAC NDSI and NIEER AVHRR SCE datasets based on in-situ snow depth 

measurements (Section 3.1). (2) The numerical accuracy of STAR NDSI collection during snow period was 

compared with those of TAC NDSI and MODIS CGF NDSI datasets based on Landsat NDSI maps (Section 3.2). 

(3) The evaluation in clear-sky areas and cloud-cover areas was performed based on Landsat NDSI maps, to 

highlight the accuracy of the recovered pixels in STAR NDSI collection during the snow period (Section 3.2). 

Besides, in the Discussion, the cloud removal effectiveness of STAR method under different simulated cloud 

conditions was analyzed based on Landsat NDSI maps. The new evaluation experiments were presented in the 

response to minor comments 7 and 8. 

 

Minor comments: 

1. L 95. “The daily snow cover datasets of C6 were used in this study.” There are NDSI_Snow_Cover and NDSI 

scientific data sets in the C6 by MODIS C6 User Guide (Riggs, 2015). The NDSI_Snow_Cover and NDSI is 



different, the author need to describe the data used in the study. This is related to the subsequent results. 

Response: Thank you for the suggestion. The NDSI_Snow_Cover data were used in this study. We added a 

description of the scientific data set in the Data and Methods as follows. 

…The NDSI_Snow_Cover (hereafter referred to as NDSI) scientific data set with a range of 0, 10 to 100 was 

used in this study… 

 

2. Fig.1. It is recommended to remove the NC snow area cover. This is only an administrative division rather 

than a snow region (https://essd.copernicus.org/articles/13/4711/2021/). The in-situ observations of this area 

were not used in this study. In addition, TP suggests replacing by QTP? 

Response: Thank you for the suggestion. Figure 1 was revised. The NC snow cover area was removed, XJ 

was replaced by NX, and TP was replaced by QTP (The names in the text were also revised). 

 

 
Figure 1. Topographic relief of China, meteorological stations in NX and QTP, and Landsat OLI scenes used for validation. 

 

3. What does the dashed half-frame line in Fig.2 mean?  

Response: Thank you for the comment. The steps surrounded by the dashed half-frame line constitute our 

Spatio-Temporal Adaptive fusion with erroR correction (STAR) method, including spatio-temporal adaptive fusion 

(STAF) and error correction (EC). This is an iterative cloud removal process until no cloud remains. 

 



 
Figure 2. Schematic of the generation procedure of STAR NDSI collection. 

 

4. L 118. The description of fusion method and rules is not clear, only the priority is determined at L 123. It’s 

better to describe the fusion method first, and then introduced the interpolation used by Aqua. 

Response: Thank you for the suggestion. The description of TAC was revised as follows. 

TAC blends the same-day snow maps deriving from MODIS sensors onboard Terra and Aqua satellites. Its 

cornerstone is the unlikely significant changes of the snow pattern within the data-acquired time interval 

(approximately 3 h). Since TAC can efficiently decrease the cloud fraction by 5%–20% with negligible precision 

sacrifice (Li et al., 2019), it is introduced as a pre-processing to reduce cloud coverage preliminarily. Its priority 

scheme is determined as high value > low value > cloud. 

 
 

=  IF  OR  is cloud ,

=  IF  OR  is cloud ,

P Terra Terra Aqua Aqua

P Aqua Aqua Terra Terra

NDSI NDSI NDSI NDSI NDSI

NDSI NDSI NDSI NDSI NDSI




 (1) 

where TerraNDSI  and AquaNDSI  are MODIS NDSI datasets from Terra and Aqua satellites, respectively. PNDSI  

represents the pre-processed NDSI maps after TAC (referred to as TAC NDSI dataset in subsequent sections). The 

snow in low altitude and low latitude areas during summer is reversed to no snow to alleviate commission errors 

inherited from the original data. In addition, since the Aqua dataset is available since July 2002, the key-process 

STAR is directly used to remove clouds from Terra MODIS NDSI dataset between August 2000 and May 2002. 

Particularly, the improved Aqua MODIS C6 NDSI dataset significantly enhances the effectiveness of TAC due to 

the successful restoration of the absent Aqua MODIS band 6 data by the quantitative image restoration method 

(Gladkova et al., 2012). 

 

5. L158. What does NDSIP mean?  

Response: Thank you for the comment. PNDSI   represents the pre-processed NDSI map after the pre-



process TAC. We added a description to the manuscript as follows. 

…Specifically, the residual errors of the intersecting cloud-free areas of the pre-processed and fused NDSI 

maps ( PNDSI  after TAC and FNDSI  after STAF) are diffused to other cloud-free areas of the fused NDSI maps 

using the triangulation-based natural neighbor interpolation… 

 

6. L 216. What does “snow-clad pixels” mean? Are there any reference? 

Response: Thank you for the comment. To clarify the text, “snow-clad pixels” was revised to “snow-covered 

pixels”. 

 

7. L 214. Section 3.1 The validation method need to be improved. 

The in situ snow depth derived from 49 and 92 CMA station from BJ and QTP. However, the validation date 

need to be clear. Due to snow-free period is long, many stations record no snow in one year. In fact, the most 

useful and most concerned should be the NDSI recovery during the snow cover period. The author should 

focus on the NDSI recovery during the snow cover period and a detailed confusion matrix needs to be given. 

In addition, the authors need to focus on the accuracy comparison of the product itself (TAC, L 218, the cloud-

covered areas in the TAC NDSI dataset are considered to be snow-free. Here the cloud-covered areas should 

be eliminated without comparison) and the final spatial continuous product (STAR). The reader is concerned 

with the loss of NDSI accuracy after STAR interpolation. 

Response: Thank you for the critical comment. The comment pointed to two issues, which we responded to 

separately. 

# Issue 1. For the validation dates, we carefully revised the validation against in-situ snow depth 

measurements, including: (1) the detailed confusion matrices were added to Table 4 and Table 5 so that the 

numbers of snow-cover and snow-free samples in NX and QTP during their entire validation dates are clear. 

In addition, OEs (  OE SN SN SS   ) also reflected the detection accuracy of snow pixels; (2) the monthly 

classification accuracies in a hydrological year were added to Fig.4, and their temporal characteristics were 

analyzed in detail. The corresponding revisions in the manuscript are as follows. 

Table 4 demonstrates that NIEER AVHRR SCE and STAR NDSI datasets preeminently capture the snow 

dynamics in NX referring to the in-situ measurements, with OAs more than 90%. However, TAC NDSI dataset is 

insufficient to accurately describe the snow cover variability. Although CEs perform well regardless of the snow 

depth threshold, OEs of TAC NDSI collection are extremely high, indicating that many cloud-covered areas are 

dominated by snow. NIEER AVHRR SCE dataset partially retrieves snow pixel under cloud obstruction with an 



OE decreased by ~43%. STAR NDSI collection completely removes clouds and accurately presents snow 

distribution, with an OE further decreased from ~17% to ~7%. The generation procedure in NX has two strengths. 

Firstly, the satellite-borne sensors can accurately capture the snow events on the ground due to the generally thick 

snow averaging approximately 20 cm. Secondly, the gap-filling approach with comprehensive consideration of 

spatial and temporal correlation has outstanding reliability due to the significant periodicity of snow variation. It 

can be inferred that the NDSI datasets in NC have high accuracy because of the similar snow conditions, despite 

the lack of in-situ data in this region. 

By contrast, despite the satisfactory performance of OAs and CEs, the OEs of three snow cover datasets over 

QTP are as remarkably high as 72%, 40%, and 39% even at the snow depth threshold of 1 cm (Table 5). This 

finding indicates the omission of a large number of snow-covered pixels. The specific reasons are as follows. Firstly, 

the original MODIS NDSI maps frequently underestimate the snow presence throughout the snow period because 

discriminating the shallow snow pixels with an averaged snow depth of approximately 4 cm over QTP is 

challenging. Secondly, the credibility of the spatio-temporal contextual information is relatively low because the 

patchy snow rapidly and irregularly varies due to the extremely complex topographic and climatic conditions, 

leading to a further decrease in the accuracy of the gap-filled results. Lastly, the meteorological stations over QTP 

are unevenly distributed and are mostly located in low- and medium-altitude/latitude areas dominated by transient 

snow. Consequently, the evaluation results slightly exaggerate the real OEs. 

For the in-depth analysis of the temporal characteristics, the monthly classification accuracies of TAC NDSI, 

NIEER AVHRR SCE and STAR NDSI products in NX and QTP are shown in Fig. 4 (the horizontal axis is the 

month in a hydrological year). In NX (group a), the monthly snow fraction in the in-situ samples is greater than 

85% from December to next February. Therefore, the clouds in TAC NDSI dataset seriously affect the snow cover 

estimation, while both cloud-free products exhibit superior OAs. Compared to NIEER AVHRR SCE product, STAR 

NDSI collection has slightly higher CEs but relatively lower OEs. The OEs of STAR NDSI collection typically 

occur during snow accumulation and ablation periods, and almost disappear during stable snow-cover and snow-

free periods. In QTP, the snow period is generally from October to next May, with the monthly snow fraction of 

less than 10% in the in-situ samples. Consequently, the underestimation of snow coverage caused by the clouds in 

TAC NDSI dataset is slight. All three datasets perform well in OA and CE but perform significantly worse in OE. 

All three products achieve outstanding OAs and CEs but exhibit relatively poor OEs. In NIEER AVHRR SCE and 

STAR NDSI datasets, these OEs are generally observed outside the snow period. As mentioned above, there are 

three reasons for this phenomenon. Nonetheless, STAR NDSI collection presents superior classification accuracy 

to TAC NDSI and NIEER AVHRR SCE datasets. 



 

Table 4. Confusion matrices between TAC NDSI, NIEER AVHRR SCE, STAR NDSI datasets and in-situ snow-depth (SD) data in 

NX from 1 January 2001 to 31 August 2007. 

Station TAC NIEER STAR 
Indicator Snow No snow Total Snow No snow Total Snow No snow Total 
Snow (SD > 0 cm) 13466 19836 33302 27656 5646 33302 30955 2347 33302 
OE 40% 60%  83% 17%  93% 7%  

No snow 1269 76909 78178 1384 76794 78178 2741 75437 78178 
CE 2% 98%  2% 98%  4% 96%  

Total 14735 96745 111480 29040 82440 111480 33696 77784 111480 
OA   81%   94%   95% 
Snow (SD > 1 cm) 13136 18390 31526 26899 4627 31526 29909 1617 31526 
OE 42% 58%  85% 15%  95% 5%  

No snow 1599 78355 79954 2141 77813 79954 3787 76167 79954 
CE 2% 98%  3% 97%  5% 95%  

Total 14735 96745 111480 29040 82440 111480 33696 77784 111480 
OA   82%   94%   95% 

 

Table 5. Confusion matrices between TAC NDSI, NIEER AVHRR SCE, STAR NDSI datasets and in-situ snow-depth (SD) data in 

QTP from 1 August 2000 to 31 December 2013. 

Station TAC NIEER STAR 
Indicator Snow No snow Total Snow No snow Total Snow No snow Total 
Snow (SD > 0 cm) 5189 18095 23284 10900 12384 23284 11219 12065 23284 
OE 22% 78%  47% 53%  48% 52%  

No snow 6145 404624 410769 17663 393106 410769 9338 401431 410769 
CE 1% 99%  4% 96%  2% 98%  

Total 11334 422719 434053 28563 405490 434053 20557 413496 434053 
OA   94%   93%   95% 
Snow (SD > 1 cm) 4126 10357 14483 8391 6092 14483 8813 5670 14483 
OE 28% 72%  58% 42%  61% 39%  

No snow 7208 412362 419570 20172 399398 419570 11744 407826 419570 
CE 2% 98%  5% 95%  3% 97%  

Total 11334 422719 434053 28563 405490 434053 20557 413496 434053 
OA   96%   94%   96% 

 

Overall, STAR NDSI collection is capable of snow status estimation, eliminating cloud contamination in TAC 

NDSI dataset, and capturing more snow events than NIEER AVHRR SCE dataset. However, the accuracy of STAR 

NDSI collection has regional and temporal heterogeneity. Firstly, the accuracy over QTP is lower than that of NX, 

which is consistent with the characteristic of the original MODIS NDSI maps. Then, the permanent and periodic 

snow regime regions reconstructed by STAR have prominently high accuracy, while the transient snow-covered 

regions are easily omitted. Fortunately, the monitoring of permanent and periodic snow plays a key role in most 

snow-related investigations. Finally, the accuracy of stable snow-cover and snow-free periods is slightly better than 

that of snow accumulation and ablation periods. 

 



 

Figure 4. Monthly classification accuracy of TAC NDSI, NIEER AVHRR SCE, and STAR NDSI products on NX (group a) and QTP 

(group b). Note that the optimal values for OA, CE and OE are 100%, 0% and 0%, respectively. 

 

# Issue 2. For the validation areas, all the cloud-covered areas were eliminated without comparison in the 

previous version of the manuscript. But the evaluation experiments were redesigned according to the comment 

from Chief editor Kirsten Elger. To fairly evaluate these products in the same areas, the cloud-covered areas in 

TAC NDSI dataset were considered to be snow-free. On the one hand, we briefly introduced the evaluation 

results for cloud-free areas in the previous version, which demonstrated that STAR NDSI collection can 

completely remove clouds without a significant loss of accuracy. On the other hand, an internal comparison of 

STAR NDSI collection in clear-sky areas and cloud-cover areas was performed based on Landsat NDSI maps 

in the current version, which highlighted the accuracy of the recovered pixels in STAR NDSI collection. The 

results reveal that the accuracy of recovered areas is inevitably slightly lower than that of clear-sky areas. Although 

the average CC decreases from 0.85 to 0.73 and the average RMSE increases from 13.48 to 16.30 compared with 



clear-sky areas, the accuracy of recovered areas is satisfactory. Since many recovered areas inherit errors from 

clear-sky areas because the cloud removal procedure completely relies on the original dataset, a slight decrease in 

accuracy is reasonable. This finding highlights that STAR NDSI collection can completely remove clouds with 

satisfactory accuracy. 

The evaluation results for cloud-free areas in the previous version are as follows. 

3.1 Validation against in situ snow depth measurements 

…Table 4 demonstrates that both NDSI datasets preeminently capture the snow dynamics in NX referring to 

the in-situ measurements, with the OAs reaching 0.97 and 0.95, respectively. CEs and OEs perform well regardless 

of the snow depth threshold, highlighting that remote-sensed NDSI datasets are capable of snow status estimation 

in NX. The generation procedure in NX has two strengths. First, the satellite-borne sensors can accurately capture 

the snow events on the ground due to the generally thick snow averaging approximately 20 cm. Second, the gap-

filling approach with comprehensive consideration of spatial and temporal correlation has outstanding reliability 

due to the significant periodicity of snow variation. It can be inferred that the NDSI datasets in NC have high 

accuracy because of the similar snow conditions, despite the lack of in-situ data in this region. 

By contrast, despite the satisfactory performance of OAs and CEs, the OEs of two NDSI datasets over QTP 

are as remarkably high as 28% and 39% even at the snow depth threshold of 1 cm (Table 5). This finding indicates 

the omission of a large number of snow-covered pixels. The specific reasons are as follows. First, the original 

MODIS NDSI maps frequently underestimate the snow presence throughout the snow period because 

discriminating the shallow snow pixels with an averaged snow depth of approximately 4 cm over QTP is 

challenging. Second, the credibility of the spatio-temporal contextual information is relatively low because the 

snow rapidly and irregularly varies due to the extremely complex topographic and climatic conditions, leading to 

a further decrease in the accuracy of the gap-filled results. Last, the meteorological stations over QTP are unevenly 

distributed and are mostly located in low- and medium-altitude/latitude areas dominated by transient snow. 

Consequently, the evaluation results slightly exaggerate the real OEs… 

 
Supplementary Table 4. Classification statistics in NX. 

Indicators 
Snow depth > 0 cm Snow depth > 1 cm 

TAC STAR TAC STAR 

Snow fraction 21% 30% 21% 28%  

OA 0.97  0.95  0.97  0.95  

CE 0.02  0.04  0.03  0.05  

OE 0.06  0.06  0.05  0.05  
 

Supplementary Table 5. Classification statistics over QTP. 

Indicators 
Snow depth > 0 cm Snow depth > 1 cm 

TAC STAR TAC STAR 

Snow fraction 3% 5% 2% 3% 

OA 0.96 0.95 0.97 0.96 

CE 0.02 0.03 0.03 0.03 

OE 0.45 0.52 0.28 0.39 
 

 



3.2 Validation based on Landsat NDSI maps 

…The snow dynamics presented by TAC NDSI and STAR NDSI datasets are highly consistent with Landsat 

NDSI maps, with an average CC of approximately 0.84. This finding highlights that STAR NDSI collection can 

completely remove clouds without sacrificing accuracy. The average RMSEs of TAC NDSI and STAR NDSI 

datasets are 13.48 and 14.64, respectively, which are mainly due to systematic overestimation (Landsat NDSI 

values are generally low). In terms of snow coverage, TAC NDSI and STAR NDSI datasets are respectively slightly 

overestimated and underestimated, with corresponding average SRDs of 0.76% and −1.48% (SRD indicates the 

difference of snow rate compared with the Landsat NDSI map)… 

 

Supplementary Table 6. Performance statistics for two MODIS NDSI datasets against Landsat NDSI maps. 

Region_Date 
CC RMSE AE SRD (%) NCR SRD × NCR (%) 

STAR TAC STAR TAC STAR TAC STAR TAC STAR TAC STAR TAC 

NC1_20180225 0.87 0.95 17.10 16.89 15.07 15.23 1.02 2.91 0.73 0.28 0.75 0.82 

NC2_20180311 0.83 0.89 13.87 12.27 12.14 11.78 −1.68 −0.10 0.72 0.41 −1.22 −0.04 

NC3_20180311 0.86 0.92 8.79 2.31 0.15 −0.09 −2.77 −1.02 0.65 0.43 −1.80 −0.43 

NC4_20180318 0.98 0.98 11.33 10.29 6.08 4.88 −0.97 −1.23 0.70 0.59 −0.68 −0.73 

CCR1_20180203 0.93 0.83 5.33 3.37 1.33 0.68 2.46 3.48 0.62 0.53 1.53 1.84 

CCR2_20180203 0.73 0.55 8.43 10.93 0.10 6.80 −5.39 32.63 0.36 0.02 −1.93 0.58 

QTP1_20180322 0.83 0.75 10.70 10.22 0.77 0.44 1.31 0.11 0.72 0.46 0.94 0.05 

QTP2_20180225 0.82 0.86 15.27 13.50 −0.30 0.89 −9.12 −7.49 0.85 0.66 −7.75 −4.95 

QTP3_20180320 0.74 0.73 7.91 3.74 −1.49 −0.40 −3.48 −1.07 0.74 0.63 −2.59 −0.67 

QTP4_20180401 0.79 0.79 16.73 16.56 −3.71 −4.35 −8.15 −8.14 0.45 0.32 −3.71 −2.61 

QTP5_20180307 0.92 0.94 13.87 13.82 7.64 8.01 1.07 1.68 0.59 0.34 0.64 0.57 

QTP6_20180305 0.78 0.79 14.54 15.03 4.66 1.75 −2.93 −4.79 0.65 0.23 −1.91 −1.10 

QTP7_20180107 0.75 0.98 18.12 15.17 −0.53 10.28 −19.25 −1.00 0.65 0.25 −12.47 −0.25 

QTP8_20180128 0.82 0.75 10.79 11.13 2.74 3.27 4.39 7.62 0.64 0.42 2.81 3.19 

NX1_20180105 0.85 0.89 24.87 24.47 24.67 24.29 0.07 0.00 0.93 0.44 0.07 0.00 

NX2_20180213 0.92 0.95 20.81 20.47 18.29 18.27 7.25 9.00 0.70 0.53 5.05 4.80 

NX3_20180220 0.86 0.93 18.78 17.45 16.06 15.37 1.89 4.02 0.72 0.32 1.37 1.28 

NX4_20180103 0.74 0.64 28.86 29.54 26.66 28.09 −0.23 0.61 0.49 0.37 −0.11 0.23 

NX5_20180220 0.92 0.97 11.99 8.92 2.28 3.26 −7.96 −1.31 0.69 0.37 −5.51 −0.49 

Average 0.84 0.85 14.64 13.48 6.98 7.81 −2.24 1.89 0.66 0.40 −1.48 0.76 

Note that NCR is the intersecting non-cloud rate. SRD is the difference in snow rate. Red and blue bold values respectively 

indicate that STAR NDSI is an improvement and degradation compared with TAC NDSI. 

 

8. L 248. Section 3.2. The validation method need to be improved. 

The focus of validation in the study should be whether the STAR method is reliable. Therefore, a reasonable 

verification scheme is to select actually cloud-free the Landsat NDSI maps as a reference maps, then 



artificially set a random 20%, 50% or 80% cloud cover (only my suggestion) on the corresponding MODIS 

data. The different cloud ratio maps were recovery after STAR interpolation and validated by reference 

Landsat NDSI maps, and the conclusions is convincing. 

Response: Thank you for the critical comment. Since the validation scheme of this manuscript was designed 

from a product perspective, we did not include a simulated experiment in the Results. However, we also believe 

that the effectiveness of STAR method under different cloud conditions is important. Therefore, we added the 

simulated experiment to the Discussion as follows. 

To elaborate the cloud removal effectiveness of the proposed STAR method, the performance statistics under 

different simulated cloud conditions are shown in Table 9. Four TAC NDSI maps with little cloud cover during the 

snow period were used in the simulated experiment. Cloud masks from other dates were added to the target maps, 

with different fractions of about 20%, 50% and 80%. Subsequently, the artificially cloud-covered maps were 

recovered by STAR and validated by Landsat NDSI maps. The quantitative results indicate that the recovery 

effectiveness of STAR typically declines significantly when cloud coverage is greater than 80%. As a result, STAR 

can completely remove clouds with little loss of accuracy. Only in the NC4_20180318 scene, high overestimation 

occurs when cloud coverage reaches 55%. The phenomenon is caused by high cloud coverage and rapid snow 

variation in space and time. Therefore, users are recommended to refer to the QA maps of STAR NDSI collection 

during snow accumulation and ablation periods, in which Bit 7 reflects the cloud coverage of the space-time block. 

 

Table 9. The cloud removal effectiveness of STAR compared to Landsat NDSI maps under different simulated cloud conditions. 

Note that blue bold values indicate a significant degradation of the accuracy under the current cloud cover compared to the previous one. 

Region_Date 
Snow 

fraction (%) 

Added 

cloud (%) 

CC RMSE AE SRD (%) 

TAC STAR TAC STAR TAC STAR TAC STAR 

NC4_20180318 44% 

11% 

0.98  

0.98  

10.29  

10.44  

4.88  

4.62  

-1.23  

-1.78  

55% 0.89  19.11  11.17  12.96  

80% 0.86  21.24  13.03  16.31  

QTP2_20180225 83% 

16% 

0.86  

0.85  

13.50  

13.77  

0.89  

0.28  

-7.49  

-7.90  

44% 0.84  14.21  -0.31  -8.86  

81% 0.78  17.64  -3.72  -17.17  

QTP9_20180125 42% 

19% 

0.89  

0.90  

10.56  

10.51  

0.93  

0.89  

-3.16  

-3.14  

49% 0.87  11.34  0.65  -3.64  

80% 0.54  19.35  -9.59  -25.03  

NX2_20180213 83% 

18% 

0.95  

0.94  

20.47  

20.84  

18.27  

18.64  

9.00  

9.71  

48% 0.94  21.26  18.86  9.15  

75% 0.93  22.24  19.69  8.18  
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