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Abstract. Antiarcha data are essential to quantitative studies of basal jawed vertebrates. The absence of
structured data on key groups of early vertebrates, such as Antiarcha, has lagged in understanding their
diversity and distribution patterns. Previous works of early vertebrates usually focused on anatomy and
phylogeny, given their significant impacts on the evolution of key characters but lacked comprehensive
structured data. Here, we contribute an unprecedented open access Antiarcha dataset covering 60 genera
of 6025 specimens from the Ludfordian to the Famennian globally. We have organized an expert team
to collect and curate 142 publications spanning from 1939 to 2021. Additionally, we have two-stage
quality controls in the process, domain experts examined the literature, and senior experts reviewed the
results. In this paper, we give details of the data storage structure, visualize these antiarch fossil sites on
the paleogeographic map, and present the biodiversity of the Antiarcha. The novel Antiarcha dataset has
tremendous research potential, including testing previous qualitative hypotheses in biodiversity changes,
spatiotemporal distribution, evolution, and community composition. It is now an essential part of the
DeepBone database and will update with the latest publication, also available on

https://zenodo.org/record/6536446 (Pan and Zhu, 2021).

1 Introduction

Placodermi is an extinct group of jawed vertebrates that first occurred in the Silurian, then dominated

the Devonian and constituted a prevalent biotic component of the marine vertebrate ecosystem from
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425.0 to 358.9 million years ago (Carr, 1995; Denison, 1978; Janvier, 1996; Young, 2010; Zhu, 1996).
Recent prevailing phylogenetic hypotheses placed Placodermi as jawed stem-Gnathostomata that is sister
to crown-Gnathostomata or modern jawed vertebrates (Brazeau, 2009; Davis et al., 2012; Dupret et al.,
2014; Giles et al., 2015; King, 2021; Long et al., 2015; Qiao et al., 2016; Trinajstic et al., 2015; Zhu et
al., 2013, 2016). In this scenario, Antiarcha has usually been placed at the most basal position in the
Placodermi (Fig. 1), representing the most basal jawed vertebrates. The spatiotemporal distribution of
Antiarcha will thus help us understand the origin and early evolution of jawed vertebrates. For example,
Sallan et al. (2018) found that vertebrate diversification occurred primarily in nearshore environments
by analyzing early vertebrate occurrence and habitat data. Historically, antiarchs resided in various paleo-
environments across all paleo-continents, including marine and freshwater environments close to shore.
As a successful vertebrate group during the Devonian (Long, 2011; Young, 2010), Antiarcha has
contributed significantly to the Devonian stratigraphic correlation. For instance, the biozonation of the
East Baltic and southern East Antarctica Devonian succession is partly based upon the antiarchs
Bothriolepis, Asterolepis, and Pambulaspis (Young, 1974, 1988). LukSevié¢s (1996) identified 14
bothriolepid species (12 Bothriolepis and 2 Grossilepis) in the Frasnian-Famennian formations of the
East European Platform, proposed nine antiarch assemblages, and set up the most detailed zonation of

the Main Devonian Field, north-western part of the East European Platform (Latvia and NW Russia).
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Figure 1 Phylogenetic relationships of major early vertebrate groups from Qiao et al. (2016) and Pan et al.
(2018). Silhouettes indicate groups of Antiarcha.

Collecting and visualizing the data of Antiarcha is a prerequisite to explaining the spatial and temporal
distribution of early vertebrates. With the help of data visualization, we could better understand the
biogeographic evolution of early vertebrates. Although Zigaite and Blieck (2013) advocated a
quantitative analysis to define early vertebrates' biogeographic patterns, efficient quantitative analysis is
still lacking to understand the dispersal of early vertebrates. This occurs mainly because no
comprehensive data collection of early vertebrates was accomplished. The disadvantages of unstructured
data are clear: the absence of schema and structure makes them difficult to manage, and the lack of
predefined attributes makes them difficult to be reused or extended.

In this paper, we present an unprecedented structured dataset of Antiarcha that potentially facilitates
understanding the spatiotemporal distribution pattern and quantifying the variety of antiarchs. This
dataset is open access and follows the FAIR principles (findability, accessibility, interoperability, and

reusability). This dataset complements existing fossil records of early vertebrates. Moreover, it is the
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first step to accomplishing the global coverage of the vertebrate fossil dataset to analyze the Middle
Paleozoic biogeography and paleogeography. Understanding the distribution of antiarchs in the
paleogeographic background with reference to the global paleogeographic reconstructions of Scotese

(2021), our preliminary results can also be used to test the hypothesis of paleogeographic reconstructions.

2. Method

2.1 Overview

Comprehensive data are essential for quantitative studies and simulation analysis on early vertebrates.
Sallan et al. (2018) pointed out that a lack of early vertebrate fossil data has limited quantitative
approaches and hindered the resolution of issues regarding ancestral habitat in vertebrate evolution. To
bring the study of Vertebrate Paleontology into the next phase of macroevolutionary, we built the
DeepBone database with the implementation of a project entitled "Big Earth Data Science Engineering
(CASEarth)" in 2018 (Guo, 2017; Pan and Zhu, 2019).

With continuously refining data, the Antiarcha dataset of the DeepBone database is the first and most
comprehensive dataset endorsed by Chinese researchers at the Institute of Vertebrate Paleontology and
Paleoanthropology, Chinese Academy of Sciences. The Antiarcha dataset of DeepBone differs from that
of PBDB (https://paleobiodb.org/) in its basic unit, which is the specimen ID coupled with the
occurrence and other detailed data. All the specimens are referenced in taxa and literature to guarantee
accuracy. Because the data format was designed as specimen-based, we input the metadata according to
the published specimen ID or virtual specimen ID. The literature on classic systematic paleontology
always has real specimen IDs. When it handled stratigraphic topics, the authors usually cited fossil
records instead of real specimens. We introduce a virtual specimen ID to store the taxon information in
this kind of literature containing no real specimens.

Since no satisfactory approach can automatically extract paleontological data from the literature, we
recruit several data entry assistants, including researchers, master's and Ph.D. students, to collect and
curate the data. In order to guarantee the quality of the data, we designed a four-step data processing
procedure (Fig. 2):

1. Experts who obtained his/her Ph.D. degree in Paleontology collected and sifted the Data source.



2. Data entry assistants read the related references, extracted the antiarch placoderm data, and
90 manually filled them into the online record file under the supervision of vertebrate paleontology
experts.
3. According to the references, experts reviewed and cleaned the data line by line as the quality
control procedure.
4. Senior experts, who have outstanding achievements in vertebrate paleontology, reviewed the
95 data again to guarantee quality.
5. DeepBone.org published the dataset with visualization. A better user interface helps
dissemination.

Next, we provide more details on the data processing and visualization.

DeepBone.org

100
Figure 2 Workflow of the data processing. 1, collecting and sifting lectures by experienced experts. 2, data

entry assistants digitalize paleontological descriptions from the page into the DeepBone database. 3,
According to the reference, experts are accountable for data review and cleaning to implement quality control.
4, senior researchers review the data again. 5, data managers release the data to the public through

105 DeepBone.org.
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2.2 Data Source

The data were extracted from the published literature containing information on antiarch specimens.
Most of the journals are professional journals on Paleontology. The main journals include Alcheringa,
Acta Geologica Polonica, Bulletin of the Geological Society of China, Estonian Journal of Earth Sciences,
Journal of Vertebrate Paleontology, Journal of Paleontology, Palaeontologia Electronica, Palaeontology,
Palaeoworld, and Vertebrata Pal Asiatica. Totally we have collected 142 publications spanning from 1939
to 2021 (see dataset for more details). The satisfactory literature should include an accurate description
or revision of the specimen and taxon. We accepted the latest peer-reviewed literature to deal with the

inconsistent descriptions of stratigraphy and taxonomy.

2.3 Data Processing and Quality Control

We made a tailored web page that provides a better user interface for data entry assistants to fill in the
rows of paleontological data. After that, the other related experts would review the data so that a
researcher could quickly access them to perform quantitative analysis (Fig. 2). This workflow was
adopted from the Geobiodiversity Database (GBDB) (Xu et al., 2020). Almost all antiarch literature was
published in English, Russian, French, German, and Chinese. The data entry assistant could handle the
literature in Chinese and English well. Many fossils were documented in French, Russian, and German.
We invited paleontology postgraduates, who know French, Russian, or German, to deal with the literature

in these languages.

2.4 Data Visualization

Due to the easy access of the paleo-geographic coordinates calculator (PointTrack version 7.0) (Scotese,
2021) and its widely used in Paleontology (Ke et al., 2016; Kiel, 2017), we decided to use Scotese's
paleocontinent reconstruction to perform the plot map, although many paleogeographic reconstructions
were proposed (Heckel and Witzke, 1979; Li and Powell, 2001). Using the TrackPoint software, we
converted the excavation locations from the current GPS to paleo-GPS and visualized the locations using

the Web Mercator algorithm (Battershy et al., 2014).
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2.5 Biodiversity Visualization

We calculated Antiarcha biodiversity (the genus richness) by the divDyn R package (Kocsis et al., 2019).
Range-through diversity is all taxa in the interval, based on the range-through assumption: tSing + tOri
+ tExt + tThrough. Boundary-crosser diversity is the number of taxa with ranges crossing the boundaries
of the interval: tExt + tOri + tThrough. Sampled-in-bin diversity is the number of genera sampled in the
focal bin.

The timescale follows the International Commission on Stratigraphy International Chronostratigraphic

Chart version 2021/07 (Cohen et al., 2021).

3. Results

3.1 Data Overview

This dataset consists of 60 genera of 6025 specimens, covering all known antiarch lineages. The 6025
specimens include 5867 fossil specimens that have been systematically described and documented and
158 virtual specimens introduced to describe the taxon information when no specimen was assigned for
the referred fossil records. Each specimen has at least one reference within our dataset, and the specimens
lacking precise age are excluded. We followed the lithostratigraphic information of the original authors,
except we found a revision. We accepted the latest revision in the literature to modify our dataset. The
amendments were linked to the latest reference as an endorsement. We took the geological background
data in our dataset unless it was missing from the original literature. We transferred the unstructured data
from the literature to structured data for further research in as much detail as possible. Table 1 shows the
data structure of our dataset. Among all the referred specimens, 6.51% belong to Yunnanolepidoidei,
2.86% belong to Sinolepidoidei, 78.92% belong to 'Bothriolepidoidei’, 11.71% belong to

Asterolepidoidei. We plotted all the fossil sites of the constituent groups in Figure 3.



Specimen Reference
Specimen ID Genus Literature type
Lithostratigraphy_formation Species Title
Lithostratigraphy_member | Custodian institute Keywords
Fossil site Custodian country Volume
Discovery country | System / Period Issue
Latitude Series / Epoch Pages
Longitude Stage / Age Authors
Paleo-latitude g;f;f;;;ﬁi&ca'w'me Year
Paleo-longitude Journal
Doi

Table 1 The structure of Antiarcha dataset.

Yunnanolepidoidei P Asterolepidoidei

<=

11.71%

155
Figure 3 Antiarch placoderm spatial distribution and richness. The tree topology is simplified from the

phylogenetic result in Pan et al. (2018). Numbers under the pie chart represent each group's relative amounts
of specimens. Terminal groups are linked with their geographic distributions. Each node represents a single

specimen. Specimens from one locality overlap each other.
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GBDB is a stratigraphic and palaeontological database, but no antiarch record exists. Compared to the
138 records of Antiarcha in the Paleobiology Database (PBDB, 2021-08-12), this is the most
comprehensive dataset of Antiarcha up to now (Table 2). Only taxon rank, reference, and occurrence
location are available in PBDB. DeepBone dataset has more fields on the structured information of the
specimen than that is in the PBDB, such as lithostratigraphic fields (Table 1). Some records in PBDB
are not stored at the genus or species level. There are some typing errors in PBDB, for instance,
‘Jiangxilepus', '‘Bothriolepiodei' and 'Pterichthys'. Jiangxilepis, ‘Bothriolepidoidei' and Pterichthyodes
are correct spellings. Macrodontophion is not a genus of Antiarcha, but PBDB adopts it in antiarchs.
PBDB also adopts Silurolepis as an antiarch ignoring the latest research of Zhu et al. (2019). To ensure
accuracy, every specimen of DeepBone is endorsed by the latest publication and reviewed by the experts
who have focused on Antiarcha. It is open to access through the website of the DeepBone database or

https://doi.org/10.5281/zenodo.6478602.

DeepBone Database Paleobiology Database(PBDB)

Type specimen-based fossil-occurrence-based
No. of references 142 19

No. of genera 60 26

No. of species 187 98

No. of 6025 138
Specimens/ occurrences

Found in 2018 1998

Websit www.deepbone.org https://palecbiodb.org/

(last access: 22 October 2021)

Table 2 Comparison of Antiarcha data in two paleontological databases.

3.2 The Geospatial Distribution of the Antiarcha Dataset

Yunnanolepidoidei is endemic in the South China block (comprising southern China and northern
Vietnam) regarding the fossil site distribution. Sinolepidoidei is limited in South China and Australia
(East Gondwana). In contrast, 'Bothriolepidoidei' and Asterolepidoidei are cosmopolitan, especially

Bothriolepis. The faunistic elements in the communities are used herein at the genus level for their
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distributions because many Bothriolepis species were described based on isolated plates lacking
diagnostic characters (Blieck and Janvier, 1993; Downs, 2011). The heat map of fossil sites (Fig. 4)
shows that Europe, Australia, and China account for the most fossil sites globally, partly due to their long

research history.

= o
Figure 4 Heat map of Antiarcha fossil sites based on the modern world map. Each spot represents a single
fossil site. The blue color indicates the area with sparse fossil sites. The red color indicates the area with dense
fossil sites.

As Young (1990a) mentioned that biogeographic data must be interpreted in the context of
paleogeographic hypotheses, we plot our data on paleogeographic atlas (Fig. 5) to generate an outline of
their past. The continental reconstructions of Scotese place Baltica, China, and Australia in the tropic

and subtropic near the equator from Llandovery to Famennian.
3.3 The Paleogeographic Distribution of the Antiarcha Dataset

We plotted these fossil sites on the paleogeographic map (Fig. 5) except the Silurian Shimenolepis, the
earliest record of Yunnanolepidoidei and the only documented antiarch specimen before the Devonian
(Wang, 1991; Zhao et al., 2016). Most of the fossil sites were positioned around the paleo equator. In the
present scenario, the suborder Yunnanolepidoidei apparently originated as early as the Silurian in the

South China block, forming a highly endemic fauna. All fossil sites of Yunnanolepidoidei lay in southern

10
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China and northern Vietnam (Wang et al., 2010). From Ludlow (Silurian) to the Early Devonian,
Yunnanolepidoidei formed dominant antiarchs. Sinolepidoidei and 'Bothriolepidoidei’ first appeared in
Pragian in South China, and Asterolepidoidei first evolved in Emsian in Australia or East Gondwana.
During the middle Devonian, along with lessened isolation of South China, Yunnanolepidoidei became
extinct. Euantiarcha (‘Bothriolepidoidei' + Asterolepidoidei) dominated Middle and Late Devonian
antiarchs, and only a few members of Sinolepidoidei coexisted with them in China and Australia. In
Eifelian, Asterolepidoidei suddenly bloomed in Baltica without any clue from the older horizons based
on existing research. The distribution and diversity of Antiarcha reached a peak in Givetian.
'‘Bothriolepidoidei' and Asterolepidoidei represent the main groups of Antiarcha in Givetian, comprising
five bothriolepidoid genera with 42 fossil locations and nine asterolepidoid genera with 49 fossil
locations. The records of antiarchs decreased in the Pan-Cathaysian and East Gondwana in the Late
Devonian, contrary to those increased in Baltica. Antiarchs in Baltica went through an independent

evolution in the Late Devonian.

‘Bothriolepidoidei’ @ Asterolepidoidei

11
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Figure 5 The distributions of Antiarcha during Devonian. Each spot represents the location of one specimen
on the paleogeographic map. Specimens from the same locality and the same age overlap each other. The

paleo-coordinates are calculated by TrackPoint. Colors denoting respective groups follow Figure 3.
4 Discussion

4.1 First Appearance Record

A taxon's first appearance record or lineage is important in Paleontology and Evolutionary Biology. It
renders a hard minimum constraint on molecular clock calibration for a taxon (Benton and Donoghue,
2007; Benton et al., 2009; Donoghue and Benton, 2007). Based on our dataset, the oldest record of
yunnanolepidoids or antiarchs is Shimenolepis graniferus from the Xiaoxi Formation at Shanmen
Reservoir, Lixian County, Hunan, China. Shimenolepis was first described as the oldest known
placoderm, dated as Telychian of Llandovery (Janvier, 1996; Wang, 1991). However, after a detailed
stratigraphic work, Zhao et al. (2016) suggested that the age of Shimenolepis is late Ludlow rather than
late Llandovery. Janvier and Téng-Dzuy (1998) also documented an indeterminate yunnanolepidoid
(Antiarcha gen. sp. indet.) from the Do Son Formation of northern Vietnam, which could be another
earliest antiarch potentially.

The oldest sinolepid is Liujiangolepis suni, from the Nakaoling Formation (Pragian), Xiangzhou,
Guangxi, China (Wang, 1987). The oldest bothriolepidid is Houershanaspis zhangi, documented from
the Danlin Formation (Pragian) in Houershan, Dushan county, Guizhou, southwestern China, based on
a bothriolepid-like anterior median dorsal plate (Lu et al., 2017). The earliest asterolepidoid records are
represented by Wurungulepis and some disarticulated specimens, which have been documented from the
Broken River Formation, Broken River, Australia. The age of the Broken River Formation was first
referred to Eifelian and then reassigned to Emsian (serotinus Zone) (Burrow, 1996; De Pomeroy, 1996;

Young, 1984a, 1990b).

4.2 Origin and Differentiation of Euantiarcha

Houershanaspis, Wudinolepis, and Wufengshania from the Pragian and Emsian represent the earliest
members of 'Bothriolepidoidei' (Chang, 1965; Lu et al., 2017; Pan et al., 2018), highlighting the origin
and early diversification of this group in South China. In Eifelian, the distribution range of
'‘Bothriolepidoidei' extended from South China to Iran, which was positioned at the northern margin of

East Gondwana with the discovery of Hyrcanaspis (Janvier and Pan, 1982). 'Bothriolepidoidei' became

12
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cosmopolitan during the Givetian and Late Devonian. The earliest asterolepidoid records are from
Australia or East Gondwana in Emsian (Burrow, 1996; Young, 1984a, 1990b). In Eifelian,
asterolepidoids occurred in Baltica, in addition to East Gondwana. Compared to the abundant Early and
Middle Devonian fish faunas in South China, asterolepidoids were late arrivals to South China (Young,
1984a) since no asterolepidoid was known from this province before Givetian. It could be inferred that

Asterolepidoidei originated and differentiated in East Gondwana.

4.3 Biodiversity Changes of Antiarcha

The observed genus and species numbers over time were summarized in histograms (Fig. 6). The
comprehensive dataset of Antiarcha specimens allows us to generate its biodiversity changes throughout
its life span at the genus level (Fig. 7). Numerous metrics were proposed to estimate diversity, given such
distorting effects of incomplete sampling and the discretized time dimension (Gotelli and Colwell, 2001).
Since all the richness metrics cannot be consensus, we choose the traditional range-based methods (Fig
7a) to illustrate the data. The biodiversity curve reached its peak at Givetian. The curve identified two
sharp risings in the Pridoli and Eifelian. The first rise in Pridoli coincided with the rising of the jawed
vertebrate and resulted in Yunnanolepidoidei reaching its diversity peak in Lochkovian. Walliser (1996)
proposed the E'Em event as a faunal turnover from endemic taxa to more cosmopolitan ones in the
transition between Emsian and Eifelian. Changes in the diversity of antiarchs coincided with the E'Em
Event. After the E'Em event, the second increase was recognized by a faunal turnover from endemics to
cosmopolitans (Zhu, 2000) due to the broader geographical ranges. Before this event, Petalichtyida and
Antiarcha were endemic to China (Pan et al., 2015). Wurungulepis was the only documented antiarch
outside China in the Early Devonian (Young, 1990b). Yunnanolepidoidei was extinct after the E'Em
event, coinciding with the differentiation of euantiarchs. Zhu (2000) proposed the Late Eifelian event
(Walliser, 1996) for the Chinese placoderm extinction in the late Eifelian. Although decreasing in the
Pan-Cathaysian, the genus and species diversity of Antiarcha in other parts of the world kept rising after
the Late Eifelian event. Walliser (1995) proposed that the Mid-Famennian Event was characterized by
an increase in the species diversity of Antiarcha, which is also visible at the genus level based on this

dataset.

13
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Figure 6 Histogram of observed specimen number. (a) The genus number at different time intervals, and (b)

the species number at different time intervals.
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Figure 7 The trajectory of antiarchs diversity over the middle Paleozoic interval. (a) The range-through

diversity of antiarchs, (b) Results of different approaches that estimate diversities. RT, the range-through
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diversity, all taxa in the interval, based on the range-through assumption; BC, the boundary-crosser diversity,
the number of taxa with ranges crossing the boundaries of the interval; SIB, the sampled-in-bin diversity, the
number of genera sampled in the focal bin; Lud, Ludlow; Pri, Pridoli; Loc, Lochkovian; Pra, Pragian; Ems,

Emsian; Eif, Eifelian; Giv, Givetian; Fra, Frasnian; Fam, Famennian.

5 Data Availability

The current dataset achieved via Zenodo represents a static version of the dataset in June 2022:
https://zenodo.org/record/6536446 (Pan and Zhu, 2021). The latest version of the dataset is always freely
available via https://deepbone.org/ (last access: June 2022).

6 Conclusions

We presented here an open-access dataset of Antiarcha, the most basal jawed vertebrate, from the late
Silurian to the Late Devonian. This dataset significantly expands the previously available data of antiarch
fossils. Paleontologists, stratigraphers, and evolutionary biologists could import the tab-delimited file for
future research studies, especially for biodiversity analysis, stratigraphic correlation, and molecular clock
calibration. With the information of 6025 specimens, our Antiacha dataset is far more comprehensive
than the other sources in lithostratigraphy and specimen details. Data are significant for quantitative
analysis and potentially contribute to data-driven paleontology research. We performed a visualization
of the data to understand the spatiotemporal distribution of Antiarcha. In brief, Antiarcha first appeared
in the Pan-Cathaysian province and then boomed around the world. The distribution and diversity of
Antiarcha reached a peak in Givetian. The diversity changes of Antiarcha coincided with the E'Em Event,
which is a faunal turnover from endemic taxa to more cosmopolitan ones in the Early Devonian. The
diversity changes of Antiarcha also identified the Late Eifelian Event, which is the Chinese placoderm
extinction in the late Eifelian. The available Antiarcha data may be just the tip of the historical reality

due to the incomplete fossil record. We will continue to update the dataset with the latest publication.
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